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Abstract. The development of new Web servicesby compositionof existing
onesis becominga widespreadapproachto realisebusiness-to-businesscollabo-
rations.Thecompositeservicesobtainedin this way aretheneventually usedin
othercompositions.Giventhedynamicnatureof theWeb,this recursive compo-
sition of servicesrapidly leadsto intricatedependenciesbetweenthem.On the
otherhand,businessesneedto tracktheexecutionsof their compositeservicesin
orderto ensureexplainability in caseof failureandto supportdecisionmaking.
This paperdealswith the issueof tracingcompositeserviceexecutionsover the
Web. It describesamodelandanXML representationof serviceexecution traces,
anapproach for collectingandstoringthesetracesin a distributedenvironment,
andanapproach to evaluatequeriesover distributedrepositoriesof traces.

1 Intr oduction and motivation

Theconnectivity generated by theInternet is re-shaping thewayorganisationsarchitect
their collaborationswith other organisations,as well as their interactions with their
customers. Organisationsof all sizesareprofiting of this connectivity to form online
alliancesby inter-connectingtheirservicesfor thepurposeof providing one-stopshops
to their customers.

In thissetting,theideaof developingnew servicesby compositionof existingones
is becoming thekeystoneof thenext generationof Internetsystems.A serviceis seenas
anabstraction of a setof activities involving a number of resources(e.g.,datasources,
application programs,businessprocesses),intendedto fulfil a classof customerneeds
orbusinessrequirements.In order tosatisfycomplex needs,servicesareinter-connected
amongthem,thereby forming compositeservices. Examplesof compositeservicesin-
cludea travel managementservicecombining flight andaccommodationbooking ser-
vices,or an account aggregation servicethat integratesbanking, tax declaration, and
financialservices.

In orderto satisfycurrent usersandto attractnew customers,organisationsneedto
payspecialattentionto thequalityof their services.In particular, they needto traceex-
ecutionsof theseservicesin order to ensureexplainability in caseof failureor auditing,�
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aswell asto support decision-makingaimedat improving thestructureanddynamics
of the services.Thesetracesof ongoing andpastexecutions of servicesprovide the
informationrequired to answerqueriesfor thefollowing purposes(among others):

Customer feedback: to explain specificfailures.A queryin this context would be
“Retrievethetracesof all executions thathavebeentriggeredfor a givenclient” .

Quality assessment:to detectserviceswhoseexecutionstendto fail, like for ex-
amplein “Retrievetheexecutions of a givenservicethat havebeenstalledsincemore
than 30 minutes” or to make a report on pastserviceexecutionsas in “Retrieve the
componentsof a compositeservicewhoseexecutions take themosttimeonaverage” .

Monitoring and control: to adapttheserviceto theactualrequirementsby identi-
fying, in thecontext of a given service,somepatternsof its componentexecutions.An
example wouldbe“In howmanyexecutionsof theserviceS,theexecutionsequenceof
theserviceA, thenB andfinally C hasbeenobserved?” . Also, theongoing execution
of a servicecouldbeadaptedon thefly by analysingwhathashappenedsofar. For ex-
ample,thechoiceof whichcomponentto triggeratagivenpointof anexecution,could
bebasedon informationextractedfrom thetracesof thecompositeservice.

Audit: to conduct routine or ad-hoc checks involving the executions of a service,
like for example whenvalidatingthebills issuedby theprovidersof a service.

Thispaperpresentsa framework for thecollectionandmanagementof tracesabout
eitherpastor ongoing executionsof composite services.Theproposedframework in-
cludes:(i) ageneric modelof tracesof compositeservices;(ii) aconcreterepresentation
of tracesin XML; (iii) anapproachto collectandstorethesetracesin a distributeden-
vironment;and(iv) a methodfor evaluatingqueriesover thesetraces.Theframework
addressesthefollowing issues:

– Thetracesaredistributed:querying thetracesof a service’s executionsmaythere-
fore require multiple sub-queriesto besentto the providerswho have hostedthe
execution of the componentservices.This issueis different to the oneaddressed
by classicalapproachesin the context of distributedqueryprocessing.Theseap-
proachestypically rely on a centralisedknowledgeof themeta-datadescribing the
topology of thenetwork where thedataaredistributed. In contrast,thepartitioning
of theexecution tracesacrossserviceproviderscanonly beincrementallydiscov-
eredwhenbrowsingthetracesthemselves.

– Thenumberof providerscanbe large andcontinuouslychanging: theprovider of
a componentwithin a composite servicemay be dynamically selectedbasedon
various factors.As a result,theserviceprovidersinvolved in a compositeservice
variesfrom oneexecution to another. In addition, providersof componentservices
mayjoin andleavea compositeserviceat any time.

– Thetracesareheterogeneous:althoughconformingto acommongenericinterface,
eachproviderwill offer its own serviceinterfaces,with a differentsetof statesand
observationpointsthanthoseof other providers.Thismeansin particularthattraces
mustbetreatedassemi-structureddata,whichmotivatesthechoiceof XML.

Therestof thepaperis organisedasfollows.Section2 introducesthebasicconcepts
of theproposedframework. Section3 dealswith thecollectionof tracesrepresentedin
XML. In section4 we discussandillustratethe evaluation of queriesin a distributed



environment. Finally, section5 comparestheproposalwith similar or complementary
ones,while section6 concludes.

2 DesignOverview

In this sectionwe introducethe framework thatwe adopt for servicecomposition and
execution, andfor querying traces.In order to ensure a broad applicability, this frame-
work is intended to be independent of specificserviceimplementationtechnologies
(e.g.,J2EE,.Net),servicedescriptionlanguages(e.g.,WSDL) andserviceregistration
anddiscovery infrastructures(e.g.,UDDI).

2.1 Servicecomposition

We distinguishbetweenelementary andcomposite services.Elementary servicesare
pre-existing or native servicesthatshouldbetreatedasblackboxesfrom theperspec-
tive of otherservicesor applicationprograms.A compositeserviceis an aggregation
of other(eithercompositeor elementary) services,which arereferredto asits compo-
nentservices. At averyabstractlevel,acompositeserviceis modelledasagraphwhose
nodesarelabelledwith invocationsto thecomponentservices.Theedgesbetweenthese
nodes capturedataandcontrol-flow dependencies.Control-flow dependenciesdeter-
minewhichnodes(if any) needto beenteredaftertheserviceinvokedby a givennode
completes its execution.Control-flow dependenciesalsoestablishtiming constraints,
signalsendingandprocessing,etc. Data-flow dependencieson the otherhanddeter-
minethedataitemsthatmustbepassedfrom onenodeto another whena control-flow
link is taken.

Eachnodein a compositeserviceis associatedto anorganisational entity which is
responsible for handling the serviceinvocationassociatedto that node. Theorganisa-
tionalentityassociatedwith anodecanbeeitheranindividualprovideror acommunity
of providers.In theformercase,thedesignatedprovider is responsiblefor executing all
theinstancesof thisservice.It mayeventually partiallyor totally delegate theexecution
of theseinstancesto anotherprovider, but this delegation is hiddento theusersof the
composite service.On the otherhand, a community of providerswill systematically
andtransparently delegatetheexecutionof a serviceto its members.This delegation is
carriedout by the representativeof thecommunity, which effectively actsasa service
broker. Themeansbywhichacommunity’srepresentativechoosesamemberto execute
a request,is specifiedvia a selectionpolicy [1].

Onewayof concretelydescribing thecontrol anddata-flow dependenciesof acom-
positeservicesis to usean existing processmodelling language, andespecially, one
of thosethat have proven to be suitablefor workflow specification.Therearenumer-
ous workflow specificationlanguagesbasedupon differentparadigms. In fact, each
commercial Workflow ManagementSystemimplementsits ownspecificationlanguage,
with little effort beingdoneto providesomedegree of uniformity betweenproducts.In
thisrespect,theWorkflow ManagementCoalition[5] hasdefinedasetof glossariesand
notations that encompasssomeof the constructs usedin existing workflow specifica-
tion languages.Unfortunately, this standardisationeffort hasnot yet led to a standard



language for processmodelling, which could be appliedfor the specificationof con-
trol anddata-flow within a composite service.Recently, WSFL3, XLANG 4, andthe
ebXML BusinessProcessSpecificationSchema(BPSS)5 havebeenproposedascandi-
datelanguagesfor this purpose.At present,standardisationefforts areunderway based
on theseproposals,but noconsensushasbeenreachedyet.

For thepurposeof this paperandto keepthemodel general enough,we chooseto
specifycontrol anddata-flow dependenciesusingstatecharts[9]: awidely usedformal-
ismin reactivesystemswhichhasbeenintegratedinto theUnifiedModellingLanguage
(UML) [17]. Statechartsofferconstructsfor modellingsequence,loops,branching,con-
current threads,andcommunicationbetweenthreads basedon signals.Sincetheseare
the basicconcepts found in mostprocessspecificationlanguages,we expectthat our
resultscanbe adapted to othercomposition languagessuchasWSFL, XLANG, and
BPSS.

The statechartin Figure1 specifiesthe control-flow dependenciesof a composite
serviceS. S1 andS2 areinvokedfirst andexecutedin parallel.Whenbothfinish,either
S3 or S4 is executedaccording to thecondition C. ThenS5 is finally executed.

S5
S3

S4

S1

S2

S

[not C]

[C]

Fig.1. Control-flow statechartof a compositeservice.

2.2 SystemAr chitecture

Thebasicentitiesof theframework architectureare“wrappers”,“schedulers” and“mul-
tiplexers”. Theentitiesaredescribedin turnbelow.

Wrappers. A provider of a servicehasto supplya wrapper. Thewrapper of a service
ensuresthat a native servicecanbe invoked regardlessof its underlying datamodel,
messageformat andinteractionprotocol.For this purpose,a service’s wrapper handles
(among otherthings)dataconversionbetweenthe datamodel of theserviceinterface
andthatof its implementation[1]. Otherissuesthatwrapperscanaddressincludesecu-
rity managementandprotocolheterogeneity. In our tracingmodel, theservicewrapper
is also responsible for recording factsabouteachexecution of the wrapped service.
Thesefactsarestoredlocally by thewrapper in a repository of tracesandmadeavail-
ablethrougha query interfaceasdiscussedlaterin thepaper.

Schedulers. Theproviderof acompositeservicehostsacompositeservicescheduler for
that service.Interactions among componentsof a composite serviceareimplemented

3 http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
4 http://www.gotdotnet.com/team/xmlwsspecs/xlang-c
5 http://www.ebxml.org



by a compositeservicescheduler (a scheduler in short).A scheduler is responsible for
orchestratingthe executions of the compositeserviceby triggering the executionsof
thecomponentservicesaccording to thecontrol-flow dependenciesassociatedwith the
compositeservice.Thescheduler is alsoresponsiblefor handling andprocessingdata
according to thedata-flow dependenciesencodedwithin thestatechart.

Thescheduler of acompositeservicecanbeeitherlocatedin acentrallocation(the
centralisedorchestration approach) or implementedasa setof distributedprocesses
thatcooperatein a peer-to-peermanner (theP2Porchestration approach). In thecen-
tralisedapproach,the scheduler of a compositeserviceS is implemented asa single
softwaremodule asin [11], [2] and[21]. Thisscheduleris responsible for initiating the
execution of the componentsof S according to the control-flow statechartassociated
with S. To do so,theschedulerof S invokeseachof thecomponents of S according to
thecontrol-flow dependenciesof thecompositeservice.

In theP2Papproach,thescheduleris implementedasacollectionof softwaremod-
ulescommunicatingwith eachotherdirectlyasin [16], [7] and[4]. Eachparticipant in
acompositeservicehostsoneof thesesoftwaremodules,thatwecall a local scheduler
in the sequel.On the otherhand, the provider of the compositeservicehostsanother
softwaremodulethatwe call theglobal scheduler. Whentheglobal scheduler receives
arequestto startanexecution, it sendsmessagesto thelocalschedulersof thosepartic-
ipantsthatneedto starttheirexecutionsin thefirst place.Eachof theselocalschedulers
invokestheunderlying servicethrough its wrapper, waitsuntil theexecutionresulting
from this invocation is completed, andwhenthis happens, it sendsa messageto the
local schedulers of thoseparticipants that needto be executed next according to the
control-flow dependenciesof thecompositeservice.Thesepeer-to-peerexchangesbe-
tweenlocal schedulers continuesuntil eventually oneof the local schedulers indicates
to theglobalschedulerthat theoverall composite serviceexecution hascompleted. A
moredetaileddescription of thismodelandits implementation canbefound in [1].

Query multiplexers. Eachserviceprovider hostsa software modulecall the query
multiplexer, which is responsible for: (i) receiving a query from a requesterandpre-
processingit, (ii) identifying theeventual sub-queriesandif any, (iii) dispatching them
to thecorrespondingproviders,(iv) receiving thesub-results for theproviders,(v) merg-
ing local andremote results,andfinally, (vi) sendingbacktheoverall resultto there-
quester. Thefeaturesof thequerymultiplexeraredetailedandillustratedin section4.

3 Modelling, representing,and collecting traces

3.1 Modelling traces

Simplifyingassumptions. For thesakeof simplicity, weassumethatthewrapperandthe
schedulerof acompositeserviceshareacommon timeline. Thiscanbeachievedusing
well-known clock synchronisationprotocolssuchasNTP [10]. We alsoassumethat
all temporal values(time instants,durationsandintervals),areexpressedat the same
level of granularity (e.g.,at thegranularity of theminute or of thesecond). Underthis
assumption, instantsanddurationsareunambiguously representedasintegers,while an
interval is representedasapairof integers corresponding to its bounds.



Life cycleof a serviceinstance. Throughout its life cycle, a serviceexecution goes
throughaseriesof statuses.Thefollowing statusesarepredefinedby thetracingmodel:
enabled, running, stalled, completed, andcancelled. Thesepredefinedstatusescanbe
specialised(or refined)by agiven serviceproviderin orderto accommodateapplication
specificsemantics.For example, the provider of a service“Currency Converter” can
declarethata servicespecialisesthestatus“running” into 3 sub-statuses:gettingdata,
processingdata, and displaying results. When an execution of this serviceis in the
“running” status,in canbein eitherof thesethreesub-statusesaswell.

Every serviceis associatedto a life cyclestatechart 6 thatmodelsthepossiblesta-
tusesthroughwhich theexecutionsof this servicecango,andthepossibletransitions
betweenthesestatuses.The transitionsof this statechartare labelledwith the events
that fire them.Theseevents canbe internalto the serviceexecution (e.g., the service
startsrunning),or external(e.g.,theusersendsa cancellation message).In bothcases,
an event occurrencewithin an execution is processedby the wrapperof the service,
whichdetermineswhich transitionin thelife cycle statechartneedsto befired (if any),
andrecordsthenew statusin thetraceof theserviceexecution.

Thestandard life cyclestatechart definedby the tracingmodelis depictedin Fig-
ure2. Whenanexecution of a serviceis started,it enterstherunning status.While on
this status,theservicecanbesuspendeddueto anexternal request,or stalledbecause
aresourcerequiredfor theserviceexecution is temporarily unavailable.This is notified
to thewrapper through anevent stall. Fromthestalledstatus,theserviceinstancecan
subsequently eithermove backto therunning stateor to thecancelledstatus.Fromthe
running status,it canmoveeitherto thecompletedstatusor to thecancelledone.

Thestatesof this statechartcanbe refinedby a given serviceprovider in orderto
incorporateapplication-specificstatuses,transitions,andevents.For example, the“run-
ning” serviceof thestandardlife cyclestatechartcanberefinedinto astatechartwith 3
statesconnectedin sequence:gettingdata, processingdata, anddisplayingresults.

cancel

resume

stallstart

complete cancel

running

completed

enabled

cancelled

stalled

Fig.2. A statechartmodellingthelife cycle of aserviceexecution.

Thetracingmodeldoesnot imposeany explicit relationship betweenthelife cycle
of a compositeserviceandthoseof its components.For example, a compositeservice
execution canvery well be in the ”running” statuseven if oneor several of its com-
ponentsarein a ”stalled” status.Whenanexecution of a componentservicereaches a
particularstatus,if any changeof statushasto bepropagatedto thecompositeservice
execution, a notificationmessageis sentto thewrapperof thecompositeservice,who
determineswhethera change of statusat thecompositeservicelevel is required.

6 Thelife cycle statechartis not to bemistakenwith thecontrol-flow statechartof a composite
service(seesection2.1),which determinestheorderin which its componentsaretriggered.



Statushistory. A statushistoryis a log of thelife cycle of a serviceexecution, that is,
thestatusesthroughwhichthisexecutionwentthrough,andthetimesof thetransitions.
At anabstractlevel a statushistory is definedasa function from a setof instantsto a
setof statusvalues.At a concretelevel a statushistoryis representedby anorderedset
of interval-timestampedstatuses.For example, the statushistory [ � [3..3], enabled� ,
� [4..7], running � , � [8..8], completed� ] indicatesthat the execution wasenabled at
instant3, thenit ranfrom instant4 to instant7 before beingcompletedat instant8.
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Fig.3. UML classdiagramfor serviceexecutiontraces.

Traceof a serviceexecution. Thetraceof a serviceexecution,whetherelementary or
composite,includes(i) a statushistory;(ii) a setof effective input andoutputparame-
ters;and(iii) the locationof theprovider to whomthe serviceexecutionwasdynam-
ically assigned.A compositeserviceexecution tracehasan additional property mod-
elling thesetof otherserviceexecutionsthatit triggered(i.e. its triggeredcomponents).

The UML classdiagramin Figure 3 describesthe datamodel for serviceexecu-
tion traces.In this diagram, themainclassis ServiceExecution, whoseinstancesmodel
tracesof serviceexecutions.Thisclasshastwo sub-classes:onefor compositeservices
andtheotherfor elementaryservices.Thestatushistoryassociatedto a serviceexecu-
tion is modelledasa setof snapshots,eachof which associatesaninterval (upperand
lowerbound)with a status.



3.2 Collecting traces

Theresponsibilityto tracetheexecutionsof a compositeserviceS is distributedacross
thewrappers of this service(asmany wrappersasactualprovidersfor thecomponent
services).Thewrapperof a serviceS is responsiblefor:

– Creatingandinstantiatingan objectof the classServiceExecution. This involves
generating anidentifierfor theexecution,andrecordingthestartandtheendtimes.

– During the course of the execution, processingany eventsthat may change the
current executionstatus,andrecordany changes by modifying thecorresponding
object’sstatushistory.

– If S is a compositeservice,instantiatingtheassociationtriggeredComponents: for
eachof the component servicesthat are triggered, the wrapper of S must ob-
tain a reference to an object of the classServiceExecution from the wrapper of
thecomponent service.Suchreference is of the form: � provider’s url � / � service
name� / � execution id � is the identifier locally assignedby the provider of the
componentservice.The provider’s URL uniquely identifiesthe repository where
thevalueof theobjectis stored.

– At theendof theserviceexecution,returning thereference( � provider’surl � / � ser-
vicename� / � executionid � where � executionid � ) to theapplicationprogramor
compositeservicewrapper thatinitially invokedtheserviceS.

Hence,awrapper is responsiblefor collectingtracesabout theexecution it is super-
vising,andpassingtheresultingobjectreferencetowhoeverinitiatedtheexecution.The
tracingmodeldefinestwo alternative approachesfor collectingthe object references
from thecomponentservicewrappers:onefor thecentralisedorchestrationmodel, and
onefor thepeer-to-peerorchestration model.

4 6 8 10 12 14 16 18 20 22 24

cancelled
completed
suspended
running

Legend:

S1_e1

S2_e1
S3_e1 S5_e1

S_e1

time

Fig.4. An executionscenariofor theserviceS.

To illustratethetwo approachesto tracecollection,let usconsideragaintheservice
S depictedin Figure1.Figure4 describesanexecution scenariowhereserviceS is exe-
cuted.Thisexecutionis identifiedby S e1. Theexecutione1 of serviceS startedattime
5. It ranuntil time 10 (excluded)beforebeingstalledfrom 10 to 14 (excluded).Then,
theexecution resumed andranagainfrom 14 to 23 (excluded)before beingcompleted
at time23.Theexecution e1 of thecomponentS1 wastriggeredattime6; it ranuntil 11
(excluded)andcompletedat 11.We assumethatS e1 could completeeven thatS5 e1
hasbeencancelled. Sucharecovery mechanism hasto beimplementedin S itself.



Given the execution S e1 shown in Figure4, Table1 shows messagepassingbe-
tweenthecentral scheduler andthewrappersin thecaseof a centralisedorchestration
approach,while Table2 shows messagepassingsin thecaseof peer-to-peerorchestra-
tionapproach.In bothtables,thecolumnsSenderandRecipientidentifyeitherwrappers
or schedulers,while thecolumnMessagecontent showsinformationexchangedfor the
purposeof tracingonly. A symbol of theform X e1 (X 	�
 S1,S2,S3,S4,S5� ) denotes
an instanceof theclassServiceExecution correspondingto anexecution of serviceX.
For example, the objectX e1 is createdby the wrapper of X at the beginning of the
execution e1.

Time SenderRecipientMessageContent
10 S2 e1 S e1 www.prov1.com.au/S2/e1.xml
11 S1 e1 S e1 www.prov1.com.au/S1/e1.xml
16 S3 e1 S e1 www.prov2.com.au/S3/e1.xml
20 S5 e1 S e1 www.prov3.com.au/S5/e1.xml

Table 1. Messagesbetweenthe centralschedulerandthecomponentservices’wrappersduring
theexecutionof S e1(centralisedorchestrationmodel)

Time SenderRecipient MessageContent
10 S2 e1 S3 e1,S4 e1  www.prov1.com.au/S2/e1.xml �
11 S1 e1 S3 e1,S4 e1  www.prov1.com.au/S1/e1.xml �
16 S3 e1 S5 e1  www.prov1.com.au/S2/e1.xml, www.prov1.com.au/S1/e1.xml,

www.prov2.com.au/S3/e1.xml�
20 S5 e1 S e1  www.prov1.com.au/S2/e1.xml, www.prov1.com.au/S1/e1.xml,

www.prov2.com.au/S3/e1.xml,www.prov3.com.au/S5/e1.xml�
Table2.Messagesbetweenglobalandlocalschedulersduringtheexecutionof S e1(peer-to-peer
orchestrationmodel)

The1stand2ndlinesof table3.2canbereadasfollows.At time 10 (respectively
11)S2’swrapper (respectively S1)sendsits traceidentifierin theform of areferenceto
a repository to bothS3’wrapperandS4’s wrapper. Becausethebooleanexpression[C]
evaluatesto true,S4 is not required to beexecuted,so the local schedulerof thestate
that labelledS4 discardsthe collectionof referencesthat weresentto it by the local
schedulers of S1andS2.WhenS3finishes(3rd line), its wrappersendsthecollection
of referencesthatit hasreceivedsofar, augmentedwith its own reference.Thewrapper
of S3 on the other hand doeskeepthesecollections of referencesand startsthe an
executionof S3.Whenthisexecutioncompeted (3rdlineof table3.2), thewrapperof S3
sendsto thewrapperof S thecollection of referencesthat it received from S1,merged
with that received from S2,andaugmentedwith its own reference to anobjectof the
classServiceExecution.At theend,asshown in the4th line, thewrapper of S (through
its associatedglobal scheduler) receives all referencesto repositoriesdescribing the
tracesfor S e1 triggeredcomponents andpopulatesits own repository basedon them.
A detaileddescriptionof thetracecollectionmethodcanbefoundin [7].



3.3 XML representation for traces

A traceof aservice’sexecutiontraceis representedasanXML [23] documentsupplied
by theprovider who hashostedtheserviceexecution. Theprovider’s URL combined
with the document nameand the serviceexecution id is usedas an URI (Universal
ResourceIdentifier) to locatetheserviceexecution trace.

Thechoiceof XML asalanguagefor externally representingandexchangingtraces
is mainlymotivatedby two reasons:

– Although conforming to a common generic interface,eachprovider will offer its
own serviceinterfaceswith a different set of statesand observation points than
thoseof otherproviders.XML providesmechanisms(e.g.namespacesandmixed
elements)to dealwith this form of controlled heterogeneity.

– Thetracesareintendedto beexchangedbetweendifferentsitesbothduring service
execution andduring tracequerying. The useof XML enablesserviceproviders
to internally storethesetracesusing(e.g.) relational databases,andto dynamically
translatethemto andfrom XML usingwell-known tools.

Thestructureof XML documentsisdirectlyderivedfromtheclassdiagramdepicted
in Figure 3. Given the execution scenariodepictedin Figure4, the XML document
below containssampledatacollectedduring the execution of servicesthat have been
hostedby theprovider foo.com.au:
� traces �� serviceExecution name=”S” execId=”e1” loc=”www.foo.com.au/S/e1.xml” �� time start=”5” finish=”23”/ �� inputs � � input name=”X” value=”100” � � /input � � /inputs �� outputs �� output name=”Y” value=”20” � � /output �� output name=”Z” value=”500” � � /output �� /outputs �� triggeredComponents �� serviceExecution name=”S1” execId=”e1” loc=”www.prov1.com/S1/e1.xml”/ �� serviceExecution name=”S2” execId=”e1” loc=”www.prov1.com/S2/e1.xml”/ �� serviceExecution name=”S3” execId=”e1” loc=”www.prov2.com/S3/e1.xml”/ �� serviceExecution name=”S5” execId=”e1” loc=”www.prov3.com/S5/e1.xml”/ �� /triggeredComponents �� statusHistory ��

statusSnapshotstatus=”running” lowerBound=”5” upperBound=”9”/ �� statusSnapshot status=”suspended” lowerBound=”10” upperBound=”13”/ �� statusSnapshot status=”running” lowerBound=”14” upperBound=”22”/ �� statusSnapshot status=”completed” lowerBound=”23” upperBound=”23”/ �� /statusHistory �� /serviceExecution �� serviceExecution � ....� /traces �
As discussedearlier, the provider of a servicehasthe right to specialisethe pre-

definedstatusesby definingsub-statuses(e.g.,defining sub-statusesof thestatus“run-
ning”). Thesesub-statusescanappearin the tracesof a serviceexecutionwithin sub-
snapshotsof thesnapshotsinvolving predefinedstatuses.Thisapproachis similar to the



onediscussedin [20]. For example,if weassumethatthecompositeserviceS defines3
sub-statusesof thestatus“running”, namely “searching”, “displaying” and“booking”,
thentheXML elementsrepresenting snapshots involving the“running” status,canhave
childrenelementsrepresenting sub-snapshotsinvolving these3 sub-statuses.Hence,the
italicizedline in theXML codeabovecouldthenberefinedasfollows:
� statusSnapshot status=”running” lowerBound= 5 upperBound= 9 �� subSnapshot substatus = ”searching” lowerBound = 5 upperBound = 6/ �� subSnapshot substatus = ”displaying” lowerBound = 7 upperBound = 8/ �� subSnapshot substatus = ”booking” lowerBound = 9 upperBound = 9/ �� /statusSnapshot �

4 Querying traces

This sectiondescribesand illustratesa mechanism to split a queryon the execution
tracesof a composite serviceinto subqueriesto be executedby providersof the (di-
rectandindirect)componentsof thecompositeservice.Theresultsof thesesubqueries
arethencollectedandmerged in order to build the resultof the initial query. Queries
areexpressedin Quilt query language[3] a dialectof Xquery language[25]. XPath
expressionsareusedasmeansto navigate throughhierarchy of nodes[26].

4.1 Towards a query multiplexer

The query multiplexer of a serviceprovider is responsible for processingqueriesre-
garding all theexecution traceshostedby thatprovider. Thescopeof thequeriesthat
the querymultiplexer of a provider P can handle is modelledas a tree.The root of
this treecontains an XML documentwith a sequenceof elementsserviceExecution,
describing all theserviceexecutionshostedby theproviderP (seeSection3.3).A node
otherthantherootcontains anXML documentwith a singleelementserviceExecution
describing anexecutionhostedby another provider thanP, andlinkedto upper nodes
through the “compositeservice–component service”relationship.An edgeof the tree
therefore modelstheinvocationof a service:anedgefrom a noden1 to another n2 de-
notesthefactthattheserviceexecutiondescribed in n2 wastriggeredin thecontext of
the(compositeservice)execution describedin node n1.

At anabstractlevel this treecanbeseenasa singleXML documentthatcontains
thedatarequired to answerany query relatedto theserviceshostedby P, at any level
of detail.This abstractrepresentation is obtainedby replacingtheelementsserviceEx-
ecution in the root, with the contentsof the XML file referencedin the attribute loc
(seesection3.3). This expansionmechanism hasto berecursively carriedout starting
from theroot node,every time thattheelementserviceExecution is encountered. This
mechanism is similar to theoneimplementedby XInclude[24]. In thesequel,we call
thedocumentobtainedby expansion,traces.xml.

From the user’s point of view, queries are processedon the abstractdocument
traces.xml. For efficiency reasons andgiven thatthis “abstract”documentis a continu-
ouslyevolving view, thedocumentis not built a priori andstoredin a centrallocation.
Instead,whenaqueryis submittedto themultiplexer, it is locally analysedandsplit into



multiplesubqueries.Theresultof this analysisis anXML documentthatcontains tags
indicatingfor eachsubquery theprovider responsiblefor its execution. Eachsubquery
is thensentto the corresponding provider whosequery multiplexer in turn processes
it andreturns a result.Whentheresultsof all subquerieshave beenreceived, they are
mergedwith themainresultto producethefinal output. This mechanism is carriedout
recursively eachtime thata subquery involvesdistributedtraces.Similar mechanisms
have beenstudiedin the context of distributedquery processing[13]. However, clas-
sical approachesin this arearely on a centralisedknowledgeof the topology of the
network wherethedataaredistributed. In contrast, thepartitioning of thetracesacross
theserviceprovidersis only discoveredwhenbrowsingthetraces.

Our splitting and merging mechanisms are formalisedbelow. We adopt the fol-
lowing notations: Q is the setof queries (expressedin Xquery), X is the setof XML
documents,andP is thesetof serviceproviders.T1 ��� T2 standsfor thetypeof all
functionswith domainT1 andrange T2.  T � denotesthetypeof setsof T. � T1, T2, . . . ,
Tn � designatesthetypeof tupleswhosei th componentis of typeTi (1 � i � n).

Themultiplexerprocedurefor aquery q (q 	 Q) onanabstractrootXML document
d (d 	 D), is capturedby two functionsSplitd andMerged definedbelow:

Splitd: Q �������� P, Q ��� , Q �
/* ��� p � , q ��� , main ��� Splitd(q)  "! the provider p � is responsible for processing
q � according to the document d, and returning the result. main is the XML document
which contains tags indicating for each subquery the provider who is responsible for.
*/

Merged: �� X � , X �#�$� X
/* Merged (Splitd (q)) is the XML document resulting from q processed on d. */

Roughly speaking, theSplit operator analysesthequery givenasparameter, andde-
tectswhetherthereis any navigation expressionin this querycontaining the element
trigerredComponents followedimmediatelyby theelementserviceExecution. If sucha
navigation expressionis found, this meansthatthequerymustbesplit andexecutedin
a distributedfashion. Accordingly, the Split operator evaluatesthe navigation expres-
sionupto (andincluding) theleftmostoccurrenceof theelementtrigerredComponents.
This yieldsa collectionof invocations to componentservices.Theoperator Split then
retrieves theprovidersto whichtheseinvocationswhereassigned(throughtheprovider
attribute),andassociatesto eachof thema querycontaining therestof thenavigation
path (after the leftmostoccurrencetrigerredComponents), as well as any part of the
original queryinvolving a variable bound to theconsiderednavigation expression.

TheMerge operatoron theotherhand,performsembedsthequery outputs thatare
givento it asparameter, into theoutput of thelocally evaluatedpartof thequery. It then
appliesany requiredaggregationfunctionover theresultingdocument.

Thisapproachis illustratedin Figure5 andexemplified in thenext sub-section.

4.2 Query examples

Thefollowing query illustratesthesituationthatariseswhenall thedatainvolvedin the
queryarelocally storedby theproviderwhohasreceivedthequeryrequest.
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Fig.5. Queryingdistributedtraces:splitting,dispatchingandmerging sub-results.

Q.1: Query locally processed
For each componenttriggeredin thecontext of theexecutione1of S,giveits name, the
Id of its execution instance, andthelocation where theexecutiontraceis stored.

For $se in document(”traces.xml”)/serviceExecution[@name=”S” and @execId=”e1”]
/triggeredComponents/serviceExecution

return � serviceExec name=$se/@name execId=$se/@execId loc=$se/@loc/ �
In this query, thefollowing expressionsareused:

– document(”traces.xml”) is therootnode of thedocument.
– between[ and] is afilter: serviceExecution[@name=”S” and @execId=”e1”] selects

elementswhosevalueof theattributename is S andfor theattributeexecId is e1.
– / providesaccessto thechildrenof thecurrent node.Therefore, /serviceExecution

locateschildrenof therootnode.Theresultis asetof nodes,eachoneis anelement
containing informationrequiredby thequery.

– theFor ... return loopiteratesoverthesetobtainedby thepreviousstep.Thevariable
$se denotesaserviceExecution element.

– @ locatesattributesof the current node. Therefore,serviceExecution/@name de-
notestheattributenamefor a givenserviceExecution element.

The above query is locally processedsinceit only involvesexecutions that have
beenlocally hosted.According to theXML documentof Section3.3theresultis:

� result �� serviceExecution name =”S1” execId=”e1” loc=”www.prov1.com/S1/e1.xml”/ �� serviceExecution name =”S2” execId=”e1” loc=”www.prov1.com/S2/e1.xml”/ �� serviceExecution name =”S3” execId=”e1” loc=”www.prov2.com/S3/e1.xml”/ �� serviceExecution name =”S5” execId=”e1” loc=”www.prov3.com/S5/e1.xml”/ �� /result �
Q.2: Query involving multiple remotesites
For each componenttriggeredin thecontext theexecutione1of S,retrieveits name, the
IDs of its executioninstance its duration, and detailsabout its triggered components
(name, executionidentifier, andlocation where thetracehasbeenstored).

For $se in document(”traces.xml”)/serviceExecution [@name=”S” and @execID=”e1”]
/triggeredComponents/serviceExecution return� service �� name � $se/@name � /name � � execId � $se/@execId � /execId �



� duration � $se/time/@start - $se/time/@finish � /duration �� triggeredComponents � $se/triggeredComponents/serviceExecution� /triggeredComponents �� /service �
In the above query, expressions$se/time/@start, $se/time/@finish and$se/trigge-

redComponents/serviceExecution cannot be executedlocally. The scopeof this query
includes XML documentsremotely storedby providersprov1.com(whohostedexecu-
tion e1of S1ande1of S2),prov2.com(whohostedexecution e1of S3),andprov3.com
(whohostedexecution e1of S5).Theprocessingof this queryis describedbelow.

– Thefirst stepis to split thequery into 4 sub-queries,andto execute themainquery.
This resultsin anXML documentthatcontainssubqueriesto beexecutedremotely
andcontains for eachof them,theURL of theprovider who is responsible for its
processing. In thesequelwe detailonly thepartof thedocumentdedicatedto the
serviceS1:
� result � � service �� name � S1 � /name � � execId � e1 � /execId �� query � � recipient � www.prov1.com � /recipient �� queryText � � duration �

document(”S1/e1.xml”)/serviceExecution/time/@start
- document(”S1/e1.xml”)/serviceExecution/time/@finish� /duration � � /queryText �� /query �� query � � recipient � www.prov1.com � /recipient �� queryText � � triggeredComponents �
document(”S1/e1.xml”)

/serviceExecution/triggeredComponents/serviceExecution� /triggeredComponents � � /queryText �� /query �� /service �
...
/* Subqueries related to S2, S3 and S5 are similarly described */� /result �

– Thesecondstep,consistsin sending eachsubquery to thecorresponding provider
whoexecutesit andreturnstheresult:

Q1: � duration � document(”S1/e1.xml”)/serviceExecution/time/@start
- document(”S1/e1.xml”)/serviceExecution/time/@finish � /duration �

to prov1.com

whoseresultis (seeFigure4): � duration � 5 � /duration � .

Q2: document(”S1/e1.xml”)
/serviceExecution/triggeredComponents/serviceExecution

to prov1.com

whoseresultis: � triggeredComponents � � !– empty – � � /triggeredComponents �
Subqueriesrelatedto other services(respectively S2, S3 and S5) are processed
similarlyexceptthey aresentrespectively toprov1.com,prov2.comandprov3.com.



– Finally resultsreceived for remotesubqueriesaremerged in order to producethe
overall queryresult:

� result �� service �� name � S1 � /name � � execId � e1 � /execId � � duration � 5 � /duration �� triggeredComponents � � /triggeredComponents �� /service �� service �� name � S2 � /name � � execId � e1 � /execId � � duration � 3 � /duration �� triggeredComponents � � /triggeredComponents �� /service �� service �� name � S3 � /name � � execId � e1 � /execId � � duration � 3 � /duration �� triggeredComponents � � /triggeredComponents �� /service �� service �� name � S5 � /name � � execId � e1 � /execId � � duration � 3 � /duration �� triggeredComponents � � /triggeredComponents �� /service �� /result �

5 RelatedWork

The issueof collectingtracesof Webserviceexecutionsis addressedin [18]. Theau-
thorspresenta mechanism for tracking messagesexchangedbetweenWeb services.
Tracesarerepresentedaspadsaddedto XML messages.Thetraceof a compositeser-
vice execution goesfrom the first componentserviceto be executed to the last one
through all the intermediatecomponentsthat incrementallyenrichthetraceswith data
describing their own execution. At theend,theoverall traceis storedby theprovider
who was responsible for executing the initial component service.This peer-to-peer
communicationfor tracecollectionis very closeto theoneproposedin our approach.
Unlike the presentproposal however, [18] doesnot addressthe issueof storingand
querying tracesin a distributedenvironment. Instead, the entire traceof a composite
serviceexecution is storedin a singlesite.

Theissueof tracingtheexecutionof Webservicesis closelyrelatedto thatof work-
flow tracing,which hasbeenaddressedin [15] and[12]. [15] presents anapproachfor
tracingthe execution of workflows expressedasstatecharts.Specifically, the authors
show thattheprocessof tracinga workflow executioncanitself beseenasa workflow.
Consequently, by merging a workflow W, with the workflow dedicatedto tracingthe
execution of W, oneobtains a “self-traceableworkflow”. Unlikeourproposalhowever,
[15] doesnot discusstheissueof tracingprocessexecutionsin a distributedandinter-
organisational environment,which is thekind of environment whereWebservicesare
typically executed.Also, thework reportedin [15] differs from oursin that it doesnot
addresstheissueof querying thetracesof processexecutions.

In [12] the authors assumethat workflows areexecuted in a distributedenviron-
ment,andthat eachnode(in our context: eachprovider) maintainsthe history of its



taskexecutions(in ourcontext: its serviceexecutions).Within this context, theauthors
presentseveralstrategiesfor evaluatingqueriessuchas“retrieve thehistoryof a given
processinstance”.In [12], thesetof entitiesparticipating in theexecution of a work-
flow is assumedto befixed,whereasourapproachcatersfor runtimeproviderselection.
Ourapproachalsodiffers from theaboveonein thatweconsidertracesstoredin XML,
whereas[12] reliesonanobject-orienteddatabasesupporting OQL.

As discussedin theintroductionof thispaper, thetracesof serviceexecutionscanbe
usedfor different purposes:audit,monitoring,optimisation,etc.In particular, anumber
of researchefforts in the areaof workflow managementhave beendirectedtowards
developing techniques for predicting exceptions and preventingdeadlineexpirations
by analysingprocessexecution traces(e.g. [8,6]). [8] studiesthe useof datamining
techniquesto analyse(centralised)workflow execution logs, in order to predict and
preventexceptionsof various kinds,suchasdeviationsfrom theoptimalor acceptable
processexecution thathinderthedelivery of serviceswith theexpectedquality.

The above discussionis summarisedin Table 3. For eachapproach, the column
Collection stateswhetherthetracecollectionis done through a centralscheduler(cen-
tralisedorchestration)or throughpeer-to-peerexchangesbetweenthe component ser-
vices(P2Porchestration).Thecolumn Storage stateswhetherthestorageof thetracesis
centralisedor distributed. ThecolumnQuerying, whenapplicable, indicatesthequery-
ing techniquesusedby theapproach.

Approach Collection Storage Querying
[8] N/A centraliseddatamining
[12] centralised distributed OQL
[15] centralised centralisedN/A
[14,18] P2P centralisedN/A
our approachcentralised/P2Pdistributed Xquery

Table3. Comparisonof relatedwork on tracingcompositeserviceexecutions

6 Conclusion

Thework reportedin this paperaddressedtheissueof tracingcompositeservices.The
maincontributionsare:

– A datamodel of tracesof compositeserviceexecutions.
– A representationof thesetracesin XML.
– Two approachesfor collectingexecution traces:onewith a centralscheduler, and

onebasedonP2Pinteractions.
– An approachto storethesetracesin a distributedenvironment.
– An approachto executequeriesover thesedistributedtraces.

We have implementeda prototypeof thecollectionandquerying approaches.The
communicationsbetweenprovidersareimplementedin Java RMI [22]. Thequeryen-
ginehasbeenbuilt on top of Kweelt [19]: a tool that implements Quilt [3] a dialectof



XQuery. Theprototypesupports mostbasicXQueryfeatures,although it doesnotsup-
portadvancedfeaturessuchastheclosureoperator. Ongoing work is beingdedicatedto
generalisingthequerymultiplexer in orderto tackleall Xqueryexpressions,andto de-
signoptimisationstrategiesaimedat minimisingcommunicationcosts.An example of
suchoptimisationis to group togetherall thesubqueriesto besentto thesameprovider.

Ontheotherhandeffortsarebeingdirectedtowardsdesigningtechniquesfor analysing
tracesof pastexecutionsin orderto perform optimisationsandself-tuning bothstati-
cally andat run-time. In particular, the useof execution tracesfor run-time provider
selectionis beingstudiedin thecontext of theSELF-SERV system[1].
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