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Abstract

This article addresses the problem of estimating the Quality of Service (QoS)
of a composite service given the QoS of the services participating in the
composition. Previous solutions to this problem impose restrictions on the
topology of the orchestration models, limiting their applicability to well-
structured orchestration models for example. This article lifts these restric-
tions by proposing a method for aggregate QoS computation that deals with
more general types of unstructured orchestration models. The applicability
and scalability of the proposed method are validated using a collection of
models from industrial practice.
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1. Introduction

The ability to rapidly and effectively build new services by composing ex-
isting services – a practice known as service composition – is one of the key
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pillars of Service-Oriented Computing (SOC). Service orchestration is a pop-
ular approach for service composition [1]. The idea of service orchestration is
to assign the responsibility for coordinating the execution of a composite ser-
vice to a single entity (the orchestrator). The orchestrator is responsible for
handling incoming requests for the composite service and to interact with the
services participating in the composition (the component services) in order to
fulfill these requests. The interactions between the orchestrator and the com-
ponent services are governed by an orchestration model that usually takes
the form of a process model in which each task represents either an inter-
nal action (e.g., a data transformation) or an interaction with a component
service. In practice, these process models are specified using a specialized
language such as the Business Process Execution Language (WS-BPEL) or
the Business Process Model and Notation (BPMN).

One of the key issues in service composition is that of predicting and
managing the Quality-of-Service (QoS) of composite services. In particular,
providers of composite services need to assess the expected quality of these
services and to detect and act upon unexpected QoS variations [2, 3, 4].

In this context, this article addresses the problem of computing the ex-
pected (mean) QoS of a composite service given:

◦ Its orchestration model specified in a language such as WS-BPEL or
BPMN.

◦ A binding that assigns each task in the orchestration model to a service.
Services bound to at least one task in an orchestration model are called
component services.

◦ The mean QoS of each component service.

In line with previous work, we assume that QoS is captured in terms of
numerical attributes (e.g., time, cost and reputation). It is also assumed
that the QoS attribute values of component services are either disclosed by
the providers of these services (as part of their Service Level Agreements) or
derived by service consumers or by third parties based on past observations
(cf., [5] for example).

Previous solutions to the above QoS aggregation problem [6, 7, 8, 9, 10]
impose strong restrictions on the topology of the input models. For the most,
these solutions are designed for well-structured orchestration models, that is,
models described as graphs, such that for every node with multiple outgoing
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arcs (a split node) there is a unique corresponding node with multiple in-
coming arcs (a join node) such that the region of the graph between the split
and the join is a single-entry-single-exit (SESE) region.1 Yet, mainstream
languages for defining orchestration models, such as WS-BPEL and BPMN,
allow orchestration models to be unstructured. Mukherjee et al. [9] outlined
an approach to partially lift the well-structuredness restriction in order to
cover the case of orchestration models containing acyclic SESE regions, while
Zheng et al. [10] proposed an algorithm for dealing with orchestration mod-
els containing some types of unstructured cycles. However, these methods
still impose restrictions on the input models that hinder their applicability
in practical settings.

The contribution of this article is a generalized method for QoS aggrega-
tion that lifts the restrictions imposed by existing methods. The proposed
method has been implemented and tested on a collection of process models
taken from industrial practice, including models with topologies that cannot
be handled by existing QoS aggregation methods.

The rest of the article is organized as follows. Section 2 introduces a
running example and defines the notions of orchestration model and QoS
model used in this article. Next, Section 3 describes the data structures used
to represent orchestrations, while Section 4 outlines the QoS aggregation
method. Section 5 then discusses the implementation of the method and its
empirical evaluation. Finally, Section 6 discusses related work and Section 7
draws conclusions.

2. Background

In this section, we introduce an orchestration model covering the core
features of languages used in practice for specifying orchestration models,
particularly WS-BPEL and BPMN. We also introduce the basic model for
capturing Quality of Service that is used in the rest of the article.

2.1. Orchestration Model

We consider service compositions whose internal logic is specified in terms
of orchestration models. An orchestration model is essentially a process graph

1And vice-versa, for every join there should be a corresponding split with this property.
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in which the tasks are either internal actions (e.g., internal data transfor-
mations) or interactions with services drawn from a service repository (the
component services).

Definition 2.1 (Composite Service, Orchestration Model). A com-
posite service is a tuple (Orc, Binding), where Orc is a service orchestration
model and Binding is a function that maps tasks in the orchestration model
to component services. An orchestration model is a directed graph consisting
of edges (n1, p, n2) such that n1 and n2 are process nodes (the source and the
target of the edge) and p is the probability of taking the edge assuming that
the execution of the orchestration has reached node n1.

Nodes in an orchestration model are of two types: tasks and gateways.
Tasks represent units of work that are delegated to component services, while
gateways represent control-flow routing points. There are two types of gate-
ways: XOR gateways represent conditional branching (XOR-split) or merg-
ing of exclusive branches (XOR-join), whereas AND gateways represent par-
allel forking (AND-split) or synchronization points (AND-join). Split gate-
ways are gateways with multiple outgoing edges, while join gateways are
gateways with multiple incoming edges.

The binding of a composite service is not necessarily a total function –
some tasks might not be bound to any service. A task in a composite service
that is not bound to a service is called an empty task. Empty tasks represent
internal actions, like for example a data transformation performed internally
by the orchestrator, without involving any component service.

Without loss of generality, we impose the following well-formedness con-
ditions:

1. An orchestration model has a single source node (i.e., a node with no
incoming edges), and a single sink node (i.e., a node with no outgoing
edges), and every node is on a path from the source to the sink. This
is a natural assumption given that an orchestration should have a start
and an end.

2. Every task node has a single incoming and a single outgoing edge, and
every gateway is either a split or a join. If these latter conditions are
not satisfied, the orchestration model can be trivially restructured into
one that satisfies these conditions.

3. The sum of the probabilities attached to the outgoing edges of an XOR-
split gateway is 1. If this condition is not satisfied, it is trivial to rewrite
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Figure 1: Example of Composite Service: Payment

the probabilities of XOR-split gateways so that they add up to one by
means of normalization.

4. An edge whose source is not an XOR-split gateway has a probability
of 1, meaning that such edges are always traversed when their source
node is reached. This is a natural assumption since an edge that does
not stem from an XOR-split must always be taken after its source node
has been executed.

As an illustrative example, we consider a simplified Payment composite
service depicted in Figure 1. The figure shows the orchestration model of
the composite service in BPMN. Tasks are represented as rounded rectangles
while gateways are represented as diamonds labelled with ‘×’ (XOR) or ‘+’
(AND). Not shown in the figure is the binding of the composite service which
maps each task to a service (except tasks “Notify Customer” and “Reimburse
Overpayment” which consist of interactions with the customer).

We note that the above orchestration model assumes that the “branch-
ing” probabilities for each arc of an XOR-split are known. This assumption
is shared with other quantitative process analysis techniques such as pro-
cess simulation. A typical method for estimating branching probabilities for
quantitative process analysis is by analyzing logs of past executions of the
composite service. The ProM framework [11] for example – via its “heuristic
net miner” – is able to extract such branching probabilities from execution
logs. If no logs of previous executions are available, domain expert opinion
is an alternative, albeit arguably less reliable.

Also, it should be noted that the adopted orchestration meta-model is not
intended to be a comprehensive or complete process modeling language. In
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this respect it is customary in previous work to evaluate the comprehensive-
ness of process meta-models using the so-called workflow patterns [12]. With
respect to these patterns, the adopted orchestration meta-model supports the
basic control-flow patterns, namely sequence, parallel split (AND-split), syn-
chronization (AND-join), exclusive choice (XOR-split), simple merge (XOR-
merge). Additionally, it supports the multi-choice pattern insofar as a multi-
chocie can be directly rewritten as a combination of AND-split and XOR-
split as explained in [12]. In a similar vein, the orchestration model supports
the synchronizing merge pattern when it is used in a structured block (also
called structured synchronizing merge) since this pattern can be rewritten in
terms of AND and XOR splits. The orchestration meta-model also supports
the deferred choice pattern since it abstracts away from the way choices are
made. All that is required is that the modeler specified the branching proba-
bility for each decision point, and not the mechanism of choice. In particular,
the choice mechanism could be based on a race condition as in the deferred
choice.

Other workflow patterns are not (directly) supported by the adopted or-
chestration meta-model although in some cases work-arounds are possible to
fit them into the constructs of our orchestration meta-model as explained
in [12]. In summary, the orchestration meta-model supports the basic pat-
terns and some additional patterns. This subset, while not complete, is
arguably representative of a large class of orchestration models found in prac-
tice.

Finally, it should be noted that the adopted orchestration models abstract
away from the data manipulated by the orchestration. Again, this assump-
tion is shared with other quantitative process analysis techniques. In general,
analysis of process models with data is undecidable [13]. Some recent ad-
vances have led to promising techniques for analyzing temporal properties on
restricted classes of process models with data via abstraction techniques [13],
but further research is needed to make these or similar techniques applicable
to quantitative process analysis problems such as QoS estimation.

2.2. Quality of Service Model

QoS computations on service orchestrations are performed with respect
to a fixed set of QoS attributes {Attri | i ∈ 1..n} such as execution time,
cost and reliability. The assumption of a fixed set of attributes is made for
presentation purposes and does not constitute a limitation since we can make
this set as large as required.
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We further postulate the existence of a function that given a service, re-
turns its QoS. This function is initially given for pre-existing (non-composite)
services. Our goal is to lift this function so that it can also be applied to
composite services.

Definition 2.2 (QoS Function). The QoS of a service s, denoted by
QoS(s), is a vector 〈v1, · · · , vn〉, where vi is the value of QoS attribute
Attri for service s. By extension, QoS is also defined over tasks as follows:
QoS(t) = QoS(binding(t)).

Numerous QoS attributes have been proposed in previous studies (e.g.,
[6, 14, 15, 7, 8, 5]). With respect to the method for computing QoS attribute
values for composite services, we classify the QoS attributes studied in this
previous body of work into three categories:

1. Critical path The value of the QoS attribute for the composite service
is determined by the critical path of the orchestration. Examples in-
clude execution time (longest critical path) and fault-tolerance (weakest
path) [6].

2. Additive The value of the QoS attribute for the composite service is
a sum of the QoS values of the component services taking into account
how often each service is invoked. Examples include cost and carbon
footprint.

3. Multiplicative The QoS attribute value for the composite service is
a product of the QoS values of the component services taking into
account how often each service is invoked. Typically, these attributes
arise when capturing failures. Indeed, the higher is the number of tasks
executed during a service orchestration, the greater are the chances that
at least one task will fail, which in turn results in a failure of the or-
chestration. In other words, failure rates of tasks are multiplicative.
Examples include reliability (percentage of composite service execu-
tions where no component service fails) and availability (percentage of
composite service executions where all component services are available
when invoked) [5].

For the sake of illustration, the rest of the article focuses on three represen-
tative attributes (one per category). For each service s, QoS(s) = 〈T,C,R〉,
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where T,C and R stand for time, cost and reliability. In Figure 1, for exam-
ple, the numbers in each service denote its QoS attributes. Note that (for
simplicity) this example does not include any empty tasks. If there was an
empty task, its QoS would by default be 〈0, 0, 1〉, meaning that an empty
task is assumed to take zero time, zero cost and has 100% reliability. These
default values could, of course, be overridden, for example to capture the fact
that a data transformation takes some time.

Also, the article focuses on computing the mean of each of these attributes
for a service orchestration, as opposed for example to other aggregation func-
tions such as the median or the Xth percentile. In other words, we assume
that the input values of T , C and R for each task represent means and we aim
to compute means values for these attributes at the level of the orchestration.

Notwithstanding the fact that the article focuses on three attributes, the
method is more general and can be extended to other attributes and aggrega-
tion functions. To extend the method, a tool developer would need to define
the additional attributes and aggregation functions as discussed later in the
article.

3. Anatomizing Orchestration Models

In order to analyze the QoS of orchestration models, we decompose them
into orchestration components. An orchestration component is a subgraph
of the orchestration model with a single-entry and single-exit point. The
largest orchestration component is the entire orchestration model, while the
smallest orchestration components are the individual tasks. The overarching
idea is that QoS is computed independently for each orchestration compo-
nent in a bottom-up manner, starting from individual tasks and ending with
the entire orchestration model, which is the goal of the method. In this sec-
tion, we introduce the approach we employ for identifying and representing
orchestration components.

3.1. Refined Process Structure Tree and Maximally-Structured Orchestra-
tions

The Refined Process Structure Tree (RPST) [16, 17] is a technique to
parse a process model (and in particular an orchestration model) into a tree
of single-entry, single-exit (SESE) components. A component in the RPST
contains all components at the lower level, whereas all components at a given
level are disjoint. Each component in the RPST belongs to one out of four
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Figure 2: (a) Service orchestration, (b) maximally-structured representation of (a)

classes: A trivial (T) component consists of a single flow arc. A polygon
(P) represents a sequence of components. A bond (B) stands for a set of
components that share two common nodes. Any other component is a rigid
(R) component. Importantly, the RPST exists for any process model and it
is unique [16, 17].

Figure 2(a) exemplifies the RPST of the running example given in Fig-
ure 1. Note that Figure 2(a) uses short-names for tasks (a, b, c, . . .), which
appear next to each task in Figure 1. In the figure, each dotted box repre-
sents a component in the RPST that is formed by flow arcs that are inside
or intersect the box. Names of components hint at their class, e.g., P1 is a
polygon component and R1 is a rigid component. Each flow arc forms a triv-
ial component. Trivial components, as well as polygons that are composed
of two flow arcs, are not displayed for simplicity reasons.

Bond and polygon components are well-structured and straightforward to
analyze as discussed later in the article. On the other hand, rigid components
correspond to the unstructured parts of the orchestration model. The service
orchestration in Figure 2(a) contains three rigid components.

In order to maximize the degree of well-structuredness and thus facilitate
the analysis of QoS, we employ the block-structuring technique proposed
in [18, 19]. This technique transforms (whenever possible) an unstructured
orchestration model into a maximally-structured orchestration model under
fully concurrent bisimulation equivalence [20]. In particular, by applying
the technique from [18] to the model in Figure 2(a), one obtains the service
orchestration given in Figure 2(b). Note that rigid component R2 gets an
equivalent representation consisting of a polygon with two bond components
as children, namely B1 and B2.
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Figure 3: Structured orchestration components

Some rigid components are irreducible, meaning that they cannot be
rewritten into bond and polygon components. In other words, some rigid
components may still appear in a maximally-structured orchestration model.
Such irreducible rigids can be classified into two categories [18]: irreducible
Directed Acyclic Graphs (DAG) and irreducible multiple-entry, multiple-exit
(MEME) loops. Note that despite their name, these MEME loops are in fact
SESE components. Indeed, while a loop may have multiple entries and mul-
tiple exits, it is still enclosed within a minimum-bounding SESE component,
and this latter component is the one that we manipulate.

In light of the above, we can represent a maximally-structured orchestra-
tion model using the following abstract syntax.

Definition 3.1 (Syntax of Maximally-Structured Orchestrations).
Let P be the range of real numbers from 0.0 to 1.0.

OrchestrationComponent(OC) ::= τ | Service | SC |UC

OrchestrationElement(OE) ::= OC | AND | XOR

StructuredComponent(SC) ::= SEQ({OC}) | CHC ({OC × P})
| PAR({OC}) | RPT (OC × P)

UnstructuredComponent(UC) ::= DAG({OE × P ×OE})
| MEMELoop({OE × P ×OE})

This abstract syntax is based on a distinction between the following
types of orchestration components: empty (τ) tasks, tasks bound to services
(Service), structured orchestration components (SC), and unstructured or-
chestration components (UC). Further, there are four types of structured
orchestration components, namely sequence (SEQ), choice (CHC), parallel
(PAR), and repeat (RPT), as exemplified in Figure 3. A sequence compo-
nent is a list of orchestration components. A choice component is a set of
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orchestration components, each one associated with a probability P of being
chosen. A parallel component is a set of orchestration components. Finally, a
repeat component is an orchestration component along with the probability
that the back-edge from the exit point to the entry is taken (denoted by P
in the abstract syntax). For example, in Figure 2(b), bond B1 is a choice
component, bond B2 is a parallel component, and polygon P2 = {B1, B2}
is a sequence component. Unstructured components (UC) are classified into
acyclic components (DAGs) and cyclic components (MEME loops). These
two latter types of components are described in further details in the follow-
ing subsections. Given the above abstract syntax, a maximally-structured
orchestration model is represented by means of its top-level orchestration
component (i.e., the orchestration component corresponding to the entire
model).

3.2. DAG Components

As stated above, acyclic rigids that are present in maximally-structured
orchestration models are hereby called irreducible DAG components. Fig-
ure 4 gives an example of such a DAG component: Figure 4(a) shows the
simplest form of an irreducible DAG component (a well-known Z-structure
studied in [21]), whereas Figure 4(b) displays a more complex irreducible
DAG component that can be seen as a composition of Z-structures. Observe
that rigid R3, both in Figure 2(a) and in Figure 2(b), is an irreducible DAG
component.
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(b) Composition of Z-structures

Figure 4: DAG components

We treat an (irreducible) DAG component as a set of tuples (OE1, p, OE2),
where OE1 and OE2 are orchestration elements (orchestration components
or gateways) and p is the probability that OE2 will be executed after ac-
complishment of OE1. For instance, the Z-structure in Figure 4(a) is de-
scribed by the set {(a1, 1.0, OC1), (a1, 1.0, OC2), (OC1, 1.0, a2), (OC2, 1.0, a3),
(a2, 1.0, a3), (a2, 1.0, OC3), (a3, 1.0, OC4), (OC3, 1.0, a4), (OC4, 1.0, a4)}.
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In order to analyze DAG components, we introduce the notion of a run.
A run is a subgraph of a DAG component comprising the set of all edges
traversed in one possible execution of the component. The concept is akin to
the notion of execution trace, but it should be kept in mind that in a run, there
can be parallel splits and joins (and thus a run may contain multiple paths),
whereas traditionally, a trace is defined as a specific path in a graph. Each run
in a DAG can be associated with the probability that a given execution of the
component follows this particular run. Below, we are interested in extracting
both the runs of a DAG component and the probability associated to each
run.

To explain how runs are extracted, we make use of three notions: choice
edge, compatibility of choice edges and configuration. A choice edge is an edge
whose source is an XOR-split. Two choice edges are said to be compatible iff
both may be traversed in a single run. Formally, two choice edges ei, ej ∈ E
are compatible iff (src(ei), src(ej)) ∈ E+ ∧ (tgt(ei), tgt(ej)) /∈ E+, where E+

denotes the transitive closure of E. To illustrate this concept, consider the
DAG component presented in Figure 5(a). If we take the pair of choice edges
e1 and e2, we can see that they are compatible because if e1 is taken it is
still possible to follow e2. If we take the pair of edges e1 and e5, however, we
can easily see that no execution in which both e5 and e1, because e5 becomes
unreachable once e1 has been chosen. Hence e1 and e5 are incompatible.

A configuration of a DAG component is a maximal set of mutually com-
patible choice edges from the DAG component. By maximal, we mean that
there is no superset of a configuration that contains only mutually compati-
ble choice edges. The set of configurations of a DAG can be computed using
an algorithm described in [22]. This algorithm has an exponential-time com-
plexity, which inherently is due to the fact that the number of configurations
(and the number of runs) of an acyclic process model is in the worst-case
exponential on the number of nodes in the graph.

Given a DAG component and one of its configurations, Algorithm 1 com-
putes the run associated to this configuration as well as the probability of
this run. The algorithm starts by making a copy of the entire graph G (line
1). Then, it iterates over the set of choice edges of configuration θ and re-
moves all the outgoing edges incident to each XOR split gateway in the DAG,
except for those included in the configuration (lines 2-3). As a result of this
step, a number of elements in the copy of the graph become unreachable from
entry node xε. Therefore, all dangling elements are removed (lines 4-6). The
algorithm proceeds by calculating the aggregate probability for the entire
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run, which is equal to the product of the probabilities of the choice edges in
the input configuration. Next, the algorithm resets the value of the choice
edge in the resulting graph to 1.0 (lines 7-10). Finally, the algorithm returns
the tuple (γ, pγ) representing the run and its associated probability.

Algorithm 1: Compute the run induced by a configuration

Input: G – DAG component as a set of edges
xε – Entry node of the DAG component
θ – A configuration of DAG component

Output: (γ, pγ) – Run induced by configuration θ
γ ← G1

foreach (x, p, y) ∈ θ ∧ (x, q, z) ∈ γ : y 6= z do2

γ ← γ \ {(x, q, z)}3

E ← {(x, y) | (x, p, y) ∈ γ}4

foreach (x, p,m) ∈ γ : (xε, x) /∈ E+ do5

γ ← γ \ {(x, p,m)}6

pγ ← 1.07

foreach (x, p, y) ∈ θ do8

γ ← γ \ {(x, p, y)} ∪ {(x, 1.0, y)}9

pγ ← pγ · p10

return (γ, pγ)11

By applying the above algorithm to each configuration of a DAG, we can
extract the set of runs of a DAG component and their associated probabilities.
With the set of runs thus computed, we can construct a structured choice
component that captures the behavior of the original DAG component. To
achieve this, one XOR-split gateway is introduced that has a branch leading
to each run with its corresponding probability. Conversely, one XOR-join
gateway is added to merge the exit node of every run. For example, the
choice component corresponding to the DAG component in Figure 5(a) is
given in Figure 5(b).

In more specific terms, if we use the CHC constructor introduced in
Definition 3.1, the structured choice component corresponding to a DAG
component is defined by the expression CHC({(r1, p1), (r2, p1), . . . (rn, pn)})
where ri represents a run of the DAG component, while pi represents the
probability of ri.

We note that the choice component constructed in this way is trace equiv-
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alent with the original DAG component, meaning that they have the same
set of traces. Although trace equivalence is generally a weak notion of equiv-
alence [20], it is sufficient in our context since we are interested in the mean
QoS values of the executions of the orchestration model (or of a component
thereof). By definition, the QoS of an orchestration component is the mean
of the QoS of the executions of the component, when the number of exe-
cutions tends to infinity. If we executed the DAG component a very large
number of times, we would observe that each possible trace of the compo-
nent is executed a certain number of times. Let us call fi the percentage of
times that a given possible trace ti is observed, relative to the total number
of executions (e.g. f1 = 0.1 means that 10% of the executions followed trace
t1). The mean of the QoS of the set of executions is then:

n∑
i=1

fi ×QoS(ti) (1)
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Figure 5: Transformation of a DAG component into a (structured) choice component

As the number of executions becomes large, fi tends to a certain value Fi.
We observe that each trace corresponds to a traversal of the component from
the entry to the exit node, and each edge is traversed with a probability that
is equal to 1.0 for all edges except the edges emanating from XOR-splits (i.e.
the conditional branches). Accordingly, Fi is the product of the probabilities
of the conditional branches of the orchestration model traversed in trace ti.
Here, we observe that this product is exactly the value of pi for the run that
subsumes trace ti. Repeating the same reasoning starting from the choice
component, we observe that the QoS is also given by an equation of the same
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form as Equation 1, and that each fi tends to pi. Thus the mean QoS of the
DAG component is the same as the mean QoS of the corresponding choice
component.

Complexity. We note that the complexity of computing the runs is exponen-
tial due to the fact that the number of runs is exponential. Algorithm 1 adds
a polynomial factor to this inherently exponential complexity. However, the
computation of runs is only performed for irreducible acyclic DAGs, which
contain only a subset of the edges of the orchestration model. Furthermore,
as discussed in Section 5, the exponential worst-case complexity is not nec-
essarily an obstacle when dealing with models found in commercial practice.
Should the exponential complexity raise a practical problem, one could op-
timize the technique for generating runs by stopping the production of runs
once the sum of the probabilities of the runs accumulated so far is above a
certain threshold (e.g. 99%). This would mean that the runs corresponding
to 99% of the executions have been obtained and this set can be used as an
approximation.

3.3. MEME Loop Components

MEME loop components are unstructured (i.e. rigid) components that
embed loops in topologies that disallow their transformation into equivalent
structured components. Such irreducible components arise for example when
a loop has multiple exit points as shown in Figure 6. Indeed, it is well-known
that restructuring loops with multiple exit points cannot be done solely via
node duplication, but requires the introduction of variables and XOR gate-
ways to “emulate” the control flow of the loop [23]. For example, the MEME
loop shown in Figure 6 contains two loops, namely L1 and L2. The reader can
easily check that loop L2 can be transformed into a single-entry/single-exit
loop via node duplication, but loop L1 cannot unless we introduce variables.
Introducing such variables would be problematic for QoS computation since
we would need to take these variables into account in the QoS computation.
Instead of trying to re-write multiple-exit loops into single-exit loops using
variables, we propose a technique for computing the QoS of MEME loop
components under certain conditions. This technique for computing QoS
of MEME loop components (cf., Section 4.3) is general enough so that the
transformation of L2 into an equivalent structured component is not required.
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Figure 6: MEME loop component

Concretely, a MEME loop component is represented as a set of tuples
(OEi, pi,j, OEj), each tuple corresponding to one edge. OEi and OEj are the
source and target nodes, respectively, while pi,j is the probability of traversing
the edge. For instance, the MEME loop in Figure 6 is represented as the set
{(x1, 1, OC1), (OC1, 1, x2), (x2, 0.8, OC3), (x2, 0.2, OC4), . . . , (x6, 0.6, OC7)}. As
in the case of DAG Components, we assume that the probability associated
to choice edges (edges stemming from XOR-split gateways) is given, and that
probability of all other edges in the component is equal to 1.

In the general case, a MEME loop component may involve complex combi-
nations of concurrency and conditional branching as in the example shown in
Figure 7(a). The block-structuring technique implemented by BPStruct [24]
transforms a rigid component into a combination of polygons and bond com-
ponents (i.e. structured components) whenever this transformation is pos-
sible. For example, given the model in Figure 7(a), BPStruct produces the
structured model given in Figure 7(b). Since the resulting component is
fully structured, its QoS can be calculated using the same method as for
structured components.

!
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#

$

(a) Cyclic rigid with concurrency

!

"

#

$

#

"

(b) Structured component equivalent
to (a)

Figure 7: Cyclic rigid component and equivalent fully structured component.

Some rigid components cannot be transformed into equivalent structured
components as discussed above. In this case, BPStruct attempts to transform
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the rigid component into an equivalent rigid component where the concur-
rency is fully encapsulated within child components. This latter type of cyclic
rigid component is hereby called a MEME loop component with encapsulated
concurrency. MEME loop components with encapsulated concurrency only
contain two types of nodes: XOR gateways and nodes representing child
components. An example of this case is shown in Figure 8. Here the concur-
rency (captured by the AND gateways) has been factored out into a DAG
component that is a child of a MEME loop component – the latter is shown
in dotted lines in Figure 8(b). This MEME loop component contains only
XOR gateways and child components, i.e. it is a MEME loop component
with encapsulated concurrency.
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(a) Cyclic rigid component with concurrency
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(b) MEME loop with encapsulated concurrency equiv-
alent to (a)

Figure 8: Cyclic rigid component and equivalent MEME loop with encapsulated concur-
rency.

Finally, a third case is the one where BPStruct is not able to fully encapsu-
late the concurrency into child components. In this case, BPStruct produces
a rigid component that contains both XOR gateways and AND gateways
mixed together. This is the case of the example shown in Figure 9, which
cannot be further refactored by BPStruct. To the best of our knowledge, it is
an open research question whether or not this type of rigid component can
be rewritten into an equivalent one where the AND gateways and the XOR
gateways are encapsulated in separate components (under fully-concurrent
bisimulation equivalence which is the equivalence notion used in BPStruct).
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Figure 9: Example of cyclic rigid component with non-encapsulated concurrency that
cannot be transformed into an equivalent rigid component with encapsulated concurrency
by BPStruct.

The QoS aggregation method proposed below assumes that the MEME
loop components that remain after BPStruct’s transformation are MEME
loop components with encapsulated concurrency – or MEME loop compo-
nents that, in their initial form, contain only XOR gateways. In other words,
the proposed method cannot handle MEME loop components such as the
one in Figure 9. Lifting this restriction is left as future work.

4. Quality of Service Aggregation

In this section, we show how to compute the QoS of orchestration models.
First, we define functions for computing the QoS of each type of orchestration
component and then we combine these component-specific functions into an
algorithm for computing the aggregate QoS of an orchestration model.

4.1. QoS of Structured Components

Assuming that the QoS of the orchestration elements under an orchestra-
tion components is known, the QoS of structured orchestration components
is computed based on the following equations, which are taken from [6].
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QoS(SEQ) =

〈 ∑
oc∈SEQ

T (oc),
∑

oc∈SEQ

C(oc),
∏

oc∈SEQ

R(oc)

〉

QoS(CHC) =

〈 ∑
(oc,p)∈CHC

p T (oc),
∑

(oc,p)∈CHC

p C(oc),
∑

(oc,p)∈CHC

p R(oc)

〉

QoS(RPT ) =

〈
T (oc)

1− p
,
C(oc)

1− p
, R(oc)(1−p)−1

〉
with RPT = (oc, p)

QoS(PAR) =

〈
maxoc∈PAR {T (oc)} ,

∑
oc∈PAR

C(oc),
∏

oc∈PAR

R(oc)

〉
(2)

In these formulas, T (oc), C(oc) andR(oc) denote the time, cost and reliability
of orchestration element oc.

For repeat composition RPT (oc, p), the computation considers that the
body of the loop (orchestration element oc) may be executed one or more
times. Following the well-known geometric series, oc is then expected to be
executed (1− p)−1 times2, where p is the probability of staying in the loop.

Also, note that the formula for calculating the aggregate execution time
for parallel components assumes that the value of the sub-component oc ∈
PAR with the maximum mean execution time is always greater than the
value of the QoS of the other components oc′ ∈ PAR with smaller mean
execution times. This assumption is implicitly made in [6] and other previous
work on QoS aggregation for composite services. If this assumption is not
fulfilled, different formulas need to be employed depending on the probability
distributions of the sub-components oc ∈ PAR. Formulas for calculating the
mean of the maximum of multiple random variables can be found in [25].

4.2. QoS of DAG Components

A DAG orchestration component can be transformed into an equivalent
choice component as explained in Section 3.2. Each of the branches in this
choice component corresponds to a run of the DAG component. The QoS
values calculated for individual runs are aggregated taking into account the
probability of each run as follows:

2Geometric series: p0 + p1 + p2 + . . . =
∑∞

i=0 pi = (1− p)−1
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QoS(DAG) =

〈 ∑
(γ,pγ)∈Γ(DAG) pγ CriticalPath(γ),∑
(γ,pγ)∈Γ(DAG) pγ

∑
oc∈γ C(oc),∑

(γ,pγ)∈Γ(DAG) pγ
∏

oc∈γ R(oc)

〉
(3)

where Γ(DAG) denotes the set of runs of DAG component DAG. This set
is computed by iteratively calling Algorithm 1. For a given run (γ, pγ) ∈
Γ(DAG), the execution time can be computed with the well-known critical
path method, i.e., compute the longest duration path in the run. Meanwhile,
the cost of a run is the sum of the costs of the orchestration components in
the run, and the reliability of a run is the product of the reliabilities of the
orchestration components in the run.

4.3. QoS of MEME Loop Components

The method to compute QoS of MEME loop components relies on the
theory of Markov chains. The use of Markov chain for handling this type of
component is possible because we have made the assumption that MEME
loop components do not include concurrent behavior (cf. Section 3.3). All
concurrency, if any, should be enclosed within child components.

A Markov chain is a state-transition system in which the transitions are
associated with probabilities. The states in an absorbing Markov chain are
classified into transient and absorbing. An absorbing state has a single self-
transition with a probability of one, i.e., once the Markov chain reaches
an absorbing state it is impossible to leave it. Any other state is called
a transient state. A Markov chain is said absorbing if it has at least one
absorbing state and if it is possible to reach an absorbing state from every
other (transient) state.

Given the assumption that a MEME loop component only contains XOR-
split gateways, it is trivial to convert it into a Markov chain. To illustrate
the mapping, consider the MEME loop component presented in Figure 10(a)
and its corresponding absorbing Markov chain as presented in Figure 10(b).

Each node in the MEME loop component is mapped to a state in the
Markov chain. To achieve traceability of the mapping, the states in the
Markov chain have the same label as in their corresponding node in the
MEME loop component. Then, each flow edge in the MEME loop component
is mapped to a transition in the Markov chain. Note that transitions on the
Markov chain carry the corresponding transition probability. Finally, a fresh
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Figure 10: A sample MEME loop component (a), and its corresponding Absorbing Markov
Chain (b).

absorbing state is added to the Markov chain, namely s. The intuition behind
is that state s models the successful completion of an execution of the MEME
loop component.

A Markov chain can be represented by means of a transition probability
matrix, referred to as P. When columns and rows are arranged such that all
transient states come first, the matrix is said to be in its canonical form. In
this representation, the transition probability matrix has the following form:

P =

( TR ABS

TR Q R
ABS 0 I

)
.

In this representation, the rows/columns that encode transient states are
labeled TR while the rows/columns that encode absorbing states are labeled
ABS. Note that the Markov chain resulting from the mapping of a MEME
loop, there is only one absorbing state, meaning that there is only one ABS
row and one ABS column.

The interest of mapping a MEME loop component to an absorbing Markov
chain stems from the fact that we can calculate the expected number of times
that a node in the MEME loop is visited, using standard methods. Indeed, if
we have the transition probability matrix in its canonical form, the expected
number of times a transient state j is visited, starting from transient state
i (i.e. the entry node of the component) is given by the ijth element of the
so-called fundamental matrix S of the chain. A well-known result is that the
fundamental matrix of an absorbing Markov chain is:

S = (I−Q)−1 (4)

Thus, the average cost and time associated to a MEME loop component
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L can be calculated using the following equations:

QoStime(L) =
∑
oc∈L

E(oc) T (oc) (5)

QoScost(L) =
∑
oc∈L

E(oc) C(oc) (6)

To compute reliability, we use the approach proposed in [26]. The key
idea of this approach is to map the MEME loop component into a new
Markov chain, namely P̂, that takes into account the fact that an execution
of a child component can either succeed or fail. When a child component
is successfully completed the execution proceeds. However, if an execution
of a child component leads to a failure, the execution of the MEME loop
component fails. Hence, the Markov chain P̂ has to reflect these two possible
outcomes: successful completion and failure. This observation leads us to the
idea of mapping the MEME loop component in Figure 10(a) into the Markov
chain P̂ shown in Figure 11.
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Figure 11: Absorbing Markov Chain modeling the reliability of the MEME loop component
in Figure 13.

In the Markov chain P̂, the absorbing state ŝ specifies the successful com-
pletion, whereas the absorbing state f̂ models failures. Note that the states
in the Markov chain that represent a child of the MEME loop component
now have two outgoing transitions. The first transition corresponds to the
original control flow, i.e., the path towards the successful completion. The
transition probability of this transition corresponds to the reliability of the
underlying child component. The second transition goes to the “failure” state
f̂ (cf. dashed lines in Figure 11). The probability of the transition from a
state s to the failure state f̂ is 1 minus the reliability of the child component
represented by s. Using the resulting Markov chain, the problem of calcu-
lating the reliability of a MEME loop component corresponds to computing
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the probability of reaching the failure state ŝ when starting from the initial
state. This probability is also referred to as the absorbing probability, and it
can be derived from using the following equation:

B̂ = Ŝ · Q̂ (7)

where Q̂ is the upper right submatrix of the Markov chain P̂ and Ŝ is the
fundamental matrix of P̂. Since P̂ has exactly two absorbing states, B̂ is a
two-column matrix. Henceforth, the reliability associated to a MEME loop
component L is the value of B̂[entry-of(L), ŝ], where entry-of(L) is the entry
node to the MEME loop component.

4.4. QoS of Composite Services
In order to compute the aggregate QoS of a composite service, its maximally-

structured orchestration model (represented as an RPST) is traversed in
breadth-first-search post-order, i.e., starting from the leaf nodes and moving
upwards to the root node. At each node – which corresponds to an orches-
tration component – the QoS computation methods previously outlined are
applied. The overall procedure is described in Algorithm 2.

To illustrate Algorithm 2, we compute the QoS values for the composite
service presented in Figure 1. The computation is based on its maximally-
structured orchestration model given in Figure 2(b).
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Figure 12: Excerpt of the Running Example

Let us assume that the first structured component to be considered is the
CHC component B1 followed by the PAR component B2 (cf., Figure 12(a)).
Their corresponding QoS tuples are:

QoS(B1) = 〈2 · 0.6 + 2 · 0.4, 1 · 0.6 + 1 · 0.4, 0.95 · 0.6 + 0.98 · 0.4〉
= 〈2, 1, 0.962〉

QoS(B2) = 〈max{2, 1}, 3 + 1, 0.97 · 0.99〉
= 〈2, 4, 0.9603〉
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Algorithm 2: Compute QoS of a component: ComputeQoS(OC)

Input: OC – Node of the RPST

Global: QoS – Map holding QoS tuples (i.e., QoS : OC 7→ 〈T,C,R〉)
Inline : T (OC) =def QoS(OC)|T , C(OC) =def QoS(OC)|C , and

R(OC) =def QoS(OC)|R are the projection of attributes of
QoS in the tuple associated to OC

foreach oc ∈ children-of(OC) do1

ComputeQoS(oc)2

switch type-of(OC) do3

case SEQ4

QoSOC ←
〈∑

oc∈OC T (oc),
∑

oc∈OC C(oc),
∏

oc∈OC R(oc)
〉

5

case CHC6

QoSOC ←7 〈∑
(oc,p)∈OC p T (oc),

∑
(oc,p)∈OC p C(oc),

∑
(oc,p)∈OC p R(oc)

〉
case RPT8

QoSOC ←
〈
T (oc)
1−p ,

C(oc)
1−p , R(oc)(1−p)−1

〉
with OC = (oc, p)9

case PAR10

QoSOC ←
〈
maxoc∈OCT (oc),

∑
oc∈OC C(oc),

∏
oc∈OC R(oc)

〉
11

case DAG12

QoSOC ←

〈 ∑
(γ,pγ)∈Γ(OC) pγ CriticalPath(γ),∑
(γ,pγ)∈Γ(OC) pγ

∑
oc∈γ C(oc),∑

(γ,pγ)∈Γ(OC) pγ
∏

oc∈γ R(oc)

〉
13

case MEMELoop14

Map OC to P (for computing time and cost values) and to P̂15

(for computing the reliability value).
Compute S from P according to Equation 416

Compute Ŝ from P̂ according to Equation 417

Compute B̂ according to Equation 718

Inline : E(oc) =def S[entry-of(OC), oc]

QoSOC ←

〈 ∑
oc∈OC E(oc) T (oc),∑
oc∈OC E(oc) C(oc),

B̂[entry-of(OC), ŝ]

〉
19

QoS ← QoS ∪ {(OC 7→ QoSOC)}20
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Figure 13: A MEME loop component.

The results can be aggregated to determine the QoS tuple of Component
P2 as follows:

QoS(P2) = 〈2 + 2, 1 + 4, 0.962 · 0.9603〉
= 〈4, 5, 0.924〉

Now let us consider the case of DAG component R3 (cf., Figure 12(b)).
Note that it corresponds to a single Z-structure such that there is only one
run to be analyzed.3 Moreover, the QoS tuple for component P3 is the same
as for component R3, and corresponds to the following:

QoS(P3) =

QoS(R3) = 〈max{2 + 3, 2 + 4, 1 + 4}, 3 + 1 + 1 + 2, 0.96 · 0.99 · 0.93 · 0.94〉
= 〈6, 7, 0.83〉

The next component to be analyzed is R1, which is a MEMELoop compo-
nent. The QoS of R1 is indeed the same as for component P1 and therefore
for the entire service orchestration. To ease the analysis, we have replaced
the components P2 and P3 with tasks displaying the corresponding QoS, as
shown in Figure 13. The absorbing Markov chain of R1 is the same that we
used for illustrating the mapping in the previous section (cf., Figure 10(b)),
and its transition probability matrix is the following:

3To ease the identification of the critical path, the set of tasks that are not part of it
have gray borders.
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P =



x1 x2 x3 x4 P2 P3 e j k s

x1 0 0 0 0 1 0 0 0 0 0
x2 0 0 0 0 0 0 0.8 0.2 0 0
x3 0 0 0 0 0 0.6 0 0 0.4 0
x4 0 0 0 0 0 0 0 0 0 1
P2 0 1 0 0 0 0 0 0 0 0
P3 1 0 0 0 0 0 0 0 0 0
e 0 0 1 0 0 0 0 0 0 0
j 0 0 0 1 0 0 0 0 0 0
k 0 0 0 1 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 1


We have arranged the matrix to be in the canonical form. Therefore, Q

corresponds to the upper left sub-matrix. Then we compute the fundamental
matrix with equation 4. The expected number of times every orchestration
element is visited is given by the following row vector:

S[x1, ∗] =
( x1 x2 x3 x4 P2 P3 e j k

1.92 1.92 1.54 1 1.92 0.92 1.54 0.38 0.62
)

Similarly, the absorbing Markov chain that models the reliability of this
MEME loop component is given in Figure 11. The corresponding transition
probability matrix is the following:

P̂ =



x1 x2 x3 x4 P2 P3 e j k ŝ f̂

x1 0 0 0 0 1 0 0 0 0 0 0
x2 0 0 0 0 0 0 0.8 0.2 0 0 0
x3 0 0 0 0 0 0.6 0 0 0.4 0 0
x4 0 0 0 0 0 0 0 0 0 1 0
P2 0 0.92 0 0 0 0 0 0 0 0 0.08
P3 0.83 0 0 0 0 0 0 0 0 0 0.17
e 0 0 0.97 0 0 0 0 0 0 0 0.03
j 0 0 0 0.95 0 0 0 0 0 0 0.05
k 0 0 0 0.8 0 0 0 0 0 0 0.2
s 0 0 0 0 0 0 0 0 0 1 0
f 0 0 0 0 0 0 0 0 0 0 1
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We compute the fundamental matrix Ŝ with equation 4, and then the ab-
sorption probability matrix B̂ with equation 7 as follows:

B̂ = Ŝ · Q̂

=



x1 x2 x3 x4 P2 P3 e j k

x1 1.56 1.44 1.12 0.63 1.56 0.67 1.15 0.29 0.45
x2 0.6 1.56 1.21 0.68 0.6 0.72 1.24 0.31 0.48
x3 0.77 0.72 1.56 0.63 0.77 0.93 0.57 0.14 0.62
x4 0 0 0 1 0 0 0 0 0
P2 0.56 1.44 1.12 0.63 1.56 0.67 1.15 0.29 0.45
P3 1.29 1.19 0.93 0.52 1.29 1.56 0.95 0.24 0.37
e 0.75 0.69 1.51 0.61 0.75 0.91 1.56 0.14 0.6
j 0 0 0 0.95 0 0 0 1 0
k 0 0 0 0.8 0 0 0 0 1





ŝ f̂

0 0
0 0
0 0
1 0
0 0.08
0 0.17
0 0.03
0 0.05
0 0.2



B̂[x1, ∗] =
( ŝ f̂

0.63 0.37
)

We now have all the elements to calculate the QoS values for R1 (and hence
for P1), by applying equation 5, equation 6 and by retrieving the reliability
from B̂ as follows:

QoS(P1) =

QoS(R1) =

〈 1.92 · 4 + 0.92 · 6 + 1.54 · 3 + 0.38 · 3 + 0.62 · 4,
1.92 · 5 + 0.92 · 7 + 1.54 · 2 + 0.38 · 4 + 0.62 · 5,
0.63

〉
= 〈21.44, 23.74, 0.63〉

4.5. Extensibility

In the above presentation of the QoS aggregation method, we have as-
sumed that the QoS vectors include three attributes, namely cost, time and
reliability. However, the method is extensible to other QoS attributes as
explained below.

Essentially, what the method does is to traverse the tree of orchestration
components from bottom to top. At each level, one aggregation function
for each QoS attribute is invoked in order to compute the attribute value of
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the component given the attribute values of its sub-components. In order to
extend the proposed method to deal with an additional attribute, one would
need to define an aggregation function for each type of component listed in
Algorithm 2. For a given type of component, the aggregation function takes
as input the parameters associated with this component as per Definition 3.1.
In the case of DAG components, the aggregation function additionally takes
as input the set of runs and their associated probabilities, while in the case of
MEME loop components, it takes as input the expected number of executions
of each sub-component (i.e. function E(oc) in Algorithm 2).

In a similar vein, tool developers could extend the proposed method to
deal with other statistics besides the mean. For example, a tool developer
could introduce an attribute maxCost corresponding to the maximum cost
of one execution of a service. Having introduced this attribute, the tool
developer would then implement aggregation functions to compute the max-
Cost at the level of the orchestration components. Note that if loops are not
bounded, the notion of maximum cost is undefined. Accordingly, in order
to calculate the maximum value, the orchestration component types in Def-
inition 3.1 would have to be extended to capture the maximum number of
times that Repeat loop can be executed as well as the maximum number of
times that an arc in a MEME loop component can be traversed during one
execution of the component.

Finally, the method presented here is restricted to taking as input scalar
values for each attribute (e.g. mean QoS). Another possible extension would
be to handle probability distributions for each QoS attribute as opposed to
just the mean or the maximum value. In theory, the proposed method could
also be extended by introducing QoS aggregation functions that compute
the probability distribution of the QoS of a component, given the probability
distribution of the QoS of a sub-component. Such aggregation functions have
been studied for example in [27].

5. Implementation and Evaluation

We have implemented the proposed QoS aggregation method in a tool
that takes as input orchestration models in BPMN and computes the ag-
gregate value for each QoS attribute. The QoS values for each service and
the branching probabilities of gateways in the BPMN model are defined in
separate (text) files. The tool is distributed as an extension of the BPStruct
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tool4 and is available at: http://sep.cs.ut.ee/Main/Bpstruct. Below we
present an evaluation of the scalability of the QoS aggregation method using
the implemented tool.

5.1. Dataset

We collected a dataset consisting of 561 BPMN models from the follow-
ing sources: 8 models from BPMN-to-BPEL case study of the Grabats’2009
graph transformation challenge5, 8 models from the public Oryx repository6,
12 models from a repository of process models for local government author-
ities in China collected by Fudan University, and 533 models from the IBM
BIT process library.7 The sizes of models in the dataset (number of pro-
cess nodes) range from 3 to 47, with an average of 17 nodes. Some of these
models were larger, but they were structured into a top-level process with
subprocess invocations. In this case, the process and its subprocesses are
handled separately. The models cover all types of components: 1480 SEQ
components, 544 CHC components, 205 PAR components, 79 SESE Loop
components, 41 DAG components, and 38 MEME loop components. All the
models in the dataset (or in some cases links to these models) are included
in the tool distribution Web page. We assigned a random probability value
to each choice edge using a uniform distribution and ensuring that for each
XOR-split, the sum of the probabilities of its outgoing edges adds up to one.
We also assigned random QoS values (for time, cost and reliability) to each
component service.

5.2. Verification of accuracy

The QoS aggregation method combines multiple techniques, including
a technique for structuring process models (implemented by BPStruct), an
algorithm for computing runs and their associated probabilities, as well as
Markov chain analysis techniques. One question one might ask is whether
the composition of such techniques introduces approximations in the estima-
tion of the QoS that have visible end-effects. Accordingly, we undertook to

4http://code.google.com/p/bpstruct
5http://fots.ua.ac.be/events/grabats2008/cases.html
6http://oryx-editor.org/
7Available from http://www.zurich.ibm.com/csc/bit/downloads.html. The 533

models do not include unsound models (e.g., models containing deadlocks), which were
manually eliminated prior to the tests.
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test the accuracy of the QoS aggregation method by comparing its outputs
with those obtained via process simulation. To this end, we simulated each
model in the experimental dataset using a process simulator, namely BIMP.8.
Each simulation was composed of 1000 instances created simultaneously. The
models given as input to the simulator already contained QoS values for each
task (cost and time).9 These values are the same ones that were used when
running the QoS aggregation tool.

At the end of each simulation, we extracted the mean execution time and
mean cost per process instance. Each model was simulated four times and
the mean cost and execution times obtained during each simulation run were
averaged in order to even out the variance created by the stochastic nature
of the simulation. The averaged values were compared with those obtained
by running the QoS aggregation tool on the same model.

We observed that the difference between the execution time and costs
computed via QoS aggregation and those computed via simulation largely
coincided: the mean percentage deviation was slightly below 0.1% Although
not comparable to a formal correctness proof, this result provides some em-
pirical validation of the accuracy of the proposed method.

5.3. Performance evaluation

The QoS aggregation tool was able to compute the aggregate QoS of all
models in the dataset. During the tests, we measured the execution time
for each model, including the time required to compute the RPST and to
calculate the QoS. All tests were performed on a laptop with a dual core
Intel processor, 2.53 GHz, 4 GB memory, running Microsoft Vista and SUN
Java Virtual Machine version 1.6 (with 512MB of allocated memory). To
eliminate load time from the measures, each test was executed five times,
and we recorded the average execution time of the second to fifth run.

The execution times (in milliseconds) are plotted in Figure 14. Fig-
ure 14(a) plots the execution times for models that contain at least one
DAG component, while Figure 14(b) plots the times for models containing
no DAG components. As expected, models containing DAG components in-
curred a relatively larger execution times. Still, the execution times are in the

8http://bimp.cs.ut.ee
9We did not include the “reliability” attribute in these tests since the process simulator

does not support this attribute.
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order of milliseconds even for the largest models, thus showing that the QoS
aggregation method can deal with models of realistic size and complexity.
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Figure 14: Scatter plot of execution times for QoS aggregation. Each point in a plot
represents one model. The size of the model is given by the x-coordinate of its point while
the execution time for the model is given by the y-coordinate. The line shown in each
scatter-plot correspond to the linear regression trendline.

6. Related Work

Several previous studies have addressed the problem of aggregating QoS
of composite services based on orchestration models. Jaeger et al. [7, 8]
discuss the QoS aggregation problem for orchestration models consisting of
sequence, choice and parallel flow blocks. This approach does not deal with
loops. This restriction is lifted by Cardoso et al. [6] who proposed a Stochas-
tic Workflow Reduction (SWR) algorithm that takes as input a process graph
and computes the expected QoS by repeatedly applying a set of reduction
rules for block-structured sequential, parallel, choice and SESE loops (specif-
ically “repeat-until” loops). In a similar vein, Hwang et al. [14, 15] represent
composite services using a tree structure and compute the aggregate QoS
of composite services by traversing the tree using breadth-first search. This
tree is similar to the RPST structure, but the trees in the work of Hwang
et al. do not contain any unstructured blocks (i.e., rigid components). The
same QoS aggregation functions for block-structured constructs are given in
Canfora et al. [3], who use these functions to tackle the problem of bind-
ing and re-binding component services to an orchestration model in order to
maximize the QoS of the final binding.

Mukherjee et al. [9] propose a model to estimate QoS (specifically time
and cost) of an orchestration models defined in BPEL. Their method handles
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the same four block-structured constructs as Cardoso et al. Additionally,
Mukherjee et al.’s method can deal with BPEL “flow” activities contain-
ing control links, which are akin to DAG orchestration components in our
nomenclature. However, Mukherjee et al. do not give details of how the mean
execution time of such DAG components is computed. Also, the method of
Mukherjee et al. does not handle unstructured cycles.

Zheng et al. [10] propose yet another model for estimating QoS that
can deal with the same four block-structured constructs, plus some forms of
multi-exit loops. However, the class of multi-exit loops defined by Zheng et
al. are not of a general form. Firstly, Zheng et al. excludes loops containing
AND-split gateways such as the loop shown in Figure 6. Secondly, the loop
pattern defined by Zheng et al. is such that each node in the loop is connected
to one successor in the loop (i.e., the loop is a single cyclic path such that each
node in the path can be an exit point of the loop). Hence, overlapping loops
are excluded. In contrast, our method can deal with all types of MEME
loop components involving only XOR gateways as well as loops involving
concurrency, provided that the concurrency can be encapsulated inside child
components by means of restructuring. Furthermore, the method of Zheng
et al. does not cover DAG components.

More recently, Zheng et al. [27] extended their previous work to deal with
aggregation of QoS attributes defined by means of probability distributions
instead of single values. However, this extension still has the same limitations
as [10] with respect to the types of components it can handle. An interesting
direction for future work is to integrate our QoS aggregation approach with
the method for handling QoS probability distributions developed in [27].

The problem of computing QoS for composite services is related to that
of QoS-aware service composition [28, 29, 5]. The goal is to find a binding
that optimizes a given objective function while satisfying a given set of con-
straints. The input is an orchestration model and a set of service candidates
for each task in the orchestration model. Zeng et al. [5] study a local and a
global optimization approach to this problem using Simple Additive Weight-
ing (SAW) and Integer Programming (IP), respectively. Meanwhile, Liu et
al. [29] propose a dynamic QoS computation model for web services selection
in order to deal with runtime QoS selection. The authors construct a QoS
matrix and compute QoS of a composite service via normalization and then
multiplication with weights given by a user. A combination of local optimiza-
tion and global optimization approaches is studied in Alrifai et al. [28]. This
latter work considers three types of QoS aggregation functions: summation,
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multiplication and minimum relation. Our classification of QoS attributes is
inspired by this latter work.

The above studies address a more complex problem, in the sense that the
binding is not given, but instead needs to be computed based on the set of
candidate services for each task. On the other hand, the above work also
suffer from an inability to deal with unstructured components. In addition,
the global optimization approach proposed by Zeng et al. [5] cannot deal
with loops (not even structured loops). Instead, it is assumed that loops
are expanded by putting an upper-bound to the number of times a loop is
executed and unfolding the loop into a sequential structure.

This article is an extended and revised version of a previous conference
article [30]. The aggregation method outlined in this previous publication
was only able to deal with restricted forms of unstructured loops. Specifically,
the loops in [30] were allowed to have multiple exit points, but could not deal
with nested or overlapping unstructured loops. This restriction is lifted in
this article by means of the mapping to Markov chains. Also, the empirical
evaluation was extended to include models from the IBM BIT library.

7. Conclusion

In this article, we proposed a method for computing the QoS of a compos-
ite service, given the QoS of the services bound to its orchestration model.
Unlike previous work, the proposed method can deal with orchestration mod-
els containing complex types of unstructured components, both with and
without cycles.

While being more general than previous proposals in the field, the pro-
posed QoS aggregation method is still not complete. Specifically, the method
is not applicable when concurrency and conditional branching are intertwined
in the same cyclic SESE component. In some cases, the structuring method
embodied in BPStruct manages to disentangle concurrency and conditional
branching within a cyclic SESE component by factoring out the concurrency
into separate SESE components. But in other cases it fails to do so. An
example of a model that cannot be handled by the proposed QoS aggrega-
tion method and that cannot be further refactored by BPStruct was shown
in Figure 9. While such cases are arguably corner-cases and do not seem
to appear in practice, developing QoS aggregation methods that are able to
handle them is an interesting theoretical question and a possible avenue for
future work.
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In its current form, the proposed method treats each QoS attribute as be-
ing single-valued. It is assumed that the value of a QoS attribute represents
an average (e.g., average cost or average execution time). A more general
case is one where the QoS is given as a probability distribution. In theory,
the proposed method can be extended to deal with aggregation of probabil-
ity distribution, but this extension would require one to design aggregation
functions that determine the probability distribution of a parent component,
given those of its child components. Addressing the challenges posed by this
extension is another direction for future work.
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