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Abstract—Traditional approaches to user engagement analysis
focus on individual users. In this paper we address user engage-
ment analysis at the level of groups of users (social communities).
From the entire Skype social network we extract communities by
means of representative community detection methods each one
providing node partitions having their own peculiarities. We then
examine user engagement in the extracted communities putting
into evidence clear relations between topological and geographic
features of communities and their mean user engagement. In
particular we show that user engagement can be to a great
extent predicted from such features. Moreover, from the analysis
it clearly emerges that the choice of community definition and
granularity deeply affect the predictive performance.

I. INTRODUCTION

As the social media space grows more and more people
interact and share experiences through a plethora of differ-
ent online services, producing every day a huge amount of
personal data. Companies providing social media services
are interested in exploiting these Big Data to understand
“user engagement”, i.e. the way individuals use the products
provided. Traditional approaches of predictive analytics focus
on individuals: they try to describe and predict the level
of engagement of a single individual, with the purpose of
suggesting proper products/services and favoring the diffusion
of the system over a larger population. Focusing on individuals,
however, introduces many challenging issues, i.e., the amount
of individuals to process is enormous, and hence hardly
manageable. Addressing each single individual is also in many
cases redundant, since neighbors in networks tend to behave in
a similar way showing a certain degree of homophily [11], [10]
and inevitably causes the underestimation of the surrounding
social context. It is hence fundamental to widen the analysis
spectrum to incorporate social surrounding of users in order to
capture the homophily which characterize real social networks.

We propose to move the focus from individuals to groups an-
alyzing and describing the engagement of social communities.
Moving the interest from individuals to communities brings
many advantages. First, we reduce by several orders of mag-
nitude the space of analysis, shrinking the number of objects to
process and speeding up the analytical tasks. Second, targeting
communities allows for capturing the homophily inherent to
the social network: we can “compress” into one object all
the densely connected components of a social group. Finally,
groups are more complex objects from which we can extract a

wide set of features for the analysis. To approach this problem,
we extract social communities from the global Skype network
and compute relevant structural and geographical features from
each one of them. We then build a classifier to predict how
much within a social community are used the video and instant
messaging products provided by Skype. We find that group-
centric approaches outperforms user-centric ones when we
use algorithms producing overlapping micro-communities. In
contrast modularity-based algorithms are worse than the ones
of classical user-centric strategies. Hence, we show how the
choice of a proper community detection algorithm is crucial
to reach high performances in the engagement prediction.

II. RELATED WORKS

a) Activity prediction and social targeting: In recent
years, many works addressed the issue of predicting users’
future activities based on their past social behavior. Zhu et al.
[20] conduct experiments on the social media Renren using a
Social Customer Relationship Management model, obtaining
superior performance when compared with traditional super-
vised learning methods. Other works focus in particular on the
prediction of churn, i.e. the loss of customers. Oentaryo et al.
[14] propose a churn prediction approach based on collective
classification (CC), evaluating it using real data provided
by the myGamma social networking site. They demonstrate
that using CC on structural network features produces better
predictions than conventional classification on user profile
features. Richter et al. [16] analyze a large call graph to
predict the churn rate of its customers. They defines the churn
probability of a customer as a function of its local influence
with immediate social circle, and the churn probability of the
entire social circle as obtained from a predictive model. A
different category of works focus on online advertisement and
market targeting on social networks. [2] addresses the problem
of online advertising by analyzing user behavior and social
connectivity on online social networks. Studying the adoption
of a paid product by members of the Instant Messenger net-
work, they first observe that the adoption is more likely if the
product has been widely adopted by the individual’s friends.
They then build predictive models to identify individuals most
suited for marketing campaigns, showing that predictive mod-
els for direct and social neighborhood marketing outperform
several widely accepted marketing heuristics. [7] propose to
evaluate a user’s network value in addition to their intrinsic
value and its effectiveness in viral marketing, while [9] propose
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a strategy wherein a carefully chosen set of users is influenced
with free distribution of the product and the remaining buyers
are exploited for revenue maximization. Authors of [1] present
a machine learning approach which combines user behavioral
features and social features to estimate the probability that a
user clicks on a display ad.

b) Community detection in social networks: One critical
task of social network analysis involves the identification of
groups and communities within complex social tissues. A
survey [6] explore the most popular community detection
techniques and try to classify algorithms given the typology
of the extracted communities. One of the most adopted com-
munity definitions is based on the modularity concept [13],
[4], a quality function of a partition which scores high values
for partitions whose internal cluster density is higher than
the external density. A fast and efficient modularity-based
greedy algorithm, LOUVAIN, has been successfully applied
to the analysis of huge subset of the WWW [3]. Moreover,
modularity is not the only key concept that has been used for
community detection: an alternative approach is the application
of information theory techniques, as for example in INFOMAP
[17]. An interesting property for community discovery is the
ability to detect overlapping sub-structures, allowing nodes to
be part of more than one community. A wide set of algorithms
are developed over this property, such as CFINDER [15], and
DEMON [5].

III. MODEL CONSTRUCTION

Data: We analyze a dataset of users and connections in
Skype as of October 2011. The dataset includes anonymized
data of Skype users. Each user (identified by hashed ID) is
associated with their account creation date and country and
city of account creation. The dataset also includes connections
between users. Connections are undirected: a connection exists
between two users if and only if they belong to each other’s
contact list. Moreover, each connection is labeled with a
timestamp corresponding to the contact request approval.

In addition to non-identifiable user profile data and network
data, the dataset includes data about usage of two Skype prod-
ucts: video calling and chatting. Product usage is aggregated
monthly. Specifically, for each product, for each user and for
each month, we are given the number of days in the month
when the user used the product. The product usage data do
not provide information about individual interactions between
users, such as participants in an interaction, content, length, or
time of the interaction. We analyze the most recent available
snapshot of the network. Hence, we focus on the subset of
users who used one of the two products, during at least two
of the last three months covered in the dataset. Our analyses
will be then executed on a filtered dataset composed by several
tens of millions of users and connections.

Community Detection: The degree of overlap among com-
munities is one of the properties that can be used to charac-
terize community detection algorithms. Classical approaches
produce crisp partition of the network, i.e. an individual can
be involved in at most one community while overlapping ones
considering the multidimensional nature of social networks

allow individuals to belong to many different communities.
To observe the impact overlap has on our analysis we use four
different algorithms to extract social communities from the
Skype network (in increasing degree of overlap): LOUVAIN,
BFS, HDEMON and EGO-NETWORK.

LOUVAIN [3] is a scalable algorithm based on a greedy
modularity approach. It produces a complete non-overlapping
partitioning of the graph. It has been shown that modularity-
based approaches suffer a resolution limit and therefore LOU-
VAIN is unable to detect medium size communities [8]. This
produces communities with high average density, due to the
identification of a predominant set of very small communities
(usually composed by 2-3 nodes) and a few huge communities.

HDEMON [5] is based on a recursive hierarchical aggrega-
tion of denser areas extracted from ego-networks. Its definition
allows to compute communities with high internal density
and tunable overlap. In its first hierarchical level, HDEMON
operates extracting ego-networks and partitioning them into
denser areas using Label Propagation. The algorithm has two
parameters: (i) the minimum community size µ; and (ii) the
minimum Jaccard ψ among meta-nodes to create an edge that
connects them while building the community hierarchy. We
apply HDEMON on the Skype dataset fixing µ = 3 (the
minimum community is a triangle) and using two different
values of the ψ parameter: ψ = 0.25 which produced the
HDEMON25 community set, and ψ = 0.5 which produced
the HDEMON50.

EGO-NETWORK is a naive algorithm that models the com-
munities as the set of induced subgraphs obtained considering
each node with its neighbors. This approach provides the
highest overlap among the four considered approaches: each
node u belongs exactly to |Γ(u)| + 1 communities, where
Γ(u) identify its neighbors set. We apply a node sampling
strategy and consider only a ratio ε of the ego-networks for the
analysis. We set the parameter ε = 0.2, and randomly extracted
a number of users equals to the 20% of the population. For
each random user we extracted the corresponding ego network,
filtering only unique ones.

The BFS algorithm extracts random connected components
from the graph. It randomly samples a ratio ε of the nodes
of the network and, for each one of them, a number csize is
extracted from a power law distribution, modeling community
sizes. Starting from a root node, the algorithm explores other
nodes performing a breadth first search and stopping when
csize nodes are discovered.

Each algorithm, according to the specified parameters, pro-
duces different community sets when applied on the Skype
dataset. In Table I we report for each community set and
hierarchy level (Lv.) used in the following analysis: (i) the
number of communities (#C); (ii) the induced node coverage
w.r.t. the whole graph; (iii) the average number of communities
per node (σ, i.e. the mean degree of overlap); the average
community size (Avg.size). LOUVAIN is a partitioning al-
gorithm and guarantees the complete coverage of the nodes.
HDEMON covers around 76% of the nodes because imposing
the parameter µ = 3 we exclude communities with two
nodes only. BFS and EGO-NETWORK are executed on a 20%
sample of the nodes, on which they cover the 90% and 69%
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COMMUNITY STATISTICS
Algorithm Lv. #C coverage (%) σ Avg. size
HDEMON25 2 3.3e+07 76 13.2 27.9
HDEMON50 2 8.2e+07 76 10.3 8.9

LOUVAIN
0 8.7e+06 100 1.0 10.7
6 9.8e+05 100 1.0 94.6

EGO-NETS - 1.5e+07 691 3.7 15.6
BFS - 1.8e+07 901 13.3 60.8

TABLE I: Characteristics of the community sets produced by
the algorithms on the Skype dataset.

STRUCTURAL FEATURES
N number of nodes
M number of edges
D density
CC global clustering
CCavg average clustering
Adeg degree assortativity
degCmax max degree (com-

munity links)
degCavg avg degree (com-

munity links)
degall

max max degree (all
links)

degall
avg avg degree (all

links)
T closed triads
Topen open triads
Ov neighborhood nodes
Oe outgoing edges
Edist num. edges with

distance
d approx. diameter
r approx. radius
g conductance

COMMUNITY FORMATION FEATURES
Tf first user arrival

time
ITavg avg user inter-

arrival time
ITstd std of user inter-

arrival time
ITl,f last-first inter-

arrival time
GEOGRAPHIC FEATURES

Ns number of countries
Es country entropy
Smax percentage of most

represented country
Nt number of cities
Et city entropy
distavg avg geographic dis-

tance
distmax max geographic dis-

tance
ACTIVITY FEATURES

Video mean number of
days of video

Chat mean number of
days of chat

TABLE II: Description of the features extracted from the
communities.

respectively. For the LOUVAIN, we consider the hierarchical
levels 0 and 6 only, which correspond to the first greedy
iteration and the iteration having the maximum modularity.

A. Community Features
From the community sets produced by the four algorithms

we extract a wide set of features, belonging to four main
categories: structural, geographical, formation and activity
features (see Table II). Structural features convey informa-
tion about the topology of a social community. We analyze
community size and density, clustering coefficient, diameter
and radius as well as other relevant topological measures.
Moreover we take into account as proxy for homophily the
degree assortativity Adeg which indicates the preference for
the nodes to attach to others that have the same degree [12].
Other structural features regard the level of hubbiness of a
community, such as the average/maximum degree computed
considering both the network links or the community links
only. The community formation features convey information
regarding the temporal appearance of nodes within the com-
munity, such as: the time of subscription to Skype of the first
user to subscribe; the average and the standard deviation of the

1For EGO-NETS and BFS the coverage is computed starting from a 20%
sample of the total users.

inter-arrival times of users; the inter-arrival time between the
first node to subscribe and the last node who adopted Skype.
Geographic features provide information about the geographic
diversity of a community. The number of different countries
represented gives a first estimation of the international nature
of the community. The country entropy estimates the national
diversity through the Shannon entropy. We also compute the
city entropy and the number of different cities represented by
the community. Moreover, for the users for which we know
the city name (those associated to cities with more than 5,000
Skype users), we compute their geographic distance using
the coordinates of the centers of the cities. Once computed
all the available distances, we consider the average and the
maximum geographic distances of each community. Finally,
the activity features indicate the mean level of Skype activity
performed by the community members. We extract two activity
features: (i) chat, the mean number of days they used the
instant messaging (chat); and (ii) video, the mean number
of days they used the video conference. The distributions of
the chat feature for HDEMON, BFS and EGO-NETWORKS
follow a peaked distribution, while those of the chat feature
(for LOUVAIN) and of the video feature (for all algorithms)
follow an exponential distribution. In all cases, the separation
between high-engagement and low-engagement communities
is less clear for higher thresholds. For the video feature, the
median ranges from 3 to 3.75 (across algorithms) while the
75th-percentile ranges from 6 to 7. For the chat feature, the
median ranges from 5 to 5.9, while the 75th-percentile ranges
from 13.9 to 15.4.

IV. MODEL EVALUATION

We use the features described above to classify the level of
engagement of social communities with respect to the chat and
video activity features. To this purpose, we build a supervised
classifier that assigns communities to two possible categories:
high level of engagement or low level of engagement. We
address two different scenarios: (i) a balanced class scenario
where the two classes have the same percentage of population;
and (ii) an unbalanced class scenario, where we consider an
uneven population distribution.

Balanced scenario: In order to transform the video and chat
activity features into discrete variables we partition the range of
values through the median of their distribution. This produced,
for each variable to predict, two equal-populated classes: (i)
low engagement, ranging in the interval [0,median]; and
(ii) high engagement, ranging in the interval [median, 31].2
To perform classification we use Stochastic Gradient Descent
(SGD) and AUC (area under the ROC curve) to evaluate their
performance. The overall accuracy is instead the proportion
of true results (both true positives and true negatives) in the
population. We learn the SGD classifier with logistic error
function [18], [19] .We execute 5 iterations, performing data
shuffling before each one of them, imposing the elastic-net
penalty α = 0.0001 and l1-ratio = 0.05. The adoption of
elastic-net penalty results in some feature weights set to zero,

2the maximum is 31 because it refers to the mean number of days per
month in which that activity was performed.
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(d) LOUVAIN Video

Fig. 1: Weights of the features produced by SGD method for HDEMON and LOUVAIN community sets, for the Chat feature in
the balanced scenario (a-b) and Video feature in the unbalanced scenario (c-d).
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Fig. 2: AUC vs. Avg. Density and AUC vs. Avg. Size: Balanced scenario (a-b) Unbalanced scenario (c-d)

VIDEO: AUC AND ACCURACY
Algorithm Lv. Scores
HDEMON25 1 .74 (.67)
HDEMON50 0 .71 (.68)
LOUVAIN 0 .65 (.60)
LOUVAIN 6 .63 (.59)
EGO-NETS - .70 (.64)
BFS - .67 (.62)

CHAT: AUC AND ACCURACY
Algorithm Lv. Scores
HDEMON25 2 .84 (.77)
HDEMON50 1 .81 (.73)
LOUVAIN 0 .69 (.64)
LOUVAIN 6 .65 (.60)
EGO-NETS - .75 (.75)
BFS - .81 (.72)

TABLE III: AUC and Accuracy (within brackets) in the
balanced scenario, for Video and Chat.

thus eliminating less important features. We apply a five fold
cross-validation for learning and testing. Table III shows the
AUC produced by the SGD method on the features extracted
from the community sets produced by the four algorithms
(for HDEMON and LOUVAIN only the two best performing
community sets are reported). HDEMON produces the best
performance, both in terms of AUC and overall accuracy, for
all the three activity features. LOUVAIN, conversely, reaches
a poor performance and it is outperformed by BFS and
EGO-NETWORKS. This result suggests that the adoption of
modularity optimization approaches, like LOUVAIN, is not
effective when categorizing group-based user engagement due
to their resolution limit which causes the creation of huge
communities [8]. As the level of the LOUVAIN hierarchy in-
creases, and hence the modularity increases, both the AUC and
overall accuracy decrease. In the experiments, indeed, the first
LOUVAIN hierarchical level outperforms the last level, even
though the latter has the highest modularity. Figure 1 shows
the features which obtain a weight value by the SGD method
higher than 0.2 or lower than −0.2 (i.e. the most discriminative
features for the classification process). HDEMON distributes

the weights in a less skewed way, while the other algorithms
give high importance to a limited subset of the extracted
features. Moreover only a few LOUVAIN features have a
weight higher than 0.2 or lower than −0.2 (see Figure 1, d),
confirming that a modularity approach produces communities
with weak predictive power with respect to user engagement.
Moreover, an interesting phenomena emerges: independently
from the chosen community discovery approach, the most
relevant class of features for the classification process is the
topological class. In particular degree, density, community
size and clustering related measures often appear among the
most weighted features. Figures 2(a-b) shows the relationships
between the average community size, the average community
density and the AUC value produced by the SGD method
on the community sets which reach the best performances
in the balanced scenario for the Video feature (Chat behave
similarly). The best performance is obtained for the HDEMON
community sets, which constitute a compromise between the
micro and the macro level of network granularity. When the
average size of the communities is too low, as for the ego-
network level, we lose information about the surroundings of
nodes and do not capture the inner homophily hidden in the
social context. On the other hand, when communities become
too large, as in the case of LOUVAIN ones we mix together
different social contexts losing definition. Communities ex-
pressing a good trade-off between size and density, as in the
case of the HDEMON algorithm, reach the best performance
in the problem of estimating user engagement.

Unbalanced scenario We address also an unbalanced sce-
nario where we use the 75th percentile to discriminate the low
engagement class, which thus contains the 75% of the obser-
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Fig. 4: Most relevant Pearson correlations between community feature values and target class (high/low activity) for HDEMON.
In (a-b) are shown the indexes for the balanced class scenario while in (c-d) for the 75th percentile split.

VIDEO: AUC AND ACCURACY
Algorithm Lv. Scores
HDEMON25 1 .76 (.68)
HDEMON50 0 .73 (.65)
LOUVAIN 0 .64 (.59)
LOUVAIN 6 .61 (.58)
EGO-NETS - .71 (.63)
BFS - .68 (.61)
baseline - .75

CHAT: AUC AND ACCURACY
Algorithm Lv. Scores
HDEMON25 2 .82 (.78)
HDEMON50 3 .80 (.76)
LOUVAIN 0 .68 (.70)
LOUVAIN 6 .67 (.66)
EGO-NETS - .83 (.79)
BFS - .82 (.77)
baseline - .75

TABLE IV: AUC and Accuracy (within brackets) produced by
the SGD method in the unbalanced scenario, for the Video and
Chat features.

vations. Table IV describes the results produced by the SGD
methods in the unbalanced scenario, using the same features
and community discovery approaches discussed before. The
baseline method for the unbalanced scenario is the majority
classifier: it reaches an AUC of 0.75 by assigning each item
to the majority class (the low engagement class). We observe
that, regardless the community set used, the SGD method is
not able to improve significantly the baseline classifier for
Video. Conversely, the results obtained for the Chat feature
by SGD outperforms the baseline when we adopt HDEMON,
EGO-NETWORKS and BFS community sets, reaching an AUC
of 0.83. In order to provide additional insights on the models
built with the adoption of the different CD algorithms, we
compute the precision and recall measures with respect to the
minority class (see Table V). Looking at these measures enable
us to understand which are the advantage in using SGD to
identify correctly instances of the less predictable class. In
this more challenging settings, the baseline is the minority
classifier which reaches a precision of 25% by assigning each
community item to the minority class (the high engagement
one). We observe that the SGD method outperforms the
baseline classifier on all the community sets (reaching values in
the range [.33, .57]). HDEMON and EGO-NETWORKS are the
community sets which led to the best precision, on the Video
features and the Chat feature respectively. In order to measure
the effectiveness of SGD we report the Lift chart which shows
the ratio between the results obtained with the built model
and the ones obtained by a random classifier. The charts in
Figure 3 are visual aids for measuring SGD’s performance
on the community sets: the greater the area between the lift

VIDEO: PRECISION - RECALL
Algorithm Lv. Scores
HDEMON25 2 .42 (.72)
HDEMON50 1 .39 (.70)
LOUVAIN 0 .33 (.69)
LOUVAIN 6 .33 (.67)
EGO-NETS - .37 (.68)
BFS - .35 (.71)
baseline - .25

CHAT: PRECISION - RECALL
Algorithm Lv. Scores
HDEMON25 2 .54 (.69)
HDEMON50 3 .50 (.67)
LOUVAIN 0 .40 (.41)
LOUVAIN 6 .44 (.33)
EGO-NETS - .57 (.68)
BFS - .52 (.71)
baseline - .25

TABLE V: Precision and Recall (within brackets) produced
by the SGD model for the Video and Chat features in the
unbalanced scenario.
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Fig. 3: Unbalanced scenario: Lift plot for each product.

curve and the baseline, the better the model. We observe that
HDEMON performs better than the competitors for the video
features. For the chat features, the community sets produced
by the three naive algorithm win against the other two CD
algorithms. For all the three activity features LOUVAIN reaches
the worst performance, as in the balanced scenario. As done for
the balanced scenario, in Figure 1(e-h) we report for each CD
the features having weight greater than 0.2 or lower than −0.2.
Conversely from the results presented in the previous section,
where topological features always show the higher relative
importance for the classification process, in this scenario we
observe that community formation and geographical features
have greater descriptive power. As previously observed the
minority class identified by a 75th percentile split is mostly
composed by particular, rare, community instances affecting
the relative importance of temporal and geographical infor-
mations: the results suggest that the more a community is
active the more significative are its geographical and temporal
bounds. Finally in Figure 2(c-d) we show the relationships
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between the average community size, the average community
density and the AUC value produced by the SGD method on
the community sets which reach the best performances in the
unbalanced scenario. We can observe how, in this settings, the
algorithms granting communities having on average small sizes
and high density are the ones that assure the construction of
SGD models reaching higher AUC. In particular HDEMON in
both its instantiation outperforms the other approaches.

V. COMMUNITY CHARACTERIZATION

From our analysis emerged a well defined trend: among the
compared methodologies, HDEMON is able, both in balanced
and unbalanced scenarios, to better bound homophily and
thus to extract communities that guarantee useful insights
on the product engagement level. For this reason, starting
from the communities extracted by such bottom-up overlap-
ping approach we computed the Pearson correlation for all
the defined features against the final class label (high/low
engagement). As shown in Figure 4(a), when splitting the
Video engagement using the 50th percentile we are able to
identify as highly active communities the ones having high
country entropy Es as well as high geographic distance among
its users distavg and whose formation is recent (i.e. whose
first user has joined the network recently, Tf , as well as
the last one, ITl,f .). Moreover, Video active communities
are composed by users having on average low degree as
shown by degallavg and degCmax. Conversely, looking at Figure
4(b) we notice that communities which exhibit high Chat
engagement can be described by persistent structures (i.e.
social groups for which the inter-arrival time ITl,f from the
first to the last user is high), composed by users showing
almost the same connectivity (in particular having high degree)
and sparse social connections (low clustering coefficient CC,
low density D and high radius). Moreover, we compute the
same correlations for the 75th percentile split: in contrast with
the new results for the Chat engagement (Figure 4(d)) which do
not differ significantly from the ones discussed for the balanced
scenario, in this settings the highly active Video communities
show new peculiarities. In Figure 4(c) we observe how the
level of engagement negatively correlates with the community
radius (and diameter) and positively correlates with the density.
This variations describe highly active Video communities as
a specific and homogeneous sub class composed by small
and dense network structures composed by users who live in
different countries (high geographical entropy Es).

VI. CONCLUSIONS

In this work we addressed the issue of predicting user
engagement in online social networks. In contrast with
traditional user-centric approaches, we focus on social
communities in order to exploit the inherent homophily
characteristic of social networks. Our results show that, both
in balanced and unbalanced classification scenarios, algorithms
producing overlapping micro-communities like HDEMON
reach the best performance. Conversely, modularity-based
approach like LOUVAIN do not guarantee good performance
and are outperformed by simple clustering strategies such

as EGO-NETS and BFS. We also provide a description
for low/high engaged communities identified by HDEMON
through the analysis of the correlations between their activity
level and the values of their features.
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