
Combining Propensity and Influence Models for
Product Adoption Prediction

Ilya Verenich, Riivo Kikas, Marlon Dumas, Dmitri Melnikov
University of Tartu, Estonia

{ilyav, riivokik, marlon.dumas, zx}@ut.ee

Abstract—This paper studies the problem of selecting users
in an online social network for targeted advertising so as to
maximize the adoption of a given product. In previous work,
two families of models have been considered to address this
problem: direct targeting and network-based targeting. The
former approach targets users with the highest propensity to
adopt the product, while the latter approach targets users with
the highest influence potential – that is users whose adoption
is most likely to be followed by subsequent adoptions by peers.
This paper proposes a hybrid approach that combines a notion of
propensity and a notion of influence into a single utility function.
We show that targeting a fixed number of high-utility users results
in more adoptions than targeting either highly influential users
or users with high propensity.

I. INTRODUCTION

A central problem in modern marketing is that of con-
structing decision models to select potential customers to
target in a marketing campaign in such a way as to maxi-
mize the ensuing number of adoptions. A direct marketing
method consists in selecting those individuals from a potential
customer population who have higher propensity to respond
positively to the campaign, e.g. higher propensity to adopt a
given product [1]. In the context of online social networks,
this method requires building a decision model that predicts
the response of each individual given the available data such
as geography, demographics and past behavior of the user in
question and their peers. The direct marketing approach does
not take into account that an individual’s adoption may have
an effect on adoption by others [2]. However, some markets
– most notably those associated with information goods –
exhibit strong network effects [3], meaning that individuals
are often strongly influenced by their peers. An alternative
network-based marketing approach takes advantage of this
property by targeting primarily individuals with the strongest
influence potential. In this approach, the decision model selects
individuals who are likely to influence one or more of their
peers into adopting the product (i.e. “word-of-mouth” effect).

In this paper, we present a method for constructing pre-
dictive models that combine the notions of propensity and
influence in order to identify likely product adopters in a
communication network. We first develop, as a baseline, an
adoption propensity model based on previous work [4]. Sec-
ond, as our dataset is missing explicit product diffusion paths,
we propose a method to infer influence from the underlying
network of interpersonal communications and the temporal
sequence of product adoptions. Third, we develop a model to
estimate user influence based on the inferred influence links.
The proposed influence prediction model specifically identifies
individuals whose adoption is likely to trigger at least one

subsequent adoption among their friends. Finally, we define a
combined model that brings together the notions of propensity
and influence into a single utility function. The proposed
models are comparatively evaluated using a dataset of a global
communication network, namely Skype. The results show that
the combined model provides significant improvement relative
to the separate models based on propensity or influence alone.

The rest of the paper is structured as follows. Section II
introduces the dataset used in the study and the features
extracted thereof for product adoption prediction. Next, Sec-
tion III presents the three proposed models, while Section IV
discusses their evaluation with respect to accuracy and mar-
keting effectiveness. Finally, Section V analyzes related work,
while Section VI provides concluding remarks.

II. DATASETS AND FEATURES

This section provides an overview of the dataset used in
this study, and the features used for constructing the adoption
prediction models.

A. Dataset description

The study has been conducted on a dataset of the Skype
social network. The centerpiece of the dataset is the evolving
contact network, where the nodes represent users, and there
exists an edge between a pair of users if they are in each
other’s contact lists. A user’s contact list is composed of a
user’s friends. If a user u wants to add another user v in
their contact list, u sends v a contact request, and the edge
is established at the moment v approves the request (or not
established if the contact request is not approved). Each edge
is labeled with a timestamp indicating a moment the contact
request was approved. The dataset includes circa 450 million
users and 3 billion edges.

Every user has a set of demographic and geographic
attributes that can be optionally filled in their profile. Three
such attributes are present in the dataset – gender, birth year
and country. However, users may leave any of these three
fields blank. In addition, for each user, the dataset indicates
the Skype client platform from which the user last connected
(e.g. Windows client, Mac OS client, iPhone client), and a
number of attributes that are automatically filled upon the
user’s registration: profile creation date, country code and
location code where profile was created. Country and location
information is originally extracted via IP address geocoding
when the user registers their account.

In Skype, users can chat with each other or make audio
or video calls free of charge. In this respect, the dataset



TABLE I: Model features.

Set Feature Description

Topo-
logical
features

fr Number of friends
sf Number of product friends
sfr Product friends ratio
foc Number of friends in other countries relative to

fr
fol Number of friends in other locations relative to

fr
sfc Number of product friends in other countries

divided by fr
sfl Number of product friends in other locations

divided by fr
ccf Clustering coefficient of a user’s egocentric net-

work

Temporal
features

fr2 Number of friends added during the last 2
months

sf2 Number of product friends during the last 2
months

dccf Absolute change in ccf during the last 2 months
longev Average length of acquaintance with a user’s

friends

Profile
features

age Age group
gend Gender
accAge Account age
plat User’s platform or operating system
country User’s country code

Usage
intensity
features

avgCon Average connected days per month
lastCon Number of connected days last month
AvgCht Weighted average percentage of instant

messaging, audio call and video call days per
month

AvgAud
AvgVid
lastCht Number of instant messaging, audio call and

video call days last monthlastAud
lastVid

includes for every user and for every month since the user’s
account creation, the number of days in the month when the
user chatted, audio-called or video-called. Usage data is not
available at a lower granularity.

In addition to the above free services, users can purchase
“credits” for calling phones or to send SMS messages (among
other purposes). The dataset includes for each user, the date
when the user first adopted each of two paid products: Buy
Credit (first credit purchase, for any purpose) and SMS (first
SMS sent). Herein, these are called product adoption events.

The dataset does not include identity information. All
usernames are anonymized and there is no means to infer
a user’s identity solely from their profile – location data
is only available at a granularity where there are at least
thousands of users per location. The dataset does not include
any information about interpersonal interactions, besides the
fact that a user is in another user’s contact list.

B. Feature description

For the purposes of constructing (predictive) classification
models, each individual in the network is abstracted as a
set of features. Below, we describe and motivate the features
we extract from each user based on their own attributes and
history, and those of their immediate social network (also
called the egocentric network). All features are listed in Table I,
grouped into four categories.

1) Topological features: Topological features capture the
structure of the network of interpersonal relations. These

features are well-known and have been extensively studied in
different contexts [4]–[6]. Number of friends, abbreviated as
fr in Table I, is the simplest network feature that is computed
by counting the number of contacts in the user’s contact list.
In our study we discard users whose contact list is empty, as
it is not possible to compute network features for them.

The number of network neighbors who already use a prod-
uct has been proven important for estimating the probability
of adoption [4], [5], [7], [8], thus suggesting the presence
of peer pressure effect. For convenience, we will refer to a
user’s friends who have adopted the product as product-using
friends, or simply product friends. Consequently, we define a
feature sf that is equal to the number of product friends in
the neighborhood of a particular user. We also define product
friends ratio sfr = sf/fr as the ratio of the number of
product friends to the total number of a user’s friends.

With a large fraction of friends in other countries or
locations, a user may find that paid products provide an easier
and more convenient way to communicate with friends abroad
or far away. Perhaps after migration to another area a user
feels the need to stay in touch with their relatives. Therefore,
we decided to include features foc and fol, calculated as the
fraction of user’s friends whose country or location is different
from their home country or location respectively. Features
sfc and sfl are computed analogously, except we count only
product friends in other countries and locations.

We also take into account local clustering coefficient (ccf )
as it is known that higher clustering coefficient favors prop-
agation of products in the networks, since nodes tend to be
more tightly connected [9].

It should be noted that since the network is evolving, topo-
logical features change over time and thus need to be computed
at the time that predictions are made (cf. Section III-A).

2) Temporal features: Temporal features reflect the change
in the neighborhood of an individual over time. Such features
have been extensively studied in the domain of dynamic
networks [10], [11]. With the inclusion of these features we try
to capture possible dynamic process happening in the user’s
network just before the product adoption.

One of the simplest temporal features is user’s dynamic
degree, counted as the rate, at which new friends are gained
[11]. The importance of dynamic degree for information diffu-
sion in the network has been acknowledged by Luu et al. [12].
In our study we approximate dynamic degree by calculating
number of friends a user has added during the last two months
(fr2 in Table I). We also count number of friends who adopted
the product during the last two months and denote it as sf2.
Analogously we approximate dynamic clustering coefficient
(dccf ) [11] as the absolute change in the clustering coefficient
of user’s egocentric network over the last two months.

We also include the length of acquaintance as one of the
indicators characterizing strength of interpersonal ties [13]. It
is natural to assume that two individuals tend to share higher
“level of trust” if they know each other for a longer period
of time. Since only a small fraction of trusted friends has the
real influence on a user [14], determining such trusted friends
by their length of acquaintance can benefit the model. In this



study we calculate the average length of acquaintance of a user
with their neighbors, expressed in months (longev).

3) Profile features: Profile features are taken from users’
account description. These features carry demographic and
geographic information and usually do not change over time.
Aral and Walker [15] provided insights into how demographic
parameters, such as age, gender, relationship status, affect
personal influence and susceptibility towards product adoption.

We include user’s age, gender, country of registration and
their Skype client platform as basic profile features. Addi-
tionally we calculate account age as the time elapsed since
a user created a network account. Introduction of this feature
will allow us to distinguish users who created an account
specifically for using paid products. Previously, Thompson
and Sinha [16] showed that community membership duration
affects the likelihood of adopting a new product.

4) Usage intensity features: Previous research has indi-
cated that in online communities which combine open and
proprietary products or services, as consumers climb up the
“ladder of engagement”, they develop a deeper sense of
commitment to the website [17] and perceived ownership
[18]. Oestreicher-Singer and Zalmanson [19] in their study on
Last.fm network also discovered that the more active a user
is, the more likely they are to adopt a paid product. With this
intuition, we extract a set of features describing intensity of
usage of the other products – instant messaging (chat), audio-
and video. Intuitively, we expect users that are active with some
products to be also active with the other (“target”) products.

Features lastCht, lastAud and lastV id show how many
days chat, audio- and video calls respectively were used during
the latest month. These features are based on the assumption
that adopters increase their activity in the month before adopt-
ing. In addition, feature lastCon shows the number of days
a user connected to the network during the last month, and
is used to filter out inactive (dormant) users. It is unlikely
that such users will suddenly adopt the product. Similarly, we
define AvgCht,AvgAud and AvgV id as the average number
of days a particular free product has been used in the past,
starting from either the time a user has created account or the
time of the data recording.

III. MODELS

In this section we discuss the construction of the three
models for the product adoption.

A. Adoption propensity model

As mentioned in the introduction, a central task in direct
marketing is to identify users who are the most likely to adopt
a given product. This task can be recast as a ranking problem:
given a set of users V and their features, rank them according
to their probability Pu (u ∈ V ) to become an adopter during
a certain time period. For convenience, we will refer to the
estimated probabilities Pu as adoption propensity scores, or
simply propensity scores.

Given that this is a predictive task, we apply a temporal
split to the dataset. Specifically, we fix a time point T1 as the
moment when the prediction is made. We use data from a past
interval (T0 to T1) for training, and data from a future interval

(T1 to T2) for testing. Users who adopted between T0 and T1

are positive examples and their features are calculated at the
time of their adoption. Users who do not adopt during this
period are negative examples and their features are computed
at T0. Users who had adopted the product prior to time T0 are
excluded.

For every user in the test set, features are computed at time
point T1. Users who adopt the product between T1 and T2 are
the positive examples and all others are negative examples.

B. Inferring influence links

We have noted that network-based marketing targets in-
dividuals who are likely to trigger further product adoptions.
Thus, a decision model to support this type of campaign should
be able to pinpoint individuals who will “influence” others into
adopting the product in question. Some social networks capture
explicit links of influence (or diffusion) between individuals,
for example in the form of retweets and mentions [6], reshares
[20], recommendations [21], etc. In this paper however we deal
with a social network that does not capture explicit influence
links. Thus, we need to infer these links from the network
of interpersonal connections and the temporal sequence of
adoptions [22].

To test the presence of interpersonal influence in our net-
work, we calculate the distribution of product adoption inter-
event times, i.e. the time between any pair friends adopting
the product, in the case where the link between them was
created before the first of them adopted. Additionally, we
calculate the inter-event time between all possible pairs of
adopters, regardless of whether they are friends or not. The
probability density function (PDF) of the adoption inter-event
time among pairs of friends – shown by the red line on Fig. 1
– indicates a decaying behavior. In other words, when a friend
of a user adopts the product, their likelihood of adoption is
higher than random, and this difference decays over time. A
similar distribution was found by Goyal et al. in their study of
the Flickr network [23].
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Fig. 1: Adoption time difference between pairs of adopting
friends and pairs of random adopters. This plot is for the Buy
credit product. The plot for the SMS product is similar.

Fig. 1 also shows that beyond an interval of approximately
90 days, the probability of a pair of friends (u, v) adopting
after each other is similar to the probability of two random
(possibly unrelated) pairs of users (u, v) adopting after each
other. In other words, beyond 90 days there is no temporal
correlation (beyond chance) between subsequent adoptions by



a pair of friends. Accordingly, we assume that an influence
link exists from user u to user v when:

• v adopted the product after u and within ∆t = 90
days

• (u, v) ∈ E was created before v adopted

A similar approach is used in Dave et al. [24] to separate
between social influence and homophily in the context of pairs
of friends performing the same action.

C. User influence model

Having defined influence and determined the temporal
threshold ∆t, we note that a possible measure of user influence
could be the number of subsequent adoptions N within ∆t
days since user’s own adoption. However, this variable is very
skewed – after around 82% of adopters no subsequent adoption
happens in their neighborhood for ∆t days, around 14% of
adopters are followed by one further adoption, and the long
tail (2 to over 30 adoptions) accounts for less than 4% of
adopters (Fig. 2). Normalizing the number of adoptions by
the number of user friends fr does not solve the problem, as
for 15% of adopters 0 < N/fr < 0.2 and for 3% adopters
0.2 ≤ N/fr ≤ 1.
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Fig. 2: Distribution of the number of subsequent adoptions
within ∆t = 90 days.

Thus, instead of predicting the number of subsequent
adoptions, we will simply predict whether a user’s adoption
will be followed by any of their neighbors’ adoption within
∆t days. We can formulate this task as a ranking problem:
given a set of users V , who will presumably adopt the product,
and their features, order them according to their probability Iu
(u ∈ V ) to trigger subsequent adoptions in their neighborhood
within ∆t days.

For convenience, we will refer to Iu as influence scores,
and users for whom Iu > 0.5, i.e. users who are predicted to
trigger at least one subsequent adoption, influential users.

To solve this problem we use the same set of features as
in the previous model. However, there are some differences
in creation of training and test sets. For the training set we
take all users who adopted the product from T0 to T1. Those
adopters with at least one subsequent adoption within ∆t days
after their own adoption are positive examples. The negative
examples are all other users with no subsequent adoption in
their neighborhood. For all examples features are computed by
the time of their adoption.

For the test set, we take the users who adopted the product
from T1 to T2. For every user in the test set, features are
also computed at the time of their adoption. As a result of
running the classification algorithm we would like to put every
influential adopter to the top of our ranked list of users.

D. Utility-based model

In the viral marketing campaign an advertiser aims to find
the optimal group of the most profitable customers to target
in order to trigger the widespread adoption of a new product
or innovation. To account for these two criteria, we apply
the framework developed by Domingos and Richardson [2],
[3] who modeled a consumer network as a Markov random
field for maximizing profit. They distinguished between a
customer’s intrinsic value, which derives from the purchases
they will make, and network value, which derives from their
influence on other customers. The authors tested their model
on a database of movie reviews and found that their proposed
methodology outperforms non-network methods for estimating
customer value.

Let c be the cost of marketing to a user u (assumed
constant), Pu be the u’s propensity score, i.e. probability of
purchasing the product, S be the unit price of the product, and
Mu be the amount of product, consumed by the user u. Since
in our study we focus on one product, which can be adopted
or not, a user’s intrinsic value Ju can be determined as

Ju = PuSMu − c. (1)

However, for the paid products we only know the dates of
the first and last product usage (see Section II-A), from which
we cannot infer the usage intensity. Therefore, we assume
everyone who has adopted the product, would use it in an
equal amount (for convenience, we set it to one unit):

Ju = PuS − c. (2)

The network value Nu of a user u is high when they are
expected to have a very positive impact on others to purchase
the product (e.g., through word of mouth). Consequently, Nu

is proportional to the number of subsequent adoptions Au user
u triggers after their own adoption:

Nu = PuAuS. (3)

It should be noted that such subsequent adoptions can
be triggered only if user u adopts the product. However, a
marketer, when targeting users, does not know who will indeed
adopt and who will not.

Combing intrinsic and network values, we define a total
value Tu of a user u, or user’s utility as:

Tu = Ju + Nu = PuS(1 + Au)− c. (4)

With our dataset, we cannot accurately predict the total
number of subsequent adoptions Au, since its distribution is
very skewed (Fig. 2). Instead, we trained a classifier to estimate



user’s influence score Iu, i.e. probability that their adoption
will be followed by any of their friends. which correlates with
Au with the Pearson correlation coefficient 0.415 (P < 10−6,
95% CI 0.414 to 0.416). Thus, we can rewrite user’s utility as:

Tu = PuS(1 + Iu)− c. (5)

We hypothesize that targeting users with higher utility
will result in more adoptions than targeting either users with
higher influence score or higher propensity score. The intuition
behind this comes from the fact that we observe no significant
correlation between users propensity Pu and influence scores
Iu. The only noticeable exception is users (less than 1%
of all adopters) with high influence, who tend to have high
propensity to adopt. However, the opposite is not necessarily
true – users who are almost surely to adopt the product may
still have near-zero influence.

To validate our hypothesis, we sample a set of 10 million
users, to which we will refer as V . For every user in V ,
we calculate their propensity and influence scores with the
two previous models. Then we calculate the utility scores
(Equation 5) and order users according to them. We count
how many product adoptions occurred among top X% of
the ordered users during the next six months. In case a user
adopted the product, we count how many subsequent adoptions
happened in their neighborhood for the following 90 days.

To calculate utility scores we use Equation 5. Since pa-
rameter S and c are equal for all users, they will not affect
user ranking. For convenience, we set S to 1, and c to 0. The
resulting utility distribution shows most users have low utility
score. Specifically, for less than 7% of users 1 < Tu ≤ 2. A
similar distribution was observed by Domingos and Richardson
[2], [3].

IV. EVALUATION

To train the classifiers for the adoption propensity and user
influence models, we use random forest, as implemented in the
GNU R package randomForest. For each model we train
500 trees, while keeping the default value of the number of
variables randomly sampled for each tree m = b

√
Mc = 5.

In this section we evaluate their performance on the test set.
Obtained propensity and influence scores serve as input for the
combined utility-based model.

The training interval (T0 to T1) is fixed in the evaluation
and corresponds to a period of one year in the past. Parameter
T2 was varied so that the test period spans 3, 6, 9 and 12
months. Below we only report results for T2−T1 = 6 months.
The accuracy observed for 3-months test periods was slightly
higher but within two percentage points of the accuracy for 6
months test periods. Similarly, the accuracy observed for 9 and
12-months test periods was slightly lower but also within two
percentage points of the accuracy for 6-months test periods. In
all cases, the relative accuracy (gain) of the models remains
the same for different prediction time windows.

A. Propensity and Influence Models

Fig. 4a plots the cumulative gains chart of the propensity-
based model applied to both Buy credit and SMS. The diagonal
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Fig. 3: Top 10 important features according for the propensity
and influence models, measured by mean decrease accuracy.

in the chart corresponds to the performance of a random model
that assigns all the users random uniform probabilities from 0
to 1 to adopt the product. A point in the cumulative gains chart
plots the percentage of actual adopters included in the top-
X% of the population ranked by propensity score (adoption
probability). For example, we see that for the Buy Credit
product, the top 10% of the population ranked by propensity
score contains around 41% of all the adopters. Meanwhile,
for SMS, the top 10% of the population contains 47% of
all the adopters of this product. The figure also indicates the
Area Under the Cumulative Gains chart (herein AUC), which
provides an aggregate measure of accuracy. We observe that
the prediction accuracy for SMS is slightly higher compared
to the Buy Credit product, but not significantly – particularly
not beyond the top-10 percentile of the population.

The cumulative gain chart of the influence model is given
in Fig. 4b. The y-axis in this chart gives the percentage of all
“influential adopters” included in the top-X% of the population
ranked by influence score – where an influential adopter is an
adopter whose adoption was followed by at least one other
adoption within ∆t. We observe that for both products, the
influence model has lower predictive power than the adoption
propensity model. For example, we see that random forest can
order the test set in such a way that the top 10% would contain
around 28% of all the adopters of the Buy Credit and 30% of
all the adopters of the SMS. This observation suggests that the
overall effect of influence is less strong than that of propensity.

In order to shed light into the features responsible for
the observed predictive accuracy, Fig. 3 shows the relative
importance score – measured via Mean Decrease Accuracy
– of the top ten features for each of the two models and for
the Buy Credit product. We note that very similar results are
obtained for the SMS product. In the case of the propensity
model, Fig. 3a shows that the most predictive features of user
adoption are lastCon and lastAud. Thus, the activity of the user
in the month prior to adoption is a good indicator of a potential
future adopter. Product friends ratio, sfr, is also among the
most important features, which indicates the presence of peer-
pressure effects in the network.

On the other hand, the most predictive feature for user
influence is the number of friends fr (Fig. 3b), thus confirming
previous studies that observed the importance of centrality-
based measures for content diffusion [25]. One can indeed
argue that having more friends increases the probability that
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Fig. 4: Model performance

at least one of them will adopt within fixed time ∆t. In fact,
retraining the model with only one feature fr gives about a
half of the observed prediction accuracy.

B. Utility-based model

The utility-based models aim at identifying adoptions both
by the selected users and their friends. Accordingly, to evaluate
this type of model via cumulative gains charts, we consider
in the y-axis both primary adoptions AI and subsequent
adoptions AII within the top-X% of users in the popula-
tion. Primary adoptions refer to users in the top-X% of the
population who actually adopted, while subsequent adoptions
refer to users who are friends of a user u in the top-X% of
the population and who adopted after u within the window
∆t = 90 days. Importantly, we count only unique adoptions.
For example, suppose u1 ∈ V adopted the product at time t1
and u2 ∈ V adopted at time t2, such that T0 ≤ t1, t2 ≤ T1,
and u1 is ranked higher than u2. If u3 /∈ V had been a friend
of u1 by the time t1 and a friend of u2 by t2, and u3 adopted
at t3, such that 0 < t2 − t1 ≤ ∆t and 0 < t3 − t1 ≤ ∆t, then
u3’s adoption is only counted once.

Fig. 4c shows the resulting cumulative gains chart with
three curves (besides the diagonal) obtained based on the
rankings by propensity score Pu, influence score Iu and
utility score Tu respectively, using the data for the Buy Credit
product. The chart also provides the corresponding AUC
scores for each curve. The chart shows the utility-based model
outperforms the propensity one by a small but visible margin.
For example, targeting 10% of users from set V , ordered
by utility score, produces 53.5% of all adoptions that would
happen in the set, including subsequent adoptions in their
neighborhood. The same fraction of users ranked by propensity
score produces 47.5% of adoptions, and by influence score
this number drops to 26.7%. For the SMS product the AUC
values are within three percentage points of the specified
values in Fig. 4c. It should be noted, however, that most
gain comes from the propensity component, since the number
of primary adoptions is much higher than the number of
secondary adoptions.

TABLE II: Number of acquired paid users as a function of the
number of targeted users.

# of users
targeted

# of acquired users, when ordering by:
Propensity Influence Utility

100 8 67 53
500 78 217 187
1000 190 332 335

10000 1184 1464 1839
100000 6028 4871 7847

1000000 24242 13590 27274

So far, we have evaluated the models in terms of their
accuracy measured on the basis of their cumulative gains
chart. In the context of targeted advertising, another common
approach to evaluating a decision model is based on the amount
of predicted adoptions when targeting a fixed-size population.
Along this line, Table II shows the absolute numbers of
acquired users as a function of the number of targeted users
T , where the set of targeted users is determined by taking the
T top-ranked users in order of adoption likelihood according
to a given model. For each T , the method with the highest
number of acquired users is shown in bold.

The following observations can be made:

• Targeting a fixed amount of users generally results
in higher amount of adopters for the same period of
time, if we order them by utility score. The exact
improvement depends on the number of targeted users
T and the baseline (propensity- or influence-based
ordering).

• If T is less than about 1000, or 0.01% of the network
population, ranking users by influence score is the
optimal decision.

• If T is less than about 30000, or 0.3% of the network
population, ranking by influence score is better than
ranking by propensity score.

The last two observations can be explained by two factors.
First, we observe that users with high (say > 0.8) influence



score tend to have high propensity score as well, but the reverse
is not necessarily true: even if the user has high propensity
score, they may still have near-zero influence score. Therefore,
when targeting highly influential users, we are also targeting
users who are most likely to adopt. In this way, we select
individuals with high intrinsic value and high network value.
Second, since influence score is moderately correlated with
the number of subsequent adoptions, by taking users from the
top of the list ordered by influence score, we capture those
who are followed by many adoptions, and therefore contribute
to the total number of adoptions at a faster rate. However, as
only less than 4% of adoptions are followed by two or more
adopting friends, ranking by influence score loses its advantage
as we choose more users to target, first to ranking by utility
(T > 0.01% of the network), then to ranking by propensity
(T > 0.3%).

Finally, to check the robustness of the above observations,
we repeated the whole procedure twice, randomly sampling
sets of users of the same size and under the same conditions.
The results are similar to the previously discussed. Specifi-
cally, the AUC across different experiments stays within 1.5
percentage points of the values provided in the Fig. 4c, and in
all cases the highest AUC value is achieved with the utility-
based model.

V. RELATED WORK

An extensive amount of research has been done in both
online and offline social networks to understand and quantify
social behavior, information diffusion and mechanisms of
product adoption.

Perhaps the most relevant work to ours is by Bhatt et
al. [4], who studied the spread of the PC to Phone product
in a network, providing communication services. They found
that the spread of product adoption is not so much due to
the presence of individual influencers, but is rather a result
of influence yielded by peer-pressure where users with more
adopter friends were more likely to adopt themselves. They
also showed that the model combining both user and social
features to estimate product adoption propensity is more ac-
curate that models that use either user or social features in
isolation. This work however focuses exclusively on propensity
and does not consider influence.

Other studies have provided evidence of “peer pressure”
effects in social networks. For instance, Hill et al. [5] analyzed
marketing campaign data of a large telecommunications com-
pany and found that consumers linked to prior customers are
themselves more likely to adopt the product. Sundsøy et al. [7]
found that probability of adoption iPhone is proportional to the
number of adopting friends. Liu and Tang [8] also discovered
that a user is more likely to adopt if the product has been
widely adopted by their friends. These observations underpin
the choice of features in the proposed propensity model.

Another body of related work focuses on identifying in-
fluential individuals and studying their role in the process
of diffusion of innovation. Considering high-degree nodes
as influential, known as degree centrality, has long been a
standard approach [26]. This has been proven true in our case,
as well (Fig. 3b). In contrast, Onnela and Reed-Tsochas [27]
found that high-degree users are not necessarily the source

of influence and that only a small fraction of their friends
adopt after them. Bughin et al. [14] discovered that it is the
small, close-knit network of trusted friends that has the real
influence on a particular user. Iyengar et al. [28] discovered
that the amount of interpersonal influence is moderated by both
the recipients’ perception of their opinion leadership and the
sources’ volume of product usage. Cha et al. [6] in a study of
a Twitter dataset, discovered that a high follower count does
not always lead to many retweets and mentions.

Hinz et al. [29] studies the product adoption by means of
social influence in friendship-based networks, such as Skype
and advice-based networks which include topical subnetworks,
such as Google+. They conclude that only advice-based net-
works clearly identify influential individuals.

Watts and Dodds [30] contemplate that large cascades of
influence are driven not by influentials but by a critical mass of
easily influenced individuals. Davin et al. [31] also challenge
the influence hypothesis, arguing that latent homophily could
inflate the proportion of adoptions attributed to social influence
by 40% and in some samples by over 100%. Shalizi and
Thomas [32] show that homophily and social influence are
generally confounded with each other; thus, distinguishing
between them requires strong parametric assumptions. In our
case to assert the notion of influence and separate it from the
homophily, we used the temporal threshold ∆t.

VI. CONCLUSION

This study has put into evidence the inherent comple-
mentarity of propensity-based and influence-based models
for predicting product spread in a large-scale communication
network.

First, we have shown that a propensity model combining
past user behavior, demographic and network features can
achieve relatively high levels of accuracy (AUC in the order of
80%). Second, we have put into evidence the effect of influence
in the dynamics of product adoption and derived influence
links via temporal correlation, which then allow us to build an
influence-based model for product adoption prediction. While
this latter model is not as accurate (AUC in the order of 73%),
we have then shown that the influence-based model can be
combined with the propensity-based one into a single model
that outperforms the two models separately. Moreover, we have
shown that when cast in the context of targeted advertising
campaigns with a fixed number of targets, the combined model
generally leads to higher numbers of identified adoptions (i.e.
customer acquisitions).

There are several potential extensions that could be incor-
porated into our model in order to increase its predictive power.
First, we modeled user influence as a rectangular function
that is non-zero during a given time range starting from
the moment a user adopts the product. It may be possible
however and potentially advantageous to model influence as
a decay function, which would be in line with the observed
distribution of inter-adoption times between friends. Second,
when predicting subsequent adoptions attributable to influence,
we did not take into account the users’ own propensity to
adopt the product independently of the influence effect. Taking
into account this influence-independent propensity might lead
to a more accurate influence-based model. Third, we could



apply ensemble methods (particularly stacking) in order to find
the optimal weights to assign to the influence and propensity
scores when constructing the utility-based model.
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