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Abstract. Automated process discovery methods aim at extracting
business process models from execution logs of information systems. Ex-
isting methods in this space are designed to discover synchronization
conditions over a set of events that is fixed in number, such as for exam-
ple discovering that a task should wait for two other tasks to complete.
However, they fail to discover synchronization conditions over a variable-
sized set of events such as for example that a purchasing decision is made
only if at least three out of an a priori undetermined set of quotes have
been received. Such synchronization conditions arise in particular in the
context of artifact-centric processes, which consist of collections of inter-
acting artifacts, each with its own life cycle. In such processes, an artifact
may reach a state in its life cycle where it has to wait for a variable-sized
set of artifacts to reach certain states before proceeding. In this paper, we
propose a method to automatically discover such synchronization con-
ditions from event logs. The proposed method has been validated over
actual event logs of a research grant assessment process.

Keywords: Process Mining, Automated Process Discovery, Artifact-
Centric Process, Synchronization Condition

1 Introduction

Process mining is concerned with the extraction of knowledge about business
processes from execution logs of information systems [1]. Process mining encom-
passes a wide range of methods, including automated process discovery methods,
which seek to extract business process models from event logs.

A common limitation of existing automated process discovery methods is that
they are designed to discover individual (monolithic) process models, as opposed
to models structured in terms of subprocess models. A corollary of this limitation
is that these methods are unable to discover synchronization conditions that
involve one process waiting for a variable number of other processes to reach
certain states. This situation arises for example when one process spawns a
variable number of subprocesses and then waits for a subset of the spawned
subprocesses to complete before proceeding. In the BPMN notation for example,
this situation arises when a process containing a multi-instance activity, spawns
a number of instances of a subprocess and waits for a subset of these instances to
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complete based on a so-called completion condition. A concrete example is the
case where a procure-to-pay process spawns a number of subprocesses to retrieve
quotes from multiple suppliers (determined at runtime) and then waits until a
number of quotes have been obtained before proceeding with supplier selection.
We hereby call such conditions unbounded synchronization conditions.

More general forms of unbounded synchronization conditions are found in
artifact-centric process models. In artifact-centric modeling [3, 12] a process is
decomposed into a collection of artifacts corresponding to business objects with
their own life cycles and information models. For example, a conference reviewing
process may be split into artifacts Conference, Submission and Review. In this
setting, an unbounded synchronization condition is that “a submission can only
be evaluated when at least three reviews are completed”.

This paper addresses the problem of discovering unbounded synchroniza-
tion conditions in artifact-centric process models. The contribution is framed
in the context of artifact-centric processes represented using the Guard-Stage-
Milestone (GSM) notation [5, 6]. GSM divides the life cycle of an artifact into
stages that open when their guard conditions become true and close when their
milestone conditions become true. A guard condition of a stage of an artifact
may refer to milestones of the artifact itself or attributes within the artifact’s
information model (intra-artifact condition) but it may also refer to the state of
other artifacts (inter-artifact condition). The paper addresses the discovery of
inter-artifact conditions where the number of artifact instances to be synchro-
nized is not determined at design-time. Although the focus is on artifact-centric
models, the principles of the proposed method can be used to discover unbounded
synchronization conditions in other settings, such as discovering completion con-
ditions of multi-instance activities in BPMN as exemplified above.

The presented methods are implemented as plug-ins for the ProM open-
source process mining framework [17]. The implementation is part of the
ArtifactModeling package available from www.processmining.org. The proposal has
been validated using a real-life log of a research grant assessment process.

The paper is organized as follows. Section 2 gives a brief overview of artifact-
centric process modeling using GSMs and section 6 discusses related work. Next,
a simple scenario that serves as a motivating example is presented in Section 3.
Section 4 then presents the proposed method for discovering inter-artifact syn-
chronization conditions. The validation on the grant assessment process is dis-
cussed in Section 5. Finally Section 7 concludes the paper with a discussion and
future research directions.

2 Background: Artifact-centric Modeling

Artifact-centric modeling is an approach for modeling business processes based
on the identification of key objects (artifacts) that encapsulate process-related
data and whose life cycles define the overall business process [3, 12]. An artifact
type contains an information model with all data relevant for the artifacts of
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that type as well as a life cycle model specifying how an artifact responds to
events and undergoes transformations from its creation until it is archived.

Most existing work on business artifacts has focused on the use of life cycle
models based on variants of finite state machines. Recently, a new approach was
introduced - the Guard-Stage-Milestone (GSM) meta-model [5, 6] for artifact
life cycles which is more declarative than the finite state machine variants and
allows a natural way for representing hierarchy and parallelism within the same
instance of an artifact and between instances of different artifacts.

The key GSM elements for representing the artifact life cycle are stages,
guards and milestones. Stages correspond to clusters of activity preformed for,
with or by an artifact instance intended to achieve one of the milestones belong-
ing to the stage. Milestones correspond to business-relevant operational objec-
tives, and are achieved (and possibly invalidated) based on triggering events
and/or conditions over the information models of active artifact instances.
Guards control when stages are activated, and, as with milestones, are based
on triggering events and/or conditions. A stage can have one or more guards
and one or more milestones. It becomes active (or open) when a guard becomes
true and inactive (or closed) when a milestone becomes true.

Sentries are used in guards and milestones to control when stages open and
when milestones are achieved or invalidated. Sentries contain a triggering event
type and/or a condition. The events may be external or internal, and both the
internal events and the conditions may refer to the artifact instance or to other
artifact instances.

3 Motivating Example

As a motivating example we consider the following meeting planning process. A
meeting assistant tries to organize a meeting between a group of people which
in our example consists of 6 participants. The assistant proposes time and date
for the meeting and communicates this to the participants. Each participant
receives the proposal and considers their availability. If they are not available
they reject the proposal. If they are available, they consider whether they are
prepared to host the meeting and either accept the proposal (time is convenient
but not prepared to host) or propose to host the meeting.

The meeting proposal is successful if at least three participants are available
and at least one of them is prepared to host. If the proposal fails (more than
three rejects or no proposal to host) the assistant proposes a new time and date
for the meeting and the process continues until a proposal is successful.

Adopting an artifact-centric modeling approach for this scenario, we can
consider two artifact types: Meeting Proposal and Participant (see Figure 1). One
instance of Meeting Proposal reflects the efforts of the assistant to organize a
single meeting for specific time and date. One instance of the Participant artifact
reflects the activities of one participant for responding to a meeting proposal.

Instances of the Meeting Proposal artifact type are identified by attribute id
while instances of the Participant artifact type are identified by attribute pair
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Fig. 1. Artifact types in the motivating scenario: Meeting Proposal and Participant.

(id, participant). Attribute id in Participant is a foreign key that shows how in-
stances of one artifact type are related to instances of the other. For testing, the
scenario was implemented in CPN Tools to generate event logs.

4 Discovery of Synchronization Conditions

The aim of this research is to propose a method for discovering inter-artifact
synchronization conditions which can then become part of the guard of the
corresponding stage in the GSM model. These conditions reflect the knowledge
that the stage can only open when a certain number of instances of another
artifact reach a certain state. This state will more specifically be represented by
the fact that a certain stage has been completed.

For our meeting planning example such condition can be defined, for in-
stance, for the stages Meeting Successful and Meeting Failed of artifact Meeting.
Meeting Successful can only open if not more than 3 instances of artifact
Participant have completed stage Reject Proposal, at least 2 instances have com-
pleted stage Accept Proposal and at least one instance has completed stage
Host Meeting. Similarly, Meeting Failed can only open if at least 3 instances of
artifact Participant have completed stage Reject Proposal or no instance has com-
pleted stage Host Meeting.

The previously presented methods in [14] provide us with the means to ex-
tract the knowledge of which artifacts have relationships with which other ar-
tifacts through primary-foreign key relations. By looking at the specific values
of the primary and the foreign key attributes we can determine which specific
instances of these artifacts are related to which instances of other artifacts. This
information is used when discovering inter-artifact guard conditions. To take ad-
vantage of it, a new format for logs is used called artifact synchronization logs
which will be defined in the next sub-section.

Using these logs, the process of discovering inter-artifact guard conditions
(also called synchronization conditions) consists of three steps. The first step is
to discover which stages should contain such conditions (i.e., are synchronization
points). For a given synchronization point, at the next step, we discover the best
candidates for synchronization conditions. These two sub-problems are discussed
in sub-sections 4.2 and 4.3 respectively.

At the last step, the generated conditions are evaluated and scored which
allows to attach a confidence score to them and, if needed, to filter out the ones
with lowest confidence. The scoring process is discussed at the end of this section
in subsection 4.5. Finally, implementational details are given in subsection 4.6.
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4.1 Artifact Synchronization Logs

Event logs consist of events which represent executions of activities in the system.
Events contain attributes which determine the activity, the time at which the
event happened and what business-relevant data values are associated to it.

Definition 1 (Event). Let {A1, A2, . . . , An} be a set of attribute names and
{D1, D2, . . . , Dn} - a set of attribute domains where Di is the set of possible
values of Ai for 1 ≤ i ≤ n. Let Σ = {a1, a2, . . . , am} be a set of event types. An
event e is a tuple e = (a, τ, v1, v2, . . . , vk) where

1. a ∈ Σ is the event type to which e belongs,
2. τ ∈ Ω is the timestamp of the event where Ω is the set of all timestamps,
3. for all 1 ≤ i ≤ k vi is an attribute-value pair vi = (Ai, di) where Ai is an

attribute name and di ∈ Di is an attribute value.

All events of an event type a are called event instances of a.

We will denote the event type of event e by a(e) and the timestamp of e by τ(e).

Definition 2 (Raw log). A raw log L is a finite sequence of events L =
e1e2 . . . en. L induces the total order < on its events with ei < ej iff i < j.

The order of events in L respects the temporal order of their timestamps, i.e.
if event e precedes event e′ temporally then e < e′ .

The general definition for a log does not put any restriction on the types of
events to be included in it, if and how they are related to each other and if and
how they are grouped within the log. In practice, based on the log’s collection
method and purpose, logs can differ significantly.

A raw log imposes no additional internal structure of the events and assumes
that all events in the log represent the behavior of a single system. This system
can execute a single process or, for a multi-artifact system, can contain events
reflecting the behavior of instances of multiple artifacts running in parallel.

Artifact-centric log consists of the events belonging to a single artifact and
can represent the behavior of multiple instances of this artifact existing in par-
allel. The events of one instance are grouped in a single trace, therefore, the log
consists of multiple traces of ordered events.

Artifact instances in a multi-artifact system can be related to each other in
various ways, through instance creation, communication and so on. Our pre-
viously developed methods methods (see [14]) can be used to discover which
artifact instances are related using, among other, methods for discovering func-
tional and inclusion dependencies. These methods cannot provide reliable in-
formation about the nature of the interaction however they allow to discover
foreign-primary key relationships between artifacts and the types of these rela-
tionships (1:n, m:n). Through these relationships, it is visible which instances of
one artifact are related to which instances of another artifact.

For the purposes of this paper, such information is assumed to be accessible
either using the above-mentioned approach or additional domain knowledge.
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This allows us to define and generate so-called artifact synchronization logs which
will then be used as input for the methods presented in this paper.

Let A = {Art1, . . . , Artn} be an artifact system consisting of artifacts Arti,
1 ≤ i ≤ n. Let L = {L1, . . . , Ln} be a set of artifact-centric logs of the behavior of
the system where log Li describes the behavior of artifact Arti and its instances
{Ii1, . . . , Iim}. For each instance Iij , trace Ti

j from log Li contains all events for
this instance. In the following we denote by Ii

j 7→ Arti the fact that instance
Ii

j is an instance of artifact Arti. Also, Ti
j → Ii

j denotes that trace Ti
j is an

artifact log trace for instance Iij and consists of all events of that instance.
Let R be a set of relationships Rij between artifacts of A in L such that Rij

defines which instances of artifact Arti are related to which instances of artifact
Artj , Rij = {(Iit, Ijs) : Iit 7→ Arti, Ij

s 7→ Artj}.

Definition 3 (Artifact synchronization log). We define an artifact synchro-
nization log L for artifact Arti with respect to artifact Artj as the set of traces
{STs} such that STs consists of the events of instance Is

i of artifact Arti and
the events of all instances of artifact Artj related to that instance: STs = Ti

s∪T
where Ti

s → Ii
s and T = {Tj

p : Tj
p → Ij

p, Ij
p 7→ Artj , (Iis, Ijp) ∈ Rij}. Arti-

fact Arti is called primary or main artifact for L and Artj - secondary artifact.

Figure 2 shows a part of a trace in an artifact synchronization log from a sim-
ulation of the Meeting Planning example. For this log the primary artifact is
Meeting Proposal and the secondary artifact - Participant. Here only the most
relevant attributes are included and the event types are printed in bold face.

1970-01-07T03:59:00+02:00 InitiateMeetingPlanning id=769
1970-01-07T04:02:00+02:00 ProposeDateTime id=769
1970-01-07T04:06:00+02:00 ReceiveProposal id=769 participant=5
1970-01-07T04:06:00+02:00 ReceiveProposal id=769 participant6
1970-01-07T04:06:00+02:00 ReceiveProposal id=769 participant4
1970-01-07T04:06:00+02:00 ReceiveProposal id=769 participant2
1970-01-07T04:06:00+02:00 ReceiveProposal id=769 participant1
1970-01-07T04:06:00+02:00 ReceiveProposal id=769 participant3
1970-01-07T04:16:00+02:00 AnswerACCEPT id=769 participant=6
1970-01-07T04:16:00+02:00 AnswerACCEPT id=769 participant=4
1970-01-07T04:17:00+02:00 AnswerHOST id=769 participant=1
1970-01-07T04:22:00+02:00 AnswerACCEPT id=769 participant=2
1970-01-07T04:24:00+02:00 AnswerACCEPT id=769 participant=5
1970-01-07T04:26:00+02:00 AnswerHOST id=769 participant=3
1970-01-07T04:39:00+02:00 ProposalSuccessful id=769
1970-01-07T04:44:00+02:00 ConfirmMeeting id=769

Fig. 2. Partial artifact synchronization trace from a simulation of the Meeting Planning
process
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4.2 Discovery of Synchronization Points

In some cases, the synchronization points of an artifact might be known in
advance. For completeness, however, we assume that this is not the case and
therefore they need to be discovered.

Here we define a simple heuristic which allows us to filter out the points
that are most probably not synchronization points. The remaining points are the
points for which conditions will be generated. The intuition behind the proposed
heuristic is that a synchronization point will sometimes be forced to wait for the
synchronization condition to become true (the instances of the other artifact to
reach the desired states) even though the instance might be ready to open the
stage based on the state of its life cycle alone.

The “waiting” here is not measured based on time as the timestamps might
or might not be reliable and the waiting time can be domain-specific and depend
highly on the type of activity, delays in recording, implementation details, etc.
Instead we consider the number of events occurring in the “waiting window”.
More precise definition will be given in the following paragraphs.

For each occurrence of a candidate synchronization point, we define a window
starting at the point in time when it is known that the activity is ready to be
executed, based on the state of the instance, until the point in time when it is
known that the activity has started. Based on the quality and the completeness
of the available logs, this definition can be instantiated in different ways.

Let us assume that sufficiently complete logs are available, including all rel-
evant data values as well as starting and completion points of activities. Based
on such logs, life cycle models can be generated for each artifact. Alternatively
such models might already be available. For these models, intra-artifact data-
dependent conditions can also be generated.

Assuming, for example, a Petri Net model is available for the artifact, it is
then possible to replay each artifact trace in the model and find out at which
point in the trace the transition representing the candidate synchronization point
is enabled (tokens are present in all its pre-places). This marks the beginning of
the window and the end of the window is when the activity starts its execution.

Unfortunately in real-life situations the quality of the available information
and logs is usually far from ideal. A more realistic scenario would be such that
the logs only contain the activity completion event but not the starting event.
It might also be possible that a good quality model with good conformance to
the logs is not available. In this case, we approximate the window based only on
logs in the following way.

Definition 4 (Window (log-based)). Let L be an artifact synchronization log
with primary artifact Arti and secondary artifact Artj. Let T = e1e2 . . . en be a
trace in L and event type a is a candidate synchronization point for Arti. Let ek

be an event instance of a in T with timestamp τ(ek). For the event instance ek,
a window w is w = (τ(em), τ(ek)) with starting point τ(em) and end point τ(ek),
τ(em) < τ(ek), τ(em) is the timestamp of event em of the primary artifact Arti
in T and there exists no other event e of Arti in T for which em < e < ek.
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Irrespective of whether we use a log-based or model-based definition for the
windows, we can calculate the activity level for each window as follows:

Definition 5 (Window activity level). The activity level in window w =
(τ(em), τ(ek)) of event ek in trace T is the number of events of the secondary
artifact Artj occurring in the window interval in T .

Finally, we define the activity level for each event type considered as a can-
didate synchronization point:

Definition 6 (Activity level). The activity level AL(a) of a candidate syn-
chronization point a in a log L is the average window activity level for the oc-
currences of a in L.

Activity levels smaller than δ for a sufficiently small δ indicate that the
candidate is most probably not a synchronization point. Experiments show that
δ = 1 is a good assignment.

For our example scenario, artifact type Meeting Proposal has two synchroniza-
tion points: ProposalSuccessful and ProposalFailed. Artifact type Participant has
one synchronization point: ReceiveProposal. Event types such as ProposalFailed
and ProposeDateTime, on the other hand, have activity level zero and are there-
fore not considered to be synchronization points (see Figure 2).

4.3 Discovery of Conditions for a Synchronization Point

In this sub-section we discuss the proposed method for discovering conditions
for a given synchronization point. The general form of the discovered conditions
is as follows:

Definition 7 (Synchronization condition). A synchronization condition
C(S) of a synchronization point S is the disjunction

∨
i=1..n Ci such that

Ci =
∧

j=1..m(aj op vj) where aj is a variable that corresponds to an event
type Aj in the secondary artifact, vj ∈ N and op ∈ {≤, >}.

An elementary condition aj op vj is interpreted as: the number of instances of
the secondary artifact in state where an event instance of Aj was the most
recently executed event needs to be smaller or equal to/greater than vj in order
for the stage S to open.

Note that it is possible to adapt and reuse the definition and the developed
methods to discover conditions containing fractions rather than number of in-
stances in the conditions (relative rather than absolute conditions). This will
result in conditions such as “Half of the participants accept the proposal” or
“30% of the reviews are completed”. In the rest of the paper we focus on abso-
lute conditions but the discussion is equally applicable for relative conditions.

In order to discover this type of conditions, we represent the relevant data as
feature vectors which form one dataset for each candidate synchronization point
with respect to a specific secondary artifact.

Let S be a candidate synchronization point in primary artifact Art1 and
with respect to secondary artifact Art2. Let the set of event types in Art2 be
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A = {A1, . . . , An}. For each event type Ai in A we construct a feature Fi of
integer type such that, for a specific execution (event e) of S, Fi(e) = v where v
is the number of related instances of Art2 for which the last occurred event at the
time of occurrence of e was of event type Ai. Intuitively, this can be interpreted
as: v instances were in state “Ai executed” when activity S was executed. In the
following we will refer to these features as synchronization features.

More precisely, for the set of instances {I1, . . . , Im} of Art2 appearing in the
same synchronization trace as e:

Fk(e) = |{Ii : ∃e1 ∈ Ii, a(e1) = Ak, e1 < e ∧ (∀e2 ∈ Ii : e2 < e1 ∨ e2 > e)}|.

Applying this approach to the whole artifact synchronization log for Art1
(primary artifact) with respect to Art2 (secondary artifact), we generate a set
of feature vectors which reflect all observed configurations of Art2 at the times
when activity S was executed. These form the set of positive examples in the
dataset for S.

Definition 8 (Positive example). Let S be a synchronization point in artifact
Arti for which we are generating synchronization conditions. Let e be an event
of event type S in artifact synchronization log L with main artifact Arti and
secondary artifact Artj. Let {F1, . . . , Fn} be the synchronization features where
Fk is the feature for event type Ak of Artj, 1 ≤ k ≤ n. The feature vector
(F1(e), . . . , Fn(e)) for event e is called a positive example.

A positive example for synchronization point ProposalSuccessful from the trace
in Figure 2 is the tuple (ReceiveProposal:0, AnswerREJECT:0, AnswerACCEPT:4,
AnswerHOST:2) meaning that no related instances of the secondary artifact were
in state ReceiveProposal executed at the time ProposalSuccessful was executed,
none were in state AnswerREJECT executed, four were in state AnswerACCEPT
executed and two in state AnswerHOST executed.

In a similar way a set of negative examples is constructed. The difference
however is that each feature does not correspond to an execution of activity
S but to the execution of any activity of the secondary artifact. The intuition
here is that these are configurations of the secondary artifact’s instances which
did not trigger the execution of S. Note that we do not need to redefine the
synchronization features as they refer any event e.

Definition 9 (Negative example). Let S be a synchronization point in ar-
tifact Arti for which we are generating synchronization conditions. Let e be an
event in artifact Artj in artifact synchronization log L with main artifact Arti
and secondary artifact Artj. Let {F1, . . . , Fn} be the synchronization features
where Fk is the feature for event type Ak of Artj, 1 ≤ k ≤ n. The feature vector
(F1(e), . . . , Fn(e)) for event e is called a negative example.

A negative example for synchronization point ProposalSuccessful from the trace
in Figure 2 is the tuple (ReceiveProposal:1, AnswerREJECT:0, AnswerACCEPT:4,
AnswerHOST:1) recorded for the event AnswerHOST for participant 3. This
means that at some point in time one instance of the secondary artifact was



10 V. Popova, M. Dumas

in state ReceiveProposal executed, none in state AnswerREJECT executed, four
in state AnswerACCEPT and one in state AnswerHOST and this configuration
did not trigger the execution of ProposalSuccessful.

Definition 10 (Dataset). Let S be a synchronization point in Arti with respect
to Artj and let L be the synchronization log with primary artifact Arti and
secondary artifact Artj. The dataset for S in L contains one synchronization
feature for each event type of Artj and consists of the following feature vectors:

– For each execution of S in L we construct one positive example.
– For each execution of event from the secondary artifact Artj we construct

one negative example.

The resulting data set can be used to generate a classifier [21] that distinguishes
between the positive and the negative examples. Since we are looking for an
explicit representation of the discovered conditions, a natural choice for a clas-
sification algorithms is a decision tree algorithm.

The generated decision tree can be transformed into rules in a straightfor-
ward way, we can then select only the rules predicting a positive result (activity
S executed), therefore the conditions (antecedents) of these rules form the syn-
chronization condition as part of the sentry of the guard for stage S.

For example, the synchronization condition discovered for ProposalSuccessful
is: “ReceiveProposal ≤ 0 and AnswerREJECT ≤ 2 and AnswerHOST > 0”, which
is interpreted as: no instances are in state ReceiveProposal executed, at most 2
instances are in state AnswerREJECT executed and at least one instance is in
state AnswerHOST executed.

Before applying the classification algorithm, we use several methods to refine
the dataset in order to improve the quality of the data. These methods are
described in the next sub-section.

4.4 Data Set Refinement

If we use the above described approach for generating negative examples directly
and without modification, this can sometimes result in identical feature vectors
being classified both as positive and negative examples.

In order to avoid this inconsistency, for the dataset of synchronization point
S, we remove from the set of negative examples any feature vector that corre-
sponds to an event occurring immediately after an execution of S. These record
the same configuration as the one in the corresponding positive example (the
execution of S).

For the trace in Figure 2, let us assume that InitiateMeetingPlanning is a
synchronization point for which we are generating a dataset. ReceiveProposal
was executed immediately after InitiateMeetingPlanning in an instance of the
secondary artifact. At that time the configuration of the secondary artifact’s
instances would be the same as for the execution of InitiateMeetingPlanning,
therefore a positive and a negative example with the same values would be
included. To avoid this, the negative example is not included in the dataset.
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Furthermore, we remove the duplications to find out how many unique ex-
amples are present. It will often be the case that the negative examples will
outnumber the positive examples which is known to pose difficulties to the clas-
sification algorithms. For instance, predicting the majority class on all examples
will generate a classifier with relatively low misclassification rate, yet, it does
not correctly differentiate between the two classes.

One straightforward way to address the problem is to use re-sampling, i.e.
changing artificially the class distribution. We can, for example, reduce randomly
the set of negative examples (under-sampling). This however results in loss of
data which might be important in correctly separating the positive and the
negative examples by the classification algorithm.

Instead, we choose to duplicate the positive examples (over-sampling) until
we end up with a balanced data set. In [7] over-sampling was shown to outper-
form under-sampling for the classification of imbalanced data and both produce
better results than the original data set. Other, more sophisticated, approaches
have also been proposed in the literature (see [8, 18] for an overview) for ad-
dressing the problem of imbalanced data and some of them could be used here
to improve the results further.

The resulting data set is used as an input for the decision tree algorithm.

4.5 Scoring of Synchronization Conditions

After discovering the condition for every candidate synchronization point, we
apply additional analysis in order to assign a confidence score to each one of
them. This can be used to rank the results.

We consider three factors as part of the confidence score.
First, we consider the quality of the generated decision tree. The intuition

here is that the better the classification given by the tree, the higher the confi-
dence score should be. The quality of classification models is usually not mea-
sured on the data used to build the model as the model might overfit the data
and give unrealistically high results.

As the data sets generated using the proposed approach are often relatively
small, splitting the data into a training and a validation sets is usually not a
good option. Instead, we use 10-fold cross-validation which iteratively splits the
data in training and validation sets and averages the results.

We use the well-known and often-used F-measure [2] from the area of Infor-
mation Retrieval to represent the quality of classification given by the generated
decision tree. The F-measure combines the precision and recall of the model,
defined as follows. Here tp is the number of true positive examples (the positive
examples correctly classified by the model as positive), tn is the number of true
negative examples (the positive examples correctly classified by the model as
negative), fp is the number of false positive examples (negative examples incor-
rectly classified by the model as positive and fn is the number of false negative
examples (the positive examples incorrectly classified by the model as negative).

Definition 11 (Precision). The precision P (M) of a classification model M is
the percentage of true positive examples out of all examples classified as positive
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by the model:
P (M) = tp/(tp + fp).

Definition 12 (Recall). The recall R(M) of a classification model M is the
percentage of true positive examples out of all positive examples:

P (M) = tp/(tp + fn).

Definition 13 (F-measure). The F-measure F (M) for a classification model
M is defined as:

F (M) = 2P (M)R(M)/(P (M) +R(M))

where P (M) is the precision of the model and R(M) is the recall of the model.

The second factor we consider in the confidence score is the size of the tree
which we denote by S(M). The intuition behind it is that the conditions used in
practice are simple and a larger tree will most probably be a sign of overfitting
the data to discover patterns that are not actually present in the data.

To include in the confidence score, we measure the number of leaves in the
tree and then normalize so that the lowest possible size (i.e. 2 leaves) becomes
1 and the highest observed size among all generated trees becomes 0.

Finally, we also use the previously-defined activity level A(S) in the confi-
dence score which is also normalized so that the lowest observed activity level
becomes 0 and the highest observed activity level becomes 1.

Definition 14 (Confidence score). The overall confidence score C(S) for the
conditions discovered for model M generated for candidate synchronization point
S is defined as:

C(S) = (F (M) + S(M) +A(S))/3.

The confidence score calculated for the discovered synchronization rule for
ProposalSuccessful was 0.9866.

4.6 Implementation

All methods presented in this section have been implemented as two plug-ins
within the ProM [17] framework as part of the Artifact Mining package.

The first plug-in implements the generation of artifact synchronization logs.
The second plug-in takes as input one synchronization log, discovers the best
candidates for synchronization points (if such exist) and generates a synchro-
nization condition and its score for any discovered synchronization point.

For decision tree generation, the WEKA suite [4] was used and, more specifi-
cally, WEKA’s J48 implementation of the C4.5 algorithm [15]. In our implemen-
tation, C4.5 was used with no pruning and the minimal number of points in a
leaf was set to 1. Similar results were obtained for the minimal number of points
set to 2. Higher values sometimes resulted in stopping the splitting prematurely
and higher misclassification rate.
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5 Validation

In this section we describe the data used for validating the developed methods
and show the results received from applying the implemented tools on this data.

The TBM data describes the application and funding process of a funding
programme on applied biomedical research - TBM (Toegepast Biomedisch On-
derzoek) managed by the IWT agency in Belgium (Flemish region). The data
covers project application receipt, evaluation, reviewing, acceptance or rejection,
contract signing and payments processing, for the period 2009-2012.

The data was collected from the funding agency’s database in the form of
three spreadsheets each describing one part of the process: project proposals,
reviews and payments. It includes timestamps of events in the life cycles of
proposals, reviews and payments as well as relevant data attributes such as
project id, reviewer id, reviewer role, partner id, payment number and so on.
The data was transformed into a raw log format and the whole tool chain of
methods presented in [14] and this paper was applied as described below.

The first step is to discover the underlying artifact structure. As expected,
we discovered three artifact types: Project, Review and Payment (Fig. 3).

The Project artifact instances are identified by the projectID and their life
cycles cover the process of proposal submission, initial evaluation for adherence
to the formal requirements, if approved, then the final decision is taken (based
on the received reviews) and, if accepted, the contract is signed. This includes
the following event types: ProjectReceived, ProjectAccepted, ProjectRejected,
ProjectDecided, ContractIn, ContractOut.

The Review artifact instances are identified by the attribute pair (projectID,
reviewerID) and each instance describes the life cycle of a review for a specific
project proposal by a specific reviewer. Normally it would include assignment of
review, reviewer’s confirmation and review completion, however, due to missing
data, only one event type belonging to the Review artifact was present in the
log - review completion (ReviewIn).

Finally, the Payment artifact instances are identified by the attribute pair
(betaling, partnerID) where betaling refers to the number of the payment for this
particular project partner. The life cycle includes the event types ApprovalCO,
ApprovalWA, SentToBank, StartApprovalPayment, Signing, Payed. In the morel

Fig. 3. The discovered ER model for the TBM data.

in Fig. 3, the attribute projectID is a foreign key in the Payment and Review
entities which establishes the relationship with the Project entity. One project
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can have multiple reviews and multiple payments. Each review and each payment
are for a single project.

Using the raw log and the discovered ER model as an input, the artifact logs
generation tool generates three logs - one for each artifact. From each of these
logs, artifact life cycle models can be generated.

Using the raw log and ER model we can also generate the artifact synchro-
nization logs. The tool produces a separate log for each combination of primary
and secondary artifact which in this case is six logs - each of the three artifacts
is taken once as primary and once as a secondary artifact.

For each of the generated logs, we can apply the tool for discovering inter-
artifact synchronization conditions. Not all logs contain such conditions. For
example the log with Project as a primary artifact and Payment as a secondary
artifact generates an empty set of synchronization conditions since no activity
in the Project artifact is waiting for any activity in the Payment artifact.

Table 4 shows all synchronization conditions found for the TBM data. The
first condition says that the approval of payment can only start after the contract
has been signed. The second condition says that the review process can only be
started after the project has been administratively accepted (i.e. conforms to
the formal criteria and is accepted for further evaluation). The third condition
says that a final decision on the project can only be taken if at least 5 reviews
were completed. The last condition says that an additional approval process for
the payment can only be performed if the contract has been signed and is the
only condition with lower confidence score. This is due to lower F-measure for
the decision tree indicating higher number of exceptions where the condition
is not satisfied. Such rules can either be excluded or presented to the user for
confirmation. The tool manages to filter out 22 of the candidates which are
not real synchronization points (we consider each event type in an artifact as a
candidate for a synchronization point with respect to each other artifact).

Primary artifact Secondary artifact Synchronization point Condition Confidence score
Payment Project startApprovalPayment contractIn > 0 0.97
Reviewer Project reviewIN ProjectAccepted > 0 0.97
Project Reviewer ProjectDecided reviewIN > 4 0.87

Payment Project approvalIWA contractIn > 0 0.64

Fig. 4. The conditions discovered for the TBM data.

6 Related Work

Process mining [1] methods have been developed in many areas, e.g. process
discovery from logs, conformance checking, performance analysis and so on. A
number of process discovery methods exist including the heuristics miner [19],
the ILP miner [20], etc. Most generate a single flat model, usually a Petri Net,
and thus cannot represent synchronization based on unbounded number of events
as in the case when a process spawns a variable number of subprocesses.
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In [13] a method was presented for mining artifact-centric models by dis-
covering the life cycles of the separate artifacts and translating them into GSM
notation. This method does not consider the question of how artifact instances
synchronize their behavior.

The discovery of branching conditions in a single flat model has been ad-
dressed in [16, 11]. Such conditions determine which branch of the model to
choose based on the current values of relevant variables at execution time and
are also not applicable for synchronization with unbounded number of processes
or sub-processes. The method is based on decision tree mining which is also the
approach taken in this paper.

In the area of specification mining, methods exist for mining specifications
which carry parameters that are instantiated to concrete values at runtime [10].
Most, however, do not tackle the problem of process synchronization. A method
for mining guards for events based on messages received was presented in [9].
It allows to discover some types of guard conditions but is not able to discover
conditions of the type: at least n messages of a certain type are received.

To the best of our knowledge, despite the large body of work in the field of
process mining, the problem of discovering unbounded synchronization condi-
tions is open and will be addressed in this paper.

7 Conclusions and Future Work

The method presented in this paper can be extended in a number of ways.
As mentioned earlier, it is possible to consider fractions rather than number
of instances in the conditions. This will result in conditions such as “Half of
the participants accept the proposal” or “30% of the reviews are completed”.
Another direction for future research is to also consider the information models
of the secondary artifact instances and generate conditions based also on the
data rather than life cycle only. This could generate conditions such as: “At
least three participants located in USA and at least one in UK have accepted
the invitation and at least one of them has chosen to be a host”.

This raises the more general question of how to choose between alternative
candidate conditions for the same synchronization point. Such conditions can
be of different formats and contain different types of information in the terms.
The proposed confidence score is not directly applicable for such comparison -
for example the simplicity component of the score, for which we used the size
of the decision tree, needs to be replaced with a more general measure able to
provide meaningful comparison.

Finally, additional testing on real-life event logs would be beneficial in order
to gain more insight into the performance of the developed methods.
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