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Abstract. Deep learning techniques have recently found applications
in the field of predictive business process monitoring. These techniques
allow us to predict, among other things, what will be the next events in a
case, when will they occur, and which resources will trigger them. They
also allow us to generate entire execution traces of a business process,
or even entire event logs, which opens up the possibility of using such
models for process simulation. This paper addresses the question of how
to use deep learning techniques to train accurate models of business
process behavior from event logs. The paper proposes an approach to
train recurrent neural networks with Long-Short-Term Memory (LSTM)
architecture in order to predict sequences of next events, their timestamp,
and their associated resource pools. An experimental evaluation on real-
life event logs shows that the proposed approach outperforms previously
proposed LSTM architectures targeted at this problem.
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1 Introduction

Models of business process behavior trained with deep learning techniques have
recently found several applications in the fields of predictive process monitor-
ing [2,7,13]. Such models allow us to move from predicting boolean, categorical,
or numerical performance properties, to predicting what will be the next event
in a case, when will it occur, and which resource will trigger it. They also allow
us to predict the most likely remaining path of an ongoing case and even to gen-
erate entire execution traces of a business process (or entire event logs), which
opens up the possibility of using such models for process simulation. Yet another
application of such models can be found in the field of anomaly detection [8].

This paper addresses the question of how to use deep learning techniques to
train accurate models from business process event logs. This question has been
previously addressed in the context of predictive process monitoring by using
Recurrent Neural Networks (RNNs) with Long-Short-Term Memory (LSTM)
architecture. Specifically, Evermann et al. [2] proposed an approach to generate
the most likely remaining sequence of events (suffix) starting from a prefix of
an ongoing case. However, this architecture cannot handle numerical variables
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and hence it cannot generate sequences of timestamped events. This inability
to predict timestamps and durations is also shared by the approach of Lin et
al. [6]. An alternative approach by Tax et al [13] can predict timestamps but
it does not use the embedded dimension of the LSTM network, which forces
it to one-hot-encode categorical variables. In particular, it one-hot-encodes the
type of each event (i.e. the activity to which the event refers). As a result, its
accuracy deteriorates as the number of event types increases. As shown later in
this paper, this choice leads to poor accuracy when applied to real-life event logs
with a couple of dozen event types.

The paper addresses the limitations of the above approaches by proposing
new pre- and post-processing methods and architectures for building and using
generative models from event logs using LSTM neural networks. Specifically,
the paper proposes an approach to learn models that can generate traces (or
suffixes of traces starting from a given prefix) consisting of triplets (event type,
role, time-stamp). The proposed approach combines the advantages of Tax et
al [13] and Evermann et al. [2] by making use of the embedded dimension while
supporting both categorical and numerical attributes in the event log. The paper
considers three architectures corresponding to different combinations of shared
and specialized layers in the neural network.

The paper reports on two experimental evaluations. The first one compares
alternative instantiations of the proposed approach corresponding to different
architectures, pre-processing, and post-processing choices. The goal of this eval-
uation is to derive guidelines as to which design choices are preferable depending
on the characteristics of the log. The second evaluation compares the accuracy
of the proposed approach relative to the three baselines mentioned above.

The next section provides an overview of RNNs and LSTMs and discusses
related work on the use of deep learning techniques in the field of process mining
and predictive process monitoring. Section 3 introduces the proposed approach,
while Section 4 presents its evaluation. Finally, Section 5 summarizes the con-
tributions and findings and outlines future work.

2 Background and Related Work

2.1 RNN and LSTM networks

Deep Learning is a sub-field of machine learning concerned with the construction
and use of networks composed of multiple interconnected layers of neurons (per-
ceptrons), which perform non-linear transformations of data [4]. The main goal
of these transformations is train the network to “learn” the behaviors/patterns
observed in the data. Theoretically, the more layers of neurons there are in the
network, the more it becomes possible to detect higher-level patterns in the data
thanks to the composition of complex functions [5].

Recurrent Neural Networks (RNN) contain cyclical connections that have
been specially designed for the prediction of sequential data [10]. In this type of
data, the state of an observation depends on the state of its predecessor. So the
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RNNs use a part of the processed output (h) of the preceding unit of processing
(a cell) for the processing of a new input (X). Fig. 1 presents the basic RNN
cell structure. Even though, RNNs have a good performance when predicting
sequences with short-term temporary dependencies, they fail to account for long-
term dependencies. Long Short-Term Memory (LSTM) networks address this
problem. In LSTM networks apart from the use of part of the previous output
for a new processing, a long-term memory is implemented. In the long term
memory, the information flows from cell to cell with minimal variation, keeping
certain aspects constant during the processing of all inputs. This constant input
allows to remain the coherence of the predictions in long periods of time.

Fig. 1: RNN basic structure

2.2 Related Work

Tax et al. [13] use LSTM networks to predict the type of the next event of an
ongoing process case and the time until the next event (its timestamp). In this
approach, each event is mapped to a feature vector by encoding the event type
using one-hot encoding and supplementing it with features related to the event’s
occurrence time, such the time of the day, the time since the previous event, and
the accumulated duration since the start of the case. The weights in the network
are set so as to minimize the cross-entropy between the ground-truth one-hot
encoding of the next event and the predicted one-hot encoding as well as the
Mean Absolute Error (MAE) between the ground truth time until the next event
and the predicted time. The network architecture consists of a shared LSTM
layer that feeds two independent LSTM layers specialized in predicting the next
event and the other in predicting times. By repeatedly predicting the next event
in a case and its timestamp, the authors also use their approach to predict the
remaining sequence of events until case completion and the remaining cycle time.
The experiments show that the LSTM approach outperforms automata-based
approaches for predicting the remaining of sequence of events and the remaining
time [1, 9]. In this approach the embedded dimension in LSTMs is not used to
capture the event type, but instead the event type is one-hot encoded. This
design choice is suitable when the number of event types is low, but detrimental
for larger numbers of event types as shown later in this paper.

Evermann et al. [2] also apply LSTM networks to predict the type of the
next event of a case. Unlike [13], this approach uses the embedded dimension
of LSTMs to reduce the input’s size and to include additional attributes such
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as the resource associated to each event. The network’s architecture comprises
two LSTM hidden layers. An empirical evaluation shows that this approach
sometimes outperforms the approach of [13] at the task of predicting the next
event. However, the approach focuses on predicting event types. It cannot handle
numerical variables and hence it cannot predict the next event’s timestamp.
In this paper, we combine the idea of using the embedded dimension from [2]
with the idea of interleaving shared and specialized layers from [13] to design
prediction architectures that can handle large numbers of event types.

Lin et al. [6] propose an RNN-based approach, namely MM-Pred, for pre-
dicting the next event and the suffix of an ongoing case. This approach uses both
the control-flow information (event type) and the case data (event attributes).
The proposed architecture is composed of encoders, modulators and decoders.
Encoders and decoders use LSTM networks to transform the attributes of each
event into and from hidden representations. The modulator component infers
a variable-length alignment weight vector, in which each weight represents the
relevance of the attribute for predicting the future events and attributes. This
work suffers from the same limitation as [2]: It does not support the prediction
of attributes with numerical domains, including timestamps and durations.

In [7] the authors propose another approach to predict the next event us-
ing a multi-stage deep learning approach. In this approach, each event is first
mapped to feature vector. Next, transformations are applied to reduce the in-
put’s dimensionality, e.g. by extracting n-grams, applying a hash function, and
passing the input through two auto-encoder layers. The transformed input is
then processed by a feed-forward neural network responsible for the next-event
prediction. Again, this approach suffers from the same limitation as [2], namely
that it does not handle numerical variables and hence it cannot predict times-
tamps or durations.

In [8] the authors propose a neural network architecture called BINet for real-
time anomaly detection in business process executions. The core of this approach
is a GRU neural network trained to predict the next event and its attributes. The
approach is designed to assign a likelihood score to each event in a trace, which
is then used to detect anomalies. This approach shows that generative models
of process behavior can also be used for anomaly detection. In this paper, we do
not consider this possible application. Instead, we focus on training models to
produce sequences of timestamped events with associated roles.

In [12], the authors compare the performance of several techniques for pre-
dicting the next element in a sequence using real-life datasets. Specifically, the
authors consider generative Markov models (including all-k markov models,
AKOM), RNN models, and automata-based models, and compare them in terms
of precision and interpretability. The results that the AKOM model yields the
highest accuracy (outperforming an RNN architecture in some cases) while
automata-based models have higher interpretability. This latter study addresses
the problem of predicting the next event’s type, but it does not consider the
problem of simultaneously predicting the next event and its timestamp as we do
in this paper.
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3 Approach

This section describes the method we propose to build predictive models from
business process event logs. This method uses LSTM networks to predict se-
quences of next events, their timestamp, and their associated resource pools.
Three LSTM architectures are proposed that seek to improve the learning of
the network in relation to the different events logs characteristics. These archi-
tectures can accurately reproduce the behavior observed in the log. Fig. 2 sum-
marizes the phases and steps for building predictive models with our method.

Fig. 2: Phases and steps for building predictive models

3.1 Pre-processing Phase

Data transformation. According with the attributes nature (i.e. categorical
or continuous) specific pre-processing tasks were carried looking for the improve-
ment of the data quality for feeding the LSTM models.

Our main concern in the case of the categorical attributes was its transfor-
mation into numerical values to be interpreted by the LSTM network without
increase the attributes dimensionality. In contrast with approaches that use one-
hot encoding (i.e. process flow), which is valid to manage a reduced number of
attributes and categories, our model uses activities and resources as categori-
cal attributes. The inclusion of multiple categorical attributes looks for using
more information about the process behaviour to improve the prediction accu-
racy. However, this multiplicity could also increment the number of potential
categories exponentially. To deal with this problem, we propose the grouping of
resources into roles and the use of embedded dimensions.

On the one hand, the grouping of resources into roles was performed using
the algorithm described by Song and Van der Aalst [11]. This algorithm seeks to
discover resource pools (called roles in [11]) based on the definition of activity
execution profiles for each resource and the creation of a correlation matrix of
similarity of those profiles. The use of this algorithm allowed us to reduce the
number of categories of this attribute, but keeping enough information to help
the LSTM network to make more clear the differences between events.
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On the other hand, the use of embedded dimensions helps in the control of the
exponential attributes growth while provides more detailed information about
the associations between attributes. To exemplify its advantages let’s take the
event log BPI 20123, which has 36 activities and 5 roles. If we use one-hot encod-
ing to represent each unique pair activity-role in the event log, 180 new attributes
composed by 179 zeroes are needed. This huge increment in the dimensionality
is mostly composed by useless information. In contrast, only 4 dimensions are
needed to encode the log if using embedded dimensions to map the categories
into a n-dimensional space, in which each coordinate corresponds to a unique
category. In this dimensional space the distances between points represents the
how close is one activity performed by one role in relation with the same activ-
ity performed by other role. This additional information can help the network
to understand the associations between events and differentiate them among
similar ones. An independent network was trained to coordinate the embedded
dimensions. The training network was fed with positive and negative examples
of association between attributes, allowing the network to identify and locate
near attributes with similar characteristics. The number of embedded dimen-
sions was determined as the fourth root of the number of categories just to avoid
a possible collision between them, according to a common recommendation used
in the NLP community4. The generated values were exported and reused in all
the experiments as non-trainable parameters, which allowed not to increase the
complexity of the models. The Fig. 3a presents the architecture of the network
used for training the embedded layers, and the Fig. 3b shows a representation
of the generated 4d space reduced to a 3d space for activities.

(a) Embedded layers (b) Generated space

Fig. 3: Embedding network architecture and results

In the case of continuous attributes, our major concern was the scaling of the
values in a [0, 1] range to be interpreted by the predictive models. Our model
uses the relative time between activities as categorical input, calculated as the
time elapsed between the complete time of one event and the complete time of
the previous one. The relative time is easier to interpret by the models and is
3 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
4 https://www.tensorflow.org/guide/feature_columns
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useful to calculate the timestamp of the events in a trace. However, due to the
nature of each event log the relative time may have a high variability. This high
variability can hide useful information about the process behaviour such as time
bottlenecks or anomalous behaviours that can be hide if the attribute scaling
is performed without care. If the relative times present low variability, the use
of log-normalization could also distort the perception of data. Therefore both
techniques were evaluated to determine which best fits to the characteristics of
the relative times. Fig. 4 illustrates the results of scaling the relative times in the
event log BPI 2012. In particular, the use of log-normalization makes variations
in relative times clearly observable.

(a) Original (b) Maximum value (c) Log-normalized

Fig. 4: Scaling of relative times over the maximum value and log-normalization

Sequences creation. We decided to extract n-grams of fixed sizes of each
event log trace to create the input sequences and expected events to train the
predictive network. N-grams allow to control the temporal dimensionality of the
input, and bring clear patterns of sub-sequences describing the execution order
of activities, roles or relative times, regardless of the length of the traces. One
n-gram is extracted each time-step of the process execution, and is done for
each attribute on an independent way, this meant that for our models we count
with 3 independent inputs: activities, roles and relative times. Table 1 presents
five n-grams extracted from the case id 174770 of the BPI 2012 event log. The
numbers in the activities, roles, and times correspond to the indexes and scaled
values in the data transformation step.

Time Step Activities Roles Relative times

0 [0 0 0 0 0] [0 0 0 0 0] [0. 0. 0. 0. 0.]

1 [0 0 0 0 10] [0 0 0 0 5] [0. 0. 0. 0. 0.]

2 [0 0 0 10 7] [0 0 0 5 5] [0. 0. 0. 0. 4.73e-05]

3 [0 0 10 7 18] [0 0 5 5 1] [0. 0. 0. 4.73e-05 5.51e-01]

4 [0 10 7 18 5] [0 5 5 1 1] [0. 0. 4.73e-05 5.51e-01 1]

5 [10 7 18 5 18] [5 5 1 1 1] [0. 4.73e-05 5.51e-01 1 7.48e-04]

Table 1: N-grams for case number 174770 of the BPI 2012 event log
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3.2 Model Structure Definition Phase

LSTM networks were used as the core of our predictive models since they are
a well-known and proven technology to handle sequences, which are the nature
of a business process event log. Fig. 5 illustrates the basic architecture of our
network consisted of an input layer for each attribute, two stacked LSTM layers
and a dense output layer. The first LSTM layer is in charge of provide a se-
quence output rather than a single value output to fed the second LSTM layer.
Additionally, the categorical attributes have an embedded layer for their coding.

Fig. 5: Baseline architecture

Likewise, three variants of the baseline architecture were tested as is shown in
the Fig. 6. The hypothesis behind these approaches is that sharing information
between the layers can help to differentiate execution patterns. However, these
changes could interfere with the identification of patterns in a log with high
variability in relative times or in structure, generating noise in learning.

(a) Specialized (b) Shared categorical (c) Full shared

Fig. 6: Tested architectures

The specialized architecture (see Fig. 6a) does not share any information,
in fact can be understood as three independent models. The shared categorical
architecture (see Fig. 6b), concatenates the inputs related with activities and
roles, and shares the first LSTM layer. Is expected that this architecture avoids
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the possible noises introduced by sharing information between attributes of dif-
ferent nature (i.e. categorical or continuous). The full shared architecture (see
Fig. 6c), concatenates all the inputs and completely shares the first LSTM layer.
In the evaluation section, the possibility of an architecture fits better than other
in accordance with the nature of each event log is explored.

3.3 Post-processing Phase

Our technique is capable of generate complete traces of business processes start-
ing from a zero prefix size. The way of doing this is by the use of continuous
feedback of the model with each new generated event, until the generation of
a finalization event (hallucination). This technique has been used by previous
approaches, however, we explore the use of arguments of the maxima (arg-max)
and random choice as techniques for the category selection of the next predicted
event. Arg-max is the technique commonly used to select the next category of a
prediction, and consists in selecting the one that has the highest predicted prob-
ability. In theory this technique should work well for specific prediction tasks,
such as the most likely category of the next event, given an incomplete case.
However, if the model is used in a generative way, it could be biased and tends
to generate always the same kind of sequences, that is, the most probable ones.
To avoid the this, we use the random selection of a new category following the
predicted probability distribution. This attribute allows us to generate a greater
number of different traces, by not getting stuck in the higher probabilities. This
technique also allows us to reveals what the neural network has actually learned
from the dynamics observed in the event log. Of course, the introduction of a
random element, forces us to perform multiple repetitions of the experiment to
find the convergence in the measurements. Both approaches were taken into ac-
count in the evaluation of results about the reproduction of the observed current
state of business processes.

4 Evaluation

This section describes two experimental evaluations. The first experiment com-
pares different instantiations of the three proposed architectures in terms of
pre-processing and post-processing choices. The second experiment compares
the proposed approach to the three baselines discussed in Section 2.2 for the
tasks of next event, suffix, and remaining time prediction.

4.1 Comparison of LSTM architectures and processing options

Datasets. For this experiment, we use nine real-life event logs from different
domains and with diverse characteristics:

– The Helpdesk5 event log contains records from a ticketing management pro-
cess of the helpdesk of an Italian software company.

5 https://doi:10.17632/39bp3vv62t.1
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– The two event-logs within BPI 20126 are related to a loan application pro-
cess from a German financial institution. This process is composed by three
sub-processes from which we used the W sub-process in order to allow the
comparison with the existing approaches [2, 12].

– The event log within BPI 20137 is related to a Volvo’s IT incident and prob-
lem management. We used the complete cases to learn generative models.

– The five event-logs within BPI 20158 contain data on building permit appli-
cations provided by five Dutch municipalities during a period of four years.
The original event log was subdivided in five parts (one per each munici-
pality). All the event logs were specified at a sub-processes level including
more than 345 activities. Therefore, it was pre-processed to be managed at
a phases level by following with the steps described in [14].

The sequence flow (SF) of each event log was classified as simple, medium,
and complex according with its composition in terms of number of traces, events,
activities and length of the sequences. In the same way, the time variability (TV)
was classified as stable or variable according with the relation between the mean
and max duration of each event log (see Table 2).

Event log Num.
traces

Num.
events

Num.
activities

Avg.
activities
per trace

Max.
activities
per trace

Mean
duration

Max.
duration SF TV

Helpdesk 4580 21348 14 4.6 15 40.9 days 59.2 days simple stedy

BPI 2012 13087 262200 36 20 175 8.6 days 137.5 days complex stedy

BPI 2012 W 9658 170107 7 17.6 156 8.8 days 137.5 days complex stedy

BPI 2013 1487 6660 7 4.47 35 179.2 days 6 years, 64 days simple irregular

BPI 2015-1 1199 27409 38 22.8 61 95.9 days 4 years, 26 days medium irregular

BPI 2015-2 832 25344 44 30.4 78 160.3 days 2 years, 341 days medium irregular

BPI 2015-3 1409 31574 40 22.4 69 62.2 days 4 years, 52 days medium irregular

BPI 2015-4 1053 27679 43 26.2 83 116.9 days 2 years, 196 days medium irregular

BPI 2015-5 1156 36.234 41 31.3 109 98 days 3 years, 248 days medium irregular

Table 2: Event logs description

Experimental setup. This experiment compares different instantiations of our
approach in terms of their ability to learn execution patterns and to reliably
reproduce the behavior registered in the event log. Accordingly, we use the LSTM
models to generate full event logs starting from size zero prefixes, and we then
compare the generated traces against those in the original log.

We used two metrics to assess the similarity of the generated event logs. The
Demerau-Levinstain (DL) algorithm measures the distance between sequences
in terms of the number of editions necessary for one string character to be
6 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
7 https://doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
8 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
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equal to another. This algorithm penalizes each time actions such as insertion,
deletion, substitution, and transposition are carried out. Their measurements are
commonly scaled by using the maximum size between the two sequences that
are compared. Therefore, we use its inverse to measure the similarity between a
generated sequence of activities or roles and a sequence observed in the actual
event log. Then, a higher value implies a higher similarity among the sequences.

We trivially lift the DL measure (which applies to pairs of strings or traces),
to measure the difference between two event logs by pairing each generated trace
with the most similar trace (w.r.t. DL distance) of the ground-truth log. Once
the pairs (generated trace, ground-truth trace) are formed, we calculate the mean
DL between them. The Mean Absolute Error (MAE) metric is used to measure
the error in predicting time-stamps. This measure is calculated by taking the
absolute value of the distance between an observation and the predicted value,
and then calculating the average value of these magnitudes. We use this metric
to evaluate the distance between the generated relative time and those observed
time, for each pair (generated trace, ground-truth trace).

We used cross validation by splitting the event logs into two folds: 70% for
training and 30% for validation. The first fold was used as input to train 2000
models (approximately 220 models per event log). These models were configured
with different pre-processing techniques and architectures. The configurations’
values were selected randomly from the full search space of 972 combinations.

Then, new event logs of complete events are generated with each trained
model (cf. techniques for the selection of the next activity described in the Section
3). Fifteen logs of each configuration were generated and their results averaged.
More than 32000 generated event logs were evaluated.

Results and Interpretation. Table 3 summarizes the similarity results of the
event logs generated from different model instantiations. The Pre-processing,
Model definition and Post-processing columns describe the configuration used in
each phase for building the evaluated models. The DL act and DL roles columns
measure the similarity in the predicted categorical attributes. The MAE column
corresponds to the mean absolute error of the cycle time of the predicted traces.

These results indicate that using this approach it is possible to train models
that learn and reliably reproduce the observed behavior patterns of the original
logs. Additionally, the results suggest that for the LSTM models is more difficult
to learn sequences with a greater vocabulary than longer sequences. To learn
these patterns, a greater number of examples is required, as can be seen in the
results of BPI2012 and BPI2015. Both logs have more than 30 activities, but
there is a great difference in the amount of traces (see Table 2). The high degree
of similarity of the BPI2012 also suggests that the use of embedded dimensions
to handle a high number of event types improves the results, so long as the
number of examples is enough to learn the underlying patterns.

In relation with the architectural components evaluated in this experiment,
we analyze them according to the phases to build generative models: preprocess-
ing, model structure and hyper-parameters selection, and prediction.
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Event log Pre-processing Model definition Post-processing DL act. DL roles MAE (days)
Scaling N-gram size Architecture Selection method

BPI 2012
max 15 specialized random 0.8929 0.7888 9

max 15 shared cat. random 0.885 0.8998 9

lognorm 15 concatenated random 0.8426 0.856 4

BPI 2012 W
max 15 specialized random 0.8742 0.8245 11.8

max 15 concatenated random 0.7902 0.8552 7.3

max 10 concatenated random 0.7855 0.8329 5.9

BPI 2013
lognorm 10 joint arg max 0.5442 0.698 242.6

max 15 shared cat. random 0.7209 0.8139 471.5

lognorm 15 shared cat. random 0.4416 0.8475 472.5

BPI 2015-1
max 10 concatenated random 0.4397 0.8048 76.6

lognorm 10 specialized random 0.4228 0.8498 79.3

lognorm 10 concatenated arg in ax 0.3642 0.5922 40.1

BPI 2015-2
lognorm 10 shared cat. arg in ax 0.3737 0.6228 159.4

max 15 concatenated random 0.3462 0.8612 158.3

max 10 shared cat. arg max 0.0431 0.1691 89

BPI 2015-3
lognorm 10 concatenated random 0.4616 0.8501 53.2

lognorm 5 concatenated random 0.4456 0.8729 54.4

lognorm 15 concatenated arg max 0.4255 0.7786 39.6

BPI 2015-4
lognorm 5 concatenated arg max 0.4034 0.7188 96

lognorm 5 specialized random 0.3609 0.8248 98.8

max 5 shared cat. arg max 0.0581 0.0968 71.1

BPI 2015-5
lognorm 15 specialized random 0.3633 0.8653 84.1

max 5 shared cat. random 0.3323 0.9019 82.5

lognorm 10 concatenated arg max 0.3228 0.6547 49.6

Helpdesk max 5 shared cat. random 0.9568 0.9869 42.1

max 5 joint arg max 0.5773 0.7368 7.3

Table 3: Similarity results in event logs for different configurations

Regarding the pre-processing phase, Fig. 7a illustrates how logs with lit-
tle time variability present better results using max value as scaling technique.
In contrast, logs that have an irregular structure have lower MAE using log-
normalization. Additionally, Fig. 7b presents the results of DL similarity in the
use of n-grams of different sizes, in relation to the structure of event logs. We
can observe that the use of longer n-grams has better results for logs with longer
traces, showing a stable increasing trend. In contrast, it is not clear a trend for
the event logs with medium and simple structures. Therefore, the use of long
n-grams should be reserved to logs with very long traces.

Regarding themodel structure definition phase, Fig. 8 illustrates that the con-
catenated architecture has the lowest overall similarity. In contrast, the model
architecture that only shares information between categorical attributes has the
median best performance. However, it is not very distant from the specialized
architecture, albeit a wider spread. This implies that sharing information be-
tween attributes of different nature can generate noise in the patterns that the
network is processing, thus, hindering the learning process.
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(a) Scaling of relative times results (b) N-gram size selection

Fig. 7: Preprocessing phase components comparison

Fig. 8: Shared layers’ overall similarity

Regarding the prediction phase, Fig. 9 shows how random choice outperforms
arg-max in all the event logs. This behaviour is even more clear in the event
logs with longer and complex traces. The results suggest that random choice is
advisable for assess the learning process in spite of the event log structure.

4.2 Comparison Against Baselines

Experimental setup. The aim of this experiment is to assess the relative perfor-
mance of our approach at the task of predicting the next event, the remaining
sequence of events (i.e. suffixes), and the remaining time, for trace prefixes of
varying lengths. For next event prediction, we feed each model with trace pre-
fixes of increasing length, from 1 up to the length of each trace. For each prefix,
we predict the next event and we measure the accuracy (percentage of correct
predictions). For suffix and remaining time prediction, we also feed the mod-
els with prefixes of increasing lengths. However, this time, we allow the models
to hallucinate until the end of the case is reached. The remaining time is then
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(a) Similarity per structure type (b) Overall similarity

Fig. 9: Comparison of next-event selection methods

computed by subtracting the timestamp of the last event in the prefix from the
timestamp of the last hallucinated event. As in [13], we use DL as a measure
of similarity for suffix prediction and MAE for remaining time prediction. For
next event and suffix prediction, we use [13], [2] and [6] as baselines while for
remaining time prediction, we only use [13], since [2] and [6] cannot handle this
prediction task. We only use the Helpdesk, BPI2012W and BPI2012 event logs,
because these are the only logs for which results are reported in [13], [2] and [6].
The results reported for [2] for the Helpdesk and BPI2012 event logs correspond
to the re-implementation of this technique reported in [6].

Results and Interpretation. Table 4 summarizes the average accuracy for the
next-event prediction task and the average similarity between the predicted suf-
fixes and the actual suffixes. For the task of next-event prediction, our approach
performs similar to that of Evermann et al. and Tax et al. while slightly out-
performing them for the BPI2012W event log. However, it underperforms the
approach by Lin et al. For the task of suffix prediction, our approach outperforms
all baselines including that of Lin et al. These results suggest that the measures
adopted for the dimensionality control of the categorical attributes, allows our
approach to achieve consistently good performance even for long sequences.

Figure 10 presents the MAE for remaining cycle time prediction. Even though
the objective of our technique is not to predict the remaining time, it achieves
similar performance at this task relative to Tax et al. – slightly underperforming
it in one log, and slightly outperforming it for long suffixes in the other log.

5 Conclusion and Future Work

This paper outlined an approach to train LSTM networks to predict the type of
the next event in a case, its timestamp, and the role associated to the event. By
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Next event accuracy Suffix prediction distance

Implementation Helpdesk BPI 2012W BPI 2012 Helpdesk BPI 2012W BPI 2012

Our approach 0.789 0.778 0.786 0.917 0.525 0.632

Tax et al. 0.712 0.760 0.767 0.353

Everman et al. 0.798 0.623 0.780 0.742 0.297 0.110

Lin et al. 0.916 0.974 0.874 0.281

Table 4: Next event and suffix prediction results

(a) Helpdesk (b) BPI 2012W

Fig. 10: Results of remaining cycle-time MAE in days

iteratively predicting the next event, the approach can also predict the remaining
sequence of events of a case (the suffix) and it can also generate entire traces
from scratch. The approach consists of a pre-processing phase (scaling and n-
gram encoding), an LSTM training phase, and a post-processing phase (selection
of the predicted next event among the likely ones). The paper compared several
options for each of these phases with respect to the task of generating full traces
that closely match the traces in the original log. The evaluation shows that
the use of longer n-grams gives higher accuracy, log-normalization is a suitable
scaling method for logs with high variability, and randomly selecting the next
event using the probabilities produced by the LSTM leads to a wider variety
of traces and higher accuracy, relative to always choosing the most likely next
event. The paper also showed that the proposed approach outperforms existing
LSTM-based approaches for predicting the remaining sequence of events and
their timestamps starting from a given prefix of a trace.

We foresee that the proposed approach could be used as a tool for busi-
ness process simulation. Indeed, in its essence, a process simulator is a gener-
ative model that produces sets of traces consisting of event types, resources,
and timestamps, from which it calculates performance measures such as waiting
times, cycle times, and resource utilization. While process simulators rely on
interpretable process models (e.g. BPMN models), any model that can generate
traces of events, where each event consists of an event type (activity label), a
timestamp, and a resource, can in principle be used to simulate a process. A
key challenge to use LSTM networks for process simulation is how to capture
“what-if” scenarios (e.g. the effect of removing a task or removing a resource). To
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this end, we plan to apply techniques to guide the generation of event sequences
from LSTM models using constraints along the lines of [3].
Reproducibility The source code, event logs and example models can be down-
loaded from https://github.com/AdaptiveBProcess/GenerativeLSTM.git
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