
Business Process Performance Mining with
Staged Process Flows

Hoang Nguyen1, Marlon Dumas2, Arthur H.M. ter Hofstede1,
Marcello La Rosa1, and Fabrizio Maria Maggi2

1 Queensland University of Technology, Australia
huanghuy.nguyen@hdr.qut.edu.au,

{a.terhofstede,m.larosa}@qut.edu.au
2 University of Tartu, Estonia

{marlon.dumas,f.m.maggi}@ut.ee

Abstract. Existing business process performance mining tools offer various
summary views of the performance of a process over a given period of time,
allowing analysts to identify bottlenecks and their performance effects. However,
these tools are not designed to help analysts understand how bottlenecks form
and dissolve over time nor how the formation and dissolution of bottlenecks –
and associated fluctuations in demand and capacity – affect the overall process
performance. This paper presents an approach to analyze the evolution of process
performance via a notion of Staged Process Flow (SPF). An SPF abstracts a busi-
ness process as a series of queues corresponding to stages. The paper defines a
number of stage characteristics and visualizations that collectively allow process
performance evolution to be analyzed from multiple perspectives. It demonstrates
the advantages of the SPF approach over state-of-the-art process performance
mining tools using a real-life event log of a Dutch bank.

Keywords: Process mining, performance analysis, multistage processes, cumu-
lative flow, queuing theory.

1 Introduction

Process mining is a family of techniques designed to extract insights from business pro-
cess event logs [1]. Process Performance Mining (PPM) is a subset of process mining
techniques concerned with the analysis of processes with respect to performance dimen-
sions, chiefly time (how fast a process is executed); cost (how much a process execution
costs); quality (how well the process meets customer requirements and expectations);
and flexibility (how rapidly can a process adjust to changes in the environment) [2].

Along the time and flexibility dimensions, one recurrent analysis task is to under-
stand how the temporal performance of a process evolves over a given period of time –
also known as flow performance analysis in lean management [3]. For example, a bank
manager may wish to know how the waiting times in a loan application process have
evolved over the past month in order to adjust the resource allocation policies so as to
minimize the effects of bottlenecks.

Existing PPM techniques are not designed to address such flow performance ques-
tions. Instead, these techniques focus on analyzing process performance in a “snapshot”
manner, by taking as input an event log recorded during a period of time and extracting
aggregate measures such as mean waiting time, processing time or cycle time of the pro-
cess and its activities. For example, both the Performance Analysis plugins of ProM [4]
and Disco [5] calculate aggregate performance measures (e.g. mean waiting time) over

2 H. Nguyen et al.

the entire period covered by an event log and display these measures by color-coding
the elements of a process model. These tools can also produce animations of the flow of
cases along a process model over time. However, extracting flow performance insights
from these animations requires close and continuous attention from the analyst in order
to detect visual cues of performance trends, bottleneck formation and dissolution, and
phase transitions in the process performance. In other words, animation techniques al-
low analysts to get a broad picture of performance issues, but not to precisely quantify
the evolution of process performance over time.

In this setting, this paper presents a PPM approach designed to provide a precise
and quantifiable picture of flow performance. The approach relies on an abstraction of
business processes called Staged Process Flow (SPF). An SPF breaks down a process
into a series of queues corresponding to user-defined stages. Each stage is associated
with a number of performance characteristics that are computed at each time point in
an observation window. The evolution of these characteristics is then plotted via several
visualization techniques that collectively allow flow performance to be analyzed from
multiple perspectives in order to address the following questions:

Q1. How does the overall process performance evolve over time?
Q2. How does the formation and dissolution of bottlenecks affect the overall process

performance?
Q3. How do changes in demand and capacity affect the overall process performance?

The rest of this paper is organized as follows. Section 2 reviews existing PPM tech-
niques with respect to the problem of flow performance analysis. Section 3 describes
the SPF concept and associated characteristics and visualizations. Section 4 discusses
an evaluation of the approach based on a real-life log. Finally, Section 5 summarizes
the contributions and outlines future work directions.

2 Related Work

Existing PPM tools support the analysis of entire processes or activities thereof with
respect to performance measures such as cycle time, processing time and waiting time.
Some PPM tools display the distribution of performance measures in the form of dash-
boards (e.g. bar charts) alongside aggregate statistics (e.g. mean and median) [5]. Others
overlay the performance measures on top of a process model, for example by replaying
the log on the process model [4, 6] and calculating aggregate performance measures for
each element in the process model during replay. Techniques for enhancing the quality
of log replaying based on clustering techniques have been proposed [7]. All these tech-
niques are designed to summarize the performance of the process over the entire time
period covered by the event log. They can pinpoint bottlenecks, resource underutiliza-
tion and other performance issues observed across said time period. However, they do
not allow one to analyze how those bottlenecks form and dissolve, and more generally,
how the performance of the process varies over time.

There is a range of techniques to extract and analyze process performance charac-
teristics (incl. performance measures) from event logs. For example, de Leoni et al. [8]
propose a framework to extract process performance characteristics from event logs and
to correlate them in order to discriminate for example between the performance of cases
that lead to “positive” outcomes versus “negative” outcomes. Meanwhile, Pika et al. [9]
propose a framework to extract performance characteristics along the resource perspec-
tive. These proposals however are not designed to provide insights into the evolution of
process performance over time.

Mining Business Process Performance 3

A related technique supported by contemporary PPM tools is log animation. Log
animation displays in a movie-like fashion how cases circulate through the process
model over time [10, 7, 11]. However, extracting flow performance insights from these
animations requires the analyst to: (i) manually look for visual cues in the animation
that indicate trends, phase transitions or bottlenecks in the process’ performance; and
(ii) run additional queries to locate and quantify the observed performance phenomena.

Process performance has also been approached from the perspective of queuing
theory. Senderovich et al. [12] propose a method to discover characteristics of “work
queues” from event logs at the level of an entire process or of individual activities.
Meanwhile, Smet [13] proposes a method to discover collections of queues from event
logs. This latter method discovers queues by grouping resources and activities into clus-
ters based on cohesion metrics. The queuing models produced by the above methods
are used for prediction (e.g. of waiting times) rather than performance analysis. As such
these methods are only marginally related to the problem of flow performance analysis.

The concept of SPF presented in this paper is inspired by flow performance analysis
techniques from the fields of lean management and agile software engineering. The idea
of decomposing the process into stages and analyzing flow metrics at each stage can be
found in various embodiments in contemporary lean and agile management tools, e.g.
Kanban Flow1 and ActionableAgile2. The concept of SPF formalized in this paper in
the context of business process event logs, provides a generic framework that brings
together flow performance analysis techniques found across these tools.

3 Approach

In this section, we introduce the concept of SPF and its formalization before describing
our SPF-based approach to process performance mining.

3.1 SPF overview

An SPF is a partitioning of the set of log events into consecutive stages with a defined
order (e.g. 〈s1, s2, s3, s4〉). For each trace, all events in one stage must precede all events
in the subsequent stage (in our example all events in s1 must have a causal relation with
all events in s2). A trace does not need to have all stages, so long as its stages follow
the defined order (in our example a trace with 〈s1, s2〉 is possible but not a trace with
〈s1, s2, s4〉). We model a stage as a queuing system, where the queuing items are cases
and the service facility is the set of resources available to handle cases in the stage
in question. Each stage has an arrival flow via which new cases arrive to the stage in
question and a departure flow via which cases depart. In addition, a stage may have
exit flows, capturing the fact that a case may leave the process abnormally after being
serviced at a stage. This will be the cases for traces that do not finish all stages.

For illustration, we use the loan origination process of a Dutch bank, which was
the subject of the BPI Challenge 2012 log.3 As depicted in the SPF in Fig. 1, a case
in this process is a loan application that goes through four stages: Pre-Assess (s1),
Assess (s2), Negotiate (s3) and Validate (s4), in this order. In the “Pre-Assess” stage,
the bank checks the completeness of the loan application and requests the customer
to provide sufficient documents before their application can proceed to the next stage.

1 http://kanbanflow.com
2 http://www.actionableagile.com
3 http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

4 H. Nguyen et al.

Next, in the “Assess” stage, the bank checks the eligibility of the loan application. In
the “Negotiate” stage, the bank and the customer discuss the terms and conditions of
the loan until it is ready for validation. Finally, in the “Validate” stage, a bank controller
reviews and decides to approve or reject the loan application. At the end of any stage, a
loan application can either be declined by the bank or canceled by the customer, which
leads to interrupting the process at that point.

In this example, each stage has an exit flow consisting of loan applications that are
declined or canceled. Thus, a trace recording a loan application that is canceled after
the assessment, will only have the first two stages.

Pre-Assess Assess Negotiate Validate Completed

Pre-Assess stage (s1) Assess stage (s2) Negotiate stage (s3) Validate stage (s4)

Fig. 1. SPF model of a loan origination process.

Flow performance in an SPF is determined by a set of characteristics capturing the
interplay between the arrival flow on the one hand and the departure and exit flows on
the other. One such characteristic is the Cases In Progress (in reference to “Work-in-
Progress”), that is, the set of cases found in a stage at a given point in time. Another
characteristic is the Time in Stage: the time between the arrival and the departure/exit
of a case for a given stage. Each case spends a certain amount of time waiting in a
stage, and another amount of time being processed in that stage. Flow Efficiency is the
ratio between the processing time of a case in a stage and the Time in Stage. Below we
formally define how an SPF and its characteristics are extracted from an event log.

3.2 SPF formalization
An event log is the starting point of any process mining task. Fig. 2 shows an event log
of a loan origination process. An event log consists of a set of cases, where a case is a
uniquely identified instance of a process. For example, the loan application identified by
code c4 is a case. Each case consists of a sequence of events. An event is the most gran-
ular element of a log and is characterized by a set of attributes such as activity, resource
(the entity that performed the activity associated with the event, which can be human
or non-human), and timestamp (the moment when the event occurred). Event type rep-
resents the association between an event and its activity’s lifecycle, such as “schedule”,
“start”, and “complete”. In this paper, we assume that “start” and “complete” are the
only event types associated with activities.

Formally, an event log EL is a tuple (E, ET , A, R, C, time , act , type , res , case),
where E is a set of events, ET = {start , complete} is the set of event types, A is a set
of globally (i.e. across cases) unique activity identifiers (AID), R is a set of resources,
C is a set of cases, time : E → IR+

0 is a function that assigns a timestamp to an event,
act : E → A is a function that assigns an AID to an event, type : E → ET is a
function that assigns an event type to an event, res : E → R is a function that assigns
a resource to an event, and case : E → C relates an event to a case. We write e .E e′

iff time(e) ≤ time(e′).
In our model, events are associated with stages. For example, a particular “Check

application” event occurs at the “Assess” stage of a loan application. A completed case
is one that passed all stages and has a “complete” status, otherwise, the case is consid-
ered to have exited the process prematurely and will have the status “incomplete”.

Mining Business Process Performance 5
Case ID Case Status Reason Stage Event ID Event Type Timestamp Activity Name AID Res.

e1 start 05.10 09:00:00 Update application a1 Rob

e2 complete 05.10 10:00:00 Update application a1 Rob

e3 start 06.10 09:00:00 Update application a2 Rob

e4 complete 06.10 10:00:00 Update application a2 Rob

e5 start 08.10 09:00:00 Check application a3 Sara

e6 complete 08.10 10:00:00 Check application a3 Sara

e7 start 09.10 08:30:00 Check application a4 Sara

e8 complete 09.10 09:00:00 Check application a4 Sara

e9 start 08.10 09:00:00 Update application a5 Rob

e10 complete 08.10 10:00:00 Update application a5 Rob

e11 start 09.10 09:00:00 Check application a6 Sara

e12 complete 09.10 09:15:00 Check application a6 Sara

e13 start 11.10 09:00:00 Follow up offer a7 Sara

e14 complete 11.10 10:00:00 Follow up offer a7 Sara

e15 start 09.10 08:00:00 Update application a8 Rob

e16 complete 09.10 09:00:00 Update application a8 Rob

e17 start 09.10 09:00:00 Check application a9 Tim

e18 complete 09.10 10:00:00 Check application a9 Tim

e19 start 10.10 09:00:00 Follow up offer a10 Tim

e20 complete 10.10 10:00:00 Follow up offer a10 Tim

e21 start 12.10 09:00:00 Validate application a11 Mike

e22 complete 12.10 10:00:00 Validate application a11 Mike

Incomplete

Assess (s2)

 Declined

 Declined

Canceled

Validate (s4)

Completec4

Negotiate (s3)

c1 Incomplete Pre-Assess (s1)

Pre-Assess (s1)

Assess (s2)

Pre-Assess (s1)

c3 Incomplete

Pre-Assess (s1)

Assess (s2)

Negotiate (s3)

c2

Fig. 2. Example event log for a loan origination process.

Stage-based enhancement In our approach, an event log must firstly be en-
hanced with stage information. A stage-based enhancement SE of an event log
EL = (E,ET , A,R,C, time, act , type, res, case) is defined as a tuple (S,CS , <S

, stage, status), where S is a set of stages, CS = {complete, incomplete} a set of case
statuses, <S⊆ S×S a strict total order over S (with 6S the corresponding total order),
stage : E → S assigns stages to events, and status : C → CS assigns statuses to
cases. For convenience, we write Ec,s = {e ∈ E | case(e) = c ∧ stage(e) = s} to
denote the set of all events of case c that occurred in stage s, and Estart = {e ∈ E |
type(e) = start} is the set of all “start” events.

While there can be a number of ways to arrive at a stage-based enhancement of an
event log, there are a number of rules that need to be satisfied. First of all, if a case
covers a stage s, i.e. there is at least one event belonging to that stage, there must be
events associated with all stages preceding s in that case:

∀c ∈ C ∀s ∈ S[Ec,s 6= ∅⇒ ∀s′ ∈ S[s′ <S s⇒ Ec,s′ 6= ∅]].

The stages covered by a case must observe the defined order <S over S:

∀e, e′ ∈ E[(case(e) = case(e′) ∧ e .E e′)⇒ stage(e) 6S stage(e′)].

Events related to the same activity must belong to the same stage:

∀e, e′ ∈ E[act(e) = act(e′)⇒ stage(e) = stage(e′)].

If a case has a complete status, it should have gone through all the stages:

∀c ∈ C[status(c) = complete ⇒ ∀s ∈ S ∃e ∈ E[case(e) = c ∧ stage(e) = s]].

SPF characteristics The start of stage s in case c, TAR(c, s), is defined as
min

e∈Ec,s
time(e) if Ec,s 6= ∅ and is undefined (⊥) otherwise. Similarly, the end of a

stage s in case c, TDP (c, s), is max
e∈Ec,s

time(e) if Ec,s 6= ∅ and is undefined otherwise.

6 H. Nguyen et al.

For all timestamps t neither t < ⊥ nor t > ⊥ holds. The last stage of case c is s,
laststage(c, s), iff ¬(∃s′ ∈ S ∃e ∈ E[s <S s′ ∧ case(e) = c ∧ stage(e) = s′]).

The set CAR(s, t) consists of all cases that have reached stage s on or before t,
i.e. CAR(s, t) , {c ∈ C | ∃e ∈ Ec,s[time(e) ≤ t]}. Similarly, the set CDP (s, t)

consists of all cases that have gone beyond stage s on or before time t, i.e. CDP (s, t) ,
{c ∈ C | ∀e ∈ Ec,s[time(e) ≤ t]}. The set CEX (s, t) consists of those cases that have
completed stage s on or before time t, have not gone beyond stage s, and are considered
to be incomplete: CEX (s, t) , {c ∈ C | ∀e ∈ Ec,s[time(e) ≤ t] ∧ laststage(c, s) ∧
status(c) = incomplete}.

The Arrival/Departure/Exit Rate X (X stands for AR,DP , and EX) is the average
number of cases arriving at/departing from/exiting after a stage s per unit of time ∆ at
a given point in time t:

X(s, t,∆) ,
|CX(s, t)|−|CX(s, t−∆)|

∆
.

It is required that ∆ > 0 here and elsewhere, and t−∆ is not before all case start times
in the log, i.e. ∃e ∈ E[time(e) ≤ (t−∆)].

Cases in Progress is the number of cases present at a stage s at a point in time t:
CIP(s, t) , |CAR(s, t)|−|CDP (s, t)|.

The Time in Stage for a point in time t and a stage s is the minimal duration that
one needs to wait to see the number of departing cases from s equal or greater than
the number of cases that arrived in stage s on or before time t. Formally, let t′ be the
minimal timestamp such that t′ = t + i∆(i = 1 . . . n) and |CDP (s, t′)|≥ |CAR(s, t)|,
then TIS (s, t,∆) = t′ − t. TIS (s, t,∆) is undefined if no such t′ exists.

Finally, the Flow Efficiency FE of a stage s during an interval [t−∆, t] is the sum of
all durations of activities that occurred in that stage and that interval divided by the sum
of all case durations for that stage in the said interval. To be able to determine the dura-
tions of activities, we have to impose further requirements on an event log: (1) for every
activity in the log there is at most one corresponding “start” event and one correspond-
ing “complete” event, i.e. ∀e ∈ E @e′ ∈ E[e 6= e′ ∧ act(e′) = act(e) ∧ type(e′) =
type(e)], (2) for every “start” event of an activity there is a corresponding “complete”
event and vice versa, i.e. ∀e ∈ E ∃e′ ∈ E[act(e) = act(e′) ∧ type(e) 6= type(e′)],
and (3) for every activity its corresponding “start” event should occur before its cor-
responding “complete” event, i.e. ∀e ∈ E ∀e′ ∈ E[(type(e) = start ∧ type(e′) =
complete ∧ act(e) = act(e′)) ⇒ time(e) < time(e′)]. Then, any activity a ∈
ran(act) has exactly one corresponding “start” event es and exactly one correspond-
ing “complete” event ec. The duration of a during a closed time interval [t1, t2], de-
noted dur(a, t1, t2), is defined as [t1, t2] ∩ [time(es), time(ec)]. In addition, the dura-
tion of case c at stage s within interval [t1, t2], written dur(c, s, t1, t2), is defined as
[t1, t2] ∩ [TAR(c, s), TDP (c, s)] if Ec,s 6= ∅ and is zero (0) otherwise.

FE (s, t,∆) ,

∑
e∈Estart ,stage(e)=s

dur(act(e), t−∆, t)∑
c∈C

dur(c, s, t−∆, t)
.

Note that at least one case should have events in the interval [t−∆, t] in stage s to avoid
the denominator evaluating to zero.

The formulae above can be illustrated with the example log given in Fig. 2. First,
the log is summarized by stages and cases as shown in Fig. 3 for ease of computa-
tion. With t1 = 09.10 08:15:00, t2 = 09.10 09:15:00,∆ = 1h, the values of the SPF
characteristics are computed as follows:

Mining Business Process Performance 7

– CAR(s2, t1) = {c2}, CAR(s2, t2) = {c2, c3, c4}
– CDP (s2, t1) = {}, CDP (s2, t2) = {c2, c3}
– CEX (s2, t1) = {}, CEX (s2, t2) = {c2}
– AR(s2, t2,∆) = 2 cases/h,DP(s2, t2,∆) = 2 cases/h,EX (s2, t2,∆) = 1 case/h
– CIP(s2, t2) = 1 case, TIS (s2, t2,∆) = 1h (at t′ = 09.10 10:15:00,
CDP (s2, t

′) = CAR(s2, t2))
– FE (s2, t2,∆) = dur(a3,t1,t2)+dur(a4,t1,t2)+dur(a6,t1,t2)+dur(a9,t1,t2)

dur(c1,s2,t1,t2)+dur(c2,s2,t1,t2)+dur(c3,s2,t1,t2)+dur(c4,s2,t1,t2)
=

0+30min+15min+15min
0+45min+15min+15min = 0.8.

Case ID TAR(c,s1) TDP(c,s1) TAR(c,s2) TDP(c,s2) TAR(c,s3) TDP(c,s3) TAR(c,s4) TDP(c,s4)

c1 05.10 09:00:00 05.10 10:00:00

c2 06.10 09:00:00 06.10 10:00:00 08.10 09:00:00 09.10 09:00:00

c3 08.10 09:00:00 08.10 10:00:00 09.10 09:00:00 09.10 09:15:00 11.10 09:00:00 11.10 10:00:00

c4 09.10 08:00:00 09.10 09:00:00 09.10 09:00:00 09.10 10:00:00 10.10 09:00:00 10.10 10:00:00 12.10 09:00:00 12.10 10:00:00

Fig. 3. Stage-based timetable.

3.3 SPF-based performance mining approach

Our approach to process performance mining follows three steps: i) construct flow cells;
ii) measure SPF characteristics; iii) visualize SPF characteristics for user consumption.

Construct flow cells First, the log is enhanced with stage information. This is currently
done via preprocessing, which consists in adding two stage-based attributes: a “stage”
attribute for each event, indicating which stage it belongs to, and a “status” attribute to
the case, indicating if the case is complete.

Stage

Time

s1

s3

s2

s4

t0

A flow cell at stage s4 and point in time ti

it

Fig. 4. Flow cells.

Next, the timeline of the log is divided
into equal time intervals ∆. The stages
and time intervals create a two-dimensional
space (see Fig. 4), in which a cell at the in-
tersection of a stage and an interval located
at ti = to + i∆ (i = 0 . . . n, and to is the
starting time of the log) is called a flow cell.
From the stage-based timetable (e.g. Fig. 3),
it is possible to check exactly which flow
cells a case falls in during its lifecycle.

Measure SPF characteristics SPF characteristics are computed first at every flow cell,
then rolled up to the stage and process level (also called system level). At a particular
flow cell located at a stage s and a point in time ti = to + i∆ (i = 0 . . . n), the formulae
presented in Section 3.2 can be applied as exemplified above. At a stage s, the SPF
characteristics of s for a time interval are computed as a statistic (e.g. max, min, and
mean) of the corresponding SPF characteristics of all flow cells located at stage s and
fully contained within the time interval. Similarly, at the system level, the SPF charac-
teristics of the system are computed as a statistic of the corresponding characteristics
of all stages, except that the Arrival Rate and Departure Rate at the system level are the
Arrival Rate at the first stage and Departure Rate at the last stage, respectively.

8 H. Nguyen et al.

Visualize SPF characteristics Based on the above formalization, we provide three
visualizations to support the analysis of SPF characteristics at different levels of ab-
straction and periods of time.
Cumulative Flow Diagram (CFD): A CFD is an area graph used in queueing

TIS

Cases

AR = IAR/

DP = IDP/

CIP

Service flow

Time

 IAR

Exit flow

 IDP

Queue flow

Service flow

Fig. 5. CFD structure.

theory [14] to visualize the evolu-
tion of flow performance over time.
Fig. 5 depicts how some SPF char-
acteristics are related to the geom-
etry of the CFD. In our case, each
area, encoded with a different color,
represents the number of cases queu-
ing for a given process stage (queue
flow), being worked in that stage
(service flow) or exiting from that
stage (exit flow). The service flow
and the queue flow are actually two
sub-stages of a process stage with
similar SPF characteristics. The CFD is particularly suitable for examining the flow
performance. For example, one can observe the process evolution over time through the
development trend of different flows, identify the formation and dissolution of a bot-
tleneck through widening and shrinking areas on a queue and service flow, and detect
patterns of changes in the arrival rate and departure rate as well as their correlation with
the process performance.
Performance Summary Table (PST): the PST (Fig. 6) provides a quick and exact mea-
surement of the flow performance in figures, at the stage and system levels. It also
allows one to measure the flow for any time interval of the log.

Fig. 6. Performance Summary Table (AR=Arrival Rate, DR=Departure Rate, ER=Exit Rate,
CIP=Cases in Progress, TIS=Time in Stage, FE=Flow Efficiency). For example, AR=84.73/72.00
indicates that the mean arrival rate is 84.73 cases per day and the median rate is 72 cases per day.

Time Series Charts (TSCs): As most SPF characteristics are time-dependent, TSCs
(Fig. 7) can be used to investigate the evolution of SPF stage characteristics over time,
such as viewing the development of arrival rate, the difference between departure and
arrival rate at different intervals, or the formation of bottlenecks over time. Fig. 7 gives
a multiple-series TSC showing the evolution of various SPF characteristics over time.

4 Evaluation

We implemented our approach as a ProM plugin, namely the “Performance Mining
With Staged Process Flows” plugin, as well as a standalone Java application.4 In the

4 Available from http://promtools.org (ProM) and http://apromore.org/
platform/tools (standalone Java application).

Mining Business Process Performance 9

13-Mar
27-Feb

12-Feb
28-Jan

13-Jan
29-Dec

14-Dec
29-Nov

14-Nov
30-Oct

15-Oct

800
750
700
650
600
550
500
450
400
350
300
250
200
150
100

50
0

C
as

es

s1

s2

s3

s4

Total

Fig. 7. Time Series Chart of various SPF characteristics.

following, we use this implementation to answer the questions raised in Section 1 using
the BPI Challenge 2012 log, and compare the results with those obtained from two
state-of-the-art PPM tools. For space reasons, the results of a second evaluation, using
the BPI Challenge 2013 log,5 are provided in a technical report [15], though they are in
line with those reported in this paper.

The BPI Challenge 2012 log records cases of a loan origination process at a Dutch
bank (see Section 3 for a description). It contains 13,087 loan applications with a to-
tal of 193,208 events occurring from 1 Oct 2011 to 15 Mar 2012. Every case must
pass four stages. The completion of each stage is marked by a special event such as
A PREACCEPTED, A ACCEPTED, and A ACTIVATED. We preprocessed this log
to enhance it with stage information, including adding a “stage” attribute for events and
a “status” attribute for cases.

The PPM tools evaluated are the “Performance Analysis with Petri Net” plugin of
ProM 5.2 [4] (PEP for short), and Fluxicon’s Disco [5]. PEP requires a Petri net discov-
ered from an event log as input. The net can be obtained by using any of the available
discovery algorithms of ProM that either directly discovers a Petri net or whose re-
sult can be converted into a Petri net, such as the Heuristics Miner. PEP can be run to
internally replay the log on the Petri net, in order to align the log with the model, com-
pute time-related performance information and overlay it to the model. Specifically,
processing time is assigned to Petri net transitions (capturing process activities) while
waiting time is assigned to places (capturing states). Arrival rates for these elements
are also provided. Moreover, places are color-coded based on the length of the waiting
time (blue for short waits, yellow for medium and red for long). The thresholds for the
colors can be set automatically or manually by the user. The tool also provides overall
performance measures such as arrival rate and statistics on cycle time.6

Similar to PEP, Disco’s performance measurements are mainly based on a process
model. The tool takes an event log as input and discovers a Fuzzy net, which provides
an abstract representation of the process behavior, by showing the process activities and
paths connecting these activities. This model is enhanced with frequency information
and statistics on performance measures at the level of individual process activities (pro-
cessing time) and paths (waiting time). The complexity of the discovered model can be
adjusted based on case frequency, in order to obtain a simpler process model that ab-
stracts away infrequent cases. Different types of filters besides frequency can be used to
create model projections which can be used to compare process variants on the basis of

5 http://dx.doi.org/10.4121/uuid:a7ce5c55-03a7-4583-b855-98b86e1a2b07
6 The “Replay a Log on Petri Net for Performance/Conformance Analysis” plugin of ProM 6

works in a similar way to PEP, though it provides less performance information.

10 H. Nguyen et al.

their performance, e.g. focusing on all cases that have a duration or a number of events
within a given range. In addition, Disco can replay the log on the discovered model.

For each question, we evaluated each tool along the quality dimensions of ease of
use and usefulness, widely used in technology acceptance models [16]. In our context,
ease of use refers to the effort required from the user to retrieve and to interpret data in
order to answer a given question. Usefulness on the other hand refers to the extent the
tool provides data that allows the user to answer the question in a precise (i.e. quantita-
tively) and informative manner. Below we evaluate the three tools for each question.

Q1: How does the overall process performance evolve over time?

SPF The evolution of the process is depicted on a CFD (Fig. 8). The shape of the CFD
reflects the development of the process at each stage. The characteristics, such as arrival
rate (AR) and cases in progress (CIP), can be seen at any point in time as a tooltip.
The CFD can be zoomed in to investigate patterns of evolution at different intervals
(e.g. weekly, daily and hourly). The evolution can also be viewed on the plot of flow
efficiency over time. The PST (Fig. 6) provides a summary of the flow performance at
any time interval. From these visualizations, we can draw the following observations:

– The process has a stable trend indicated through the even height of service flows
shown in Fig. 8 (bands named as si-Service). Further evidence is provided by the
average arrival and departure rates, which are comparable at each stage in Fig. 6,
and by the fact that there is little variation between the average mean and median
value of CIP and TIS.

– There are strong exit flows throughout the period from s1 (strongest) to s4 (bands
named as si-Exit on the CFD). Apparently, these exit flows contribute to keeping
the arrival of cases at each stage on a par with their departure.

– The CFD and PST show that the waiting queue is negligible at stage s1 but starts
to emerge at stage s2 and becomes considerable at stages s3 and s4, meaning that
the process has slower response in the later stages.

– The process has very low flow efficiency (3%), i.e. 97% of time a case stays idle.
The problem seems to be with frequent waits for customer response.

As shown above, the SPF proposes an easy way to understand how the overall pro-
cess performance evolves over time. The output is easy to interpret, as it is based on
visual cues and performance measures; precise, as it is supported by numeric measure-
ments; and most importantly, it leads to various insightful observations.

PEP An excerpt of the Petri net enhanced with performance information provided
by PEP is shown in Fig. 9. This model was obtained by first discovering a Heuristics
net from the log and then converting it to a Petri net. However, in order to obtain a
model that is easy to interpret, we had to incrementally filter the log, as the first model
discovered was a spaghetti-like model too dense to understand. Eventually, we ended
up retaining only those events that mark the end of each stage in the log (i.e. the “gate”
events), in a similar vein to our approach. A drawback of this operation is that the fitness
of the model decreases as some traces of the log can no longer be replayed on the model.
As a result, the performance measures provided by the tool are only approximate, as
they only refer to those traces that perfectly fit the model.

Coming back to Q1, from the enhanced Petri net and associated performance mea-
sures, we were unable to answer Q1 as PEP does not offer any support to profile the
process evolution over time. We concluded that PEP is unable to answer Q1.

Mining Business Process Performance 11

13,000
12,000

s1-Exit

s2-Exit

s3-Exit

s4-Exit

s2-Service

s3-Queue (pink) s4-Q
ueue

s4-Complete

11,000

10,000
9,000

8,000

7,000

6,000

5,000

4,000
3,000

2,000

1,000

0

15-Oct
30-Oct

14-Nov
29-Nov

14-Dec
29-Dec

13-Jan
28-Jan

12-Feb
27-Feb

13-Mar

C
as

es

s3-Service

Fig. 8. CFD for the BPI Challenge 2012 log. Each stage si has a queue, service and exit flow.
Some flows such as s1-Queue, s1-Service, s2-Queue, and s4-Service are fast and not observable
on the normal scale.

Fig. 9. Discovered Process Model in PEP, using gate events only.

Disco Similar to PEP, the model discovered by Disco from the unfiltered log was rather
complex, with 50 activities and over 150 paths. Hence, we also decided to retain the gate
events only, leading to a rather simple model with 11 activities and 19 paths (Fig. 10.a).
Based on this model, we found two ways to answer Q1. One way was using the filter
by timeframe provided by Disco to select different process variants by time intervals,
e.g. by months from Oct 2011 to Mar 2012. After each interval, we recorded the per-
formance measures manually for each process variant. At the end of this procedure, we
obtained a set of monthly performance measures which we could use for trend analy-
sis. While this approach could provide a precise measurement of process evolution, the
results are not easy to retrieve and interpret from the figures manually calculated. We
were unable to discover any insights because of the limitation of this manual review.

Another way was to animate the log on top of the discovered model, to identify
any normal and abnormal trends (Fig. 10.b). While the animation was running, we
had to keep close attention to the various tokens flowing towards different directions
through the model, to identify recurring patterns as well as deviations. To complete the
animation for six months, it took approximately four minutes at maximum speed which
is a reasonable time. One insight was that the cases seem to flow to the end of the process
in batches. However, it was not easy to pinpoint the recurrent timing of these batches
during the animation. We were also unable to compute the volume of cases in batches
due to the lack of supporting performance figures in the animation. In conclusion, we
found that although the animation in Disco can provide some insightful clues w.r.t. to
process evolution, it is not possible to precisely characterize this evolution.

Q2: How formation and dissolution of bottlenecks affects overall performance?

12 H. Nguyen et al.

(a) (b)

Fig. 10. (a) Filtered process model in Disco with highlighted bottlenecks and (b) its animation.

SPF We can observe signs of bottlenecks on the CFD when the queue band and/or
service band become wider, meaning that the process has slower response to the arrival
of new cases. The formation of bottlenecks can be identified from the time series charts
of CIP and TIS of the queue and service stages, particularly at the peak points. The exact
measurement of these effects is provided via the on-screen tooltips and by the PST with
the time interval scale. The formation of bottlenecks generally leads to an increase of
CIP and TIS in the queue and service period of a stage and possibly to a decrease of
FE. Conversely, these effects gradually diminish when the bottleneck dissolves.

Although the log exhibits a stable process evolution, there are signs of bottlenecks.
For example, Fig. 11.a shows that at stage s4, the queue (s4-Queue) widens from 24 Oct
and peaks on 27 Oct (CIP=120 cases, see Fig. 12.b) and then slowly decreases onwards.
The time series chart of the flow efficiency for this stage (see Fig. 12.a) also shows a fall
on 26 and 27 Oct (around 0.55% fall as measured by the PST). Our measurement also
shows that the CIP and TIS of s4-Service do not increase immediately from 26-27 Oct
(ca. CIP=27 cases, TIS=20 hours) but only afterwards (ca. CIP=42 cases, TIS=46 hours
from 29 Oct to 6 Nov 2011) as the aftermath of the previous congestion (Fig.11.a). The
bottleneck then slowly dissolves towards 16 Nov (Fig. 11.a) as the process increases its
departure rate at s4-Service after the bottleneck (from ca. 20 cases/day during 23-27 Oct
to ca. 24 cases per day during 28 Oct-16 Nov). We observe that the FE has recovered
and CIP and TIS have diminished during the period 28 Oct-16 Nov (Fig. 12.a and 12.b).
Similar bottleneck phenomena are visible in stage s4 at different times.

s4-Queue

24 Oct 27 Oct 16 Nov

High AR

Low DP

s4-Service

29 Oct

46h

42 cases

(a)

25

7 Dec 8 Dec 9 Dec 10 Dec

Similar AR & DP

(b)

Fig. 11. (a) Example of widening queue at s4 and (b) very minor queue at s2.

In conclusion, with our approach it is easy to retrieve data with interpretable and
precise information to answer Q2, deriving information on how bottleneck formation
and dissolution affect process performance.

PEP Continuing from the enhanced model in Q1, PEP can highlight the bot-
tlenecks on the model by coloring the places of the Petri net based on their

Mining Business Process Performance 13

26 Oct 28 Oct24 Oct 30 Oct 1 Nov

(a)

26 Oct 27 Oct 28 Oct

(b)

Fig. 12. (a) Flow Efficiency at s4-Service and (b) CIP at s4-Queue.

associated waiting time (see Fig. 9). This information is enriched by detailed
performance measurements at the level of individual elements (see e.g. Fig.13).

Fig. 13. Performance measures in PEP.

However, we found no ways
to reason about the impact of
the formation and dissolution
of bottlenecks on the process
performance as the measures
shown on the model are only ag-
gregate values over the whole
log timespan. It is not possible
to drill down to lower levels of granularity, e.g. checking the daily arrival rate at a given
place, and profile this over time. Thus, we conclude that PEP is unable to answer Q2.

Disco Continuing from Q1 with the discovered high-level process model, we identified
two ways of detecting bottlenecks in Disco. One is displaying performance measures
on the model (Fig. 10.a). Disco can highlight in red the exceptionally high values of
activity and path durations as signs of bottleneck. We found that the paths for canceled
cases at stages s2, s3 and s4 take too long, e.g. 21 days at stage s3. In addition, the path
for cases going from s3 to s4 is also longer than average (11.9 days). While the use of
filters allow one to measure the impact of a bottleneck on overall performance (e.g. by
measuring how much the average cycle time improves by removing slow cases), based
on the process model and the performance measures alone, we did not have enough data
to assess the impact of formation and dissolution of bottlenecks on overall performance.

Another way of answering Q2 is by watching the replay animation (Fig. 10.b). From
this we can observe that there are busy flows of canceled cases at stages s2, s3 and s4,
and from s3 to s4. The tokens following these paths seem to be moving slower than
those on other paths. However, we were unable to quantify these signs of bottleneck
such as number of cases and waiting time, as well as the impact of these bottlenecks.

Q3: How do changes in demand and capacity affect overall process performance?

SPF The demand and capacity are represented by the arrival (AR) and departure rate
(DR), respectively. The arrival rate at the first stage is the customer demand while the
departure rates at different stages are their corresponding capacities. They can be ob-
served on the CFD, as well as in the time series charts of these characteristics. Any
change in these characteristics will affect the overall process performance, including
the CIP, TIS and FE of the queue and service periods, and lead to the formation and
dissolution of bottlenecks.

Overall, the PST in Fig. 6 shows that the process under exam has a much higher AR
at s1-Queue as customer demand rate (84.73 cases/day), than DR at s4-Service as final

14 H. Nguyen et al.

output rate (18.62 cases/day). However, the process maintains a stable evolution without
congestion because there are strong exit flows as shown in Fig. 8. This mechanism
effectively reduces the strain of high customer demand on the process.

As such, the impact of demand and capacity is visible locally at a stage only.
For example, in relation to the bottleneck reviewed in Q2, the differential chart
in Fig. 14 shows that the bottleneck appears due to the stronger dominance of
the arrival rate over the departure rate prior to the bottleneck period (14-24 Oct).

14 Oct 28 Oct 4 Nov 11 Nov

Fig. 14. Differential Chart (DR-AR) at s4-
Queue.

The difference between arrival and de-
parture patterns also has impact on
the process performance. For example,
Fig. 11.a shows that the arrival rate AR at
s4-Queue is high within a short time (ca.
14 cases/day) while the departure rate
DR is low (ca. 5 cases/day) and spreads
over a longer time. This difference ex-
plains why there is a permanent long
queue before s4-Service, which we iden-
tified when answering Q2. In contrast, the AR and DR at s2-Queue are approximately
equal with the same distribution (see Fig. 11.b). That is why there is a very minor queue
at stage s2.

PEP We found no ways in PEP to investigate the impact of changes in demand and
capacity on the process performance since this tool only captures one average value at
every place/transition for the whole period. Hence, we are unable to answer Q3.

Disco We replayed the animation in Disco while focusing on the speed of the token
flows at the start activity of each stage and tried to learn how this relates to the flow of
tokens departing from the last activity of each stage (Fig. 10.b). However, we found it
is very challenging to spot any patterns on the animation, since it is hard to capture the
timing of tokens flowing at two different locations at the same time. We concluded that
Disco is unable to answer Q3.

5 Conclusion

We presented an approach to analyze flow performance from event logs based on the
concept of SPF, which transpose ideas found in lean management and agile software de-
velopment to the field of PPM. The evaluation on real-life event logs puts into evidence
qualitative advantages of this approach with respect to existing PPM techniques.

A key limitation of the SPF approach is the assumption that the log is divided into
user-defined stages. In some cases, such stages may be already known (e.g. because
they are captured in a process model), but in other scenarios the stages need to be dis-
covered. A direction for future work is to design techniques for automated identification
of candidate stages from a log. One possible approach is to cluster activities based on
which resources most often perform them, as in [13]. An alternative is to cluster ac-
tivities according to data dependencies, as in [17] where event types are grouped into
clusters (corresponding to candidate sub-processes) based on shared data attributes.

Another limitation is that the approach still requires the user to manually identify
patterns from the stage characteristics and visualizations, particularly patterns associ-
ated with formation and dissolution of bottlenecks. There is an opportunity to extend
the SPF approach with techniques from statistical process control and change point

Mining Business Process Performance 15

analysis, such as CUSUM charts [18], to support the identification of such patterns.
Another future work avenue is to conduct a usability evaluation of the SPF approach
via controlled experiments in order to validate major design choices, such as the choice
of stage characteristics and visualizations.

Acknowledgments This research is funded by the Australian Research Council Dis-
covery Project DP150103356 and the Estonian Research Council (grant IUT20-55).

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011)

2. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management. Springer (2013)

3. Modig, N., Ahlström, P.: This is lean: Resolving the efficiency paradox. Rheologica (2012)
4. Hornix, P.T.: Performance analysis of business processes through process mining. Master’s

thesis, Eindhoven University of Technology (2007)
5. Gunther, C.W., Rozinat, A.: Disco: Discover your processes. In: Proc. of BPM Demos.

Volume 940 of CEUR Workshop Proceedings. (2012) 40–44
6. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models

for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 2(2) (2012) 182–192

7. van Dongen, B.F., Adriansyah, A.: Process mining: fuzzy clustering and performance visu-
alization. In: Proc. of BPM Workshops, Springer (2010) 158–169

8. de Leoni, M., van der Aalst, W.P., Dees, M.: A general framework for correlating business
process characteristics. In: Proc. of BPM, Springer (2014) 250–266

9. Pika, A., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H., Leyer, M., van der Aalst, W.M.: An
extensible framework for analysing resource behaviour using event logs. In: Proc. of CAiSE,
Springer (2014) 564–579

10. Gunther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process simplification based
on multi-perspective metrics. In: BPM 2007. 328–343

11. Conforti, R., Dumas, M., La Rosa, M., Maaradji, A., Nguyen, H., Ostovar, A., Raboczi, S.:
Analysis of business process variants in apromore. In: Proceedings of the BPM Demos.
Volume 1418., CEUR (2015)

12. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining - predicting delays
in service processes. In: Proc. of CAiSE, Springer (2014) 42–57

13. de Smet, L.: Queue mining: Combining process mining and queueing analysis to under-
stand bottlenecks, to predict delays, and to suggest process improvements. Master’s thesis,
Eindhoven University of Technology (2014)

14. Reinertsen, D.: Managing the Design Factory: A Product Developers Tool Kit. Simon &
Schuster Ltd. (1998)

15. Nguyen, H., Dumas, M., ter Hofstede, A., La Rosa, M., Maggi, F.: Business process perfor-
mance mining with staged process flows. ”QUT ePrints Technical Report 91110” (http:
//eprints.qut.edu.au/91110), Queensland University of Technology (2015)

16. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interven-
tions. Decision Sciences 39(2) (2008)

17. Conforti, R., Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M.: BPMN miner: Automated
discovery of BPMN process models with hierarchical structure. Inf. Syst. 56 (2016)

18. Reynolds, M., Amin, R., Arnold, J.: CUSUM charts with variable sampling intervals. Tech-
nometrics 32(4) (1990) 371–384

