
Declarative Composition and Peer-to-Peer Provisioning
of Dynamic Web Services

Boualem Benatallah
�
, Marlon Dumas

�
, Quan Z. Sheng

�
, Anne H.H. Ngu

�
�

School of Computer Science & Engineering
�

School of Information Systems
The University of New South Wales Queensland University of Technology

Sydney NSW 2052, Australia GPO Box 2434, Brisbane QLD 4001, Australia�
boualem,qsheng,anne � @cse.unsw.edu.au m.dumas@qut.edu.au

Abstract

The development of new services through the integration
of existing ones has gained a considerable momentum as
a means to create and streamline business-to-business col-
laborations. Unfortunately, as Web services are often au-
tonomous and heterogeneous entities, connecting and coor-
dinating them in order to build integrated services is a del-
icate and time-consuming task. In this paper, we describe
the design and implementation of a system through which
existing Web services can be declaratively composed, and
the resulting composite services can be executed following
a peer-to-peer paradigm, within a dynamic environment.
This system provides tools for specifying composite services
through statecharts, data conversion rules, and provider se-
lection policies. These specifications are then translated
into XML documents that can be interpreted by peer-to-peer
inter-connected software components, in order to provision
the composite service without requiring a central authority.

1. Introduction
The automation of Web services interoperation is gain-

ing a considerable momentum as a paradigm for effective
Business-to-Business (B2B) collaboration [13, 3]. Estab-
lished enterprises are continuously discovering new oppor-
tunities to form alliances with other enterprises, by offer-
ing value-added integrated services. By Web service (also
called e-service)1, we mean a semantically well defined ab-
straction that allows users to access functionalities offered
by Web applications. A typical example of a Web service is
booking an airline ticket through an HTML-based interface.

The main goal of our work is to enhance the fundamental
understanding of how to facilitate large-scale interoperation

1In the remainder, we will use the terms e-service, Web service, and
service interchangeably

of Web services. In this paper, we distinguish the following
key issues when composing and executing Web services:

� Fast composition: The “why” part of Web services
composition is now widely understood [13, 11]. How-
ever, the technology (i.e, the “how” part) to compose
and execute Web services in appropriate time-frame,
has not kept pace with the rapid growth and volatil-
ity of available opportunities. Indeed, the development
of integrated Web services is still largely ad-hoc, time-
consuming and requiring a considerable effort of low-
level programming. This approach is clearly tedious
and hardly scalable because of the volatility and size
of the Web. The need for fast composition and deploy-
ment of Web services, will require a high-level declar-
ative service composition language.

� Scalable composition: The number of services to be
integrated may be large. Consequently, approaches
where the development of an integrated service requires
the understanding of each of the underlying services are
inappropriate. In addition, Web services may need to be
composed as part of a short term partnership, and then
disbanded when the partnership is no longer profitable.
This form of partnership does not assume any a priori
defined relationships between services. Thus, the in-
tegration of a large number of dynamic Web services,
requires scalable and flexible techniques.

� Distributed execution: The execution of a compos-
ite service in existing techniques is usually centralised,
whereas the participating services are distributed and
autonomous. A centralised execution model incurs
sever problems including, scalability, availability, and
security problems [5]. Given the highly dynamic and
distributed nature of Web services, we believe that
novel techniques involving peer-to-peer execution of
services will become increasingly attractive. Peer-to-
peer computing is gaining a considerable momentum,

dumas
In Proc. of the IEEE International Conference on Data Engineering (ICDE) 2002Preprint.

as it naturally exploits the distributed nature of the In-
ternet [14].

In this paper, we overview the design and implementa-
tion of SELF-SERV (compoSing wEb accessibLe inForma-
tion & buSiness sERVices): a framework for dynamic and
peer-to-peer provisioning of Web services. In SELF-SERV,
Web services are declaratively composed, and the result-
ing composite services are executed in a decentralised way
within a dynamic environment. In a nutshell, the salient fea-
tures of SELF-SERV are:

� A declarative language for composing services based
on statecharts [8]: a widely used formalism in the area
of reactive systems, which is emerging as a standard
for process modeling as it has been integrated into the
Unified Modeling Language (UML). Statecharts sup-
port the expression of control-flow dependencies such
as branching, merging, concurrency, etc. They also pro-
vide an implicit style for expressing data-flow depen-
dencies through the use of global variables.

� A concept of service communities to architect the com-
position of a potentially large number of dynamic ser-
vices. Service communities are essentially containers
of alternative services. They provide descriptions of
desired services (e.g., providing flight booking inter-
faces) without referring to any actual provider (e.g., UA
flight-booking Web service). Actual providers can reg-
ister with any community of interest to offer the desired
service. They can leave these communities at any time.

� A peer-to-peer service execution model, whereby the
responsibility of coordinating the execution of a com-
posite service, is distributed across several peer soft-
ware components called coordinators. Coordinators
are attached to each involved service. They are in
charge of initiating, controlling, monitoring the associ-
ated services, and collaborating with their peers to man-
age service execution. The knowledge required at run-
time by each of the coordinators involved in a compos-
ite service (e.g. location, peers, and control flow rout-
ing policies) is statically extracted from the service’s
statechart and represented in a simple tabular form. In
this way, the coordinators do not need to implement any
complex scheduling algorithm.

The remainder of this paper is organised as follows. Sec-
tion 2 describes SELF-SERV’s approach to service compo-
sition. Section 3 discusses SELF-SERV’s peer-to-peer ex-
ecution model for composite services. Section 4 presents
SELF-SERV’s system architecture and describes the imple-
mentation of this architecture using Java and XML-oriented
tools. Finally, section 5 gives a brief overview of related
work and section 6 provides some concluding remarks.

2 Composing Web Services

In this section, we describe those concepts and function-
alities of SELF-SERV which are intended to provide a high-
level language for composing pre-existing services.

2.1. Types of services

SELF-SERV distinguishes 3 types of services: elemen-
tary services, composite services, and service communities.

An elementary service is an individual Internet-
accessible application (e.g., a Java program) that does not
rely on another Web service to fulfill user requests. An ex-
ample of an elementary service might be a Web form-based
interface to a weather information source.

A composite service aggregates multiple Web services,
which are referred to as its components. An example of a
composite service would be a Web-accessible travel prepa-
ration service, integrating autonomous services for booking
flights, booking hotels, searching for attractions, etc.

The concept of service community is a solution to the
problem of composing a potentially large number of dy-
namic Web services. A community describes the capabili-
ties of a desired service without referring to any actual Web
service providers. In other words, a community defines a
request for a service which makes abstraction of the under-
lying providers. In order to be accessible through communi-
ties, pre-existing Web services can register with them. Ser-
vices can also leave and reinstate these communities at any
time. At runtime, when a community receives a request for
executing an operation, it selects one of its current mem-
bers, and delegates the request to it.

Whether elementary, composite, or community-based, a
Web service is specified by an identifier (e.g., URL), a set of
attributes, and a set of operations. The attributes of a ser-
vice provide information which is useful for the service’s
potential consumers (e.g., public key certificates). In order
to ensure that all services provide a uniform interface, each
service in SELF-SERV is wrapped by a software compo-
nent hosted by its provider. A service’s wrapper acts as its
entry point, in the sense that it handles requests for execut-
ing the operations provided by the service.

2.2 Elementary Services

The operations of an elementary service are realized in
terms of calls to proprietary/legacy applications. Specifi-
cally, each operation of an elementary service is associated
with a translator. A translator is mainly used to map the
SELF-SERV operation into the format understood by the
underlying proprietary/legacy applications. For instance,
assume that Travel Insurance (TI) is an elemen-
tary service that provides an operation called getInsur-
ance. A corresponding translator, say TI translator,
associates getInsurance with a routine that calls, e.g.,

a Java class method from the underlying application. The
development of translators is left to the responsibility of the
provider of the service.

2.3. Composite Services

The operations of a composite service are expressed as
a composition of operations of other Web services using
statecharts [8]. Encoding the flow of operation invoca-
tions as statecharts have several advantages. First, state-
charts possess a formal semantics, which is essential for
analysing composite service specifications. Next, state-
charts are becoming a standard process modeling language
as they have been integrated into the Unified Modeling
Language (UML). Finally, statecharts offer most of the
control-flow constructs found in existing workflow specifi-
cation languages (branching, concurrent threads, structured
loops).

2.3.1 Overview of Statecharts

A statechart is made up of states and transitions. Tran-
sitions are labeled by ECA (Event Condition Action) rules.
When a transition fires, its action part is executed and its tar-
get state is entered. The event, condition, and action parts
of a transition are all optional. A transition without an event
is said to be triggerless.

States can be basic or compound. In SELF-SERV, a ba-
sic state corresponds to the execution of a service, whether
elementary or composite. Accordingly, each basic state is
labeled with an invocation to a service operation. When
the state is entered, this invocation is performed. The state
is normally exited through one of its triggerless transitions
when the execution induced by this invocation is completed.
If the state has outgoing transitions labeled with events, an
occurrence of any of these events causes the state to be ex-
ited and the ongoing execution to be cancelled.

Compound states contain one or several entire statecharts
within them. Compound states come in two flavors: OR
and AND states. An OR-state contains a single statechart,
while an AND-state contains several statecharts (separated
by dashed lines) which are intended to be executed concur-
rently. Each of these statecharts is called a concurrent re-
gion. When a compound state is entered, its initial state(s)
become(s) active. The execution of a compound state is
considered to be completed when it reaches (all) its final
state(s). Initial states are denoted by filled circles, whereas
final states are denoted by two concentric circles.

2.3.2 Data Flow and Conversion Rules

An operation of a composite service can be seen as hav-
ing input parameters, output parameters, consumed and pro-
duced events, and a statechart glueing these elements to-
gether. The input and output parameters can be referenced

in any of the conditions and actions of the statechart. Sim-
ilarly, the consumed events can appear in any of the event
parts of the statechart, and the produced events can be gen-
erated by the actions of the statechart. Moreover, the stat-
echart contains a set of invocations of component services.
Each of these invocations is described by the name of the
service, the name of the operation, the effective input pa-
rameters, and the variables to which the output of the oper-
ation are assigned.

In addition to input and output parameters, the conditions
and the actions of a statechart implementing a composite
service operation may refer to other variables, namely inter-
nal variables. Specifically, an internal variable is a data item
that affects the outcome of a service execution, but which is
not an input nor an output parameter of the operation that
the statechart implements. An internal variable can be used
in, e.g., one of the branching conditions of statecharts.

To summarise, a variable appearing in the statechart of a
composite service operation can be: an input parameter of
the composite service operation, an output parameter of the
composite service operation, or an internal variable. The
value of an internal variable may be: (i) obtained from the
output of a service invocation, (ii) requested from the user
during the execution of the composite service, or (iii) de-
rived from the input parameters of the composite service
operation and/or other internal variables through a query.
To cater for the first of these cases, we adopt the following
syntax for invoking service operations:

S::m(Q1, ..., Qn, &V1, ..., &Vn)

The semantics of this expression is an invocation of the
operation m provided by service S, with input parameters
provided by queries Q1, ..., Qn, and such that the outputs of
the invocation are assigned to variables V1, ..., Vn. A query
Qi can be simply a variable name or any other query. SELF-
SERV adopts XPath [6] as the query language. To cater for
the second and third cases above, SELF-SERV recognizes
in the action parts of the statechart the following types of
expressions: (i) X := USER: the value of the internal vari-
able X is supplied by the user, and (ii) X := Q: the value of
X is the result of query Q.

2.3.3 Example

Figure 1 contains the statecharts of two composite
services, namely Complete Travel Services
(CTS) and Intl Travel Arrangements Ser-
vice (ITAS). The latter is invoked within the former.
The statechart of CTS is composed of an AND-state, in
which a search for attractions is performed in parallel with
the bookings of the flight and the accommodation. When
both of these threads complete, a car rental booking is
performed if the major attraction is far from the booked
accommodation.

Intl Travel
Arrangements

(ITA)

Domestic Flight

(DFB) Accommodation

Booking

Booking
(AB)

Attractions

major_attraction,
[not near(

Search
(AS)

Car Rental

(CR)

Complete Travel Service (CTS)

[not domestic(destination)]

[domestic(destination)]

International Flight
Booking

(IFB)

Travel Insurance
(TI)

International Travel Arrangements Service (ITAS)

accommodation)]
[near(major_attraction,

accommodation)]

Figure 1. The Travel Solution composite service.

Table 1 describes the signature of CTS and the signatures
of the services that it invokes. To describe the signatures of
the services, the following notations are used:

� CTS::prepareTrip denotes an invocation of the opera-
tion prepareTrip provided by the service CTS.� The keyword in indicates that a parameter is passed by
value. For instance in Date minDepatureDate
indicates that the parameter minDepartureDate of
type Date is passed by value.� The keyword out indicates that a parameter is passed
by variable. For example out float total-
Pricemeans that the service operation returns a value
of type float, and that this value is assigned to the
variable given in place of this parameter.

Table 2 details the invocations that are made in each of
the states of the composite service CTS. For a given row,
the left column of the table contains the name of a state,
e.g., AS, and the right column provides the name of the ser-
vice operation that is invoked when that state is entered,
followed by the effective parameters. Some of the vari-
ables appearing in Figure 1 and in the associated Table 2
are input parameters of CTS (e.g., minDepartureDate,
maxDepartureDate,destination), while others are
internal variables (e.g., departureDate, flightDe-
tails). All of the internal variables involved in this ex-
ample, are used to store the outputs of the component ser-
vices invocations. In addition, the values of some internal
variables are used as input parameters to component ser-
vices invocations. For example, the variable departure-
Date is used to store one of the outputs of the invocation
of the operation DFBS::booking, and it is later on used

Table 1. Signature of the operation prepareTrip
of CTS, and signatures of the service opera-
tions that it invokes (see Figure 1).

CTS::prepareTrip(
in Date minDepatureDate, in Date maxDepartureDate,
in Date minReturnDate, in maxReturnDate,
in string destination, in string name,
out float totalPrice, out XMLDoc flightDetails,
out XMLDoc accommDetails, out XMLDoc rentalDetails)

CRS::booking(
in string city, in string name
in Date rentalDate, in Date returnDate,
out float price, out XMLDoc rentalDetails)

ABS::booking(
in string city, in string name,
in Date arrivalDate, in Date departureDate,
in int numberOfStars,
out float price, out XMLDoc accommDetails)

ASS::getAttractions(in string city, out XMLDoc attractions)
DFBS::booking(

in Date minDepatureDate, in Date maxDepartureDate,
in Date minReturnDate, in maxReturnDate,
in string destination, in string name,
out Date actualDepartureDate, out actualReturnDate,
out float price, out XMLDoc flightDetails)

to provide the value of an input parameter for operations
AB::booking and CRS::booking.

We also note that the statechart in Figure 1 features four
conditions in its transitions. Conditions are modeled as calls
to boolean functions, which take as parameters queries in-
volving input parameters of the composite service as well
as internal variables. For example, the condition domes-
tic(destination) is a function call whose parameter

Table 2. Invocation table of CTS::prepareTrip

State Invocation
AS ASS.getAttractions(destination, &attractions)
DFB DFBS.booking(

minDepartureDate, maxDepartureDate,
minReturnDate, maxReturnDate,
starRating, destination, name,
&departureDate, &returnDate,
&flightPrice, &flightDetails)

ITA ITAS.arrangeTrip(
minDepartureDate, maxDepartureDate,
minReturnDate, maxReturnDate,
destination, name, &departureDate, &returnDate,
&flightPrice, &flightDetails)

AB ABS.booking(
destination, name, departureDate, returnDate,
&accommPrice, &accommDetails)

CR CRS.booking(
destination, name, departureDate, returnDate,
&rentalPrice, &rentalDetails)

is directly obtained from one of the inputs of service CTS.
Meanwhile, near(major attraction, accommo-
dation) is a function call whose parameters are given by
the values of internal variables. Although not shown in the
statechart for clarity reasons, the value of the variable ma-
jor attraction is derived from the value of the vari-
able attractions (which is an XML document) through
an XPath expression. Also not shown in the statechart, is
the fact that the value of the internal variable starRat-
ing (which is used as an input parameter in the invocation
ABS.booking) is requested from the user at runtime, just
after the flight booking is completed. This situation should
be expressed through the action starRating := USER.

2.4 Service Communities

A community is an aggregator of service offers with a
unified interface. It is intended as a means to support the
composition of a potentially large number of dynamic Web
services. The description of a community contains a set of
operations that can be used to interact with the community
and its underlying members. These operations are described
without referring to the definitions of local services (i.e,
members). Service providers may use services platforms
of their choice (e.g., Sun Jini or HP e-speak) to advertise
and locate Web services including communities 2.

The registration of a service with a community requires
the specification of mappings between the operations of the
service and those of the community. The following is an
example of a mapping:

source service Qantas Airway QAS
target community Flight bookings FBS

2In the current implementation of our system, we use the service dis-
covery engine of the AgFlow prototype [15]).

operation FBS.search flight()
is QAS.search ticket();

operation FBS.book flight()
is QAS.book ticket();

In this example, the operation search flight (resp.,
book flight) of the community Flight bookings
is mapped to the operation search ticket (resp.,
book ticket) of the service Qantas Airway.

A registration may concern only a subset of the opera-
tions of a community. Thus, Web services have the flexi-
bility to register only for the operations that they can pro-
vide. For instance, the community Flight bookings
provides operations for searching (i.e, search flight)
and buying (i.e., book flight) flight tickets; if a Web
service provides only one of these operations, then it will
register only for the operation that it provides.

A Web service can register with one or several commu-
nities. A community can be registered with another com-
munity. For example, the Web services Qantas Airway
and Cathay Pacific are registered with the commu-
nity Flight bookings which is itself registered with
the community Intl Travel Arrangements.

The means by which a community chooses a member to
execute an operation is specified via a selection policy. A
selection policy can be based, e.g., on an auction, or any
ranking algorithm involving parameters such as customer’s
profile, Web Service’s reliability, etc. If the selection is
based on auctions, the community essentially works as an
auction house in which the members bid for executing op-
erations. A selection strategy is implemented by a program
which takes as parameter relevant data such as the opera-
tion’s input parameter values, the user’s profile, past execu-
tion logs, input from humans, etc. The low-level specifica-
tion and implementation of selection policies is out of the
scope of this paper.

3. Peer-to-Peer Provisioning of Web Services

This section starts with an overview and illustration of
the basic concepts of the service execution model of SELF-
SERV. After this overview and illustration, a formal descrip-
tion of the concepts and algorithms is given.

3.1. Overview

SELF-SERV’s execution model is based on the idea that
each state ST appearing in a composite service specification
is represented by a state coordinator responsible for:

� Receiving notifications of completion from other state
coordinators and determining from these notifications
when should state ST be entered.

� Invoking the service labelling ST whenever all the pre-
conditions for entering ST are met. This invocation is

done by sending a message to the service’s wrapper and
waiting for a reply.

� Notifying the execution’s completion to the coordina-
tors of the states which may need to be entered next.

� While state ST is active, receive notifications of ex-
ternal events (such as a cancellation), determine if ST
should be exited because of these event occurrences,
and if so, interrupt the service execution and notify the
interruption to the coordinators of the states which po-
tentially need to be entered next.

In other words, the coordinator of a state is a lightweight
scheduler which determines (i) when should a state within
a statechart be entered?, (ii) what should be done after the
state is entered?, (iii) when should the state be exited?, and
(iv) what should be done after the state is exited? The
knowledge needed by a coordinator in order to answer these
questions at runtime, is statically extracted from the state-
chart describing the composite service operation, and rep-
resented in the form of routing tables as detailed later.

A composite service execution is orchestrated through
peer-to-peer message exchanges between the coordinators
of the states of the service’s description, and through mes-
sage exchanges between the coordinators and the wrappers.
The messages exchanged between the coordinators for the
purpose of notifying that a given state should/may be en-
tered are called control-flow notifications. A (control-flow)
notification sent by a coordinatorC1 to a coordinatorC2 ex-
presses the fact that the execution of the state represented by
C1 has completed, and that C1 believes that the state repre-
sented by C2 needs to be entered. The notification message
contains the input parameters of the composite service ex-
ecution, as well as the up-to-date values of all the internal
variables of the statechart that C1 needs to transmit to C2.

On the other hand, the messages exchanged between the
coordinators of a state and the wrapper of the service la-
belling this state are called service invocations/completions.
A service invocation message contains the name of the ser-
vice operation that is being invoked, as well as the values of
the input parameters. A service completion message con-
tains the values of the return parameters.

3.2. Example

The diagram in Figure 2 shows the messages exchanged
by the coordinators and the wrappers during a particular ex-
ecution of service CTS. The layout of the arrows indicate
the type of the message (control-flow notification or service
invocation/result) as explained in the legend of the figure.
The numbers labelling the arrows capture the temporal re-
lationships between the messages. For instance, message
3 is sent after message 2 which is sent after message
1. Some messages are exchanged as part of concurrent
threads. In this case, the messages are given the same serial

number, followed by a character. For instance, the messages
starting with 2a and 2b in Figure 2 (e.g., 2a.1 and 2b.1)
are sent within concurrent threads. Messages sent within
the same thread are identified by serial numbers within that
thread. For instance, message 2a.1 and 2a.2 are sequen-
tial messages exchanged within thread 2a.

The execution in this diagram starts when a user or
application invokes the service CTS through its wrapper
(message 1). Assuming that the trip is international, the
wrapper of CTS sends a control-flow notification to the
coordinators of ITA (message 2a.1) and to the coordi-
nator of AS (message 2b.1). These coordinators trig-
ger the service ITAS (2a.2) and ASS (2b.2) through
their wrappers. When the wrapper of ASS returns an out-
put (2b.3), the coordinator of AS sends a control-flow
notification both to the wrapper of CTS (2b.4a) and to
the coordinator of CR (2b.4b), since it is not possible
to determine whether the major attraction is near the ac-
commodation or not until thread 2a is completed. Mean-
while, the wrapper of ITAS starts this service by send-
ing a control-flow notification to the coordinator of IFB
(message 2a.3), which invokes IFBS (2a.4 and 2a.5).
The execution of ITAS continues its course (2a.6, 2a.7
and 2a.8) until eventually a termination message is sent
to the wrapper of ITAS (2a.9). This wrapper returns a
result to the coordinator of ITA (2a.10), which sends a
notification to the coordinator of AB (2a.11). After in-
voking ABS (2a.12 and 2a.13), the coordinator of AB
sends notifications both to the wrapper of CTS (2a.14a)
and to the coordinator of CR (2a.14b). The coordinator
of CR and the wrapper of CTS then evaluate the condition
near(major attraction, accommodation). If
this condition is true, the coordinator of CR invokes the ser-
vice CRS (messages 3 and 4). Once this invocation is com-
pleted, a notification is sent to the wrapper of CTS, and the
overall execution is completed.

3.3. Preconditions and postprocessings tables

Extracting the knowledge required by a state coordinator
from the statechart implementing a composite service oper-
ation, involves answering the following questions:

� What are the preconditions for entering a state? That is,
what are the source states of the transitions leading to a
given state, and what are the conditions that need to be
satisfied for this transition to be taken.� When the execution of a state is completed (whether
successfully or because of a signal), which are the states
that may need to be entered next? The process by which
a coordinator notifies that its state is being exited to the
relevant peer coordinators is called postprocessing.

The behavior of a state coordinator can therefore be cap-
tured through two sets: (i) a set of preconditions such that

Coordinator AS

2b.32b.2

1

6

Wrapper ASS

Coordinator ITA

2a.2 2a.10

Wrapper ITAS Coordinator IFB

Coordinator TI

2a.6

2a.7

Wrapper IFBS

Wrapper TIS

2a.8

2a.3

2a.4

2a.5

2a.9

Coordinator AB

2a.13

Wrapper ABS

Coordinator CR

43

Wrapper CRS

2a.1

2b.12

2a14a5

Wrapper CTS

2b.1
2b.4b

2b.4a

service invocation / completion

control-flow notification

2a.112a.14b

Figure 2. Interactions between the coordinators and the wrappers during an execution of CTS. The
acronyms used here are detailed in Figure 1.

the state is entered when one of these preconditions is met,
and (ii) a set of postprocessing actions indicating which co-
ordinators need to be notified when a state is exited. Prefer-
ably, these sets of preconditions and postprocessing actions
should be defined in a way to ensure minimal communica-
tion overhead. In other words, when a state is exited, only
those states that potentially need to be entered are notified.
The following definitions formalize what is meant by a state
potentially needed to be entered.

First of all, in order to identify the states which are ac-
cessible from another one in a single step, we introduce the
concept of compound transition. Intuitively, a compound
transition3 is any path (i.e. list of linked transitions), go-
ing from a basic state to another basic state without passing
through any other basic state.

Definition 1 (Compound transition). A compound transi-
tion CT is a sequence of transitions t1, t2, ..., tn belonging to
a given statechart, such that:

� source(t1)4 is a basic state,� target(tn) is a basic state, and� for all i in [1..n-1], either target(ti) is the final state of
a region belonging to the compound state source(ti+1),
or source(ti+1) is the initial state of a region belonging
to the compound state target(ti).

Under these conditions, CT is said to connect source(t1)
with target(tn), i.e., source(CT) = source(t1) and target(CT)
= target(tn). The condition part of CT, noted Cond(CT), is
the conjunction of the conditions labelling t1, ..., tn. �

For example, in Figure 1 there is a compound tran-
sition with two elements, going from state AS to state
CR, and another going from AB to CR. In both cases, the
condition of the compound transition is [true � not
near(major attraction, accommodation)].

3Notice that the definition of compound transition that we adopt, is
slightly different from that of [8].

4Here, source(t) denotes the source state of transition t, while target(t)
denotes the target state of t.

When a state is exited, the states which potentially need
to be entered next are those which are target of a compound
transition for which either: (i) the condition part is true, or
(ii) the condition part cannot be fully evaluated, but the part
that can be evaluated is true.

Definition 2 (Minimal postprocessing table of a state).
The minimal postprocessing table of a state ST, is a set of
rules of the form [C]/ST’ such that:

� There exists a compound transition CT such that
source(CT) = ST and target(CT) = ST’.

� Conjuncts(C) � Conjuncts(Cond(CT)), where
Conjuncts(c1 ��������� cn) = � c1, ����� cn 	 .� If Conjuncts(C)
� Conjuncts(Cond(CT)), then the ele-
ments of Conjuncts(Conds(CT)) � Conjuncts(C) are ex-
actly those that cannot be evaluated at the time the state
ST is exited. Here, � stands for the set difference oper-
ator. �

In the example of Figure 1, we have that Postpro-
cessing(AS) = � [true]/notify(CR), [true
]/notify(wrapper) 	 . Notice that the condition
near(major attraction , accommodation) ca-
nnot be evaluated by the coordinator of AS, since it involves
information which is only known once the accommodation
has been selected, and this is done in a separate concurrent
region.

When a service labelling a state completes its execution,
the coordinator of this state evaluates the condition part of
each of the entries appearing in its postprocessing table. For
each entry whose condition evaluates to true, it sends a no-
tification message to the coordinator of the state referenced
in that entry. The constraints imposed in the Definition 2
ensure that a state ST’, will receive a notification of com-
pletion from another state ST, if and only if either (i) the
state ST’ needs to be entered, or (ii) it is not possible for
ST to determine whether the state ST’ should be entered or
not. In this latter case, the decision on whether ST’ should

be entered or not, is made by the coordinator of ST’ based
on its preconditions table as defined below.

Definition 3 (Minimal preconditions table of a state). The
(minimal) preconditions table of a state ST of a composite
service specification is a set of rules E[C] such that:

� E is a conjunction of events of the form ready(ST’).
The event ready(ST’) is generated when a notification
of completion is received from the coordinator attached
to state ST’. The conjunction of two events e1 and e2
is noted e1 � e2 and the semantics is that if an occur-
rence of e1 and an occurrence of e2 are registered in
any order, then an occurrence of e1 � e2 is generated.� There exists a compound transition CT from ST’ to ST
such that C � ST.� If Conjuncts(C)
� Conjuncts(Cond(CT)), then the con-
ditions in CT � C are exactly those which cannot be
evaluated by the coordinator of ST’. �

For the example of Figure 1, Preconditions(AB)
= � ready(ITA)[true], ready(DFB)[true] 	 ,
meaning that the state AB is entered when a mes-
sage is received from either the coordinator of the
state ITA or that of DFB. Similarly, Precondi-
tions(CR) = � ready(AB) � ready(AS)[not
near(major attraction, accommodation)] 	 .

When a rule in the preconditions table of a state ST is
triggered (i.e. an event occurrence matches the event part of
the rule), if the rule’s condition evaluates to true, state ST is
entered, and the service that labels it is invoked by the coor-
dinator of ST. The third item in Definition 3 ensures that the
coordinator of ST will only evaluate those conditions which
have not been previously evaluated by the coordinators ref-
erenced in the event part of the rule.

3.4. Routing tables generation

We describe in turn the algorithms for generating the
postprocessing and the preconditions tables of a state. For
the sake of simplicity and for space reasons, we restrict our
presentation to the case where the transitions are only la-
beled with conditions (i.e., they do not have an event nor an
action part). In [1], we discuss how transitions labeled with
user-defined events and actions can be accommodated.

3.4.1 Postprocessings table generation

In order to derive the postprocessing table of a state,
its outgoing transitions are analyzed, and one or several
postprocessing actions are generated for each of them.
The algorithm for generating the postprocessing table of a
state, namely PostProc, relies on an auxiliary algorithm
PostProcTrans which takes as input a transition T, and
returns a set of postprocessing actions that need to be under-
taken if transition T is taken. By observing that the postpro-
cessing table of a state ST is the union of the postprocessing

actions associated to the outgoing transitions of ST, we de-
duce that:

PostProc(st) =
let � t1, t2, ����� , tn � are the outgoing transitions of st in

PostProcTrans(t1) � PostProcTrans(t2) ��������� PostProcTrans(tn)

Let us now discuss how an outgoing transition is used to
generate a set of postprocessing actions. The simplest case
is that when this transition leads to a basic state (say ST),
and it is labeled with a condition C. The postprocessing ac-
tion [C]/notify(ST) is included in the postprocessing
table, meaning that if condition C is true, a notification must
be sent to the coordinator of state ST.

If an outgoing transition T points to a compound state
CST, then one postprocessing action is generated for each
of the initial transitions of CST. The condition labelling T
is then added as a conjunct to the condition guarding each
of these postprocessing actions, since T has to be true for
any of these actions to be undertaken. This process is car-
ried out recursively, that is, if one of the initial transitions
of CST points to another compound state CST’, then one
postprocessing action is generated for each initial transition
in CST’ and so on.

When an outgoing transition T points to a final state of
a compound state CST, the outgoing transitions of CST are
considered in turn, and one or several postprocessing ac-
tions are generated for each of them. A distinction should
be made here between the case where CST has no succes-
sors (in which case the notification of completion is sent to
the wrapper), the case where CST is an OR-STATE, and the
case where it is an AND-state. In this latter case, the con-
ditions emanating from CST are not included in the postpro-
cessing table, since their evaluation may require informa-
tion which is not available when the transition T is taken.
For instance, in the case of Figure 1, the condition at-
tractions far from accommodation should not
appear in the postprocessing table of state AS, since it can-
not be evaluated until state AB is exited, and state AB exe-
cutes in a region concurrent to that of AS.

3.4.2 Preconditions table generation

The preconditions table of a state is generated by deter-
mining, for each of the incoming transitions of the state,
what are the conditions that should be met for that transi-
tion to be taken. The function PreCond(ST) which com-
putes the preconditions of state ST can thus be written in
terms of an auxiliary function PreCondTrans(T)which
computes the preconditions of transition T.

PreCond(st) =
let � t1, t2, ����� , tn � be the incoming transitions of st

PreCondTrans(t1) � PreCondTrans(t2) ��������� PreCondTrans(tn)

The function PreCondTrans(T) distinguishes the
cases where the source of the transition is a basic state, the

one in which it is an initial state, the one in which it is an
OR-state, and that in which it is an AND-state. In the
first case, the only precondition for taking the transition is
that the source state is exited, and the condition in the tran-
sition is taken. In the second case (the transition T stems
from an initial transition), the preconditions for taking the
transition T are identical to the preconditions for entering
the superstate of T, except that they contain the condition in
the transition of T as a conjunct. Notice that if the superstate
of T is the topmost state of the statechart, T is an initial
transition of the composite service and it is therefore
taken when the composite service’s wrapper sends an order
to execute the service.

The case where a transition stems from a compound state
CST is treated by recursively applying the function Pre-
CondTrans to the final transitions of CST, and merging
the resulting preconditions tables. In the case where ST is
an OR-state, the merging is a simple set union. In the
case of an AND-state, each concurrent region is treated
as an OR-state, and the preconditions tables obtained for
each concurrent region are merged through a cartesian prod-
uct, meaning that the AND-state is exited if one of the
final transitions in each of the concurrent regions is taken.

Detailed descriptions of PreCondTrans and Post-
CondTrans are given in [1]. It can be proven by struc-
tural induction (the proof is omitted for space reasons) that
the tables generated by PreCond and PostProc fulfill
the conditions in Definition 3 and Definition 2 respectively.
It follows that, at runtime, a control-flow message is sent
from a coordinator C1 to another coordinator C2, only if
there is a compound transition from the state of C1 to that
of C2, and either the state of C2 needs to be entered, or it
is impossible for C1 to determine whether the state of C2
needs to be entered or not.

4. Implementing SELF-SERV

In this section, we discribe a prototype implementa-
tion of SELF-SERV architecture. This implementation has
shown that the ideas behind SELF-SERV fit together, are
consistent with one another, and are realizable using exist-
ing technologies.

4.1. Architecture

The SELF-SERV’s prototype architecture (see Figure 3)
is composed of an interface, a service manager, and a pool
of services. All these components have been implemented
in Java. Currently, three types of proprietary/native services
are supported: Domino-based workflows, Java applications
that provide access to relational databases via JDBC, and
Web-accessible programs. As mentioned earlier in the pa-
per, services communicate through XML documents con-
taining data and control flow information. These documents

are exchanged through Java sockets. Oracle’s XML Parser
2.0 is used for parsing XML documents.

The service manager consists of three modules, namely
the service discovery engine, the service editor, and the ser-
vice deployer. In the current implementation, we use the
service discovery engine of the AgFlow prototype [15]5.
Service descriptions (e.g., location and properties) are
stored in an XML-based meta-data repository called the ser-
vice catalogue implemented on top of the Oracle8i DBMS.
The service editor provides facilities for defining new ser-
vices and editing existing ones. A service is edited through
a visual interface, and translated into an XML document for
subsequent analysis and processing by the service deployer.

Any service wishing to participate in the SELF-SERV
platform, needs to register with the service discovery en-
gine. For this purpose, the administrator of the service has
to download and install a pre-existing class, namely Coor-
dinator, implementing the concept of coordinator (see Sec-
tion 4.2). An administrator registering a service is also re-
quired to build a wrapper of this service, by downloading
and configuring a pre-existing class Wrapper provided by
the SELF-SERV platform (see Section 4.2). The only in-
frastructure required to install and configure these classes
are Java and the XML parser. By default, the XML docu-
ments containing the routing tables are stored in plain files,
so that there is no need to have a DBMS in the site where the
installation is made. However, if the administrator decides
to store these documents in a DBMS, (s)he can customize
the class Coordinator accordingly.

The service deployer is responsible for generating the
preconditions and postprocessing tables of every state of a
composite service statechart, using the algorithms presented
in Section 3.4. The input of the programs implementing
these algorithms are statecharts represented as XML doc-
uments, while the outputs are routing tables formatted in
XML as well. Once the tables are generated, the service de-
ployer assists the service composer in the process of upload-
ing these tables into the hosts of the corresponding compo-
nent services. It also assists the composer in the deployment
of the wrapper of the composite service. At present, secu-
rity issues related to uploading tables are not considered.

Notice that the statechart implementing a composite ser-
vice is not uploaded/downloaded into the hosts of the com-
ponent services. Instead, a host providing a service S will
only receive the routing tables of the states where an invo-
cation to S is made. In this way, it is not required that each
participant of the SELF-SERV platform deploys the whole
system. Instead, the only parts of the system which are re-
quired by all the participants are the classes implementing
the coordinators and the wrappers.

We note that a service may be involved in several com-
positions (e.g., S1 may be a component of both CS1 and

5The presentation of this module is out of the scope of this paper.

Service Manager

is registered
with

service descriptions

Pool of
Services

Elementary
services

Communities

XML

service catalogue

Composite
services

is composed of

Service Editor

Service Deployer

Communication Bus

Coordinator.1 Coordinator.2 Coordinator.n

Wrapper

Legend

SELF-SERV

SELF-SERV Interface

requests/results

workflow database applications web-accessible programs

Service Discovery Engine

C1 C2 C3

CS1 CS2

ES1 ES2 ES3 ES4

Figure 3. Architecture of the SELF-SERV prototype.

CS2), and may even be referenced more than once in a
given composition (e.g., the state ST1 of CS invokes the
operation op1() of S, and the state ST2 of CS invokes the
operation op2() of S). Consequently, the host of a service
S, may need to store several preconditions and several post-
processing tables (one table of each type per state in which
S is invoked). In order to ensure that a coordinator is able
to retrieve the right table at the right moment, each precon-
ditions and each postprocessings table is identified by a pair
(cs-id, state-id), where cs-id is the identifier of
a composite service and state-id is the identifier of a
state of cs-id’s statechart.

4.2. The Coordinator and Wrapper classes

Message Contents. The messages exchanged between
the coordinators (i.e. the control-flow notifications) are
identified by tuples of the form (senderState id,
receiverState id, compositeSVC id, in-
stance id), where senderState id is the identifier
of the state that is being exited, receiverState id
is the identifier of the state that potentially needs to be
entered, compositeSVC id is the identifier of the
composite service, and instance id is the identifier of
the instance of this composite service to which the message

relates.
On the other hand, the invocation messages sent by the

coordinators to their underlying wrappers are identified by
tuples of the form (compositeSVC id, composite-
Instance id, service id, operation id), such
that compositeSVC id is the identifier of the compos-
ite service, compositeInstance id is the identifier of
the instance of the composite service, service id is the
identifier of the invoked service, and operation id is
the identifier of the invoked operation within this service.

The Class Wrapper. The concept of service wrapper
is mapped into an abstract class called Wrapper, which
defines (among others) methods for (i) invoking an op-
eration of the service (method start service), and
(ii) collecting the outputs of a service instance (method
get service result). To account for the three kinds
of services supported in SELF-SERV, the abstract class
Wrapper is specialised into three concrete subclasses: El-
ementaryWrapper, CompositeWrapper, and Community-
Wrapper. Each of these subclasses realises the above meth-
ods in a different way.

In the ElementaryWrapper class, the method
start service loads the translator program cor-

responding to the invoked operation, and invokes the
underlying application program. The outputs of this
application program are translated back into the format
of SELF-SERV using the translator, and made accessible
through the method get service result.

In the CommunityWrapper class, the method
start service begins by invoking a program im-
plementing the selection policy. This program returns
the identifier of one of the members registered with the
community. Then the selected service is invoked through
its wrapper, which can be implemented by an instance of
the class ElementaryWrapper, CompositeWrapper or even
CommunityWrapper.

Finally, in the CompositeWrapper class, the method
start service begins by accessing the postprocessings
table of the initial state of the statechart, and sends a control-
flow notification message to each of the coordinators of the
states that need to be entered first. These coordinators then
interact in a peer-to-peer way with other coordinators, un-
til eventually the coordinators of the states which are ex-
ited the last send their control-flow notifications back to the
composite wrapper. Once all the control-flow notifications
are received, the outputs of the service invocation are made
available through the get service results method.

The classes ElementaryWrapper, CommunityWrapper
and CompositeWrapper, may need to dynamically load ex-
ternal programs. For example, the ElementaryWrapper may
need to load the translator programs that realise the service
operations, while the class CommunityWrapper may need
to load and execute the programs implementing the selec-
tion policies. This is done using the reflection capabilities
of the Java platform.

The Class Coordinator. The functionalities of the coor-
dinators are realised by a class called Coordinator, which
provides methods for receiving, processing, generating and
sending control-flow notifications, service invocation, and
service completion messages.

More precisely, the class Coordinator implements a soft-
ware component made up of a container and a pool of ob-
jects.6 The container is a process that runs continuously,
listening to a socket through which control-flow notifica-
tion messages from other coordinators are received. When
the container receives a message from another coordinator,
it first examines the identifier of the composite service in-
stance to which the message relates, and proceeds as fol-
lows:

� If the identifier of the composite service instance is
unknown to the container (i.e., this is the first time
that a control-flow notification related to that instance
is received), a new coordinator object is created, and

6This pool of object is different from the pool of services discussed
previously.

this object is given access to the routing tables of
the receiver state indicated in the message identifier.
The task of handling the notification is delegated to
this newly created object by invoking a method pro-
cess notification on it. If other control-flow
notifications related to the same composite service in-
stance are expected to arrive subsequently, the object is
temporarily added to the pool of objects so that it can
treat them as they arrive.

� If on the other hand the container has previous knowl-
edge about the composite service instance to which the
control-flow notification relates, the notification is del-
egated to the coordinator object that was created when
the first message related to that instance was received.
This object is retrieved from the pool of objects and the
methodprocess notification is invoked on this
object.

Each object in the pool is dedicated to a particular com-
posite service instance, and processes all the incoming
control-flow notifications related to that instance. By keep-
ing track of these notifications, and by having access to the
relevant preconditions tables, the object is able to detect
when should a given state of the composite service be en-
tered. When a coordinator object detects that a given state
of the composite service needs to be entered, it sends an
invocation message to the wrapper of this service. Once
the corresponding completion message is received, the ob-
ject polls the result parameters from the service’s wrapper,
generates one or several control-flow notification messages
(according to the information contained in the relevant post-
processings table), and dispatches these messages through
sockets. From there on, the coordinator object is no longer
needed, so it is removed from the pool and destroyed.

5. Related Work

Service composition is a very active area of research
and development [13, 3]. In this section, we focus on re-
search efforts that are closely related to our work, namely
eFLOW [4], CMI [12], CrossFlow [7], WISE [9], CPM [5],
and Mentor [10, 3].

CMI [12] and eFlow [4] are platforms for specifying, en-
acting, and monitoring composite services. In both of these
platforms, the underlying execution model is based on a
centralised process engine, responsible for scheduling, dis-
patching, and controlling the execution of all the instances
of a composite service. This is in contrast with SELF-
SERV’s peer-to-peer execution approach. Both eFLOW and
CMI support dynamic provider selection, although the con-
cept of community provided in SELF-SERV is not explic-
itly supported. The concept of community in SELF-SERV
stems from the concept of “push community” sketched in
WebBIS [2]. WebBIS however does not provide a means

for specifying a global view of a composite service.

CrossFlow and WISE are inter-organisational workflow
management platforms that focus on loosely coupled pro-
cesses. They consider important requirements of B2B ap-
plications such as dependability and external manageability.
However, the dynamic and peer-to-peer provisioning of ser-
vices is not explicitly supported.

CPM supports the execution of inter-organisational busi-
ness processes through peer-to-peer collaboration between
a set of workflow engines, each representing a player in
the overall process. A major difference between CPM and
SELF-SERV, is that in CPM, the number of messages ex-
changed between the players is not optimised. Instead, each
time that a process terminates a task, it must notify it to all
the other players. Hence, if a process involves N tasks and
M players, its execution requires the exchange of N � M
messages: far more than required. Moreover, CPM requires
that all the players participating in an inter-organisational
process deploy a full-fledged workflow engine to cater for
the coordination with the other players, whereas in SELF-
SERV the coordination between entities is handled through
lightweight schedulers (the state coordinators).

In Mentor, the problem addressed is that of distributing
the execution of workflows expressed as state and activity
charts. The idea is to partition the overall workflow speci-
fication into several sub-workflows, each encompassing all
the activities that are to be executed by a given entity within
an organisation. Mentor differs from SELF-SERV, in that
it assumes that the assignment of activities to entities is
known at workflow definition time: a restrictive assump-
tion in the context of service composition. Moreover, as in
CPM, Mentor imposes that each organisation participating
in a distributed workflow deploys a full-fledged execution
engine, capable of interpreting state and activity charts.

6. Conclusion

In this paper, we have presented the design and the im-
plementation of SELF-SERV, a framework for declarative
Web services composition using statecharts, where the re-
sulting services can be executed in a decentralized way
within a dynamic environment. The concept of communi-
ties is used to form alliances among a potentially large num-
ber of dynamic services. The underlying execution model
allows services participating in a composition, to collabo-
rate in a peer-to-peer fashion in order to ensure that the con-
trol and data flow dependencies expressed by the schema of
a composite service are respected. So far, we have imple-
mented a prototype that realises the execution of composite
service in a peer-to-peer manner. We illustrated the viability
of the proposed approach. On-going work includes the as-
sessment of the performance and scalability of SELF-SERV.

References

[1] B. Benatallah, M. Dumas, M. Fauvet, and H. Paik. Self-
coordinated and self-traced composite services with dy-
namic provider selection. Technical Report UNSW-CSE-
TR-0108, School of Computer Science & Engineering,
University of New South Wales, May 2001. Avail-
able at http://www.cse.unsw.edu.au/˜qsheng/
selfserv.ps.gz.

[2] B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elma-
garmid, and J. Beard. Composing and maintaining web-
based virtual enterprises. In Proc. of the 1st VLDB Work-
shop on Technologies for E-Services, Cairo, Egypt, Septem-
ber 2000.

[3] F. Casati, D. Georgakopoulos, and M. Shan editors. Special
Issue on E-Services. VLDB Journal, 24(1), 2001.

[4] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-
C. Shan. Adaptive and dynamic service composition in
eFlow. In Proc. of the Int. Conference on Advanced Infor-
mation Systems Engineering (CAiSE), Stockholm, Sweden,
June 2000. Springer Verlag.

[5] Q. Chen and M. Hsu. Inter-Enterprise Collaborative Busi-
ness Process Management. In Proc. of 17th Int. Conference
on Data Engineering (ICDE), pages 253–260, Heidelberg,
Germany, April 2001. IEEE Computer Society.

[6] J. Clark and S. DeRose. XML Path Language (XPATH) Ver-
sion 1.0.

[7] CrossFlow Project web page. http://www.
crossflow.org/.

[8] D. Harel and A. Naamad. The STATEMATE semantics of
statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293–333, October 1996.

[9] A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler. The
WISE approach to electronic commerce. Journal of Com-
puter Systems Science and Engineering, 15(5), September
2000.

[10] P. Muth, D. Wodtke, J. Weissenfels, A. Dittrich, and
G. Weikum. From centralized workflow specification to dis-
tributed workflow execution. Journal of Intelligent Informa-
tion Systems, 10(2), March 1998.

[11] P. O’Kelly. B2B Content and Process Integration. http:
//www.psgroup.com/, November 2000.

[12] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker.
Modeling and composing service-based and reference
process-based multi-enterprise processes. In Proc. of the Int.
Conference on Advanced Information Systems Engineering
(CAiSE), Stockholm, Sweden, June 2000. Springer Verlag.

[13] G. Weikum editor. Special issue on infrastructure for ad-
vanced e-services. IEEE Data Engineering Bulletin, 24(1),
March 2001.

[14] B. Yang and H. Garcia-Molina. Comparing Hybrid Peer-
to-Peer Systems. In Proc. of 27th Int. Conference on Very
Large Data Bases, Roma, Italy, 2001.

[15] L. Zeng, B. Benatallah, A. Ngu, and P. Nguyen. AgFlow:
Agent-based Cross-Enterprise Workflow Management Sys-
tem. In Proc. of 27th Int. Conference on Very Large Data
Bases, Roma, Italy, 2001.

