
Aggregate Quality of Service Computation
for Composite Services
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Abstract. This paper addresses the problem of computing the aggre-
gate QoS of a composite service given the QoS of the services participat-
ing in the composition. Previous solutions to this problem are restricted
to composite services with well-structured orchestration models. Yet, in
existing languages such as WS-BPEL and BPMN, orchestration mod-
els may be unstructured. This paper lifts this limitation by providing
equations to compute the aggregate QoS for general types of irreducible
unstructured regions in orchestration models. In conjunction with ex-
isting algorithms for decomposing business process models into single-
entry-single-exit regions, these equations allow us to cover a larger set of
orchestration models than existing QoS aggregation techniques.

1 Introduction

The ability to rapidly and effectively build new services by composing existing
services – a practice known as service composition – is one of the key pillars of
Service-Oriented Computing (SOC). Service orchestration is a popular approach
for service composition [16]. The idea of service orchestration is to assign the
responsibility for coordinating the execution of a composite service to a single
entity (the orchestrator). The orchestrator is responsible for handling incoming
requests for the composite service and to interact with the services participating
in the composition (the component services) in order to fulfill these requests. The
interactions between the orchestrator and the component services are governed
by a orchestration model that usually takes the form of a process model in
which each task represents either an internal action (e.g. a data transformation)
or an interaction with a component service. In practice, these process models are
specified using a specialized language such as the Business Process Execution
Language (WS-BPEL) or the Business Process Modeling Notation (BPMN).

One of the key issues in service composition is that of predicting and manag-
ing the Quality-of-Service (QoS) of composite services. If we assume that each
component service advertises its QoS, or that this QoS information can be de-
rived based on past observations (as detailed in [21] for example), we can estimate



the QoS of the composite service by aggregating the available information about
the component services’ QoS. This estimation can then be used to detect unde-
sirable QoS variance as early as possible [22, 3] and to trigger corrective actions
when such variance is detected [2, 5].

In this setting, this paper addresses the following problem: How to compute
the expected QoS of a composite service, given an orchestration specified in a
language such as WS-BPEL or BPMN, and a binding that assigns each task
in the orchestration to a concrete service? Following previous work, we assume
that QoS is captured in terms of numerical attributes (e.g. time, cost and repu-
tation) and that the QoS attribute values for each component service are given.
Gathering QoS attribute values for non-composite services is a separate problem
addressed in previous work [21].

Previous solutions to this problem [6, 10, 21, 11, 14] only work for compos-
ite services with well-structured orchestration models, that is, models described
as graphs made up of split and join points, such that for every split there is
a corresponding join such that the region of the graph between the split and
the join is a single-entry-single-exit region. Yet, both WS-BPEL and BPMN al-
low orchestration models to be unstructured. In the case of WS-BPEL, one can
obtain unstructured models by using so-called control links. These links allow
tasks to be connected in arbitrary topologies, with the restriction that links can-
not cross the boundaries of loop activities. Therefore, WS-BPEL orchestration
models may contain unstructured acyclic fragments that cannot be handled by
existing QoS aggregation methods. BPMN orchestration models are even less re-
stricted, and they may contain both acyclic and cyclic unstructured fragments.
The contribution of this paper is a generalized method for computing the QoS of
composite services that can handle unstructured acyclic fragments, and a larger
set of unstructured cyclic fragments than existing methods.

The rest of the paper is organized as follows. Section 2 introduces the orches-
tration model and the QoS model. Next, Section 3 describes the data structures
used to represent service orchestrations, while Section 4 outlines the QoS ag-
gregation method. Section 5 then discusses the implementation of the method
and its evaluation using models of various sizes and topologies. Finally, Section
6 discusses related work and Section 7 draws conclusions.

2 Background

In this section, we introduce an orchestration model covering the core features
of practical languages such as WS-BPEL and BPMN, and we discuss how QoS
values are attached to services.

2.1 Orchestration Model

We consider service compositions whose internal logic is specified in terms of
orchestration models. An orchestration model is essentially a process graph in
which the tasks are mapped to interactions with the client of the composite ser-
vice and with services drawn from a service repository (the component services).
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Fig. 1. A composite service

Definition 1 (Composite Service, Orchestration Model).
A composite service is a tuple (Orc, Binding), where Orc is a service orchestra-
tion model and Binding is a function that maps tasks in the orchestration model
to component services or to a predefined Client role. An orchestration model is
a directed graph consisting of edges (n1, p, n2) such that n1 and n2 are process
nodes (the source and the target of the edge) and p is the probability of taking
the edge assuming that the execution of the orchestration has reached node n1.

Process nodes are of two types: tasks and gateways. Tasks represent units of
work that are delegated to component services, while gateways represent control-
flow routing points. There are two types of gateways: XOR gateways represent
conditional branching (XOR-split) or merging of exclusive branches (XOR-join),
wheres AND gateways represent parallel forking (AND-split) or synchronization
points (AND-join). Split gateways are gateways with multiple outgoing edges,
while join gateways are gateways with multiple incoming edges.

The binding of a composite service is not necessarily a total function – some
tasks might not be bound to any service. A task in a composite service that is
not bound to a service is called an empty task.

We impose the following well-formedness conditions: (i) an orchestration
model has a single source node (i.e., a node with no incoming edges), and a
single sink node (i.e., a node with no outgoing edges), and every node is on a
path from the source to the sink; (ii) every task node has a single incoming and a
single outgoing edge, and every gateway is either a split or a join. If these latter
conditions are not satisfied, the orchestration model can be trivially restructured
into one that satisfies these conditions; (iii) the sum of the probabilities attached
to the outgoing edges of an XOR-split gateway is 1; (iv) an edge whose source is
not an XOR-split gateway has a probability of 1, meaning that such edges are
always traversed when their source node is reached.

As an illustrative example, we consider a simplified Payment composite ser-
vice depicted in Fig.1. The figure shows the orchestration model of the composite
service in BPMN. Tasks are represented as rounded rectangles while gateways
are represented as diamonds labelled with ’X’ (XOR) or ’+’ (AND). Not shown
in the figure is the binding of the composite service which maps each task to a
service (except tasks “Notify Customer” and “Reimburse Overpayment” which
consist of interactions with the customer).



2.2 Quality of Service Model

QoS computations on composite services are performed with respect to a fixed set
of QoS attributes {Attri | i ∈ 1..n} such as execution time, cost and reliability.
The assumption of a fixed set of attributes is made for presentation purposes and
does not constitute a limitation since we can make this set as large as required.

We further postulate the existence of a function that given a service, returns
its QoS. This function is initially given for pre-existing (non-composite) services.
Our goal is to lift this function so that it can also be applied to composite services.

Definition 2 (QoS Function). The QoS of a service s, denoted by QoS(s), is
a vector 〈v1, · · · , vn〉, where vi is the value of QoS attribute Attri for service s. By
extension, QoS is also defined over tasks as follows: QoS(T ) = QoS(binding(T )).

Numerous QoS attributes have been proposed in previous studies (e.g., [6, 8–
11, 21]). With respect to the method for computing QoS attribute values for
composite services, we classify existing QoS attributes into three categories:
1. Critical path The value of the QoS attribute for the composite service

is determined by the critical path of the orchestration. Examples include
execution time (longest critical path) and fault-tolerance (weakest path) [6].

2. Additive The value of the QoS attribute for the composite service is a sum
of the QoS values of the component services taking into account how often
each service is invoked. Examples include cost and carbon footprint.

3. Multiplication The QoS attribute value for the composite service is a prod-
uct of the QoS values of the component services taking into account how often
each service is invoked. Examples include reliability and availability [21].
Below, we only consider three representative attributes. For each service s,

QoS(s) = 〈T,C,R〉, where T,C and R stand for time, cost and reliability.

3 Anatomizing Service Orchestration

This section presents an approach for parsing, i.e., learning the structure, of
service compositions. Given a service orchestration, it gets decomposed into a
collection of orchestration components, each with clear structural characteris-
tics. The approach is founded on two techniques: a technique for structuring
orchestration models [18] and a technique for discovery of SESE components
in orchestration models [19, 20]. Sect.3.1 presents the overall approach. Sect.3.2
and Sect.3.3 discuss two special types of orchestration components: SEMELoop
and DAG components.

3.1 Orchestration Component

In order to analyze service orchestrations, we decompose them into orchestra-
tion components. An orchestration component is a subgraph of the orchestration
model with a single-entry and single-exit point (including individual tasks in
the orchestration, but also larger subgraphs). QoS is then computed indepen-
dently for each orchestration component. This section discusses the approach we
employ for identifying orchestration components in orchestrations.
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Fig. 2. (a) Service orchestration, (b) maximally-structured representation of (a)

The Refined Process Structure Tree (RPST) [19, 20] is a technique to parse
orchestration models into a tree of SESE components. A component in the RPST
contains all components at the lower level, whereas all components at a given
level are disjoint. Each component in the RPST belongs to one out of four classes:
A trivial (T) component consists of a single flow arc. A polygon (P) represents a
sequence of components. A bond (B) stands for a set of components that share
two common nodes. Any other component is a rigid (R) component.

Fig.2(a) exemplifies the RPST of the running example given in Fig.1. Note
that Fig.2(a) uses short-names for tasks (a, b, c, . . .), which appear next to each
task in Fig.1. In the figure, each dotted box represents a component in the
RPST that is formed by flow arcs that are inside or intersect the box. Names
of components hint at their class, e.g., P1 is a polygon component and R1 is a
rigid component. Each flow arc forms a trivial component. Trivial components,
as well as polygons that are composed of two flow arcs, are not visualized for
simplicity reasons.

Rigid components determine what makes a service orchestration unstruc-
tured. The service orchestration in Fig.2(a) contains three rigid components.
To maximize the amount of structural information derived at the parsing step,
we employ the technique from [18]. The technique allows to derive maximally-
structured representation of a service orchestration under the fully concurrent
bisimulation equivalence notion [4]. By employing the technique from [18] to the
model in Fig.2(a), one obtains a service orchestration that is given in Fig.2(b);
rigid component R2 gets an equivalent representation that consists of bond com-
ponents B1 and B2. Importantly, at the stage of maximally-structured repre-
sentation we are able to define syntax of an orchestration component as follows.

Definition 3 (Syntax of an Orchestration Component).
Let P be the range of real numbers from 0.0 to 1.0.

ServiceComponent(SC) ::= τ | Service | C+ | C−

OrchestrationElement(OE) ::= SC | AND | XOR
StructuredComponent(C+) ::= SEQ([SC ]) | CHC ({P × SC}) |

| PAR({SC}) | RPT (SC × P)
UnstructuredComponent(C−) ::= SEMELoop([SC × P × SC ]) |

| DAG({OE × P ×OE})
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Fig. 3. Structured orchestration components

We distinguish the following types of orchestration components: empty (τ)
tasks, regular tasks (tasks bound to services), structured orchestration compo-
nents, and unstructured orchestration components. Fig.3 exemplifies four types
of structured orchestration components: sequence (SEQ), choice (CHC), paral-
lel (PAR), and repeat (RPT). A sequence component is a list of orchestration
components. A choice component is a set of orchestration components along
with probabilities for executing each orchestration component. A parallel com-
ponent is a set of orchestration components. Finally, a repeat component is an
orchestration component along with the probability of repeating it. In Fig.2(b),
bond B1 is a choice component, bond B2 is a parallel component, and polygon
P2 = [B1, B2] is a sequence component.

3.2 Single-Entry-Multi-Exit Loop Component

In the context of flowcharts, it has been shown that loops with multiple entry
points can be restructured into loops with single entry point by means of node
duplication [15]. However, subsequent transformation of loops with multiple exit
points into loops with single exit point requires introduction of variables and
branching conditions on these variables. In these cases, it is not straightforward
to abstract branching conditions as a branching probability. Therefore, we explic-
itly deal with single-entry-multi-exit loop components (SEMELoop components)
that capture single entry point loop topologies. Fig.4(a) shows a 1-Entry-2-Exit
loop component, whereas Fig.4(b) gives a general topology of a SEMELoop com-
ponent of size n ∈ N, n ≥ 2.

We treat a SEMELoop component as a list of tuples (SCi, pi, eSCi), where
pi is the probability of proceeding with loop execution after an accomplishment
of an orchestration component SCi and eSCi is an orchestration component
that is executed if the loop is left after an accomplishment of SCi. For instance,
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Fig. 4. SEMELoop components



a SEMELoop component that is given in Fig.4(a) is represented by the list
[(SC1, p1, eSC1), (SC2, p2, eSC2), (SC3, 1.0, τ)]. Note that the last element in the
list shows that the loop component cannot be left after SC3 (the probability of
staying in the loop is equal to 1.0) and, hence, no orchestration component
can be executed after leaving the loop after SC3 (denoted by a silent service
τ). Observe that R1, both in Fig.2(a) and in Fig.2(b), is a 1-Entry-2-Exit loop
component. Loop topologies that cannot be classified as SEMELoop components
within service orchestrations are left for future work.

3.3 DAG Component

Acyclic rigids that are present in maximally-structured representations of service
orchestrations are classified as irreducible acyclic components, or DAG compo-
nents. Fig.5 exemplifies DAG components: Fig.5(a) shows the simplest DAG
component—a well-known N-structure [12], whereas Fig.5(b) visualizes a DAG
component that is a composition of N-structures. Observe that rigid R3, both
in Fig.2(a) and in Fig.2(b), is a DAG component.

SC1

SC2

SC3

SC4

a1

a2

a3

a4

(a) N-structure

SC1

SC3

a1
SC2 SC4

SC5

SC6

SC7

a2

a3 a4

a5

a6

(b) Composition of N-structures

Fig. 5. DAG components

We treat a DAG component as a set of tuples (OE1, p, OE2), where OE1

and OE2 are orchestration elements, i.e., either an orchestration component or
a gateway, and p is the probability that OE2 will be executed after accomplish-
ment of OE1. For instance, the N-structure in Fig.5(a) is described by the set
{(a1, 1.0, SC1), (a1, 1.0, SC2), (SC1, 1.0, a2), (SC2, 1.0, a3), (a2, 1.0, a3), (a2, 1.0,
SC3), (a3, 1.0, SC4), (SC3, 1.0, a4), (SC4, 1.0, a4)}.

DAG components are analyzed by employing the notion of a run, which is
also referred to as instance subgraph in [7, 17]. A run is a subgraph of a DAG
component that can be interpreted as its concurrent execution along with the
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probability to observe this run. The notion which is relevant to runs is that of
configuration. A configuration is a set of tuples (OE1, p, OE2), where OE1 is a
XOR-split gateway,OE2 is an orchestration element, and p is the probability that
OE2 will be executed after visiting OE1. Moreover, a configuration must define a
run. For instance, {(x1, p11, x2), (x2, p21, SC2)} and {(x1, p11, x2), (x2, p22, SC3)}
are configurations of the DAG in Fig.6(a).

Individual runs allow us to treat each DAG component as a choice compo-
nent. A choice component that corresponds to a DAG component is a set of runs
of the DAG, each together with the probability to observe the run. We use Alg.1
to compute all configurations of a process graph.

Algorithm 1: Compute Configurations of a DAG Component
Input: G—a DAG component
Output: Θ—the set of configurations of G
X = {x1, x2, . . . , xn} // XOR-split gateways of G

Θ =
Q|X|

i=1 out(xi) // Cartesian product of outgoing flow arcs

foreach θ = (e1, e2, . . . , en) ∈ Θ do
foreach ei, ej ∈ set(θ) do

if ∃ path : src(ei), ej ∈ path ∧ tgt(ei) /∈ path then θ = θ − ej

Remove duplicates from Θ
return Θ

Example 1. We exemplify the steps of Alg.1 for the DAG component in Fig.6(a):
1. X = {x1, x2, x3} is the set of XOR-split gateways, with outgoing flow arcs

given as: out(x1) = {e1, e4}, out(x2) = {e2, e3}, out(x3) = {e5, e6}.
2. Θ =

∏3
i=1 out(xi) = {(e1, e2, e5), (e1, e2, e6), (e1, e3, e5), (e1, e3, e6), (e4, e5, e2),

(e4, e5, e3), (e4, e6, e2), (e4, e6, e3)}, where the underlining elements will be
removed in the next step.

3. Θ = {(e1, e2), (e1, e2), (e1, e3), (e1, e3), (e4, e5), (e4, e5), (e4, e6), (e4, e6)}.
4. Θ = {(e1, e2), (e1, e3), (e4, e5), (e4, e6)}, after removing duplicate entries.

Algorithm 2: Compute Runs of a DAG Component
Input: G—a DAG component, Θ— the set of configurations of G
Output: Γ—the set of runs of G
Γ = {} // Initialize Γ as empty set

foreach θ ∈ Θ do Compute corresponding run for θ
γ = G // Initialize the run

q = 1.0 // Initialize the probability of observing the run

foreach (x, p,m) ∈ θ do
foreach (x, h, n) ∈ γ ∧ n 6= m do γ = γ − (x, h, n)

while ∃(y, k, z) ∈ γ : @ (y′, k′, y) ∈ γ do γ = γ − (y, k, z)
foreach XOR-split gateway x ∈ γ do γ = γ − (x, p, y) + (x.precede, 1.0, y)
q = q × p // Update the probability of observing the run

Γ = Γ ∪ (q, γ)
return Γ

Given a DAG component and the set of its configurations, Alg.2 computes the set
of its runs. Consequently, one can construct a choice component that corresponds
to the original DAG component. A choice component is obtained by introducing



a single XOR-split gateway which leads to entry of each run with the probability
that reflects the chance to observe the run. Accordingly, exits of all runs must
be merged by a single XOR-join gateway. A choice component that corresponds
to the DAG component in Fig.6(a) is given in Fig.6(b).

4 Quality of Service Aggregation

In this section we discuss the aggregation of QoS of orchestration components.
Sect.4.1 proposes equations for computing QoS of service orchestration com-
ponents, while Sect.4.2 proposes an algorithm that combines these component-
specific equations into comprehensive approach for computing QoS.

4.1 Aggregation of Orchestration Component

Structured Component The QoS of structured orchestration components is
computed based on the following equations, which are taken from [6].

QoS(SEQ[SCi]) = 〈
∑

TSCi
,

∑
CSCi

,
∏

RSCi
〉

QoS(CHC{(pi, SCi)}) = 〈
∑

piTSCi ,
∑

piCSCi ,
∑

piRSCi〉

QoS(RPT (SC, p) = 〈(1− p)−1TSC , (1− p)−1CSC , R
(1−p)−1

SC 〉

QoS(PAR{SCi}) = 〈max{TSCi},
∑

CSCi ,
∏

RSCi〉 (1)

For a sequence SEQ[SCi] the time and cost are computed by summing the
time and cost of every service in the composition. The reliability of sequence
SEQ[SCi] follows a multiplicative rule and is the product of the reliability of
every service in the composition. In the case of a choice CHC{(pi, SCi)}, time,
cost and reliability of each branch needs to be adjusted with the probability
of taking each individual branch. In a parallel composition PAR({SCi}) the
overall execution time corresponds to the longest-lasting service execution time.
The cost and reliability of a parallel composition follows a summation and prod-
uct relation, respectively. In the case of a repeat composition RPT (SC, p), the
computation considers the fact that SC may be executed one or more times.
Following the well-known power series relation, SC is expected to be executed
(1−p)−1 times4, where p is the probability of staying in the loop. The functions
to compute time, cost and reliability for repeat components take this factor into
account.

Single-Entry-Multi-Exit Loop Component As for repeat components, in
SEMELoop components a collection of orchestration components is executed one
or more times. However, for a given component the expected number depends
on its position in the loop.

4 Power series: p0 + p1 + ...+ pn =
P∞

i=0 p
i = (1− p)−1



Let L = SEMELoop[(SCi, pi, eSCi)], i ∈ [1..n + 1], be a SEMELoop and
{αi} = {SCi} ∪ {eSCi} be an orchestration component of L. Then, QoS of L
can be computed as follows:

〈
n+1∑
i=1

avg(αi) • Tαi
,

n+1∑
i=1

avg(αi) • Cαi
,

n+1∏
i=1

R
avg(SCi)
SCi

×
n∑
i=1

p(eSCi) •ReSCi
〉 (2)

Here, avg(αi) stands for the average number of times that αi gets executed in
the loop, p(SCi) stands for the probability of exiting the loop along orchestration
component SCi, and avg(SCi) = p(SCi) for each service SCi.

For each service αi, avg(αi) can be computed as follows:

avg(SC1) = 1 + ρn + ρ2
n + · · · =

∞∑
i=0

ρin = (1− ρn)−1

avg(SCk) = ρk−1 + ρk−1ρn + ρk−1ρ
2
n + · · · = ρk−1

∞∑
i=0

ρin = ρk−1(1− ρn)−1

avg(eSCk) = p(eSCk) = ρk−1(1− pk) + ρk−1(1− pk)ρn + ρk−1(1− pk)ρ2
n + · · ·

= (1− pk)ρk−1

∞∑
i=0

ρin = (1− pk)ρk−1(1− ρn)−1

Wherein, ρk =
∏k
i=1 pi, k ∈ [1..n] and ρ0 = 1.

Example 2. The average number of times of each orchestration component in
Fig.4(a) is computed as follows:

avg(SC1) =
∑∞
i=0(p1p2)i = (1− p1p2)−1

avg(SC2) = p1

∑∞
i=0(p1p2)i = p1(1− p1p2)−1

avg(SC3) = p1p2

∑∞
i=0(p1p2)i = p1p2(1− p1p2)−1

p(eSC1) = (1− p1)
∑∞
i=0(p1p2)i = (1− p1)(1− p1p2)−1

p(eSC2) = p1(1− p2)
∑∞
i=0(p1p2)i = p1(1− p2)(1− p1p2)−1

DAG Component A DAG orchestration component can be transformed into
an equivalent choice component as explained in Sect.3.3. Each of the branches
in this choice component corresponds to a run of the DAG component. The QoS
values calculated for individual runs are then aggregated taking into account the
probability of each run as follows:

〈
∑

pγk
Tγk

,
∑

pγk
Cγk

,
∑

pγk
Rγk
〉 (3)

For a given run γk, the execution time can be computed with the well-known
critical path method, i.e. compute the longest duration path in the run. Mean-
while, the cost of a run is the sum of the costs of the orchestration components
in the run, and the reliability of a run is the product of the reliabilities of the
orchestration components in the run.

QoS of run γ can be computed as follows:

〈CriticalPath(Tpathi),
∑

CSCi ,
∏

RSCi〉 (4)



Example 3. The QoS of the DAG component shown in Fig.5(a) is the following:
〈max{TSC1 +max{TSC3 , TSC4}, TSC2 + TSC4},

∑
CSCi

,
∏
RSCi

〉.

4.2 QoS of Composite Services

The overall QoS for a composite service is computed by aggregating the QoS of
its orchestration components according to their structure and nesting relation.
To this end, the RPST of the composite service is traversed in pre-order, i.e.,
computing the aggregate QoS from leaf nodes up to the root node.

Alg. 3 details the procedure of computing QoS for a service orchestration.

Algorithm 3: Compute QoS for Service Orchestration: ComputeQoS(SC)
Input: SC — node of the RPST
Output: QoS — QoS of SC
if SC is an atomic service then return 〈TSC , CSC , RSC〉
foreach SCi ∈ ChildrenOf(SC) do ComputeQoS(SCi)
if SC is a structured orchestration component then

Compute QoS(SC) as according to Formula 1
if SC is a SEMELoop component then

Compute QoS(SC) according to Formula 2
if SC is a DAG component then

Compute configurations Θ of SC according to Alg. 1
foreach θ ∈ Θ do

Compute runs γ for θ according to Alg. 2
Compute QoS(γ) according to Formula 4

Compute QoS(SC) according to Formula 3
return QoS

Example 4. To exemplify the Alg.3, we compute QoS for the composite service
that is proposed in Fig.1; the computation is based on its maximally-structured
representation which is given in Fig.2(b).

QoS(B1) = 〈2 ·0.6+1 ·0.4, 1 ·0.6+2 ·0.4, 0.95 ·0.6+0.98 ·0.4〉 = 〈1.6, 1.4, 0.962〉;
QoS(B2) = 〈max{2, 1}, 3 + 1, 0.97 · 0.99〉 = 〈2, 4, 0.9603〉;
QoS(P2) = 〈1.6 + 2, 1.4 + 4, 0.962 · 0.9238〉 = 〈3.6, 5.4, 0.8887〉;
QoS(P3) = QoS(B2) = 〈max{2 + 3, 2 + 4, 1 + 4}, 3 + 1 + 1 + 2, 0.96 · 0.99 · 0.93 ·
0.94〉 = 〈6, 7, 0.8308〉;

avg(P2) = 1/(1− 0.8 · 0.6) = 1.9231;
avg(j) = p(j) = (1− 0.8)/(1− 0.8 · 0.6) = 0.3846;
avg(e) = 0.8/(1− 0.8 · 0.6) = 1.5385;
avg(k) = p(k) = 0.8 · (1− 0.6)/(1− 0.8 · 0.6) = 0.6154;
avg(P3) = 0.6 · 0.8/(1− 0.8 · 0.6) = 0.9231;

QoS(P1) = QoS(R1) = 〈3.6 · 1.9231 + 3 · 0.3846 + 3 · 1.5385 + 4 · 0.6154 + 6 ·
0.9231, 5.4 · 1.9231 + 4 · 0.3846 + 2 · 1.5385 + 5 · 0.6154 + 7 · 0.9231, 0.88871.9231 ·
0.971.5385 ·0.800.6154 ·(0.95·0.3846+0.8308·0.9231)〉 = 〈20.6927, 24.5388, 0.7506〉.



5 Implementation and Evaluation

We have implemented the proposed QoS aggregation method in a tool that takes
as input service orchestrations described in BPMN5 and computes the aggregate
value for each QoS attribute. The QoS values for each service and the branching
probabilities of gateways in the BPMN model are defined in separate (text) files.
The tool is distributed as an extension of the BPStruct tool and is available at:
http://sep.cs.ut.ee/Main/Bpstruct.

Below we present an evaluation of the scalability of the proposed QoS aggre-
gation technique using the implemented tool.

5.1 Dataset

We collected a dataset consisting of 28 BPMN models from the following sources:
8 models taken from the public Oryx repository6, 8 models taken from BPMN-
to-BPEL case study of the Grabats’2009 graph transformation challenge7, and
12 models taken from a repository of process models for local government au-
thorities in China collected by Fudan University. We had more models available
from each of these sources, but we discarded incomplete/incorrect models, and
models containing OR gateways, complex gateways, error events and boundary
events, which are out of the scope of this paper. The size of models in the dataset
(number of process nodes) range from 5 to 32, with an average of 17.5 nodes.
Some of these models were larger, but they were structured into a top-level pro-
cess with subprocess invocations. In this case, the process and its subprocesses
are handled separately. The models cover all types of components: 72 SEQ com-
ponents, 19 CHC components, 24 PAR components, 20 SESE Loop components,
2 DAG components, and 4 SEME Loop components. Links to all the models in
the dataset are included in the tool distribution Web page.

We assigned random probability values to each XOR-split branch of each
model (using a uniform distribution). We also assigned random QoS values to
each service (for time, cost and reliability).

5.2 Results

We used the tool to compute the aggregate QoS of each of the models in the
dataset and measured execution times (in milliseconds). All tests were performed
on a laptop with a dual core Intel processor, 2.53 GHz, 3 GB memory, running
Microsoft Vista and SUN Java Virtual Machine version 1.6 (with 512MB of
allocated memory). In order to eliminate load time from the measures, each
test was executed five times, and we recorded the average execution time of the
second to fifth run. The measured execution time included the time required to
compute the RPST of a model and the time to calculate the QoS. The resulting
histogram of execution times is plotted in Figure 7. The figure shows that the
5 Specifically, the tool accepts BPMN models exported from Oryx (http://
oryx-project.org/)

6 http://oryx-editor.org/
7 http://fots.ua.ac.be/events/grabats2008/cases.html



 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 5  10  15  20  25  30  35

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of nodes

Fig. 7. Execution times for QoS aggregation

QoS aggregation technique can deal with models of realistic size and complexity
and that it scales quasi-linearly.

6 Related Work

Several previous studies have addressed the problem of aggregating QoS in terms
of different structures in the orchestration model. For example, Jaeger et al [10,
11] discuss the QoS aggregation problem for process models consisting of se-
quence blocks, conditional blocks and parallel blocks. The approach does not
deal with loops. In order to cope with the problem of binding and re-binding for
composite services, Canfora et al [5] propose QoS aggregation functions for four
constructs: sequence, switch, flow and loop, while Mukherjee et al [14] propose
a model to estimate QoS of an executable BPEL process definition, but without
considering unstructured BPEL activities (i.e. BPEL “flow” activities with con-
trol links). Cardoso et al [6] proposed a Stochastic Workflow Reduction (SWR)
algorithm which takes as input a process graph and computes the expected QoS
by repeatedly applying a set of reduction rules for sequential, parallel, condi-
tional and simple loop blocks. Finally Hwang et al [8, 9] represent composite
services using a tree structure and compute the aggregate QoS of composite
services recursively by traversing the tree. This tree has some similarities with
the RPST structure that we use in our proposal, but the trees in the work of
Hwang et al do not contain any unstructured blocks. In summary, all of the
above approaches are related to ours, but all of them deal with well-structured
orchestration models only.

The problem of computing the QoS of composite services is related to that
of QoS-aware service composition [1, 13, 21]. In QoS-aware service composition,
the input is an orchestration model and a set of service candidates for each task
in the orchestration model. The goal is to find a binding that optimizes a given
objective function while satisfying a given set of constraints. Zeng et al [21] study
a local and a global optimization approach to this problem using Simple Additive
Weighting (SAW) and Integer Programming (IP), respectively. Meanwhile, Liu



et al [13] propose a dynamic QoS computation model for web services selection
in order to deal with runtime QoS selection. Like [21], the authors construct
a QoS matrix and compute QoS of a composite service via normalization and
then multiplication with weights given by a user. A combination of the local
optimization and the global optimization approaches is studied in Alrifai et al [1].
This latter work considers three types of QoS aggregation functions: summation,
multiplication and minimum relation. The classification of QoS attributes that
we use is inspired by this latter work.

The above studies address a more complex problem, in the sense that the
binding is not given, but instead needs to be computed based on the set of
candidate services for each task. On the other hand, the above work also suffer
from an inability to deal with unstructured components. In addition, the global
optimization approach proposed by Zeng et al [21] cannot deal with loops (not
even structured loops). Instead, it is assumed that loops are expanded by putting
an upper-bound to the number of times a loop is executed and unfolding the
loop into a sequential structure.

7 Conclusion

In this paper, we proposed a method for computing the QoS of composite
services. Unlike previous work, the proposed method can deal with orchestra-
tion models containing unstructured components, specifically models containing
single-entry-multi-exit loop (SEMELoop) and DAG components. The proposed
method has been implemented as a tool and tested with a collection of models
taken from multiple sources.

Our future work includes calculating QoS for composite services with more
complex types of loops (e.g., overlapping loops) and extending the proposed
method to address the problem of QoS-aware service composition.
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