
Squeezing out the Cloud via
Profit-Maximizing Resource Allocation Policies

Michele Mazzucco, Martti Vasar, and Marlon Dumas

University of Tartu
Estonia

Abstract—We study the problem of maximizing the
average hourly profit earned by a Software-as-a-Service
(SaaS) provider who runs a software service on behalf of
a customer using servers rented from an Infrastructure-
as-a-Service (IaaS) provider. The SaaS provider earns
a fee per successful transaction and incurs costs pro-
portional to the number of server-hours it uses. A
number of resource allocation policies for this or similar
problems have been proposed in previous work. How-
ever, to the best of our knowledge, these policies have
not been comparatively evaluated in a cloud environ-
ment. This paper reports on an empirical evaluation
of three policies using a replica of Wikipedia deployed
on the Amazon EC2 cloud. Experimental results show
that a policy based on a solution to an optimization
problem derived from the SaaS provider’s utility func-
tion outperforms well-known heuristics that have been
proposed for similar problems. It is also shown that
all three policies outperform a “reactive” allocation
approach based on Amazon’s auto-scaling feature.

I. Introduction
Two key pillars of cloud computing are the notions of

elasticity, wherein resources are available in any amount
and at any time, and pay-per-use, wherein users are
charged only for the resources they consume. In an ide-
alized conception of these notions, cloud computing con-
sumers are able to acquire exactly the amount of com-
puting resources they need and add or release resources
instantly in order to cope with changes in workload.
However, computing resources (specifically virtual servers)
require some setup time (e.g., 5–10 minutes), resources are
acquired in discrete units (e.g. one server of a given capac-
ity), and billing is done for discrete time intervals (e.g., one
hour). As a result, cloud consumers must carefully balance
the tradeoff between their cost-reduction objective, which
pushes them to acquire a minimum number of servers, and
the imperative of dealing with varying workloads, which
requires them to keep some “slack”.

In this setting, this paper considers the case of a
Software-as-a-Service (SaaS) provider who runs a service
on behalf of a customer using resources provided by an
Infrastructure-as-a-Service (IaaS) provider. In line with
the pay-per-use model, the customer pays a fixed charge
to the SaaS provider per successful transaction, subject to
a Service Level Agreement (SLA) specifying performance
objectives. Meanwhile, the SaaS provider incurs a cost

proportional to the number of server-hours used.
As any economic actor, the SaaS provider seeks to max-

imize its profit, that is, the total fees charged by the SaaS
provider to its customer minus the cost of renting servers
from the IaaS provider and, when applicable, the penalties
paid by the SaaS provider for violating SLA objectives.
Thus, a key question faced by the SaaS provider is how to
maximize profit under varying workload and knowing that
additional resources take some time to become operational
and they are acquired for discrete time intervals.

This question can be reduced to a utility-driven resource
allocation problem, that is, the problem of determining
the optimal amount of resources (servers in this case) to
be allocated during a given epoch in order to maximize
a given utility function (the profit function in this case).
To address this problem, we consider three resource al-
location policies aimed at maximizing the mean profit
that the SaaS provider earns per hour. The first policy
is obtained by solving an optimization problem derived
from the utility function. The other two correspond to
heuristics that have been proposed for similar problems
in previous work. To make them operational, the policies
are coupled with a model to forecast the workload for
the upcoming epoch and methods to estimate service
rate and throughput under a given configuration. The
operationalized policies are comparatively evaluated based
on a replica of Wikipedia deployed on the Amazon cloud.

The paper is structured as follows. Section II introduces
the adopted system model and spells out the assump-
tions. Section III presents the workload, service rate and
throughput estimation methods. Section IV introduces the
resource allocation policies. Section V presents the exper-
imental evaluation. Finally, Section VI discusses related
work while Section VII outlines directions for future work.

II. System Model and Utility Function
We consider a SaaS provider that at any given point in

time has n virtual servers available to deal with incoming
requests for a given service (jobs, from now on). The
virtual servers are assumed to be homogeneous in terms
of their performance. This assumption can be called into
question for two reasons. Firstly, cloud providers such as
Amazon EC2 offer different types of virtual servers (e.g.,
small, large, XL) with different capacities. However, as



far as these differences go, the assumption of homogeneity
can be relaxed by means of a normalization function [1].
Secondly, previous studies on the Amazon EC2 cloud have
out into evidence non-negligible differences in terms of
CPU and I/O performance between virtual servers of the
same type (e.g. small instances) [2]. Moreover, a given
virtual server can behave differently over time, for example
due to startup/shutdown of other virtual servers on the
same physical server1. Such differences are unpredictable
and ultimately, all we can assume is a certain “minimum”
level of capacity per virtual server. Accordingly, for the
purpose of constructing a system model, the worst case
scenario is assumed, that is, a homogeneous cluster of
servers, each providing a fixed (guaranteed) capacity that
is determined empirically as discussed later.

Every processed job generates a fixed revenue, c. This
revenue might for example come from advertisements or
from sales (in case of online merchants, such as Amazon).
In any case, it is assumed that the c is given. An incoming
job that finds all the servers busy is blocked and lost (no
charge is received by the SaaS provider) without affecting
future arrivals. For each running server, the SaaS provider
pays a fee of $d per hour to an IaaS provider. The IaaS
provider bills per server-hour, regardless of whether the
server is used for an entire hour or part thereof. Given the
above, the average profit P earned by the SaaS provider
per unit time is:

P = cT − dn, (1)

where T is the system’s throughput.
The problem of the SaaS provider is to determine how

many servers n to acquire during a given time period. This
problem is addressed by means of a resource allocation
policy that seeks to optimize the profit. The resource
allocation policy is invoked periodically and each time it is
invoked, it returns a value of n. The SaaS provider acquires
the number of servers calculated by the policy. This implies
acquiring additional servers or releasing some servers. We
assume that data is replicated, hence releasing servers does
not affect service availability.

During the intervals between consecutive policy invo-
cations, the number of running servers remains constant.
Those intervals, herein referred to as ‘epochs’, are used to
collect traffic statistics for the next policy invocation.

Since lost jobs do not generate revenue, the policy needs
to balance the tradeoff between service availability and n.
In the extreme scenario where, on aggregate, the charge
per job is smaller than the cost paid for running the job,
it is preferable not to use any server. Conversely, if the
charge per job is orders of magnitude higher than the cost
paid for running the job, the policy should provision the
system for the expected peak workload so as to serve all
jobs. The challenge is to design a policy that adapts to all
scenarios in-between these two extremes.

1http://www.infoq.com/news/2010/01/ec2-oversubscribed

The proposed system model does not distinguish cached
and uncached jobs. A cached job is treated as any job
since it requires a database access at least and it generates
revenue as other jobs.
Extensions One could envisage alternative utility func-
tions. For example, one might want to introduce a penalty
for denial of service, s. In that case, Eq. (1) would be
cT − dn − (λ − T )s where λ is the arrival rate, and thus
(λ − T ) represents the rate at which traffic is rejected.
As we shall see later, it is perhaps worth stressing that
one can discourage denial of service even with Eq. (1)
by properly tuning the value of c. Also, if the provider
incurs a cost of c1 for adding a server and a cost of c2
for releasing a node, then the objective function would
become cT−dn−c1n

+−c2n
−, where n+ and n− represent

the number of added and removed servers. None of those
changes would alter the analysis, although they might alter
the optimal solution. In the rest of this paper we will focus
on utility function (1).

III. Throughput Estimation
The only unknown in function (1) is the throughput,

which in turns necessitates the solution of a queueing
model. No assumption is made about the nature of the
arrival and service time processes; therefore, for a certain
traffic intensity ρ = λ/µ, with λ and µ being the arrival
and service rate respectively, and for a fixed number of
servers n (i.e., the number of virtual machines), we model
the number of jobs inside the system as a G/GI/n/n
queue. Due to the fact that excess traffic is discarded,
queues with finite buffer are always stable. It is therefore
important to estimate how often clients are expected to
experience a denial of service. Since no exact solution
exists for the G/GI/n/n queue we employ Hayward’s
approximation (e.g., see [3]) to estimate the blocking
probability pn, as follows:

pn = B
(n
z
,
ρ

z

)
, (2)

where B(·) stands for the Erlang-B formula [4] and z is
the asymptotic peakedness of the arrival process, i.e., the
variance divided by the mean of the steady-state number
of busy servers in a G/GI/∞ queue with the same arrival
and service rate processes. The peakedness factor can be
estimated as

z = 1 + (ca2 − 1)η, (3)

where ca2 is the squared coefficient of variation (i.e.,
variance over the square of the mean) of the interarrival
intervals and η is defined as

η = µ

∫ ∞
0

[1−G(t)]2dt, (4)

and G(t) is the cumulative distribution function (CDF) of
the service time distribution with mean 1/µ and variance
σ2
s . When ca2 = 1 the arrival process is Poisson, and thus



Equation (2) is exact. When ca2 6= 1 and the service times
are exponentially distributed z is equal to 1 + (ca2− 1)/2,
while when both the interarrival intervals and service
times follow a general distribution, we approximate the
distribution of G(t) as the distribution of N(1/µ, σ2

s).
Having estimated the blocking probability, the average

number of jobs entering the system (and completing ser-
vice) per unit time is

T = λ[1− pn]. (5)

If adding/releasing servers is not instantaneous, the
formula for estimating the throughput is more compli-
cated. Suppose that each configuration interval lasts k
time units (e.g., 60 minutes), while bootstrapping new
servers requires on average tU unit times (this includes
not only acquiring the VM from the IaaS provider, but
also operations such as updating the configuration of the
infrastructure, synchronizing the state of the system, etc.).
The additional n+ servers are added at the billing instant
(see Figure 1(a)), while the average throughput for the
next configuration interval can be estimated as

T+ = tU
k
λ[1−B(n, ρ)] + k − tU

k
λ[1−B(n+ n+, ρ)], (6)

where the first part of the above expression is the through-
put of the system during the bootstrap of the n+ extra
nodes, while the cost is d(n− n+).

Charge point

Allocation
point

ttU
n+ servers become available

n+ servers are acquired

(a)

Charge point

Allocation
point

t
tD

n- servers are released

Release completed

(b)

Figure 1. (a) Adding and (b) removing servers.

If powering down servers requires at most tD time units
(including VM termination but also system configuration
update), the allocation decision is taken tD time units
before the charge instant and n− servers are removed
immediately, see Figure 1(b). Thus the average throughput
for the current configuration interval reduces to

T− = k − tD
k

λ[1−B(n, ρ)] + tD
k
λ[1−B(n− n−, ρ)], (7)

where the second part of the equation is the throughput
of the system while n− servers are being released. The
throughput for the next interval is simply λ[1 − B(n −

n−, ρ)], while the cost is d(n−n−). Note that when releas-
ing servers the worst-case scenario should be considered for
tD, otherwise one might be charged for one full extra hour.
Parameters Estimation

It is assumed that up to m jobs can be processed in
parallel on each server without significant interference [5],
[6], [7], with such a limit being dictated by the number of
available threads or processes2. Accordingly, in this study
we estimate the service rate as the average throughput
achieved for a certain value of m. A number of exper-
iments discussing the model calibration are reported in
Section V-B.

The second parameter required to estimate the blocking
probability is the arrival rate, λ. Unfortunately this value
can be rarely estimated with absolute accuracy. For exam-
ple Figure 2 shows the arrival rate of the ClarkNet work-
load3 with one minute accuracy over a two weeks period.
As one can see, the arrival rate exhibits a general trend,
with daily and weekly patterns, as well as unexpected
traffic spikes, which are hard to predict. An analysis of
Wikipedia logs revealed similar patterns [8].

 0

 100

 200

 300

 400

 500

 600

 0  2  4  6  8  10  12  14

A
rr

. 
ra

te
 [

re
q
/s

ec
]

Time [day]

Figure 2. ClarkNet workload (scaled version), one minute granular-
ity. The red part (day 10) was used to evaluate the performance of
our approach.

Different prediction algorithms exist to deal with time-
varying user demand, which differ in complexity and
accuracy [9], [10]. In this study, we employ a modified Holt-
Winters’ algorithm with multiplicative effects for both sea-
sonal and error components, specifically the ETS(M,A,M)
algorithm [10] as implemented by the R command ets(ts,
model="MAM", damped=F).
Finally, Equations (3) and (4) necessitate the squared

coefficient of variations of interarrival intervals and service
times. Those values can be easily estimated from the
collected statistics.

IV. Policies
This section introduces three allocation policies, starting

with a policy based on the solution of the utility function
and moving on to profit-maximization heuristics proposed
in previous work.

2http://httpd.apache.org/docs/2.0/mod/prefork.html
3http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html



A. Optimal Policy
Once the parameters introduced in Section III have been

estimated the expressions (2) and (5) enable the utility
function (1) to be computed efficiently. This allows us to
determine the optimal number of servers to allocate, by
computing the profit for different values of n and finding
the optimum value. When computing the utility function
for different values of n, it becomes clear that P is a
unimodal function with respect to the number of servers,
i.e., it has a single maximum (Eq. (5) is convex for n > 1).
N.B. While the ‘Optimal’ policy acknowledges the time
tU necessary to launch new servers, it deliberately ignores
the time tD required to terminate unnecessary nodes
because the introduction of a short, but non-zero power-
down interval has little effect on the ‘Optimal’ policy.
The rationale behind that decision is that servers are
released when they are not needed anymore, so the reject
probability of the last tD unit times of the current interval
is not likely to be affected.

a) Sensitivity analysis: Next, we assess how the ‘Op-
timal’ policy reacts to changes in the interval required
to acquire new servers, tU , current number of servers, n,
and charge minus cost per job, (c− d/µ). In the following
numerical experiments the arrival rate is fixed at λ = 300
jobs/sec., the service rate is µ = 28.571 jobs/sec., while
each configuration interval lasts one hour.

First we study how the optimal profit and the number
of added servers, n+, vary when tU increases from 0 to 50
minutes. In this experiment the number of servers running
at the allocation point is held fix at n = 15. As one
might expect, an increase of tU results in a decrease of
the number of extra servers as well as the profit. In fact,
Figure 3(a) shows that n+ decreases in a step-wise manner,
while P decreases in a linear manner.
Next, we study how the revenue and number of extra

servers are affected by the value of n. Obviously, the
throughput is maximized, and thus the highest profit is
achieved when no servers have to be added (this includes
the scenario where some servers are released). Figure 3(b)
also shows that the profit does not depend linearly on n+

(the cost does, but not the throughput).
Finally, we fix the bootstrap time to tU = 5 minutes,

n = 13, d = 17¢/hour and study how the value of c
affects the job loss and number of added/removed servers.
As shown in Figure 3(c) when the difference between
charge and cost per job, (c− d/µ), is lower than a certain
threshold, the best strategy is to release all servers and
reject all traffic. The value of this threshold depends on ρ
and n as the reject probability is not constant with respect
to the ratio ρ/n. In other words, if a u-fold increase in the
offered load is matched by a concomitant u-fold increase
of n, the reject probability decreases, i.e., fewer servers
(in proportion) are needed to guarantee the same service
quality. On the other hand, an increase in the difference
between charge and cost per job results in fewer servers
being removed. Servers are added in larger measure as

the charge is further increased, thus reducing the reject
probability.

B. Heuristics
The ‘Optimal’ policy described above requires that all

required parameters should be given ex ante. Unfortu-
nately in most settings one encounters in practice such
key parameters must be inferred or forecasted based on
available data, and these forecasts are bound to have a
certain level of uncertainty, which the optimal policy does
not account for. Below we present two heuristics that
explicitly account for this uncertainty.
1) QED Heuristics: Congestion-related effects (delay or

denial of service) are generally attributable to stochastic
variability in either λ or µ. A typical rule-of-thumb – the
well known “square-root safety staffing rule” – splits the
amount of servers between “base capacity” and “safety
capacity”, with the latter being used for dealing with
stochastic variability. In other words, the parameters are
estimated from the statistics collected during an epoch,
and for the duration of the next interval the number of
servers is set to

n = ||ρ+ zα
√
ρ||, (8)

where the second term represents the variability hedge and
takes the form of the square-root safety staffing principle,
while || · || indicates the round off operation. This kind of
allocation gives rise to the Quality and Efficiency Driven
(QED) regime that has been extensively studied in the
literature [11], [12]. While the amount of additional servers
is proportional to √ρ, the decision variable zα dictates
the amount of hedging, and is a result of a “second
order” optimization problem that seeks a suitable trade-off
between the cost for servers and provided service level [12].

Since the behavior of the square-root-rule heavily de-
pends on the value of the parameter zα, we employ an
approximation that was first introduced in [8] . Let α be
the probability of all servers being busy, and assume that
the actual load is normally distributed (for large values of ρ
the Poisson distribution is approximately normal) with the
mean value being equal to the predicted value. Hence, by
computing the quantile function (the inverse of the CDF)
of the normal distribution, zα, one can ensure that the
probability of seeing all servers busy does not exceed α

zα = Φ−1(1− α), (9)

where Φ(·) is the CDF of the standard normal distribution
(mean 0 and variance 1).

As the reader can see, the problem reduces to find the
optimal value of α. In order to do that, we employ the
approach suggested in [13]. At any given point in time,
the system is either overloaded, and thus some jobs are
being discarded, or over-provisioned, and therefore some
servers are idling. Let P (n, ρ) indicate the profit per unit
time when n servers are running and the load is ρ.



 14.94

 14.97

 15

 15.03

 15.06

 15.09

 15.12

 15.15

 0  10  20  30  40  50
 0

 0.5

 1

 1.5

 2

 2.5

 3
R

ev
en

u
e 

[$
/h

o
u

r]

A
d

d
ed

 s
er

v
er

s,
 n

+

Bootstrap time, tU [min]

Revenue
n

+

(a)

 13.6

 13.8

 14

 14.2

 14.4

 14.6

 14.8

 15

 15.2

 0  2  4  6  8  10  12  14  16  18
 0

 2

 4

 6

 8

 10

 12

 14

 16

R
e
v

e
n

u
e
 [

$
/h

o
u

r]

A
d

d
e
d

 s
e
rv

e
rs

, 
n

+

Current servers, n

Revenue
n

+

(b)

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
-15

-10

-5

 0

 5

R
ej

ec
t 

p
ro

b
. 

[l
o

g
]

A
d

d
ed

 (
re

m
o

v
ed

) 
se

rv
er

s

(c - d/µ) * 10
-5

 [$]

Reject prob.
∆n

(c)

Figure 3. (a) Revenue and added servers as a function tU and (b) revenue and added servers as a function n, and (c) reject probability
and number of added (or removed) servers as a function of the difference between charge and cost per job. λ = 300, k = 1 hour.

P (n, ρ) = cnµ− dn if ρ > n, where nµ is the maximum
system throughput (the service rate, µ, indicates the speed
of each server).
Similarly, if the system is over-provisioned (i.e., ρ ≤ n)

then P (n, ρ) = cλ− dn, and no job is lost.
Since the probability that the first event occurs is α,

the system is over-provisioned with probability (1 − α).
Therefore we obtain

P (n, ρ) = α(cnµ− dn) + (1− α)(cλ− dn). (10)

Now, recall that the objective is to maximize the ex-
pectation of P (n, ρ). In order to do that we take the first
derivative of P (n, ρ) with respect to n, which equals −d
for ρ ≤ n and cµ− d for ρ > n

P ′(n, ρ) = α(cµ− d) + (1− α)(−d). (11)

Obviously the above derivative should be set to zero in
order to find the optimal number of servers. This gives the
following condition for optimality

α = d

cµ
. (12)

Having estimated α one can easily compute zα using
formula (9).
It is perhaps worth noting that depending on the rel-

ative magnitudes of c and d, zα might assume negative
values. In that case n < ρ, and the system works in the
so-called Efficiency-Driven regime.
2) Grassmann Heuristics: The QED strategy acknowl-

edges stochastic uncertainty by means of the square-
root safety staffing rule. However it does not address
the problem related to the quality of the parameters, in
particular of the arrival rate. It is important to understand
that despite the fact that sudden changes in the arrival
rate are relatively small, every time a prediction is made,
some error is introduced [14]. Therefore a prediction with
absolute precision is rather unlikely.

Besides that, while servers are allocated/released at
discrete points in time, the load fluctuates continuously.
In other words, further errors are introduced when trying
to estimate the arrival rate. For example, when samples
of the workload shown in Fig. 2 are averaged over a one

hour interval the observed arrival rate ranges between
52.6 and 358.3 jobs/min., while it lies in the interval 15–
600 jobs/min. when samples are collected every minute.
Rather than employing the sample mean, one could en-
visage more complex strategies. However experiments in-
volving different smoothing techniques did not show any
visible difference compared to the approach employing the
sample mean, hence it was decided to employ the average
arrival rate of the previous epoch as a input for predicting
future arrivals.

To account for forecasting errors, one can further ran-
domize the value of ρ. In this line, Grassmann [13] suggests
to allocate servers according to

n = ||ρ+ zα
√
ρ+ V ar(ρ)||, (13)

where V ar(ρ) indicates the variance of the load, i.e.,
V ar(λ)/µ2 in our case.

V. Experimental Evaluation
In this section we present the results of a number

of empirical studies we have conducted to evaluate the
performance of our proposal.

A. Experimental Setup
Rather than employing benchmark applications such as

Rubis (an auction prototype modeled after eBay), Rubbos
(a bulletin board benchmark modeled after Slashdhot) or
similar, we decided to test our proposal on a replica of
the English edition of Wikipedia deployed on the Amazon
Elastic EC2 cloud compute platform. Apart from the fact
that the Wikipedia system arguably reflects a real large-
scale deployment, the rationale behind this decision lies in
the observation that while benchmarks employ synthetic
workloads, deploying a replica of Wikipedia (specifically
the MediaWiki application4) enables us to test the system
using real traces as Wikipedia snapshots and logs are
publicly available. Finally, the model introduced in Sec-
tion II is compatible with Wikipedia’s approach, insofar
as Wikipedia employs denial of service to deal with spikes
in demand.5

4http://www.mediawiki.org/wiki/MediaWiki
5http://www.datacenterknowledge.com/archives/2008/06/24/

a-look-inside-wikipedias-infrastructure/



One of the questions we faced was how to choose
between the various instance types offered by Amazon
EC2. Some benchmarks suggested us to employ c1.medium
instances, as they provide the best tradeoff between per-
formance and cost. For example while m1.small instances
can serve up to 8 jobs/sec and m1.large instances have a
throughput of 20 jobs/sec, c1.medium can serve about 28
jobs/sec (more details in Sec. V-B). Thus, all servers are
c1.medium instances running in the us.east availability
zone and employing image AMI ami-e358958a (Ubuntu
Linux 11.04 32 bit, kernel 2.6.38).

Our setup consists of one node running nginx 0.8.54 to
balance incoming traffic to a variable number of Apache
2.2.17 servers running MediaWiki. Apart from nginx, the
load balancer also runs a Java daemon responsible for
extracting statistics from nginx, taking allocation deci-
sions (R 2.14.0 is employed to forecast future arrivals),
and updating the system configuration. Persistent storage
is provided by one MySQL v5.1.54 server, while another
machine runs memcached 1.4.5. The load generator is
composed of two nodes running a customized version of
WikiBench [15] on top of Oracle Java SE 1.6.0_26, while
the roundtrip time of packets between VMs varies between
0.207 and 24.028 ms, averaging 0.579 ms.

Figure 4. Request execution.

Main optimizations We have increased the maximum
number of open files (including sockets) to 20,000 (see
ulimit -n). HTTP servers employ XCache 1.3.1 to cache
compiled PHP code, thus preventing re-compiling the
same code for every request. We have decreased the mem-
ory limit of PHP (we use PHP 5.3.5) to 32 MB in order to
avoid excessive memory consumption. We have disabled
logging and page visiting counters on MySQL in order
not to slow down the database. Also, we have set the
socket timeout to 10 seconds on both the load balancer and
clients with the aim of preventing situations where a long
request causes a timeout while it is being executed. Finally,
in order to better deal with long jobs – the mean service
time is 83 ms, while the squared coefficient of variation
(variance over the square of the mean) is 8.04 – nginx
was compiled with the upstream_fair module which
routes jobs to the least-busy backend server rather than
forwarding incoming requests in a round-robin manner.
Dataset The database was initialized with the MediaWiki

page dumps of January 15, 2011 , consisting of 166,977
articles (2.8 GB of filesystem space). The operational
dataset, however, is composed of about 1,000 articles
(excluding the redirects), as we request only a portion of
randomly selected articles in order to ensure that most of
the requests can be served from the cache – about 75%
of the queries are cached by MySQL while the cache hit
ratio of memcached is 97%. Using the whole dump would
require us to use a distributed deployment for memcached,
without introducing any substantial difference, apart from
increasing the time required to build the cache, which is
about six hours at present. On the other hand, increasing
the amount of employed data without re-provisioning
the datastore would decrease the cache hit rate on both
memcached and database, thus dramatically decreasing
the throughput (if no content is cached, one server can
serve only four jobs/sec).

Introducing a layer providing a caching abstraction
complicates the setup considerably, as jobs might be served
entirely from the cache (in which case at least one database
access is still required, see Figure 4), entirely from the
database, or a mix of the two previous options (when
the page is not in the cache, but some elements such as
menus are). Parsing the content from the database takes
1–4 seconds on a c1.medium instance, while serving a
job whose content is in the cache requires 70 ms only.
This is due to the fact that cached pages make 24.5
database queries (i.e., number of executed statements)
and 8.6 memcached accesses on average, while for non
cached requests those values increase to 169.6 and 42.5
respectively. The average file size of each request is about
64 KB.
Caveats A recent study of the Wikipedia workload [16]
found that the read to write ratio is about 480, therefore
in our experiments we deal with read operations only. This
caveat simplifies running the experiments considerably, as
we do not have to care about “resetting” the database
to the original state after every run, without affecting
the validity of our results. Also, while a large fraction of
Wikipedia requests is due to static content requests (about
78% of Wikipedia traffic is handled by Squid servers6),
the real problem is dealing with dynamic content. For
example, in one experiment we employed four Apache
servers dedicated to serve static pages only, and found that
they could sustain a throughput of about 0.5 Gbit/sec.
Therefore, we deliberately chose to deal with dynamic
content only and removed Squid from our setup.

B. Model Calibration
Figure 5 reports the results of an experiment we carried

out with the aim of finding to which extent the value of
m affects the system performance. In order to do that, we
benchmarked the performance of a replica of Wikipedia
composed of 10 Apache application servers subject to an

6http://meta.wikimedia.org/wiki/Cache_strategy



 40

 50

 60

 70

 80

 90

 100

 200  220  240  260  280  300  320  340

C
P

U
 u

ti
li

za
ti

o
n

 [
%

]

Arrival rate, λ [req/sec]

Max 16 conn.
Max 14 conn.
Max 10 conn.

(a)

 20

 22

 24

 26

 28

 30

 32

 34

 200  220  240  260  280  300  320  340

S
er

v
ic

e 
ra

te
, 

µ
 [

re
q

/s
ec

]

Arrival rate, λ [req/sec]

Max 16 conn.
Max 14 conn.
Max 10 conn.

(b)

 150

 200

 250

 300

 350

 400

 450

 500

 200  220  240  260  280  300  320  340

R
es

p
o

n
se

 t
im

e 
[m

s]

Arrival rate, λ [req/sec]

Max 10 conn.
Max 14 conn.
Max 16 conn.

(c)

Figure 5. 10 Apache servers (c1.medium instances) running the Wikipedia workload: (a) CPU utilization, (b) service rate, and (c) response
time as a function of the arrival rate and maximum number of concurrent connections per server.

increasing workload, from 200 to 345 jobs/sec over a 1-
hour period, and we observed how the response time,
CPU utilization and throughput changed with respect
to m. Since Apache employs the process-per-connection
model it was easy to bound the maximum number of
concurrent requests by limiting the number of connections.
This limit was set on the load balancer. Note that a similar
result cannot be achieved by changing only the values of
MaxClients and ServerLimit in Apache7. In that case,
one would lose control over the load balancing (excess jobs
would wait in the TCP queue of the backend servers). On
the other hand, in the chosen setup a maximum of n×m
jobs are allowed into the system, with excess traffic being
silently discarded by the load balancer and not affecting
future arrivals.

As it can be seen in Figure 5(a), about 310 jobs/sec
are necessary to saturate the system when the maximum
number of concurrent connections is at least 14. At the
same time the results indicate there is no visible difference
in terms of throughput, see Figure 5(b): each point repre-
sents the average speed of each server over a one minute
interval, and includes the confidence interval, which was
computed as the best and worst recorded throughput. As
the figure shows, the variance increases with the number of
concurrent connections. That might be due to a number of
factors, e.g., performance degradation, a “noisy neighbor”
(a VM hosted on the same physical node that is using
a disproportionately large part of some shared resource),
or simply to the fact that the load is not spread evenly
among the available machines. As an example, consider
that in several occasions we noticed that one server was
only able to serve 20 jobs/sec while the remaining were
dealing with about 30 jobs/sec.

Finally, Figure 5(c) shows the response time for different
configurations, where each point represents the average
over six seconds. It is worth noting that, due to resource
contention, a high number of concurrent connections not
only degrades the response times, but also increases their
variance. Hence, we decided to set m = 10, as it provides
the best tradeoff between resources utilization, throughput

7http://httpd.apache.org/docs/2.0/mod/mpm_common.html

and response time variance over a wide range of loading
conditions. We have found that smaller values of m would
further decrease the response time variability, however
the throughput would also decrease. Those experiments
are not shown here in order not to clutter the charts.
Similarly, while monitoring the load (uptime and top
commands) we found that the Linux load increases in a
super-linear manner with respect to m. For example when
λ = 345 jobs/sec the average one minute load increased
from 2.92 (m = 10) to 11.49 (m = 16). Having set the
value of m enables us to estimate the service rate. We
have observed that c1.medium instances are provided in
a number of configurations, with the two most popular
being Intel E5410 with clock rate of 2.33 GHz and 12 MB
of cache an Intel E5506 running at a frequency of 2.13
GHz and equipped with 4 MB of cache (please note that
even though those CPUs have four cores, only two of them
are available to the guest operating system). This explains
why the maximum achieved throughput in Fig. 5(b) varies
in the range 28–33 jobs/sec circa (in other experiments
we have noticed even higher values). Hence, for what the
service rate is concerned, we set µ = 28.571 jobs/sec (the
rationale behind considering the lower bound rather than
other values is explained in Section II).

C. Results
Next we discuss the experiments we ran on Amazon

EC2 to evaluate the policies introduced in Section IV.
For comparison reasons we measured also the performance
of the ‘Always on’ policy, a policy that uses static pro-
visioning based on peak load, and a ‘Reactive’ policy
employing Amazon’s auto-scaling feature. When the latter
is employed, an additional server is launched whenever
the average CPU utilization of the current servers exceeds
70% for 15 minutes. Similarly, one server is removed every
time the average CPU utilization drops below 60% for 15
minutes.

The parameters employed by the allocation policies are
summarized in Table I. As for the workload, we employed a
24-hours long interval (day 10) of the ClarkNet workload,
see Figure 2. Given the above parameters, the approach
described in Section IV-B for optimizing the amount of



hedging employed by the QED and Grassmann’s heuristics
suggests to employ α = 0.09722 and zα = 1.29754
respectively.

Parameter Description Value
µ Service rate 28.571 jobs/sec
c Charge per job 0.0017¢
d Cost per server 17¢/hour
n Running servers 0–20

Table I
Parameters.

Fig. 6 compares the achieved profit over the 24 hours
period, the number of server-hours employed as well as
the average response time. During that period about
22.2 million page requests arrived into the system; the
number of accepted jobs was slightly smaller, and depends
on the employed policy, see Table II. Servers allocation
occurred every hour according to the load predicted by the
algorithm described in Section III, while the arrival rate
changed every minute (see top part of Fig. 7). Hence, the
assumptions made by the ‘Optimal’ policy, namely known
parameters and stationary traffic, are violated.
Always on As one can see, all dynamic policies outper-
form the ‘Always on’ heuristic. Given the static nature of
that approach, it naturally leads to the highest number
of server-hours. Due to the level of over-provisioning, the
profit is the lowest but on the other hand the response
times and number of jobs lost are also the lowest.
N.B. It should be noted that the profit earned by the
‘Always on’ heuristic is only 6.6% smaller than that of the
‘Optimal’ because, in order to discourage denial of service,
we deliberately chose a large value of c compared to d (see
Table I and discussion in Sec. II). If the charge was smaller,
the profit earned by the ‘Always on’ policy would have
been lower (possibly negative). Also, the performance of
the static policy heavily depends on the average system
utilization, which in this scenario was about 50% over the
24-hours period, as well as on its peak-to-average ratio.
Dynamic policies Dynamic provision enables the system
to better adapt to incoming user demand, thus employing

-40 %

-20 %

0 %

20 %

40 %

60 %

Always on Optimal Grassmann Reactive

D
if

fe
re

n
ce

 [
%

]

Server-hours
Profit

Avg. resp. time

Figure 6. Performance of the heuristics compared to that obtained
by the ‘QED’ policy.

 0

 100

 200

 300

 400

 500

 600

 0  5  10  15  20

A
rr

iv
al

 r
at

e 
[r

eq
/s

ec
]

 0

 5

 10

 15

 20

 25

 0  5  10  15  20

T
ra

ff
ic

 l
o
ss

 [
%

]

Time [hours]

Always on
Grassmann

Optimal
QED

Reactive

Figure 7. Arrival rate and traffic lost as a percentage of the arrival
rate for different policies. Every point represents the average over
a 30 seconds interval. The spike in the traffic loss of the ‘Optimal’
policy during the first hour is due to a temporary increase in the
latency of MySQL: the round-trip time jumped from 0.3 to over 12
ms, however no change in the CPU utilization was observed.

a smaller number of server-hours. For what the profit
is concerned, the ‘QED’ heuristic seems to provide the
best configuration, however the difference compared to
the other two algorithms is really small (less than 5%).
However, due to the fact that the ‘QED’ heuristic uses
the smallest number of server-hours, it exhibits the highest
response times. Also, an adverse effect of QED is that it
frequently under-provisions. This is evident in Figure 7
and Table II which shows the job loss per policy. Grass-
mann’s heuristic is close to the optimal policy in all
three parameters. The ‘Optimal’ policy slightly outper-
forms Grassmann’s in terms of profit, while the achieved
response times are about the same (Figure 8). Table II
shows that the ‘Optimal’ policy also slightly outperforms
Grassmann’s in terms of job loss. Finally, the ‘Reactive’
policy employs about the same amount of server-hours as
the ‘QED’ policy, thus leading to a similar profit. However,
due to the fact that it re-provisions in a reactive man-
ner, it adds servers only after servers become overloaded;
therefore it shows unacceptable results for what the other
metrics are concerned: the response time is on average 42%
higher than that of the ‘QED’ heuristic and about twice
that of the ‘Optimal’ policy, while the job loss is about
one order of magnitude higher than that of the ‘Optimal’.

Regarding the overhead of the resource allocation poli-
cies, all algorithms (including the optimal one) can easily
find the solution for more than 100,000 servers in less
than a second. In fact, the execution time of the policy
is dominated by the execution time of the forecasting
algorithm – which is needed by all dynamic policies.

An attentive reader might note that, while the ‘QED’
heuristics was tuned for a job loss of about 10% (specif-
ically, α = 0.09722), the actual job loss was about one
order of magnitude smaller (cf. Table II). This behavior
can be explained by the fact that Equation (12) assumes
that the traffic is normally distributed and it does not take



Jobs Response time

Server hours Arrived Lost Profit ($) Avg. (ms) cv2

Optimal 351 22,172,169 32,290 316.7 116.0 0.295
Always on 480 22,171,947 2,149 295.3 101.8 0.929
QED 309 22,164,522 184,622 321.1 144.7 0.619
Grassmann 358 22,172,164 28,656 315.6 118.0 1.519
Reactive 312 22,169,548 343,763 318.0 204.6 0.152

Table II
Summary of the results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400

C
D

F

Response time [ms]

Optimal
Grassmann
Always on

QED
Reactive

Figure 8. Cumulative distribution function (CDF) of the response
times for different policies.

into account the accuracy of the arrival rate prediction.
Yet, the prediction accuracy can vary greatly depending
on the method chosen and the type of workload. For
example, while the average error of the modified Holt-
Winter’s algorithm described in Section III is about 8%
when applied to the considered workload, that of the
Double Exponential Smoothing is about 16%. And since
the prediction accuracy is not taken into account, it is
more likely that the system is over-provisioned rather than
over-loaded, which implies that the observed α is lower
than the one given as parameter to heuristic (12).

VI. Related Work
Cluster sizing related issues are not unique to cloud

platforms. However, what makes the cloud unique in this
respect is that cluster sizing problems arise much more
frequently here due to the pay-as-you-go and elastic na-
ture. Furthermore, SaaS providers have little to no control
over the underlying infrastructure of public clouds. Private
clouds, on the other hand, are in most cases nothing more
than clusters with a virtualization layer, but remain under
the control of the organization.

While several resource allocation policies have been
proposed in the literature, apart from some rare exception
(e.g., see [17]) previous proposals have not been tested on
the cloud, they do not explicitly acknowledge errors related
to parameters estimation/forecasting nor do they consider
that acquire and release operations should be performed
at discrete points only (this is especially true for control
theory based approaches).

The most closely related work can perhaps be found
in [18] and [19], which present strategies aimed at allo-
cating elastic storage nodes with the aim of delivering
acceptable service levels. The former is based on con-
trol theory, so it simply adapts to observed performance
and/or conditions change, while the latter monitors several
metrics in order to constructs and adapts approximate
black-box performance models of storage devices automat-
ically, aiming at linking device throughput and latency to
outstanding IOs. Chen et al. [20] introduced a queuing
model for controlling the energy consumption of service
provisioning systems subject to Service Level Agreements.
The authors, however, do not acknowledge the time and
energy wasted during state changes, while we have shown
that the time required to add new servers can play an
important role. Ardagna et al. [21] discuss the resource al-
location problem in multi-tier virtualized systems with the
goal of meeting the QoS requirements while minimizing en-
ergy costs. However it can not be employed on large scale
deployments, as the problem is NP-hard. Furthermore the
model assumes a closed queueing network, which is not
very suitable for Internet deployments where the potential
number of users is very large, thus under-estimating the
number of required resources (for a given loading scenario,
the performance of closed systems is much better than
that of open systems [22]). Chase et al. [23] presented
an architecture for resource management of server farms.
There the goal is to reduce energy consumption, while the
SLAs are assumed to be flexible (i.e., service degradation
is a viable option), while the services “bid” for resources as
a function of delivered performance. Finally, Hu et al [24]
investigate how to deliver response time guarantees in a
multi-server and multi-class setting hosted on the Cloud
by means of allocation policies only.

VII. Conclusion and Future Work
The main contribution of the paper is a comparative

evaluation of three policies for addressing the problem
faced by a SaaS provider aiming at maximizing its profit
while delivering a service on a pay-per-transaction basis,
using resources provided by an IaaS provider who bills per
server-hour. Experimental results showed that all three
policies clearly outperform an ‘Always on’ policy where
a fixed number of servers are kept in use as well as a
‘Reactive’ approach based on Amazon’s auto scaling mech-
anism. Also, the policy based on the optimization of the



SaaS provider’s utility function slightly outperforms the
QED and Grassmann heuristics. A secondary contribution
of the paper is an approach to implement the optimal
policy so that it scales up to thousands of servers.

While the experimental results are encouraging and
demonstrate the potential benefits of dynamic profit max-
imization policies on the cloud, there is room for im-
provement in the implementation and calibration of the
studied policies. Regarding the ‘Optimal’ policy, we opted
to approximate the number of servers in the G/GI/n/n
model as the number of running virtual servers, thus
treating each virtual server as a “black box”. One might
argue that a better approach would be to use the total
number of cores instead. It turns out that this alternative
is still a poor approximation. Instead, according to some
experiments we have run, employing the total number of
connections (i.e., n ×m) as the number of “servers” and
taking the service rate as µ/m improves the quality of
the approximation to some extent, though in practice this
approach requires one to carefully select the number of
connections m and this calibration needs to be done in a
system-specific manner. A possible avenue for future work
is to extend the policies with a method to tune parameter
m and then optimize the total number of connections
supported by the allocated virtual servers, as opposed
to optimizing the number of virtual servers. The idea of
optimizing based on the total number of connections could
also allow us to take into account performance differences
across servers (i.e., different servers might support differ-
ent number of connections).

The model described in Section II focuses on the ap-
plication layer and does not explicitly acknowledge the
database layer. A finer-grained model that supports dy-
namic scaling of the database layer might improve the
performance of the policy and make it applicable to ap-
plications with lower read-to-write ratios than Wikipedia.
Dynamically scaling up the database layer brings in addi-
tional problems, such as the high delays associated with
powering on/off database servers and data replication and
partitioning problems, which deserve a separate treatment.

Acknowledgements
This work was partly funded by ERDF via the Estonian

Competence Centre Programme and by the European
Commission via the REMICS project (FP7-257793).

References
[1] V. Rykov and D. Efrosinin, “Optimal control of queueing sys-

tems with heterogeneous servers,” Queueing Systems, vol. 46,
no. 3-4, pp. 389–407, 2004.

[2] J. Dejun, G. Pierre, and C.-H. Chi, “Resource provisioning of
web applications in heterogeneous clouds,” in Proceedings of
the 2nd USENIX Conference on Web Application Development
(WebApps). Portland, OR, USA: USENIX, 2011, pp. 49–60.

[3] W. Whitt, “Heavy Traffic Approximations for Service Systems
with Blocking,” AT&T Bell Laboratories Technical Journal,
vol. 63, May-June 1984.

[4] I. Mitrani, Probabilistic Modelling. Cambridge University
Press, 1998.

[5] A. Kamra, V. Misra, and E. Nahum, “Yaksha: A self-tuning
controller for managing the performance of 3-tiered web sites,”
in Proceedings of the 12th International Workshop on Quality
of Service (IWQoS 2004). IEEE, June 2004, pp. 47–56.

[6] B. Schwartz and E. Fortune, “Forecasting MySQL Scalability
with the Universal Scalability Law,” 2010, a Percona
White Paper. [Online]. Available: http://www.percona.com/
files/white-papers/forecasting-mysql-scalability.pdf

[7] N. J. Gunther, “A new interpretation of amdahl’s law and
geometric scalability,” CoRR, vol. cs.DC/0210017, 2002.

[8] M. Mazzucco and D. Dyachuk, “Balancing electricity bill and
performance in server farms with setup costs,” Future Genera-
tion Computer Systems, vol. 28, no. 2, pp. 415 – 426, February
2012.

[9] S. Markidakis and M. Hibon, “The M3-Competition: results,
conclusions and implications,” International Journal of Fore-
casting, pp. 451–476, 2000.

[10] R. Hyndman, A. Koehler, J. Ord, and R. Snyder, Forecast-
ing with Exponential Smoothing – The State Space Approach.
Springer, 2008.

[11] A. J. E. M. Janssen, J. S. H. van Leeuwaarden, and B. Zwar,
“Refining Square-Root Safety Staffing by Expanding Erlang C,”
Operations Research, vol. 59, no. 6, pp. 1512–1522, 2011.

[12] S. Borst, A. Mandelbaum, and M. I. Reiman, “Dimensioning
Large Call Centers,” Operation Research, vol. 52, no. 1, pp. 17
– 34, 2004.

[13] W. K. Grassmann, “Finding the Right Number of Servers in
Real-World Queuing Systems,” Interfaces, vol. 18, no. 2, March–
April 1988.

[14] S. G. Steckley, S. G. Henderson, and V. Mehrotra, “Forecast
errors in service systems,” Probability in the Engineering and
Informational Sciences, vol. 23, pp. 305–332, 2009.

[15] E.-J. van Baaren, “Wikibench: A distributed, wikipedia based
web application benchmark,” Master’s thesis, VU University
Amsterdam, May 2009.

[16] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Computer Networks, vol. 53,
no. 11, pp. 1830–1845, 2009.

[17] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma, M. J.
Franklin, P. Abbeel, and A. M. Bayen, “Scaling the mobile
millennium system in the cloud,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing (SOCC ’11). ACM, 2011, pp.
28:1–28:8.

[18] H. C. Lim, S. Babu, and J. S. Chase, “Automated control
for elastic storage,” in Proceedings of the 7th international
conference on Autonomic computing (ICAC ’10). ACM, 2010,
pp. 1–10.

[19] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger,
and M. Uysal, “Pesto: online storage performance management
in virtualized datacenters,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing (SOCC ’11). ACM, 2011,
pp. 19:1–19:14.

[20] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam, “Managing server energy and operational costs in
hosting centers,” SIGMETRICS Perform. Eval. Rev., vol. 33,
no. 1, pp. 303–314, 2005.

[21] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang, “Energy-
aware autonomic resource allocation in multi-tier virtualized
environments,” IEEE Transactions on Services Computing,
vol. 99, no. PrePrints, 2010.

[22] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open
versus closed: a cautionary tale,” in Proceedings of the 3rd
conference on Networked Systems Design & Implementation
(NSDI’06). Berkeley, CA, USA: USENIX Association, 2006,
pp. 18–18.

[23] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle, “Managing energy and server resources in hosting
centers,” ACM SIGOPS Operating Systems Review, vol. 35,
no. 5, pp. 103–116, 2001.

[24] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning
for cloud computing,” in Proceedings of the 2009 Conference
of the Center for Advanced Studies on Collaborative Research
(CASCON ’09). ACM, 2009, pp. 101–111.


