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ABSTRACT
Methods for predicting issue lifetime can help software
project managers to prioritize issues and allocate resources
accordingly. Previous studies on issue lifetime prediction
have focused on models built from static features, meaning
features calculated at one snapshot of the issue’s lifetime
based on data associated to the issue itself. However, during
its lifetime, an issue typically receives comments from vari-
ous stakeholders, which may carry valuable insights into its
perceived priority and difficulty and may thus be exploited
to update lifetime predictions. Moreover, the lifetime of an
issue depends not only on characteristics of the issue itself,
but also on the state of the project as a whole. Hence, is-
sue lifetime prediction may benefit from taking into account
features capturing the issue’s context (contextual features).
In this work, we analyze issues from more than 4000 GitHub
projects and build models to predict, at different points in
an issue’s lifetime, whether or not the issue will close within
a given calendric period, by combining static, dynamic and
contextual features. The results show that dynamic and con-
textual features complement the predictive power of static
ones, particularly for long-term predictions.

CCS Concepts
•Software and its engineering → Software creation and
management; Maintaining software; Open source model;

Keywords
issue lifetime prediction, issue tracking, mining software
repositories

1. INTRODUCTION
Open source projects usually rely on publicly accessible

issue tracking systems to manage unresolved bugs and de-
velopment tasks. In contemporary open source code hosting
sites, such as GitHub and Bitbucket, the barrier for con-
tributing issue reports is minimal. Entering a new issue in
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GitHub only requires two fields – title and textual descrip-
tion. Everyone can create an issue, but only a limited set
of stakeholders actually deal with these issues. This tension
between the ease of creating issues and the limited resources
of the core project team leads to situations where issues re-
ceive sparse attention from the project team or do not even
receive a preliminary screening upon their creation.

In a recent study [17], we showed that a considerable pro-
portion of issues in GitHub issue trackers are left open for
several months or even over a year. Yet, knowing when
an issue will be closed is important from two viewpoints.
First, it has been found that timeliness is an important de-
terminant of contributor engagement and community con-
tribution acceptance in GitHub [12]. If there is high uncer-
tainty regarding the timeframe when the development team
will address a given issue, the stakeholder who submitted it
might be discouraged from making further contributions or
even from using the software product. Having an estimate
of issue closing time can help to reduce this uncertainty and
provide greater transparency to all stakeholders. Second,
an estimate of issue closing time provides core team mem-
bers with a basis to prioritize their efforts and plan their
contributions. In this respect, a recent study of long lived
bugs in different projects [22] observes that over 90% of such
bugs impact user experience and that automatic prioritiza-
tion and assignment can minimize the impact of such bugs
on end users. It is also observed that in some cases, bugs
can be resolved earlier thanks to automatic prioritization
and assignment.

In this setting, this paper addresses the problem of pre-
dicting, at a given time point during an issue’s lifetime,
whether or not the issue in question will close after a given
time horizon, e.g. predicting if an issue that has been open
for one week will remain open one month after its creation.
The general problem of issue (or bug) lifetime prediction
has received significant attention in the research literature.
The focus of this study differs from previous work in four
respects. First, the bulk of previous work has focused on an-
alyzing a small number of hand-picked projects. In contrast,
this paper studies this prediction problem based on a large
sample of projects hosted in GitHub. Second, most previous
work has focused on exploiting static features, i.e. charac-
teristics extracted for a given snapshot of an issue – typically
issue creation time. In contrast, the present study combines
static features available at issue creation time, with dynamic
features, i.e. features that evolve throughout an issue’s life-
time. Third, previous approaches focus on predicting life-
time based on characteristics of the issue itself. In contrast,



the present study combines characteristics of the issue itself
with contextual information, such as the overall state of the
project or recent development activity in the project. Fi-
nally, most previous studies do not employ temporal splits
to construct prediction models. In other words, models are
trained on future data and then evaluated on past data.
In this study, we construct models predictively using strict
temporal splits such that predictions are always made based
only on past data, which reflects how such predictive models
would be used in practice.

Within the scope of the problem of issue lifetime predic-
tion, this study seeks to answer the following specific re-
search questions:

• RQ1: What level of accuracy is achieved by classifica-
tion models trained to predict issue lifetime at different
calendric time points in an issue’s lifetime and for dif-
ferent calendric periods (day, week, month, quarter,
semester and year) using both static and dynamic fea-
tures of an issue as well as contextual features?

• RQ2: What features are most important when predict-
ing issue lifetime?

The rest of the paper is organized as follows. In Section 2
we discuss previous work on issue lifetime prediction. In
Section 3 we describe the dataset and analyze its character-
istics, particularly with respect to issue lifetime. In Section 4
we present the features and methods employed to construct
classification models for issue lifetime prediction. Next, we
present the experimental results in Section 5. We finish with
a discussion of the findings in Section 6 and conclusions and
directions for future work in Section 7.

2. RELATED WORK
Issue lifetime prediction models have received significant

attention in the literature. Several previous studies explic-
itly deal with problem of predicting how long it will take to
close a given issue report.

Weiss et al. [28] predict issue resolution time for the JBoss
project. Their approach enables early prediction by finding
a set of textually similar issues for a newly entered issue and
using this set to make a prediction of closing time. Their es-
timated resolution times deviate on average by 7 hours from
the actual resolution time, and half of the estimations are in
the +/-50% range of the original issue lifetime. This study
shows the feasibility of predicting issues based on models
trained for one specific project, where the project in ques-
tion has a large set of issues that share common patterns.

Similarly, Giger et al. [9] predict bug fix times for Mozilla,
Eclipse and Gnome projects. Their approach consists of ex-
tracting features for each bug report and training a decision
tree model to predict if the fix time will be lower or higher
than the project median fix time. They also experiment
with dynamic features calculated at different points during
a bug report lifetime, such as number of comments an issue
has received and number of actions performed on an issue.
They conclude that the use of dynamic features improves ac-
curacy. Their reported Area Under the ROC Curve (AUC)
scores fall in the range [0.65..0.83]. A shortcoming of their
work is that it does not apply temporal splits to separate
training and testing data – hence the models may use data
’from the future’ to predict issue lifetime at a particular
point in time.

Panjer [21] predicts resolution time for Eclipse bugs using
a set of static features and a machine learning approach. He
divides the bug lifetime distribution into seven ranges and
uses these as classes. Using different classifiers, around 30%
of issues are classified correctly. Cross validation is used for
evaluation of the classifiers, but no temporal split is used to
segregate training and test data. No dynamic features are
used.

Francis & Williams [8] study the prevalence of long living
bugs in an open-source Apache HTTP server and a closed
source private project. They train a decision tree model
to predict whether an issue will be closed by the time when
85%, 90% and 95% of issues are closed. Their model achieve
F-scores in the range [0.63..095] for the closed-source project
and [0.21..0.59] for the Apache open source project, suggest-
ing that accurate issue lifetime prediction is more difficult
in the context of open source projects.

Besides issue lifetime prediction, there are other related
lines of research that seek to predict some attribute or future
action on an issue report. Examples are predicting whether
an issue will be fixed [13], delayed [6], will be reopened [30,
29, 23], as well as estimating its priority [24], assignment
or category [32, 14, 1]. In general, these studies use the
same general approach: extract features from issue reports;
train a machine learning model; and evaluate the model. A
similar framework has also been used for predicting when
contributed code patch or pull request will be accepted [11,
15, 31].

Table 1 summarizes the above review of related work in
terms of six attributes that delimit the scope of the present
study. Specifically, for each referenced study, the table indi-
cates: (i) if the study relies on a large dataset – where“large”
is defined as encompassing more than 6 projects (cf. column
LD); (ii) whether or not the study relies on dynamic fea-
tures in addition to static ones (column DF); (iii) whether
or not the study in question relies on contextual features
about the surrounding project in addition to features ex-
tracted from individual features (column CF); (iv) whether
or not the study applies temporal splits to separate training
data from testing data (column PT); (v) whether the con-
structed models can be used for predicting lifetime at issue
creation time and during an issue’s lifetime (column MA);1

and (vi) whether the study addresses the problem of issue
lifetime prediction (IL), acceptance time of a contribution
(CL), or other issue attribute (IA) – cf. column TYPE.

We note that only Giger et al. [9] rely on dynamic fea-
tures and make issue lifetime predictions at different time
points during the issue’s lifetime. Also, only Ye et al. [31]
and Gousios et al. [11] rely on a large dataset when build-
ing their models; however this latter study is exploratory
rather than intended to construct and test predictive mod-
els, and focusing on the problem of contribution acceptance
prediction (pull requests). The use of contextual features
has been considered in several previous studies, but not in
conjunction with dynamic features. A few related studies
use predictive splitting and are designed to be used at issue
creation time.

1This criterion is included because some previous studies
calculate features “as of the closing time” of each issue –
e.g. they calculate the total number of comments received
by an issue throughout its lifetime. Such studies are useful
for post-mortem analysis of issue closing time, but not for
predictive purposes.



In summary, the scope of the present study is unique in
that it uses static, dynamic and contextual features on a
large issue dataset to construct issue lifetime models predic-
tively (i.e. all predictions are strictly based on data available
at the time the prediction is made).

Table 1: Synthesis of related work.

Paper LD DF CF PT MA TYPE

Weiss et al. [28] X X IL
Giger et al. [9] X X IL
Panjer [21] IL
Francis and Williams [8] X IL
Assar et al. [2] X X IL
Guo et al. [13] X X IL
Marks et al. [19] X IL
Gousios et al. [11] X X CL
Jiang et al. [15] CL
Ye et al. [31] X X CL
Tian et al. [24] X X X IA
Choetkiertikul et al. [6] X X IA
Antionol et al. [1] X IA
Xia et al. [29] X IA
Shihab et al. [23] X IA
Guo et al. [14] X X IA
Our approach X X X X X IL

3. DATASET
GitHub makes the data about public repositories available

through public APIs. In this work we use data collected by
a third-party project, namely GHTorrent[10]. GHTorrent
collects GitHub data through public event streams and en-
hances it with data obtained via additional API calls. The
data used in this work originates from GHTorrent’s MySQL
database dump, dated 1 April 2015. In addition, we used
GHTorrent’s MongoDB service to query the textual infor-
mation (queries issued in January 2016).

3.1 Filtering
At the time of the data dump, GitHub had more than 7

million project repositories (not counting forked ones). Not
all repositories in GitHub are software projects [16] and
many of them use GitHub for code hosting but not for issue
tracking. In order to avoid analyzing non-software projects
(e.g. pure documentation projects), projects that do not use
GitHub for issue tracking, and other special cases such as
one-man projects or projects with little issue activity, we
filtered the dataset using the following rules:

• Projects must have been created between January 1,
2012 and December 31, 2014. We limited our observa-
tion period to this interval, because the data of older
projects is only partially available in GHTorrent. Even
tough the dataset also contains events until April 2015,
we chose the ending date to be in 2014 as due to the de-
layed crawling behavior of GHTorrent not all changes
are instantly visible.

• Projects must not be forks of existing GitHub projects.

• Projects must have at least 100 opened issues and one
closed issue. This criterion guarantees that we only
include projects that actively use the issue tracker.

• Projects must have at least five commits to the main
repository. This criterion guarantees that we only ana-
lyze projects where there is some development activity.

• Projects must not show any activity before the repos-
itory creation date. In GitHub, it is possible to fork
a repository and therefore inherit an already existing
code base which technically shows up as code commit-
ted before the project creation.

An examination of the selected data revealed that some
projects had unexpectedly high issue creation activity in
short periods, such as several thousand created issues in a
single day. This phenomenon indicates a data import from
an older tracking system or the automatic creation of issues
via GitHub’s API. To get rid of possible import behavior,
we additionally filtered out projects that created or closed
more than 2000 issues in any single month or created more
than 500 issues in any single day.

As the data ranged between 2012-2014, the selection in-
cludes projects with maximum 3 years of history and mini-
mum of 1 month of history. We decided to remove projects
shorter than 8 months to have enough time to observe issue
closing in every retained project.

Issues can also be reopened and closed multiple times.
This affects about 4% of the issues in our sample. We de-
cided to remove issues that get reopened since the scope
of the present study is to predict “first-closing time”. The
phenomenon of issue reopening is a question that deserves
a separate treatment. Note also that an issue being closed
in the dataset does not necessarily imply that it has been
“fixed” to the satisfaction of the issue creator. An issue may
be closed for a variety of reasons, such as it being a dupli-
cate issue or because someone in the project team deems it
irrelevant or unresolvable.

The dataset obtained after the above filtering contains
4024 projects, comprising 967 037 issues in total of which
675 970 (69.9%) have been closed and 291 067 (30.1%) have
not been closed during the observation period. The number
of issues per project varies by a factor of almost 50: the
smallest project having 100 issues and the largest project
having 4885 issues in total. The mean number of issues per
project is 240 and the median is 163.

3.2 Analysis of Issue Lifetime
Figure 1 shows the issue lifetime distribution for the 69.9%

of issues that get closed in the observation period (bottom
box-plot) and for the set of remaining “sticky issues” (top
box-plot). We use the term sticky issue to refer to issues
that do not get closed in our observation period. For the
sticky issues, the lifetime is calculated with the assumption
they are all be closed on 1 January 2015 (recall that we only
retained issues created in 2014 or before).

The median lifetime for the closed issues is 3.7 days, the
mean lifetime is 32.6 days and 90% issues get closed in 96.4
days or less. We observe that the median lifetime for sticky
issues is 280 days, which is approximately 75 times larger
than for closed issues. This long lifetime gives us confidence
that most of the sticky issues are indeed long-lived issues
rather than issues that will be closed shortly after the end
of the observation period. Note that the maximum theoret-
ical lifetime of any sticky issue is 1092 days (i.e. this is the
number of days between the start of the observation period
and 1 Jan. 2015).



Figure 1: Issue lifetime box-plots for closed and
sticky issues. The green-filled line represent outliers
not falling into the inter-quantile range

4. MODEL CONSTRUCTION
The overall predictive model construction method involves

extracting features to characterize issues in the dataset,
training the model, and evaluating the model. In the fol-
lowing subsections, we give detailed information about the
first two steps.

4.1 Features
Our approach is based on applying supervised machine

learning. Input for learning algorithms is a set of features
that would describe each issue as detailed as possible. Next
we list the feature we extracted from each issue and justifi-
cation for this (The features are listed the in Table 2).

During the feature engineering process, we tried to come
up with features that would capture the properties of issues,
the activity of the project and issue submitter around the
time of issue creation. The assumption is that besides indi-
vidual issue factors, the surrounding context also determines
if an issue will be closed.

We initially came up with 35 features. We identified cor-
related features by calculating Spearman’s rank correlation
between all pairs of features and manually removed a fea-
ture from the each pair of those with a correlation value
larger than 0.8. The decision which feature to remove was
done manually, but if a feature was correlated with multiple
other features, it was removed first. For the remaining 30
features, we calculated the chi-squared score [18] with the
training label and removed features that were ranked to last
third of all the features. This gave us 21 features. The fea-
tures removed through the chi-squared analysis were those
that were sparse and only had assigned value in a small sub-
set of issues.

To capture the dynamic aspects of open issue reports, we
calculate the evolving features at different time points. For
example, the number of comments is changing over time,
but the issue title is not. In Table 2, the dynamic features
have suffix T in their name.

4.1.1 Issue Features
The first group of features describe the issue itself. For

example number of comments (nCommentsT) can be regarded
as a measure of engagement on the issue. Guo et al. have
found that more commenting on the bug report can lead
to a faster fix [13] and Tsay et al. [25] have shown that
more comments on a pull-request makes it more likely to

be accepted. Besides the comments itself, the amount of
persons interacting with the issue might impact the issue
resolution time. Number of actors (nActorsT) is the total
amount of persons who have had interactions with the issue
- opening, closing, commenting, referencing. These features
are dynamical in nature - the amount of comments can be
different at each observation point.

Other features in this group, such as number of times issue
has been assigned, mentioned from another issues, reflect the
overall activity of the issue and are dynamical. Besides dy-
namical features, we extracted the issue content text length
(issueCleanedBodyLen) to represent the length or possible
complexity of the issue.

Issue reports’ unstructured textual content has shown to
have predictive power itself for estimating the issue lifetime
[28]. The typical approach for analyzing text data would
be to convert issue reports into bag of words representation.
This typically leads to a large sparse representation, as some
words are only present in a small set of documents. Adding
all these features to our previously defined features would
make the classification task harder as the amount of param-
eters can become very large. In addition, it makes it harder
to understand what are the important features.

We decided not to include textual features directly into
our model. Instead, we transformed the textual content into
a single score, representing the likelihood that issue report
with such text will be closed in a period. A similar approach
has been previously used for bug classification [32] and clus-
tering [2].

For each issue, we joined issue title and content text into
a single text2. We parsed the markdown representation,
completely removed all source code blocks, tables and links.
Next we removed remaining markdown markup and only
kept the textual content. We converted all text into low-
ercase, removed punctuation, English stop words (such a,
the, that, etc). We also applied Porter stemming algorithm
to extract the stem for each word. For each issue, we kept
single words and n-grams of size 2 and we constructed the
bag of words representation using feature hashing [27], with
220 features. Each vector is normalized with l2 norm and is
non-negative. Using the hashing trick, we can keep all the
words and n-grams and do not have to construct a dictio-
nary during training that contains all allowed words, which
is helpful when deriving the score for different parts of the
data as the usage of dictionary could also leak information
about the target label.

We divided the training data into two random sets. We
use the first subset to train a model on text vectors and
predict the score on the second subset. The predicted scores
will be the corresponding textual score (textScore) for the
second subset. We repeat the process the other way around -
we train on the second subset and predict on the first subset
and attach prediction score to the features of the first subset.
The scores will be appended to the overall feature set.

For test set, we train on the whole training data and pre-
dict for the test set’s textual content and add the score as
new column. Note that in any case, we do not leak any
information about the target as we always derive the score
using different subsets and do not compare to actual labels.

For the training, we used Stochastic Gradient Descent
based classifier [26] with logistic error, l2 regularization with

2We use the latest version of title and body as GHTorrent
only keeps the last version if the fields are updated.



the multiplier 0.001, shuffling before iterations and 5 itera-
tions. This model is suitable for problems with large number
of features as the regularization helps to control over-fitting
by constraining coefficient values and is fast to train. Other
alternatives to consider would be the linear support vector
machines (obtaining the probabilities is more costly) and
Naive Bayes. We briefly experimented with the latter one
and the results were approximately in the same order.

4.1.2 Issue submitter features
Individual reputation has shown to have impact on the

time issue will be fixed [13]. The idea of this group of fea-
tures is to capture the previous interactions that the issue
submitter has had prior to the submission in the context
of the project. The features extracted reflect the prior ac-
tivities done by the submitter in the past three months in
the context of this project, such as the number of issues
created (nIssuesByCreator) and the number of commits
(nCommitsByCreator).

4.1.3 Participant’s features
Open source projects have different levels of participa-

tion, ranging from core team to irregular contributors. To
study the possible effects of individual influence, we extract
the number of commits made (nCommitsByActorsT) by the
people participating in the issue, or in other words, actors.
Actors are all people who comment on an issue, change any
of its properties such as tags, milestones, assignments. In
addition, we count a person to be an actor if they reference
it from another issue or commit message. These features are
dynamic and we calculate them over the period of two weeks
before the observation point, to see if the persons who have
had interactions with the issue are still active.

4.1.4 Project (contextual) features
The aim of project features is to capture the overall

state of the project. Our hypothesis is that if the project
is not active, i.e., there has not been coding activity re-
cently or no issues have been closed, then it is also likely
that new issues will not receive attention. We calculate
the total amount of commits in the past three months
(nCommitsInProject), total new issues in the past three
months (nIssuesCreatedInProject), and the same activ-
ity in the past two week with respect of the observation
point (nCommitsInProjectT, nIssuesCreatedInProjectT).
We use different period ranges of three months and two
weeks to prevent possible overlap and correlated features,
as in some cases, the dynamic features can be calculated
also close to the issue submission and therefore have overlap
with each other.

Note that we do not use any identifier of the specific
project to which an issue belongs, as our goal is to study the
performance of cross-project models built on large project
repositories. However, information about the project char-
acteristics and its state is captured via the above contextual
features.

4.2 Model training
Often for prediction tasks, cross-validation is used for eval-

uating goodness of the model and making sure the model
performance is reliable on different subsets of data. Our
goal is to train a predictive model that also takes into ac-
count the temporal information of issues. This prevents us

from using traditional cross-validation. The idea is that for
training data, we can only use data from a period that is be-
fore the period in which issues contained in the test dataset
have been opened. This corresponds to a real world scenario
- we can not use future data for training and then test on
past data.

Our dataset covers three years, 2012, 2013, 2014. We
split the data into two at September 1, 2013. Everything
before September 2013 is for training data, and everything
after that point in time is for testing. This split leaves
424004(43.9%) issues into training set and 543033(56.1%)
into testing set. In addition, the final amount of issues that
can be used for training and testing depends on the task as
the amount of issues that could be used for estimating if an
issue will be closed in a year is smaller than the amount is-
sues used for estimating if an issue will be closed in a month.

We trained classification models for different combinations
of an observation point (i.e. the point in an issue’s lifetime
when the prediction is made) and a prediction horizon (i.e.
the timeframe after issue creation by which we predict that
an issue will be already closed). For example, an observation
point of 7 days means that we make a prediction for an
issue that has been open for already 7 days. Meanwhile, a
prediction horizon of 30 days means we predict whether an
issue will be closed within 30 days of its creation or not (note
that this is a binary classification task).

The observation points and prediction horizons are chosen
to match calendric periods (day, week, fortnight, month,
quarter, semester and year) and of course, the issue creation
time itself is taken as one of the observation points. This
leads to seven observation points (0, 1, 7, 14, 30, 90, and 180
days) and seven prediction horizons (1, 7, 14, 30, 90, 180,
and 365 days).

Note that the models with a zero-day observation point
are such that the dynamic features are not meaningful. A
small caveat though is that the dataset also has issues where
the first comments arrive at exactly the same time as the
issue itself. We do count such comments when calculating
the zero-day features in order to keep the feature calculation
method consistent. Thus the dynamic feature nCommentsT
is meaningful for zero-day models.

For each pair (observation point, prediction horizon), we
trained a classifier to predict whether an issue will be closed
before or after the end of the prediction horizon. Natu-
rally, such a predictive model only makes sense when the
prediction horizon ends after the observation point. Hence,
there are only 28 valid combinations of an observation point
a prediction horizon, and this is the number of models we
trained.

In line with the predictive setting, when evaluating a
model for a given observation point, we only make predic-
tions for issues that were not yet closed at the observation
point in question. Hence, the sizes of the training and the
testing sets are different for each (observation period, pre-
diction horizon) combination.

In this paper, we approach the issue lifetime prediction
problem using binary classification. The problem could also
be approached by training a multi-class classifier, for exam-
ple where different classes denote if an issue will be closed
in a corresponding time range. We choose binary classifica-
tion as it helps us to understand at which points in time it
is feasible to make predictions and how the accuracy of the
models changes depending on the chosen observation point



Table 2: Features extracted for each issue. Suffix ”T” (short for ”Time”) in the feature name denotes that
this feature is dependent on the observation point.
Feature Description
Issue features
nCommentsT Number of comments issue has received before the observation point T.
nActorsT Number of unique persons who have commented, referenced or subscribed to the issue

before the observation point T.
nAssignmentsT Number of assignment events before T.
nLabelsT Number of labels added before T.
nMentionedByT Number of times issue was mentioned from other issues before T.
nReferencedByT Number of times issue was mentioned in commit messages using the issue id, before T.
nSubscribedByT Number of persons subscribing to receive updates on the issue before T.
meanCommentSizeT Average comment size of the comments received before the observation point T.
issueCleanedBodyLen Length of the combined title and body with markdown parsed and tags removed.
textScore Classification score obtained from cleaned issue title and content.
Issue submitter features
nIssuesByCreator Number of issues created by the issue submitter in the three months prior to issue

opening.
nIssuesByCreatorClosed Number of issues created by the issue submitter that were closed in the three months

prior to issue opening.
nCommitsByCreator Number of total commits to the issue repository by the issue submitter in the three

months before the issue opening.
Participant’s features
nCommitsByActorsT Total number of commits done by actors who committed code to the project repository

during the period from two weeks before the issue creation to observation point T.
nCommitsByUniqueActorsT Number of unique actors who committed code to the project repository during the

period from two weeks before the issue creation to observation point T.
Project features
nIssuesCreatedInProject Number of issues created in the project during the three months prior to issue creation.
nIssuesCreatedInProjectClosed Number of issues created and closed in the project in the three months prior to issue

creation.
nCommitsInProject Number of commits created in the project in the three months prior to issue creation.
nIssuesCreatedProjectT Number of issues created in the project during the period of 2 weeks before the issue

creation until the observation point T.
nIssuesCreatedProjectClosedT Number of issues created and closed in the project during the period of 2 weeks before

the issue creation until the observation point T.
nCommitsProjectT Number of commits in the project during the period of 2 weeks before the issue creation

until the observation point T..

and prediction horizon.

4.3 Classification Method
We use Random Forest [4] for classifier construction. The

Random Forest classifier trains multiple decision trees on the
same data, but for each tree using different random subsets
of the data and random subsets of features when creating
splits for individual trees. The final predictions are created
from finding the mode of classes from each individual tree.
The randomization combined with multiple trees helps to
avoid over-fitting. Random Forests have shown very good
performance on different datasets, even when compared to
other well known methods such as logistic regression, sup-
port vector machines or gradient boosted decision trees [7].
For the hyper-parameters, we set the number of trees to 1000
and limit the maximum tree depth to 5.

As we train in total 28 classifiers on the different observa-
tion and prediction horizon combinations, we do not perform
any additional hyper-parameter optimization in order to use
the same classifier for all different prediction horizon values
and avoid optimizing each task separately. The results re-

ported below should thus be construed as lower-bounds that
can be further improved via hyper-parameter optimization.

4.4 Evaluation
To evaluate the classifiers, we use the following technical

measures: precision, recall, F1-score and area under the re-
ceiver operating characteristic (ROC) curve (AUC). In our
classification task, the positive class denotes issues that will
be closed in the specified period and the negative class de-
notes issues that will not be closed in the specified period.
We use precision and recall for the positive class.

Precision in our context measures the fraction of cor-
rectly classified closing issues over all issues predicted to
close. Recall measures the fraction of correctly classified
closing issues over all closing issues. The ideal precision and
recall scores are 1, the worst case is 0. The F1-measure
is the harmonic mean of precision and recall, defined as
F1 = 2 · (precision · recalll)/(precision + recalll). The F1-
measure allows us to quantify precision and recall with a
single number.

In addition, we make use of the true positive (TP), false



positive (FP), false negative (FN) and true negative (TN)
numbers to understand why in some cases the precision and
recall are changing.

The AUC measures the probability that a classifier will
rank randomly chosen positive instance higher than ran-
domly chosen negative instance. In the context of this work,
AUC measures what is the probability with which we can
rank randomly chosen closed issue higher than randomly
chosen issue that will not close. For a random classifier, the
value of AUC will be 0.5, for an ideal classifier it will be 1.

The usage of different measures is due to two reasons.
Firstly, we want to compare our results with existing work
and all these measures are used in previous work. Sec-
ondly, different measure help us to prove the usefulness of
the model in different scenarios. If we would like to make
an individual prediction for a single issue, we are interested
good precision and recall scores as we would like to get a
correct prediction for each item. If we were interested find-
ing the ranked list of most likely issues to be closed in a
project, then the AUC can reflect how well we can do this.

4.5 Feature importance
The Random Forest classifier lends itself to measuring

individual feature importance via mean decrease in impu-
rity [5]. For each feature, this method calculates how much
it decreases the Gini impurity of a node in a tree and aver-
ages this quantity across all trees in the forest. This method
enables us to rank the important features in a model. We
will use the feature importance to understand which features
are useful in making the decision and also compare feature
ranking for different observation point scenarios.

5. RESULTS
In this section we report the evaluation results and analyze

them with respect to the questions posed in Section 1.

5.1 Classifier performance (RQ1)
We analyze model performance for different observation

points to answer our research question RQ1 (What level of
accuracy is achieved by classification models trained to pre-
dict issue lifetime using static, dynamic and contextual fea-
tures? ) Table 3 shows the obtained AUC scores for each
combination of observation point and prediction horizon.
The scores all fall into the range of 0.64 to 0.707. From the
results, it emerges that long-term predictions can be made
with higher AUC than short-term predictions. Indeed, for
each observation point, the best AUC score corresponds to
the longest prediction horizon.

We also calculated F1-scores for each model as shown in
Table 4. F1-scores put into evidence the cases of models that
fail overall, meaning that while they do identify correctly
the issues that are most likely to close (i.e. they have a cer-
tain level of ranking accuracy as measured by AUC), they
have either low precision or low recall or both. We observe
the lowest F1-scores when the gap between the observation
point and the end of the prediction horizon is the smallest
(cf. the diagonal values in the table). The reason for this
phenomenon is that in these cases, the class imbalance is
the highest. The best F1-scores are obtained when the gap
between the observation point and the prediction horizon
is the largest. In other words, we are more accurate when
making longer-term predictions. One possible explanation
for this is that there are more issues with smaller lifetime

Table 3: AUC scores for different Prediction horizon
and observation point (OP) values.

Prediction horizon(days)
OP 1 7 14 30 90 180 365

0 0.653 0.660 0.663 0.665 0.666 0.681 0.707
1 0.641 0.644 0.649 0.658 0.680 0.688
7 0.639 0.644 0.653 0.680 0.671
14 0.646 0.653 0.681 0.665
30 0.653 0.681 0.659
90 0.687 0.661
180 0.684

Table 4: F1 scores for different Prediction horizon
and observation point (OP) values.

Prediction horizon(days)
OP 1 7 14 30 90 180 365

0 0.437 0.604 0.659 0.715 0.781 0.830 0.898
1 0.392 0.478 0.571 0.695 0.766 0.863
7 0.236 0.402 0.587 0.702 0.806
14 0.278 0.513 0.657 0.771
30 0.395 0.574 0.712
90 0.337 0.589
180 0.387

(note that half of the issues have lifetime smaller than 3.7
days) and making predictions for them is harder as there are
more different reasons for closing them. Meanwhile, there is
a smaller amount of issues with longer lifetime and therefore
the features can better capture the corresponding reasons for
closing them.

The raw experimental results give us a broad view of how
well the models perform. But since the sample sizes differ
considerably across different (observation point, prediction
horizon) combinations, we cannot directly compare perfor-
mance across models. Accordingly, in Table 5, we report the
results for experiments, where the testing set is always of
the same size for all models with a given prediction horizon.
This makes it more meaningful to compare models across
different observation points. For each prediction horizon,
we table gives the performance across all observation points
that are before the prediction horizon. For example, for
the prediction horizon of 365 days, we only include issues
that have not been closed in the first 180 days. For these
issues, we can perform the prediction at different observa-
tion points. Figure 2 illustrates the concept of observing the
same set of issues over different observation points (and thus
different observation periods) in order to predict whether or
not the issue will close before 365 days or later. Similarly,
we do the analysis for other prediction horizons, with each
time one less possible observation point and a larger test set.

When looking at the AUC and precision values (Table 5),
we observe that in many cases (specifically for prediction
horizons of 365, 180 and 90 days) the scores increase as the
observation point increases. For the prediction task whether
an issue will be closed in 365 days, we observe an 8.7% in-
crease in AUC (from 0.629 to 0.684) and a 33.2% increase
in precision (0.187 to 0.249) across the seven correspond-
ing observation points. This supports the hypothesis that
observing an issue over an extended period can lead to bet-
ter predictive power. In contrast, the recall scores are more
fluctuating and show a slight negative trend when the ob-



365180900      

Issues closing 

before  365 days

(N=21521)

Issues not closing 

before 365 days

(N=105990)

Observation period (N=127511)

Time 

[days]

Figure 2: Observing a set of issues for prediction
whether they will close before 365 days or after. The
numbers correspond to the first group in Table 5.

servation point increases. The reason is that the amount of
true positives (correctly classifying closing issues) decreases
only slightly with an increasing observation point, while the
amount of true negatives (correctly classified issues that will
not close) keeps increasing.

To summarize the findings with respect to RQ1, we con-
clude that when making repeated predictions for issues as
they evolves over time, predictions made at later observation
points yield higher AUC and precision scores, but lower re-
call.

5.2 Feature importance (RQ2)
In order to address RQ2 (What features are most impor-

tant when predicting issue lifetime? ), we analyze the mean
decrease in impurity for each feature as discussed in Sec-
tion 4.5. We are particularly interested in understanding the
role played by dynamic features, hence we compare the fea-
ture importance for the models constructed at creation time
(the zero-day models) versus one week after issue creation
(the 7-days models). This approach allows us to understand
the role played by dynamic features early on during the life-
time of an issue. Regarding the prediction horizon, we look
at models constructed to predict if an issue will close after
30 days (short-term predictions) and after 180 days and 365
days (long-term predictions).

The ranking of feature importance for the zero-day models
is given in Figure 3. In the case of the zero-day model with
a 30-days prediction horizon (cf. Figure 3a), the top-ranked
features are nIssuesCreatedProjectClosedT and nIssue-

sCreatedInProjectClosed (i.e. issue closing activity in the
two weeks and the three months before the issue submission
respectively). Not far below we also see nCommitsProjecT

(commit activity). The presence of these features at the
top of the ranking suggests that contextual features play an
important role when making predictions at creation time.
The third feature in the ranking is the number of comments
(nComments), which in the zero-day models only has two
possible values (0 or 1) – some issues come created with-
out any attached comment at issue creation, while others
come with a comment having the same timestamp as that
of issue creation. Expectedly, the presence of this initial
comment carries some information about issue lifetime. We
also observe that textScore is highly ranked, stressing the
potential value of extracting information from text attached
to issues.

In the case of the zero-days model with a 180 days predic-
tion horizon (Figure 3b), we observe that the top-3 features

are the same as in the model with 30-days prediction hori-
zon. On the other hand, the importance of textScore when
predicting for 180 days is lower than when predicting for 30
days. In other words, the text attached to the issue is useful
for short term prediction, but becomes less important for
longer-term prediction.

In both cases (zero-day models with 30-days and 180-days
horizons), the features that have least importance are those
related to size of comments, commit messages and issue la-
bels. This is simply because these features are dynamic and
hence not meaningful for zero-day models.

Let us now compare the feature importance ranking of the
zero-day models (Figure 3) against the 7-days models (Fig-
ure 4) with a 180-days prediction horizon. We observe that
feature textScore has less importance in the 7-days models,
and instead dynamic features take it over in importance, e.g.
number of unique persons (nActors), average comment size
(meanCommentSizeT) and number of references to the issue
(nReferencedByT). This observation reinforces the hypoth-
esis that dynamic features carry information that comple-
ments static features, particularly when making long-term
predictions.

One can wonder if a longer-term prediction horizon affects
feature importance significantly. To this end, Figure 4b dis-
plays the feature importance ranking of the 7-days model
with a 365-days prediction horizon. It turns out that this
raking is very similar to the one for the 7-days model with
180-days horizon. Although not shown here, we observed a
similar ranking in the 7-days model with 90-days horizon,
suggesting that the task of predicting closing time with a
few months horizon is similar to that of predicting it with a
one-year horizon.

In summary, with reference to RQ2, we can say that con-
textual features complement static features both for short-
term and long-term predictions. Dynamic features in turn
complement both static and contextual features and their
inclusion explains the observed increase in accuracy of mod-
els built for later observation points.

6. DISCUSSION AND LIMITATIONS
The observed accuracy of our models (AUC and preci-

sion scores) suggests that predictive models of issue lifetime
across large sets of open source projects could potentially be
used in practice if users were willing to tolerate some fluc-
tuation in their predictive accuracy. Compared to previous
research, Giger et al. [9] obtain AUC scores between 0.649
to 0.823 when increasing dynamic feature observation pe-
riod from 0 days until 30 days (Eclipse JDT project). Their
results also show fluctuations in performance, i.e., observing
features for longer period does not lead to monotonic in-
crease in model performance. Their model precision scores
are also better, ranging in 0.635 to 0.885, but recall values
are lower than in our experiments, ranging from 0.485 to
0.661. They also experience high variation across projects,
especially with Gnome Gstreamer project dataset where per-
formance decreases with longer post submission data, with
the AUC values mostly decreasing from 0.724 to 0.586. Fran-
cis & Williams [8] similarly show that a same issue lifetime
prediction method can have different performance on an
open source and closed source private project. This con-
firms that issue lifetime prediction varies across projects,
and suitable accuracy can not be always obtained.

The experimental setup used by Giger et al. [9] is not



Table 5: Prediction performance of models tested with a constant test size (N) for any given prediction
horizon.

Observation
point AUC Precision Recall F1 TP FP FN TN

Prediction horizon of 365 days (N=127511)

0 0.629 0.187 0.851 0.306 18311 79679 3210 26311
1 0.631 0.185 0.905 0.308 19484 85702 2037 20288
7 0.629 0.188 0.914 0.311 19674 85136 1847 20854
14 0.635 0.195 0.921 0.322 19811 81582 1710 24408
30 0.637 0.204 0.912 0.334 19635 76484 1886 29506
90 0.654 0.244 0.875 0.381 18831 58433 2690 47557
180 0.684 0.249 0.874 0.387 18802 56839 2719 49151

Prediction horizon of 180 days (N=196976)

0 0.618 0.181 0.814 0.297 24757 111782 5661 54776
1 0.633 0.206 0.783 0.326 23830 91756 6588 74802
7 0.656 0.208 0.814 0.331 24767 94540 5651 72018
14 0.664 0.207 0.826 0.331 25117 96029 5301 70529
30 0.675 0.208 0.836 0.333 25416 97003 5002 69555
90 0.687 0.211 0.834 0.337 25374 94884 5044 71674

Prediction horizon of 90 days (N=280862)

0 0.615 0.251 0.793 0.381 47477 141823 12375 79187
1 0.616 0.263 0.746 0.389 44643 124887 15209 96123
7 0.630 0.268 0.700 0.388 41912 114349 17940 106661
14 0.639 0.268 0.682 0.385 40801 111222 19051 109788
30 0.653 0.272 0.721 0.395 43179 115474 16673 105536

Prediction horizon of 30 days (N=352555)

0 0.625 0.162 0.802 0.270 38331 197918 9490 106816
1 0.620 0.178 0.653 0.280 31228 143910 16593 160824
7 0.632 0.174 0.611 0.271 29195 138131 18626 166603
14 0.646 0.176 0.653 0.278 31248 145930 16573 158804

Prediction horizon of 14 days (N=404045)

0 0.623 0.133 0.796 0.227 35243 230365 9057 129380
1 0.620 0.144 0.619 0.233 27443 163398 16857 196347
7 0.639 0.145 0.642 0.236 28437 168189 15863 191556

Prediction horizon of 7 days (N=516927)

0 0.644 0.259 0.820 0.394 90343 258308 19829 148447
1 0.641 0.278 0.664 0.392 73135 190227 37037 216528

directly comparable to ours, as they used different predic-
tion task and their dataset properties were different, such as
considerably larger median issue lifetime. Another aspect
that might work in their favor is that they perform cross
validation without using any temporal information about
the creation of issue reports (i.e. no temporal split), so that
“future data” may be used to classify an issue at a given
time point. Even tough, their results with using only static
features are comparable in terms of AUC, where they had
scores ranging from 0.649-0.724 across projects.

With respect to the use of temporal splitting, the reported
findings are in line with those of Assar et al. [2], who observe
that when using temporal splits and observing issues for a
longer period, the prediction error becomes lower compared
to shorter observation periods.

Our work uses issues from more than 4000 projects. The
projects have different development practices, backgrounds,
resources and goals. Hence the heterogeneity in project

properties can affect our results as the models can not make
sound generalization based on issues from different projects.
It has been shown that features, such has developer reputa-
tion that can be important in projects determining the issue
lifetime, is not important in another scenario [3]. Similarly,
we do not distinguish between different types of issues (e.g.
bugs vs. feature requests), although this can have an effect
on the resolution time in Github [20].

Another limitation of the study is the lack of cross-
validation in the evaluation of the classification models. We
have chosen to use temporal splits between training and test-
ing data, as this is exactly how the models are trained when
used in real world scenario, and should give a better esti-
mate of issue lifetime. The drawback of this choice is that
it does not leave much room for performing multiple test
splits, since the period covered by the dataset is just of the
length required for one split.

In addition, the precision scores of our models are low –
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Figure 3: Feature importance for the zero-day mod-
els with 30-days and 180-days horizon.

i.e. issues that we predict will close before the horizon often
remain open past it. This restricts their direct practical
applicability. A critical direction for future work is thus to
investigate the reasons for low precision and to improve the
models for example by introducing additional features (e.g.
from the code commits or from the text of the comments).

A potential threat to validity is that our dataset contains
non-software development projects as removing all of them
manually would be impractical. To estimate the extent of
non-software development projects in the dataset, we manu-
ally checked a random sample of 100 projects. We found that
89 of them can be classified as software projects (i.e. projects
containing code and build files or deployment guides). Two
projects contained only documentation, two contained spec-
ifications, two data, one was used purely as an issue tracker
for an externally hosted, and four had been since deleted
and thus their nature could not be asserted.

7. CONCLUSION AND FUTURE WORK
In this paper we studied the problem of predicting issue

lifetime in GitHub projects for different calendric periods,
using a combination of static (creation-time), dynamic and
contextual features. Based on issues extracted from a sample
of 4000 projects, we show that such predictive models exhibit
better accuracy when trained with one-day-old or one-week-
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Figure 4: Feature importance for the 7-days models
with 180-days and 365-days horizons.

old issues to predict whether or not an issue will remain open
after one month or a longer period. This study highlights
the importance of dynamic and contextual features in such
predictive models.

The predictive models studied in this paper benefit from
being trained on a large dataset. The counter-part of this
benefit is that the set of projects in the dataset are very
heterogeneous, making the prediction problem more diffi-
cult. One possible direction for future work is to study the
performance of predictive models trained for specific types
of projects (i.e. partial classifiers), such as to strike a tradeoff
between volume of projects and homogeneity.

Another direction for future work is to extend the fea-
ture set with more dynamic and contextual features, like for
example features extracted from the text of the comments
added during the lifetime of an issue, or features captur-
ing how busy the developers are handling other concurrent
issues in the same or in other projects.

Supplementary Information. Additional results and the
list of projects used in this research are available at https:
//github.com/riivo/github-issue-lifetime-prediction
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