
Cost-Effective Semantic Annotation of XML Schemas and Web Service Interfaces

Peep Küngas, Marlon Dumas
Institute of Computer Science

University of Tartu
Tartu, Estonia

{peep.kungas,marlon.dumas}@ut.ee

Abstract—Research in the field of semantic Web services aims at
automating the discovery, selection, composition and
management of Web services based on semantic descriptions.
However, the applicability of many solutions developed in this
field is hampered by the costs associated with semantically
annotating large repositories of Web services. To overcome this
gap we propose a practical method for semantically annotating
collections of XML Schemas and Web service interfaces. We
have evaluated this method on a large repository of governmental
Web services. The evaluation shows that relatively simple
techniques are surprisingly cost-effective, saving hundreds of
man-hours of semantic annotation effort. Moreover, the
proposed method does not assume the availability of a pre-
existing ontology or controlled vocabulary. Instead, the space of
annotations is dynamically built during the annotation process.

Keywords - semantic annotation; Web Services interfaces;
cost-effective annotation methods; XML Schemas; WSDL; SA-
WSDL

I. INTRODUCTION
The potential uses of semantically-annotated content and

service descriptions, for example in the area of Web service
discovery and composition, are widely acknowledged
[GVS+06, NVS+06, RKM06, BH08]. However, collecting
such semantic annotations is a major bottleneck. Manual
approaches to semantic annotation give high precision, but
they are generally too costly [EMS+00]. In some scenarios,
this cost can be spread across large communities (e.g.
through collaborative tagging), but this approach is only
applicable when there is an incentive for large communities
to come together. On the other hand, several automated
semantic annotation methods have been proposed. These
automated methods are often based on shallow natural
language processing techniques (e.g. morphological
analysis, named entity extraction, part-of-speech tagging),
taxonomy-based disambiguation and/or machine learning.
However, for these approaches to achieve high precision,
they require domain-dependent fine-tuning. Some
approaches additionally require a pre-existing taxonomy or
domain ontology, as well as the availability of linguistic
knowledge bases, which are sometimes not available.

In this paper we propose a practical methodology for
semi-automated annotation of web service repositories. The
aim of the methodology is to enable developers to cost-
effectively annotate corpora of WSDL interfaces in order to
generate model references (i.e. references to vocabularies,
taxonomies or ontologies). These model references are

encoded in SA-WSDL (Semantic Annotations for WSDL
and XML Schema) [FL07]. Our proposal abstracts away
from the specific type of model references used as semantic
annotations. These references can point to ontologies
encoded in OWL [OWL04], to UML models created
according to OUP (Ontology UML Profile [ODM]) or any
other model addressable via Unified Resource Identifiers
(URIs). Moreover, the proposed approach does not assume
that the model (vocabulary, ontology or taxonomy) is
available upfront. Instead, the model is incrementally
constructed by the annotator(s) as part of the annotation
process.

While simple, the proposed methodology has proved to
be cost-effective. We applied the methodology to
semantically annotate the Estonian governmental Web
services repository [K+05], containing circa 60 information
systems and around 1000 Web service operations. In this
paper, we analyze the cost of creating semantic annotations
for this repository using the proposed methodology, and
compare it with the estimated effort taken by a fully manual
annotation approach. The evaluation suggests that simple
methods are great effort savers, i.e. the 80/20 principle
applies. Furthermore, the approach can be combined with
existing automated annotation solutions either for fine-
tuning or bootstrapping large-scale annotation projects.

The rest of the paper is structured as follows. In Section
II we describe our semantic annotation methodology. In
Section III we present an empirical evaluation of the
methodology. In Section IV we review related work while
in Section V we draw conclusions and discuss future work.

II. METHODOLOGY
The specific aim of the methodology is to attach

semantic annotations (encoded as SA-WSDL model
references) to the leaf node elements of an XML schema. In
other words, model references are attached only to XML
schema elements that have either a built-in XSD type or a
“simpleType.” The rationale for this choice is that leaf
elements represent maximally fine-grained data objects (e.g.
an apartment number in a customer address). Once these
fine-grained elements have been annotated, the resulting
annotations can be propagated to coarser-grained elements
as required (i.e. to complex types, WSDL message parts,
operations and interfaces). This choice does not imply that
we only analyze leaf nodes. In fact, the proposed
methodology exploits the hierarchical structure of WSDL

interfaces and XML schemas in order to extract contextual
information that is used to derive semantic annotations for
leaf nodes.

The proposed methodology is inspired by UPON
[NMN09], an incremental methodology for ontology
building. Accordingly, the methodology includes cycles,
phases, iterations, and tasks. Cycles are regulated by the
evolution of Web services descriptions – every time a
WSDL or related XSD documents changes, a new cycle is
started, which ends with a complete annotation of the new
or modified Web service descriptions. Each cycle consists
of 3 phases, namely annotation of most outstanding
elements, annotations of most recurrent elements, and
annotation of other elements. Each phase is further
subdivided into an unlimited number of iterations. Each
iteration includes three tasks: analysis of element names,
design of heuristic rules and application of heuristic rules.
This process is sketched in Figure 1.

Figure 1. Annotation process.

In each cycle, the annotator proceeds as follows:
• Determine the WSDL and XSD documents to be

annotated;
• Build a list of elements to be annotated. First, extract

the leaf element nodes of the XML schema. Next,
construct a list with each element name, its location
(represented by an XPath expression), the URL of
the parsed document and any associated
documentation. Note that instead of XPath, we could
use XSD component designators, which provide an
URI-compliant way of referring to elements in an
XML schema.

• Optionally, import a data model, ontology or other
model, containing the entity definitions that will be
used to annotate the XML schema elements;

• Create annotation heuristics;

• Apply the heuristics and export the constructed
mappings as SA-WSDL references within the
original WSDL/XSD documents;

• Manually create annotations for elements that cannot
be annotated by means of the heuristics;

• Extend model, if needed, to cover new entities.
The core phases of each cycle are those related to the

manual creation of annotation heuristics. These are
summarized below:

• Create annotation heuristics for the top-10% most
“outstanding” element names. Identify the top 10%
most frequently occurring element names and present
these to the annotator. The annotator then defines
annotation heuristics for each of these “outstanding”
elements. Typically, these annotation heuristics
cover a significant number of elements in the
schema. In this phase, the annotation heuristics are
designed to match exact element names (e.g.
“customer_name”, “customer_address”, “id_code”,
etc.). In the next phase, we will seek to define
heuristics that match syntactically similar element
names.

• Create annotation heuristics for the top-50% most
“promising” elements. After removing the most
outstanding elements from the “to-do” list, identify
the top 40% most recurrent element names in terms
of number of occurrences. The frequency of element
names processed in this phase is much lower than in
the previous phase. Accordingly, the annotation
heuristics defined in this phase need to be more
generic: instead of defining heuristics that match
exact element names, we define heuristics that match
groups of syntactically similar element names. For
each element name, identify element names that are
syntactically similar to it. We rely on three methods
to determine syntactic similarity: (i) common radical
(using stemming); (ii) common suffix; and (iii)
Levenshtein distance less than a given threshold
(where the threshold can be adjusted). Each element
and its syntactically similar elements are presented to
the annotator as a group (starting with the most
recurrent elements). Through inspection, the
annotator decides which elements in the group are
related and removes unrelated elements. The
annotator then assigns annotation heuristics to each
cleaned group. Note that this phase can be repeated.
Indeed, while processing the top-50% most
“promising” elements, the corresponding groups are
cleaned, and in this process it may happen that some
elements are dropped out and need to be revisited.

• Create annotation heuristics for the rest of elements.
Continue visiting the remaining elements using the
same principle (from most recurrent to less
recurrent), again grouping elements by their syntactic
distance so that the annotator can attach annotation

heuristics to groups of elements rather than
individual elements.

During these phases, some elements are removed from a
group and are left for processing in subsequent iterations.
This happens during the manual inspection, if it is identified
that one of the following applies:

• Documentation of elements with identical or
syntactically similar names refer to meanings, that
have no practically applicable common denominator
(e.g. “table” is interpreted in some cases as a piece of
furniture and in other cases as a database table);

• Neither has the element been documented nor do the
parent elements provide an unambiguous context to
understand the meaning of the element (e.g. an
element occurs in a complex type defining a string
array as a sequence of string elements, whereas the
array is used to represent list of countries, company
names, etc).

Annotation heuristics are represented as rules of the
following form: entity_reference ← synset (e.g. Password
← {password, pwd, strPassword, authpassword, pass}).
The meaning of such a rule is that an XML schema element
matched by any element in the synset is mapped to the entity
reference on the left-hand side of the rule. A synset, or a
synonym ring, is a group of labels that are considered
semantically equivalent. In the second and third phases of
the methodology we use a variant of synsets in which the
group of labels that are considered semantically equivalent
is not fully enumerated, but instead it may be represented
using regular expressions. Accordingly, we define a notion
of extended synset – a set consisting of labels and regular
expressions. A label matches a synset if it matches any of
the elements in the synset. An example of an extended
synset is {*street, str*name, s_name}. The labels “str.
name”, and “street_name” match this extended synset since
they match the second element in the synset. In this context,
the “*” stands for any sequence of characters (including the
empty sequence). In defining such synsets with regular
expressions, over-generalization may occur. For example,
the regular expression ‘str*name’ matches the string
“string_name” which is not directly related to
“street_name”. This is natural since we are dealing with
heuristic rules rather than exact rules.

Annotation heuristic rules may be partially overlapping.
This simply means that a given element in a schema may be
associated with multiple annotations. For example, a schema
element <university_name> may represent both an
educational institution name and a business name, and thus
this element may have two (or more) semantic annotations.

In the proposed methodology, annotation heuristics are
created as follows:

• Select a leaf node name;
• Inspect documentation of all lead nodes that have

this name; if there is no documentation extracted
from the XML schema or WSDL description,

analyze the data structure, i.e. inspect the ancestors
and siblings of each lead element.

• Based on documentation find a common, most
specific semantic denominator(s) to attach to the
element name. For example, “company name” and
“person name” can be generalized in some domains
as “customer name”):
o If the annotator finds a common most specific

semantic denominator for the element name,
she creates a new annotation rule or extends an
existing annotation rule that already covers the
element name;

o If no common denominator is found, the
element name is skipped. In this case, finer-
grained analysis is required and the element
may be visited again at a later stage. For
example, an element called “identifier” might
refer to a business identifier or a customer
identifier or a transaction identifier. So it might
not be possible to define an annotation
heuristics for this element. This will lead to
certain element names not leading to any
annotation heuristics and these element names
might then remain un-annotated.

• When identifying the most specific common
denominator in the previous step, the annotator
should refer to the existing entities in the model
(vocabulary, ontology or taxonomy). If there is no
concept that matches the concept chosen as the
common denominator, the model needs expansion. In
this case, the annotator creates a new entity, or a
creates a placeholder for a new entity and adds the
details of this entity later. Although the methodology
does not require a model ex ante, the existence of a
model right from the start simplifies the annotation
process. In case there is no predefined model, a list
of entities is built manually during the annotation
process.

III. EXPERIMENTAL RESULTS
In order to evaluate the applicability and usefulness of

the proposed methodology we performed a case study using
a repository of Estonian governmental Web services,
namely X-Road [K+05]. The purpose of the case study is to
analyze two aspects of the web services annotation
methodology:

• To estimate the effort required to build ontologies
and to semantically annotate existing web services;

• To estimate to what extent the required annotation
effort can be reduced by applying the proposed
methodology.

We analyzed 58 web service descriptions covering a total
of 1045 operations. The input and output types of these
operations are defined in XML Schema. Altogether, there
are 7757 leaf elements in these schemas and ca 2900 distinct
leaf node element names, meaning than on average each leaf

element name occurs 2.7 times in the repository. Manual
annotation of such a number of schema elements would be a
time-consuming project and thus specific methodologies
and tools are required.

We applied the methodology for one iteration of phase 1
(annotation heuristics for most outstanding data elements), 4
iterations of phase 2 (annotation heuristics for most
promising elements) and 1 iteration of phase 3 (annotation
heuristics for syntactically grouped elements). Altogether
we attached 5555 annotations to the 7757 leaf elements
(70%). This was achieved after manually inspecting around
1600 leaf element names and creating almost 600 model
entities in the process. We stopped the annotation process
when more than two-thirds of the elements had been
covered, after realizing that continuing the annotation
process beyond that point was unlikely to yield additional
insights.

Figure 2. Annotation project characteristics.

Figure 2 shows the number of annotations achieved per

iteration. Iterations are numbered 1-6 at the bottom of the
figure, whereas 1 refers to iteration 1 in phase 1, numbers 2-
5 refer to iterations 1-4 of phase 2, and number 6 refers to
iteration 1 of phase 3. The numbers along the left-hand-side
vertical axis indicate the number of annotations. The gray
columns indicate the number of new annotations introduced
during each iteration, while the dotted line indicates the total
number of annotations achieved up to a given iteration (i.e.
the sum of the number of annotations in the current and in
all previous iterations). It can be seen that at the end of the
sixth iteration, almost 6000 annotations are achieved. For
reference, a horizontal line at the top of the figure indicates
that the total number of elements being annotated is close to
8000.

The numbers on the right-hand-side vertical axis of the
figure indicate the number of heuristic rules added per
iteration. It can be observed that in the first iteration this
number is low since of the elements selected in this phase
occur very frequently, and therefore each annotation
heuristic rule defined in this iteration leads to many
annotated elements. The number then climbs sharply during
the first iteration of the second phase where a large number
of “promising” elements are annotated. The number drops in

subsequent iterations of phase 2. Finally, the number climbs
sharply again in the last iteration (of phase 3) since in this
iteration, almost every element name needs its own
annotation heuristics (around 900 annotation heuristic rules
are added in this final iteration).

We conclude that phase 1 results in simple, yet powerful
heuristics providing excellent annotation per heuristic ratio.
Heuristic rules added in phase 2 provide annotations for
elements with more domain-specific semantics, which
naturally leads to a lower annotation-per-heuristic ratio.
Finally, in phase 3 an order of magnitude more annotation
heuristics need to be constructed since we are then dealing
with very specific (generally one-off) elements and model
entities.

Altogether 573 model entities were needed to annotate
5555 of 7757 possible XML Schema leaf node elements
(see Table 1 for more information). Our empirical results
show that the top 30 most recurrent entities provide
semantic annotations to ca 15% of nodes, while the top 300
provides coverage to ca 50% of elements. The most
important entities are listed in Table 2. Please note the
differences between Table 1 and Table 2 – while in Table 1
XML Schema element names are listed, in Table 2 entity
labels from the semantic model are listed.

Table 1. 12 most frequent element names in X-Road WSDL documents.
Element
name (in
Estonian)

English interpretation Occurrences

isikukood National identity code 205
teade Notification 177
eesnimi First name 144
perenimi Surname (last name) 94
nimi Name 87
kood Code 77
synniaeg Birth date 67
id Identifier 66
liik Type 45
et_nr <does not translate> 44
kuupaev Date 42
kpv Date (abbreviated) 40

Table 2. Top 12 most frequently referred entities.
Entity label References
National identity code 271
Date 203
General identifier 199
Notification 180
First name 178
Last name 165
Start date 162
Name 145
Birth date 132
End date 115
Address 85
Business registry code 72

In principle, every element name visited during an
iteration of the methodology leads to an annotation
heuristics that covers all occurrences of that element.
However, as explained earlier, it sometimes happens that
element names are ambiguous (e.g. “identifier”) and no
annotation heuristic can be defined that covers all of its
occurrences. Therefore, the actual number of annotations
produced after processing a given number of element names
may be lower than the expected number of annotations.
Figure 3 shows the divergence between the expected and the
actual number of annotations produced by the heuristics. In
this figure, the numbers along the horizontal axis are
sequence numbers of element names, ordered by their
occurrence frequency. The vertical axis gives the
cumulative number of annotations (expected or actual) at a
given point during the annotation process. The dotted and
dashed lines in the figure show the estimated and the actual
number of annotations respectively. The estimated number
of annotations is calculated by assuming that for every
element name, we would be able to define an annotation
heuristic that produces annotations for all occurences of this
element name. Figure 3 suggests that by processing the top
10% most recurrent element names (cf. first vertical dashed
line) we would obtain annotation heuristics for ca. 50% of
all elements, while processing the top-50% most recurring
element names would cover ca. 80% of all elements (cf.
second dashed line). However, the dashed line reveals that
in practice, only ca. 40% of elements are covered after
processing the top-10% most recurring element names, and
ca. 55% of elements are covered after processing the top-
50% most recurring element names. Still, the results show
that the methodology is relatively effective when compared
to manual, one-by-one annotation approach.

From a project management point of view, when
allocating resources for annotation activities, there is a need
to estimate, based on the characteristics of sources that need
to be annotated, how many man-hours should be allocated.
Since there is no cost estimation model for semantic
annotation available, we publish the figures we observed in
Figure 4. Like in software engineering, accurate effort
estimation is a difficult problem, but we hope that these
empirical results serve as initial reference point for future
projects or studies on semantic annotation cost analysis. The
empirical results in Figure 4 should be aligned with those in
Figure 2, where 6 iterations took altogether 36 hours. In this
light Figure 4 confirms that annotations of phase 1 and
phase 2 were created, by using heuristic rules, much more
effectively than those constructed in phase 3.

Figure 3. Comparison of potential and actual annotations constructed with

heuristic rules.

Figure 4. Man hours required for annotation.

Figure 5 shows the number of model entities

created/used during the annotation (right-hand side vertical
axis scale) and the number of annotations per entity (left-
hand side scale). This figure reveals that proportionally, few
entities are introduced at the beginning of the project but
these entities are used to annotate many elements. This is a
feature of our methodology, since the most outstanding
enties are identified first and annotation heuristics are
created for them. Subsequently, more and more annotations
need to be introduced to cover the less recurrent elements,
but eventually the number of model entities required
stabilizes. It should be noted that while the number of new
entities per annotation gradually decreases, the time
required to provide new annotations gradually increases.
This is shown in Figure 6, where the usefulness of annotation
heuristics through different stages of the annotation process
are presented.

Figure 5. Entity requirements for annotation.

Figure 6. Efforts to add new entities and annotations.

IV. RELATED WORK
A significant amount of prior work has considered the

automated annotation of Web content using shallow natural
language processing (e.g. morphological analysis, named
entity recognition) and disambiguation techniques
[EMS+00, DEG+03]. Semi-automatic and automatic
approaches to full-text semantic annotation have proved to
be relatively scalable. Dill et al. [DEG+03] present a case
study in which they apply such techniques to annotate a
corpus of 264 million web pages. However, the precision of
these techniques is limited by the fact that they deal with
unstructured content. In the context of web service
annotation, finer-grained techniques that exploit the
structure of XML documents are applicable.

The METEOR-S semantic annotation framework
[POS+04] applies shallow NLP techniques for semantic
annotation of web service descriptions. The techniques
employed in the METEOR-S framework derive from
schema matching techniques: the problem of semantic
annotation is seen as one of matching XML schema
elements to entities in an ontology. This matching problem
is addressed by combining shallow NLP techniques
(tokenization, NGRAM, stemming, stop-word removal, etc.)
with structural matching techniques. The ASSAM toolset

[HJK04], on the other hand, applies machine learning
techniques to classify web services, their operations and
input and output message types. From this classification, a
mapping is derived between a collection of web service
descriptions and an ontology, using string similarity metrics.

The above techniques require pre-existing taxonomies or
ontologies. This is not a suitable assumption in many
settings. For example, governmental Web service
repositories, such as the one considered in this paper, cover
a wide diversity of domains including taxation, justice,
education, public health, public infrastructure, etc. It is
unrealistic to assume that a fixed ontology or combination
of ontologies can provide the full extent of concepts
required to semantically annotate such repositories.
Moreover, some of the above techniques require linguistic
knowledge bases that are not always available in all
languages. Northern European or Baltic languages do not
have linguistic knowledge bases as sophisticated as those
available for English or German.

Burstein [B04] is concerned with constructing ontology
mappings between terms used in different semantic web
services. It is argued that since web service providers do not
use a shared ontology for describing semantically their web
services, automated ontology mapping is required. This
work is complementary to ours. Indeed, our approach
produces Web service descriptions that are annotated with
respect to a vocabulary built on-the-fly during the
annotation process. To achieve integration with other
semantically annotated Web services repositories, ontology
mappings are required.

Sabou [S04] proposes an automated method for Web
service annotation using software API documentations. The
idea is that if an API implements a web service, then the
semantics of the API corresponds to the semantics of the
web service. Thus, the API documentation (in natural
language) can be used to semantically enrich Web service
descriptions. This approach differs from ours in that we treat
Web services as black-boxes, and we analyze only the Web
service interfaces, not their implementations.

Other work [SWG+05] has sought to extract domain
ontologies for textual content attached to web services, by
leveraging shallow natural language processing techniques
(e.g. part-of-speech tagging). This work is complementary
to ours, insofar as our method can be optionally
bootstrapped using a domain ontology.

Semantic interoperability in e-government services has
been identified as one of the key aspects in public sector e-
services [MK08]. Many member states of the European
Union have ongoing semantic interoperability initiatives,
e.g. German’s Deutschland Online Italy’s and the Finnish
FinnONTO initiative [H+08]. There are also pan-European
initiatives, e.g. SEMIC (SEMantic Interoperability Centre)
and semanticGov [V+06]. However, current efforts in
building up full-fledged semantic infrastructures in the e-
Government context are hampered by the cost of
semantically annotating large repositories of information

assets (including Web service interfaces) with a sufficient
amount of precision. In this paper, we have used the Web
service repository of the X-Road [K+05] platform as a
dataset for validating our proposed methodology. The X-
Road platform supports the technical interoperability of the
components and registries of the Estonian state information
system.

The application of semantically annotated Web services
has been widely studied. For example, Pathak et al [PBH07]
show that semantic annotations, of Web services interfaces
provide a suitable basis for analysing substitutability of Web
services. Meanwhile, Gomadan et al. [GVS+06] studied the
application of semantic Web service annotations for Web
service discovery, while Rao et al. [RKM06] and Pistore et
al. [PST06] study their application to Web service
composition. Finally, to estimate of the degree of human
involvement in XML schema mediation Gomadam et al
[GRR+08] introduce the concept of mediatability and
provide a quantifiable and computable definition for it.
Their experiments demonstrate that in average partial
semantic annotations of schemas improve the mediatability
by a factor of 2 while having complete annotations improves
the mediatability by a factor of 3. These results indicate that
many efforts can be saved in integration projects, if schemas
are at least partially annotated.

V. CONCLUSIONS AND FUTURE WORK
In this paper we propose a practical method for

semantically annotating large collections of Web service
descriptions. The method is based on syntactic analysis of
XML schemas, which results in manual construction of
annotation heuristics. While applying these heuristics Web
services descriptions are annotated semantically.

We evaluate this method on a large repository of
governmental Web services. The evaluation shows that
some relatively simple techniques are quite cost-effective,
saving hundreds or even thousands of man-hours of
semantic annotation effort. The proposed method does not
assume the availability of a pre-existing ontology or
controlled vocabulary. Instead, the space of annotations is
dynamically built during the annotation process.

Although we considered in this evaluation focuses on
XML schema leaf node names, our approach can also be
applied to annotate XPath expressions or XSD schema
designators leading to either leaf nodes or internal nodes, as
required. Furthermore, our experiments show (see Figure 4)
that string similarity cannot be the sole criterion for label
matching in of the context of Web services, if detailed
distinction is required (such as to distinguish between
“national identification code (NIC)” vs “NIC of company’s
owner”). Moreover, there exist leaf nodes, whose names are
identical, but the meaning is completely different (“code”
could refer to a person’s identifier or company’s or a real
estate object’s identifier or a postal code). Thus there is still
need for defining finer-grained annotation heuristics, and

here XPath expressions of XSD component designators
could be used to refer to elements in a finer-grained manner.

We have implemented a tool that supports the proposed
methodology. Our annotation toolset currently imports
WSDL and XSD documents, applies a set of annotation
heuristics, and finally exports the annotations as SA-WSDL
model references injected within the imported documents.
We aim to provide our annotation tool together with the
constructed annotation heuristics for sample web service
repositories as a public Web service such that semantic Web
services research community would globally benefit from
using it for providing semantics to their Web services
descriptions.

Another thread of our future work includes applying the
proposed methodology to common data interchange models
encoded in XML Schema such as HL7, SID, ARTS, XBRL,
XML-HR etc. In fact we have analyzed HL7 data model and
our initial findings indicate that although unified data model
annotation heuristics pointing to high-level entities are
easier to construct (synsets are simpler) and annotations
converge faster, more care should be taken on
disambiguation due to homogeneous naming rules. The
most commonly occurring names are for instance “id”,
“code”, “typeid”, “templateid”, “realmcode” from altogether
345 different names. These names need to be disambiguated
by analyzing the context in which they occur. This is
another reason for investigating usage of XPath expressions
in building annotation heuristics. For instance in HL7 the
following 2 XPath locations for element named “addr” -
xsd:complexType[@name="COCT_MT030200UV04.Guard
ian"]/xsd:sequence/xsd:element[@name="addr"] and

xsd:complexType[@name="COCT_MT030200UV04.Stu
dent"]/xsd:sequence/xsd:element[@name="addr"] refer to
two different entities – an address of a student and an
address of a guardian though they both would refer to the
same high-level entity representing an address.

Though common data models provide a standardized set
of interfaces/data models, they are in practice not so trivial
to apply due to their size and domain-specific nature.
Moreover, in turns out that no common data model can
completely cover the needs of all integration/development
projects, they are used in. Thus, for the sake of
maintainability, there is a need to migrate ad hoc data
structures to standardized data models while at the same
time extending the latter with application-specific parts. Our
hypothesis is that annotation heuristics can help in migrating
ad hoc data structures of existing integration projects into
standardized data models.

ACKNOWLEDGMENT
This research is funded by the European Regional
Development Fund through the Estonian Centre of
Excellence in Computer Science.

REFERENCES
[B04] M. Burstein, “Ontology mapping for dynamic service
invocation on the Semantic Web,” Proceedings of AAAI Spring
Symposium on Semantic Web Services, Palo Alto, CA, USA,
March 2004.
[BH08] M. Brian Blake and Michael N. Huhns, “Web-scale
workflow: integrating distributed services,” IEEE Internet
Computing, vol. 12, no. 1, 2008, pp. 55-59.
[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel
Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo, Kevin S.
McCurley, Sridhar Rajagopalan, Andrew Tomkins, John A.
Tomlin, and Jason Y. Zien, “A case for automated large-scale
semantic annotation,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 1, no. 1, December 2003, pp.
115-132.
[EMS+00] M. Erdmann, A. Maedche, H. Schnurr, and S. Staab,
“From manual to semi-automatic semantic annotation: about
ontology-based text annotation tools,” Proceedings of the COLING
2000 Workshop on Semantic Annotation and Intelligent Content,
Saarbrücken, Germany, August 2000.
[FL07] J. Farrell and H. Lausen, “Semantic Annotations for WSDL
and XML Schema (SAWSDL),” W3C Recommendation, 2007,
http://www.w3.org/TR/sawsdl.
[GRR+08] K. Gomadam, A. Ranabahu, L. Ramaswamy, A. P.
Sheth, and K. Verma, "Mediatability: estimating the degree of
human involvement in XML schema mediation," IEEE
International Conference on Semantic Computing, Irvine, CA,
USA, August 2008, pp. 394-401.
[H+08] E. Hyvönen, K. Viljanen, J. Tuominen, and K. Seppälä,
“Building a national semantic web ontology and ontology service
infrastructure - the FinnONTO approach,” Proceedings of the
European Semantic Web Conference (ESWC), Tenerife, Spain,
June 2008.
[HJK04] A. Heß, E. Johnston, and N. Kushmerick, “ASSAM: A
tool for semi-automatically annotating semantic web services,”
Proceedings of the 3rd International Semantic Web Conference
(ISWC 2004), Hiroshima, Japan, 2004.
[K+05] A. Kalja, A. Reitsakas, and N. Saard, “eGovernment in
Estonia: best practices,” Technology Management: A Unifying
Discipline for Melting the Boundaries, IEEE, 2005, pp. 500-506.
[MK08] S. Muthaiyah and L. Kerschberg, “Achieving
interoperability in e-government services with two modes of
semantic bridging: SRS and SWRL,” J. Theor. Appl. Electron.
Commer, vol. 3, no. 3, December 2008, pp. 52-63.
[NMN09] A. De Nicola, M. Missikoff, and R. Navigli, “A
software engineering approach to ontology building,” Information
Systems, vol. 34, no. 2, April 2009, pp. 258-275.
[NVS+06] M. Nagarajan, K. Verma, A.P. Sheth, J. Miller, and J.
Lathem, “Semantic interoperability of web services - challenges
and experiences,” Proceedings of the IEEE International
Conference on Web Services (ICWS), Chicago IL, USA
September 2006, pp. 373-382.
[ODM] “Ontology definition metamodel 1.0 beta, OMG adopted
specification,” The Object Management Group
(OMG), http://www.omg.org/technology/documents/modeling_spe
c_catalog.htm#ODM.

210/

[OWL04] D. McGuinness and F. van Harmelen (editors), “OWL
web ontology language, W3C Recommendation,” February
2004, http://www.w3.org/TR/2004/REC-owl-features-20040 .
[PBH07] J. Pathak, S. Basu, and V. Honavar, ”On context-specific
substitutability of web services,” Proceedings of the IEEE

International Conference on Web Services (ICWS), Salt Lake City,
UT, USA, July 2007, pp. 192-199.
[POS+04] A. Patil, S.A. Oundhakar, A.P. Sheth, and K. Verma,
”Meteor-s web service annotation framework,” Proceedings of the
International World Wide Web Conference (WWW), New York,
NY, USA, May 2004, pp. 553-562.
[PST06] M. Pistore, L. Spalazzi, and P. Traverso, “A minimalist
approach to semantic annotations for web processes
compositions,” Proceedings of European Semantic Web
Conference (ESWC), Budva, Montenegro, June 2006, pp. 620-634,
2006.
[RKM06] J. Rao, P. Küngas, and M. Matskin, “Composition of
semantic web services using linear logic theorem proving,”
Information Systems, vol. 31, nos. 4–5, pp. 340–360, 2006.
[S04] M. Sabou, “From software APIs to Web service ontologies:
a semi-automatic extraction method,” Proceedings of the Third
International Semantic Web Conference (ISWC2004), Hiroshima,
Japan, November, 2004.
[SWG+05] M. Sabou, C. Wroe, C.A. Goble, and G. Mishne,
“Learning domain ontologies for web service descriptions: an
experiment in bioinformatics,” Proceedings of the International
World Wide Web Conference (WWW), Chiba, Japan, May 2005,
pp. 190-198.
[V+06] T. Vitvar, M. Kerrigan, A. van Overeem, V. Peristeras, and
K. Tarabanis, “Infrastructure for the semantic pan-European e-
government services,” Proceedings of the AAAI Spring
Symposium on The Semantic Web meets E-Government (SWEG),
Stanford University, CA, USA, March 2006.

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#ODM
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#ODM
http://www.w3.org/TR/2004/REC-owl-features-20040210/

	I. Introduction
	II. Methodology
	III. Experimental results
	IV. Related work
	V. Conclusions and future work
	Acknowledgment
	References

