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Abstract—Research in the field of semantic Web services aims at 
automating the discovery, selection, composition and 
management of Web services based on semantic descriptions. 
However, the applicability of many solutions developed in this 
field is hampered by the costs associated with semantically 
annotating large repositories of Web services. To overcome this 
gap we propose a practical method for semantically annotating 
collections of XML Schemas and Web service interfaces. We 
have evaluated this method on a large repository of governmental 
Web services. The evaluation shows that relatively simple 
techniques are surprisingly cost-effective, saving hundreds of 
man-hours of semantic annotation effort. Moreover, the 
proposed method does not assume the availability of a pre-
existing ontology or controlled vocabulary. Instead, the space of 
annotations is dynamically built during the annotation process. 

Keywords - semantic annotation; Web Services interfaces; 
cost-effective annotation methods; XML Schemas; WSDL; SA-
WSDL 

I. INTRODUCTION 
The potential uses of semantically-annotated content and 

service descriptions, for example in the area of Web service 
discovery and composition, are widely acknowledged 
[GVS+06, NVS+06, RKM06, BH08]. However, collecting 
such semantic annotations is a major bottleneck. Manual 
approaches to semantic annotation give high precision, but 
they are generally too costly [EMS+00]. In some scenarios, 
this cost can be spread across large communities (e.g. 
through collaborative tagging), but this approach is only 
applicable when there is an incentive for large communities 
to come together. On the other hand, several automated 
semantic annotation methods have been proposed. These 
automated methods are often based on shallow natural 
language processing techniques (e.g. morphological 
analysis, named entity extraction, part-of-speech tagging), 
taxonomy-based disambiguation and/or machine learning. 
However, for these approaches to achieve high precision, 
they require domain-dependent fine-tuning. Some 
approaches additionally require a pre-existing taxonomy or 
domain ontology, as well as the availability of linguistic 
knowledge bases, which are sometimes not available. 

In this paper we propose a practical methodology for 
semi-automated annotation of web service repositories. The 
aim of the methodology is to enable developers to cost-
effectively annotate corpora of WSDL interfaces in order to 
generate model references (i.e. references to vocabularies, 
taxonomies or ontologies). These model references are 

encoded in SA-WSDL (Semantic Annotations for WSDL 
and XML Schema) [FL07]. Our proposal abstracts away 
from the specific type of model references used as semantic 
annotations. These references can point to ontologies 
encoded in OWL [OWL04], to UML models created 
according to OUP (Ontology UML Profile [ODM]) or any 
other model addressable via Unified Resource Identifiers 
(URIs). Moreover, the proposed approach does not assume 
that the model (vocabulary, ontology or taxonomy) is 
available upfront. Instead, the model is incrementally 
constructed by the annotator(s) as part of the annotation 
process. 

While simple, the proposed methodology has proved to 
be cost-effective. We applied the methodology to 
semantically annotate the Estonian governmental Web 
services repository [K+05], containing circa 60 information 
systems and around 1000 Web service operations. In this 
paper, we analyze the cost of creating semantic annotations 
for this repository using the proposed methodology, and 
compare it with the estimated effort taken by a fully manual 
annotation approach. The evaluation suggests that simple 
methods are great effort savers, i.e. the 80/20 principle 
applies. Furthermore, the approach can be combined with 
existing automated annotation solutions either for fine-
tuning or bootstrapping large-scale annotation projects. 

The rest of the paper is structured as follows. In Section 
II we describe our semantic annotation methodology. In 
Section III we present an empirical evaluation of the 
methodology. In Section IV we review related work while 
in Section V we draw conclusions and discuss future work. 

II. METHODOLOGY 
The specific aim of the methodology is to attach 

semantic annotations (encoded as SA-WSDL model 
references) to the leaf node elements of an XML schema. In 
other words, model references are attached only to XML 
schema elements that have either a built-in XSD type or a 
“simpleType.” The rationale for this choice is that leaf 
elements represent maximally fine-grained data objects (e.g. 
an apartment number in a customer address). Once these 
fine-grained elements have been annotated, the resulting 
annotations can be propagated to coarser-grained elements 
as required (i.e. to complex types, WSDL message parts, 
operations and interfaces). This choice does not imply that 
we only analyze leaf nodes. In fact, the proposed 
methodology exploits the hierarchical structure of WSDL 



interfaces and XML schemas in order to extract contextual 
information that is used to derive semantic annotations for 
leaf nodes. 

The proposed methodology is inspired by UPON 
[NMN09], an incremental methodology for ontology 
building. Accordingly, the methodology includes cycles, 
phases, iterations, and tasks. Cycles are regulated by the 
evolution of Web services descriptions – every time a 
WSDL or related XSD documents changes, a new cycle is 
started, which ends with a complete annotation of the new 
or modified Web service descriptions. Each cycle consists 
of 3 phases, namely annotation of most outstanding 
elements, annotations of most recurrent elements, and 
annotation of other elements. Each phase is further 
subdivided into an unlimited number of iterations. Each 
iteration includes three tasks: analysis of element names, 
design of heuristic rules and application of heuristic rules. 
This process is sketched in Figure 1.  

 

Figure 1. Annotation process. 

In each cycle, the annotator proceeds as follows: 
• Determine the WSDL and XSD documents to be 

annotated; 
• Build a list of elements to be annotated. First, extract 

the leaf element nodes of the XML schema. Next, 
construct a list with each element name, its location 
(represented by an XPath expression), the URL of 
the parsed document and any associated 
documentation. Note that instead of XPath, we could 
use XSD component designators, which provide an 
URI-compliant way of referring to elements in an 
XML schema. 

• Optionally, import a data model, ontology or other 
model, containing the entity definitions that will be 
used to annotate the XML schema elements; 

• Create annotation heuristics; 

• Apply the heuristics and export the constructed 
mappings as SA-WSDL references within the 
original WSDL/XSD documents; 

• Manually create annotations for elements that cannot 
be annotated by means of the heuristics; 

• Extend model, if needed, to cover new entities. 
The core phases of each cycle are those related to the 

manual creation of annotation heuristics. These are 
summarized below: 

• Create annotation heuristics for the top-10% most 
“outstanding” element names. Identify the top 10% 
most frequently occurring element names and present 
these to the annotator. The annotator then defines 
annotation heuristics for each of these “outstanding” 
elements. Typically, these annotation heuristics 
cover a significant number of elements in the 
schema. In this phase, the annotation heuristics are 
designed to match exact element names (e.g. 
“customer_name”, “customer_address”, “id_code”, 
etc.). In the next phase, we will seek to define 
heuristics that match syntactically similar element 
names.  

• Create annotation heuristics for the top-50% most 
“promising” elements. After removing the most 
outstanding elements from the “to-do” list, identify 
the top 40% most recurrent element names in terms 
of number of occurrences. The frequency of element 
names processed in this phase is much lower than in 
the previous phase. Accordingly, the annotation 
heuristics defined in this phase need to be more 
generic: instead of defining heuristics that match 
exact element names, we define heuristics that match 
groups of syntactically similar element names. For 
each element name, identify element names that are 
syntactically similar to it. We rely on three methods 
to determine syntactic similarity: (i) common radical 
(using stemming); (ii) common suffix; and (iii) 
Levenshtein distance less than a given threshold 
(where the threshold can be adjusted). Each element 
and its syntactically similar elements are presented to 
the annotator as a group (starting with the most 
recurrent elements). Through inspection, the 
annotator decides which elements in the group are 
related and removes unrelated elements. The 
annotator then assigns annotation heuristics to each 
cleaned group. Note that this phase can be repeated. 
Indeed, while processing the top-50% most 
“promising” elements, the corresponding groups are 
cleaned, and in this process it may happen that some 
elements are dropped out and need to be revisited.  

• Create annotation heuristics for the rest of elements. 
Continue visiting the remaining elements using the 
same principle (from most recurrent to less 
recurrent), again grouping elements by their syntactic 
distance so that the annotator can attach annotation 



heuristics to groups of elements rather than 
individual elements. 

During these phases, some elements are removed from a 
group and are left for processing in subsequent iterations. 
This happens during the manual inspection, if it is identified 
that one of the following applies: 

• Documentation of elements with identical or 
syntactically similar names refer to meanings, that 
have no practically applicable common denominator 
(e.g. “table” is interpreted in some cases as a piece of 
furniture and in other cases as a database table); 

• Neither has the element been documented nor do the 
parent elements provide an unambiguous context to 
understand the meaning of the element (e.g. an 
element occurs in a complex type defining a string 
array as a sequence of string elements, whereas the 
array is used to represent list of countries, company 
names, etc). 

Annotation heuristics are represented as rules of the 
following form: entity_reference ← synset (e.g. Password 
← {password,  pwd,  strPassword,  authpassword,  pass}). 
The meaning of such a rule is that an XML schema element 
matched by any element in the synset is mapped to the entity 
reference on the left-hand side of the rule. A synset, or a 
synonym ring, is a group of labels that are considered 
semantically equivalent. In the second and third phases of 
the methodology we use a variant of synsets in which the 
group of labels that are considered semantically equivalent 
is not fully enumerated, but instead it may be represented 
using regular expressions. Accordingly, we define a notion 
of extended synset – a set consisting of labels and regular 
expressions. A label matches a synset if it matches any of 
the elements in the synset. An example of an extended 
synset is {*street, str*name, s_name}. The labels “str. 
name”, and “street_name” match this extended synset since 
they match the second element in the synset. In this context, 
the “*” stands for any sequence of characters (including the 
empty sequence). In defining such synsets with regular 
expressions, over-generalization may occur. For example, 
the regular expression ‘str*name’ matches the string 
“string_name” which is not directly related to 
“street_name”. This is natural since we are dealing with 
heuristic rules rather than exact rules. 

Annotation heuristic rules may be partially overlapping. 
This simply means that a given element in a schema may be 
associated with multiple annotations. For example, a schema 
element <university_name> may represent both an 
educational institution name and a business name, and thus 
this element may have two (or more) semantic annotations. 

In the proposed methodology, annotation heuristics are 
created as follows: 

• Select a leaf node name; 
• Inspect documentation of all lead nodes that have 

this name; if there is no documentation extracted 
from the XML schema or WSDL description, 

analyze the data structure, i.e. inspect the ancestors 
and siblings of each lead element. 

• Based on documentation find a common, most 
specific semantic denominator(s) to attach to the 
element name. For example,  “company name” and 
“person name” can be generalized in some domains 
as “customer name”): 
o If the annotator finds a common most specific 

semantic denominator for the element name, 
she creates a new annotation rule or extends an 
existing annotation rule that already covers the 
element name; 

o If no common denominator is found, the 
element name is skipped. In this case, finer-
grained analysis is required and the element 
may be visited again at a later stage. For 
example, an element called “identifier” might 
refer to a business identifier or a customer 
identifier or a transaction identifier. So it might 
not be possible to define an annotation 
heuristics for this element. This will lead to 
certain element names not leading to any 
annotation heuristics and these element names 
might then remain un-annotated. 

• When identifying the most specific common 
denominator in the previous step, the annotator 
should refer to the existing entities in the model 
(vocabulary, ontology or taxonomy). If there is no 
concept that matches the concept chosen as the 
common denominator, the model needs expansion. In 
this case, the annotator creates a new entity, or a 
creates a placeholder for a new entity and adds the 
details of this entity later. Although the methodology 
does not require a model ex ante, the existence of a 
model right from the start simplifies the annotation 
process. In case there is no predefined model, a list 
of entities is built manually during the annotation 
process. 

III. EXPERIMENTAL RESULTS 
In order to evaluate the applicability and usefulness of 

the proposed methodology we performed a case study using 
a repository of Estonian governmental Web services, 
namely X-Road [K+05]. The purpose of the case study is to 
analyze two aspects of the web services annotation 
methodology: 

• To estimate the effort required to build ontologies 
and to semantically annotate existing web services; 

• To estimate to what extent the required annotation 
effort can be reduced by applying the proposed 
methodology. 

We analyzed 58 web service descriptions covering a total 
of 1045 operations. The input and output types of these 
operations are defined in XML Schema. Altogether, there 
are 7757 leaf elements in these schemas and ca 2900 distinct 
leaf node element names, meaning than on average each leaf 



element name occurs 2.7 times in the repository. Manual 
annotation of such a number of schema elements would be a 
time-consuming project and thus specific methodologies 
and tools are required. 

We applied the methodology for one iteration of phase 1 
(annotation heuristics for most outstanding data elements), 4 
iterations of phase 2 (annotation heuristics for most 
promising elements) and 1 iteration of phase 3 (annotation 
heuristics for syntactically grouped elements). Altogether 
we attached 5555 annotations to the 7757 leaf elements 
(70%). This was achieved after manually inspecting around 
1600 leaf element names and creating almost 600 model 
entities in the process. We stopped the annotation process 
when more than two-thirds of the elements had been 
covered, after realizing that continuing the annotation 
process beyond that point was unlikely to yield additional 
insights. 

 
Figure 2. Annotation project characteristics. 

 
Figure 2 shows the number of annotations achieved per 

iteration. Iterations are numbered 1-6 at the bottom of the 
figure, whereas 1 refers to iteration 1 in phase 1, numbers 2-
5 refer to iterations 1-4 of phase 2, and number 6 refers to 
iteration 1 of phase 3. The numbers along the left-hand-side 
vertical axis indicate the number of annotations. The gray 
columns indicate the number of new annotations introduced 
during each iteration, while the dotted line indicates the total 
number of annotations achieved up to a given iteration (i.e. 
the sum of the number of annotations in the current and in 
all previous iterations). It can be seen that at the end of the 
sixth iteration, almost 6000 annotations are achieved. For 
reference, a horizontal line at the top of the figure indicates 
that the total number of elements being annotated is close to 
8000. 

The numbers on the right-hand-side vertical axis of the 
figure indicate the number of heuristic rules added per 
iteration. It can be observed that in the first iteration this 
number is low since of the elements selected in this phase 
occur very frequently, and therefore each annotation 
heuristic rule defined in this iteration leads to many 
annotated elements. The number then climbs sharply during 
the first iteration of the second phase where a large number 
of “promising” elements are annotated. The number drops in 

subsequent iterations of phase 2. Finally, the number climbs 
sharply again in the last iteration (of phase 3) since in this 
iteration, almost every element name needs its own 
annotation heuristics (around 900 annotation heuristic rules 
are added in this final iteration). 

We conclude that phase 1 results in simple, yet powerful 
heuristics providing excellent annotation per heuristic ratio. 
Heuristic rules added in phase 2 provide annotations for 
elements with more domain-specific semantics, which 
naturally leads to a lower annotation-per-heuristic ratio. 
Finally, in phase 3 an order of magnitude more annotation 
heuristics need to be constructed since we are then dealing 
with very specific (generally one-off) elements and model 
entities. 

Altogether 573 model entities were needed to annotate 
5555 of 7757 possible XML Schema leaf node elements 
(see Table 1 for more information). Our empirical results 
show that the top 30 most recurrent entities provide 
semantic annotations to ca 15% of nodes, while the top 300 
provides coverage to ca 50% of elements. The most 
important entities are listed in Table 2. Please note the 
differences between Table 1 and Table 2 – while in Table 1 
XML Schema element names are listed, in Table 2 entity 
labels from the semantic model are listed. 
 

Table 1. 12 most frequent element names in X-Road WSDL documents. 
Element 
name (in 
Estonian) 

English interpretation Occurrences 

isikukood National identity code 205 
teade Notification 177 
eesnimi First name 144 
perenimi Surname (last name) 94 
nimi Name 87 
kood Code 77 
synniaeg Birth date 67 
id Identifier 66 
liik Type 45 
et_nr <does not translate> 44 
kuupaev Date 42 
kpv Date (abbreviated) 40 

Table 2. Top 12 most frequently referred entities. 
Entity label References 
National identity code 271 
Date 203 
General identifier 199 
Notification 180 
First name 178 
Last name 165 
Start date 162 
Name 145 
Birth date 132 
End date 115 
Address 85 
Business registry code 72 



In principle, every element name visited during an 
iteration of the methodology leads to an annotation 
heuristics that covers all occurrences of that element. 
However, as explained earlier, it sometimes happens that 
element names are ambiguous (e.g. “identifier”) and no 
annotation heuristic can be defined that covers all of its 
occurrences. Therefore, the actual number of annotations 
produced after processing a given number of element names 
may be lower than the expected number of annotations. 
Figure 3 shows the divergence between the expected and the 
actual number of annotations produced by the heuristics. In 
this figure, the numbers along the horizontal axis are 
sequence numbers of element names, ordered by their 
occurrence frequency. The vertical axis gives the 
cumulative number of annotations (expected or actual) at a 
given point during the annotation process. The dotted and 
dashed lines in the figure show the estimated and the actual 
number of annotations respectively. The estimated number 
of annotations is calculated by assuming that for every 
element name, we would be able to define an annotation 
heuristic that produces annotations for all occurences of this 
element name. Figure 3 suggests that by processing the top 
10% most recurrent element names (cf. first vertical dashed 
line) we would obtain annotation heuristics for ca. 50% of 
all elements, while processing the top-50% most recurring 
element names would cover ca. 80% of all elements (cf. 
second dashed line). However, the dashed line reveals that 
in practice, only ca. 40% of elements are covered after 
processing the top-10% most recurring element names, and 
ca. 55% of elements are covered after processing the top-
50% most recurring element names. Still, the results show 
that the methodology is relatively effective when compared 
to manual, one-by-one annotation approach.  

From a project management point of view, when 
allocating resources for annotation activities, there is a need 
to estimate, based on the characteristics of sources that need 
to be annotated, how many man-hours should be allocated. 
Since there is no cost estimation model for semantic 
annotation available, we publish the figures we observed in 
Figure 4. Like in software engineering, accurate effort 
estimation is a difficult problem, but we hope that these 
empirical results serve as initial reference point for future 
projects or studies on semantic annotation cost analysis. The 
empirical results in Figure 4 should be aligned with those in 
Figure 2, where 6 iterations took altogether 36 hours. In this 
light Figure 4 confirms that annotations of phase 1 and 
phase 2 were created, by using heuristic rules, much more 
effectively than those constructed in phase 3. 

 

 
Figure 3. Comparison of potential and actual annotations constructed with 

heuristic rules. 
 

 
Figure 4. Man hours required for annotation. 

 
Figure 5 shows the number of model entities 

created/used during the annotation (right-hand side vertical 
axis scale) and the number of annotations per entity (left-
hand side scale). This figure reveals that proportionally, few 
entities are introduced at the beginning of the project but 
these entities are used to annotate many elements. This is a 
feature of our methodology, since the most outstanding 
enties are identified first and annotation heuristics are 
created for them. Subsequently, more and more annotations 
need to be introduced to cover the less recurrent elements, 
but eventually the number of model entities required 
stabilizes. It should be noted that while the number of new 
entities per annotation gradually decreases, the time 
required to provide new annotations gradually increases. 
This is shown in Figure 6, where the usefulness of annotation 
heuristics through different stages of the annotation process 
are presented.  
 



 
Figure 5. Entity requirements for annotation. 

 

 
Figure 6. Efforts to add new entities and annotations. 

 

IV. RELATED WORK 
A significant amount of prior work has considered the 

automated annotation of Web content using shallow natural 
language processing (e.g. morphological analysis, named 
entity recognition) and disambiguation techniques 
[EMS+00, DEG+03]. Semi-automatic and automatic 
approaches to full-text semantic annotation have proved to 
be relatively scalable. Dill et al. [DEG+03] present a case 
study in which they apply such techniques to annotate a 
corpus of 264 million web pages. However, the precision of 
these techniques is limited by the fact that they deal with 
unstructured content. In the context of web service 
annotation, finer-grained techniques that exploit the 
structure of XML documents are applicable. 

The METEOR-S semantic annotation framework 
[POS+04] applies shallow NLP techniques for semantic 
annotation of web service descriptions. The techniques 
employed in the METEOR-S framework derive from 
schema matching techniques: the problem of semantic 
annotation is seen as one of matching XML schema 
elements to entities in an ontology. This matching problem 
is addressed by combining shallow NLP techniques 
(tokenization, NGRAM, stemming, stop-word removal, etc.) 
with structural matching techniques. The ASSAM toolset 

[HJK04], on the other hand, applies machine learning 
techniques to classify web services, their operations and 
input and output message types. From this classification, a 
mapping is derived between a collection of web service 
descriptions and an ontology, using string similarity metrics. 

The above techniques require pre-existing taxonomies or 
ontologies. This is not a suitable assumption in many 
settings. For example, governmental Web service 
repositories, such as the one considered in this paper, cover 
a wide diversity of domains including taxation, justice, 
education, public health, public infrastructure, etc. It is 
unrealistic to assume that a fixed ontology or combination 
of ontologies can provide the full extent of concepts 
required to semantically annotate such repositories. 
Moreover, some of the above techniques require linguistic 
knowledge bases that are not always available in all 
languages. Northern European or Baltic languages do not 
have linguistic knowledge bases as sophisticated as those 
available for English or German.  

Burstein [B04] is concerned with constructing ontology 
mappings between terms used in different semantic web 
services. It is argued that since web service providers do not 
use a shared ontology for describing semantically their web 
services, automated ontology mapping is required. This 
work is complementary to ours. Indeed, our approach 
produces Web service descriptions that are annotated with 
respect to a vocabulary built on-the-fly during the 
annotation process. To achieve integration with other 
semantically annotated Web services repositories, ontology 
mappings are required. 

Sabou [S04] proposes an automated method for Web 
service annotation using software API documentations. The 
idea is that if an API implements a web service, then the 
semantics of the API corresponds to the semantics of the 
web service. Thus, the API documentation (in natural 
language) can be used to semantically enrich Web service 
descriptions. This approach differs from ours in that we treat 
Web services as black-boxes, and we analyze only the Web 
service interfaces, not their implementations. 

Other work [SWG+05] has sought to extract domain 
ontologies for textual content attached to web services, by 
leveraging shallow natural language processing techniques 
(e.g. part-of-speech tagging). This work is complementary 
to ours, insofar as our method can be optionally 
bootstrapped using a domain ontology. 

Semantic interoperability in e-government services has 
been identified as one of the key aspects in public sector e-
services [MK08]. Many member states of the European 
Union have ongoing semantic interoperability initiatives, 
e.g. German’s Deutschland Online Italy’s and the Finnish 
FinnONTO initiative [H+08]. There are also pan-European 
initiatives, e.g. SEMIC (SEMantic Interoperability Centre) 
and semanticGov [V+06]. However, current efforts in 
building up full-fledged semantic infrastructures in the e-
Government context are hampered by the cost of 
semantically annotating large repositories of information 



assets (including Web service interfaces) with a sufficient 
amount of precision. In this paper, we have used the Web 
service repository of the X-Road [K+05] platform as a 
dataset for validating our proposed methodology. The X-
Road platform supports the technical interoperability of the 
components and registries of the Estonian state information 
system. 

The application of semantically annotated Web services 
has been widely studied. For example, Pathak et al [PBH07] 
show that semantic annotations, of Web services interfaces 
provide a suitable basis for analysing substitutability of Web 
services.  Meanwhile, Gomadan et al. [GVS+06] studied the 
application of semantic Web service annotations for Web 
service discovery, while Rao et al. [RKM06] and Pistore et 
al. [PST06] study their application to Web service 
composition. Finally, to estimate of the degree of human 
involvement in XML schema mediation Gomadam et al 
[GRR+08] introduce the concept of mediatability and 
provide a quantifiable and computable definition for it. 
Their experiments demonstrate that in average partial 
semantic annotations of schemas improve the mediatability 
by a factor of 2 while having complete annotations improves 
the mediatability by a factor of 3. These results indicate that 
many efforts can be saved in integration projects, if schemas 
are at least partially annotated. 
 

V. CONCLUSIONS AND FUTURE WORK 
In this paper we propose a practical method for 

semantically annotating large collections of Web service 
descriptions. The method is based on syntactic analysis of 
XML schemas, which results in manual construction of 
annotation heuristics. While applying these heuristics Web 
services descriptions are annotated semantically. 

We evaluate this method on a large repository of 
governmental Web services. The evaluation shows that 
some relatively simple techniques are quite cost-effective, 
saving hundreds or even thousands of man-hours of 
semantic annotation effort. The proposed method does not 
assume the availability of a pre-existing ontology or 
controlled vocabulary. Instead, the space of annotations is 
dynamically built during the annotation process. 

Although we considered in this evaluation focuses on 
XML schema leaf node names, our approach can also be 
applied to annotate XPath expressions or XSD schema 
designators leading to either leaf nodes or internal nodes, as 
required. Furthermore, our experiments show (see Figure 4) 
that string similarity cannot be the sole criterion for label 
matching in of the context of Web services, if detailed 
distinction is required (such as to distinguish between 
“national identification code (NIC)” vs “NIC of company’s 
owner”). Moreover, there exist leaf nodes, whose names are 
identical, but the meaning is completely different (“code” 
could refer to a person’s identifier or company’s or a real 
estate object’s identifier or a postal code). Thus there is still 
need for defining finer-grained annotation heuristics, and 

here XPath expressions of XSD component designators 
could be used to refer to elements in a finer-grained manner. 

We have implemented a tool that supports the proposed 
methodology. Our annotation toolset currently imports 
WSDL and XSD documents, applies a set of annotation 
heuristics, and finally exports the annotations as SA-WSDL 
model references injected within the imported documents. 
We aim to provide our annotation tool together with the 
constructed annotation heuristics for sample web service 
repositories as a public Web service such that semantic Web 
services research community would globally benefit from 
using it for providing semantics to their Web services 
descriptions. 

Another thread of our future work includes applying the 
proposed methodology to common data interchange models 
encoded in XML Schema such as HL7, SID, ARTS, XBRL, 
XML-HR etc. In fact we have analyzed HL7 data model and 
our initial findings indicate that although unified data model 
annotation heuristics pointing to high-level entities are 
easier to construct (synsets are simpler) and annotations 
converge faster, more care should be taken on 
disambiguation due to homogeneous naming rules. The 
most commonly occurring names are for instance “id”, 
“code”, “typeid”, “templateid”, “realmcode” from altogether 
345 different names. These names need to be disambiguated 
by  analyzing the context in which they occur. This is 
another reason for investigating usage of XPath expressions 
in building annotation heuristics. For instance in HL7 the 
following 2 XPath locations for element named “addr” - 
xsd:complexType[@name="COCT_MT030200UV04.Guard
ian"]/xsd:sequence/xsd:element[@name="addr"] and 

xsd:complexType[@name="COCT_MT030200UV04.Stu
dent"]/xsd:sequence/xsd:element[@name="addr"] refer to 
two different entities – an address of a student and an 
address of a guardian though they both would refer to the 
same high-level entity representing an address. 

Though common data models provide a standardized set 
of interfaces/data models, they are in practice not so trivial 
to apply due to their size and domain-specific nature. 
Moreover, in turns out that no common data model can 
completely cover the needs of all integration/development 
projects, they are used in. Thus, for the sake of 
maintainability, there is a need to migrate ad hoc data 
structures to standardized data models while at the same 
time extending the latter with application-specific parts. Our 
hypothesis is that annotation heuristics can help in migrating 
ad hoc data structures of existing integration projects into 
standardized data models. 
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