
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Clustering-Based Predictive Process Monitoring
Chiara Di Francescomarino, Marlon Dumas, Fabrizio Maria Maggi and Irene Teinemaa

Abstract—The enactment of business processes is generally supported by information systems that record data about each process
execution (a.k.a. case). This data can be analyzed via a family of methods broadly known as process mining. Predictive process
monitoring is a process mining technique concerned with predicting how running (uncompleted) cases will unfold up to their
completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate
will be fulfilled upon completion of a running case. The framework takes into account both the sequence of events observed in the
current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes
of previous (completed) cases are clustered according to control flow information. Secondly, a classifier is built for each cluster using
event data attributes to discriminate between cases that lead to a fulfillment of the predicate under examination and cases that lead to
a violation within the cluster. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the
corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment
of cancer patients in a large hospital.

Index Terms—process mining, predictive monitoring, sequence classification, clustering

F

1 INTRODUCTION

P ROCESS mining is a family of methods to analyze
business processes based on their observed behavior

recorded in event logs. In this setting, an event log is a
collection of traces, each representing one execution of the
process (a.k.a. a case). A trace consists of a sequence of times-
tamped events, each capturing the execution of an activity.
Each event may carry a payload consisting of attribute-value
pairs such as the resource(s) involved in the execution of the
activity, or other data recorded with the event.

Predictive business process monitoring [1] is a cate-
gory of process mining methods that aims at predicting at
runtime and as early as possible the outcome of ongoing
cases of a process given their uncompleted traces. In this
context, an outcome of a case may be the fulfillment of a
constraint on the cycle time of the case, the validity of a
temporal logic constraint, or any predicate over a completed
case. For example, in a sales process, a possible outcome
may be the placement of a purchase order by a potential
customer, while the corresponding negative outcome is the
non-placement of a purchase order. Meanwhile, in a medical
treatment process, a possible outcome is the recovery of
the patient upon completion of the treatment, while the
corresponding negative outcome is the non-recovery of the
patient after that given treatment. These examples illustrate
that the problem of predictive process monitoring is a prob-
lem of early sequence classification [2]: given a trace of an
uncompleted case (which can be modeled as a sequence of
events with data payloads), we seek to predict as early as
possible whether the outcome of the case will fall into a

• C. Di Francescomarino is with FBK-IRST, Via Sommarive 18, 38050
Trento, Italy.
E-mail: dfmchiara@fbk.eu

• M. Dumas, F. M. Maggi, I. Teinemaa are with the University of Tartu,
Liivi 2, 50409 Tartu, Estonia.
E-mail: {marlon.dumas, f.m.maggi, irheta}@ut.ee

positive class or a negative class.1

In previous work [1], we presented a predictive pro-
cess monitoring method where a classifier is constructed at
runtime to predict the outcome of an ongoing case of the
process. However, while achieving a relatively high level of
accuracy, this method incurs a significant runtime overhead
– in the order of seconds or even minutes per prediction –
making it inapplicable in settings with high throughput or
when instantaneous response times are required. The slow
response times are due to the fact that the classifier used for
predicting the outcome of a given case is built at runtime.

This paper presents an alternative approach that sig-
nificantly reduces the runtime overhead while maintaining
a comparable accuracy. The crux of the approach is to
build the classifiers offline, so that the runtime step consists
simply in matching an uncompleted trace (prefix) to a given
classifier and applying the latter to make a prediction. The
offline component follows a two-phase approach. First, pre-
fixes of traces of historical cases are extracted and clustered
without looking at the event payloads, so that existing
methods for trace clustering can be applied. Secondly, for
each such cluster, a classifier is constructed now taking into
account the payload (i.e., the data attributes) associated to
the events in the trace prefixes. The classifier is targeted
at discriminating between trace prefixes that lead to ful-
fillments of the monitored predicate vs. those that lead to
violations. Finally, the online phase consists in taking the
uncompleted trace of a running case, matching it to a cluster,
and applying the corresponding classifier to estimate the
probability of fulfillment of the monitored predicate.

The proposed approach is wrapped as a generic frame-
work that can be instantiated by selecting three input
methods: (i) a method for encoding traces in the event
log as feature vectors; (ii) a clustering method; and (iii) a

1. In principle, we could also consider a larger set of classes (not
just two). In this paper, we focus on binary classification, but the same
techniques could be applied to N-ary classification.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

classification method. The proposed PM Framework has been
implemented in the ProM process mining toolset, specifi-
cally in the Operational Support (OS) environment [3], [4],
[5]. This latter environment takes as input a stream of events
(e.g., produced by an enterprise system) and updates a set
of predictions for each new incoming event.

Using an event log of a patient treatment process
in a hospital, we have evaluated four instantiations of
the PM Framework, corresponding to two feature encod-
ings (frequency-based and sequence-based) , two clustering
methods (model-based clustering and DBSCAN) and two
classification methods (decision trees and random forests).
These instantiations of the framework are compared in
terms of their ability to consistently produce predictions
early, accurately and with low runtime overhead.

The paper is structured as follows. Section 2 introduces
the proposed framework. Section 3 presents the experi-
mental evaluation. Section 4 discusses related work and
Section 5 draws conclusions and directions for future work.

2 PREDICTIVE MONITORING FRAMEWORK

The goal of predictive monitoring is to determine if a current
running trace will reach a given outcome based on historical
traces. Hence, like other process monitoring techniques, our
framework (herein called the PM Framework) requires a
labeling function that, given a trace, tells us if it is normal
or deviant. Accordingly, the PM Framework takes as input
both an event log and a labeling function fc. The labeling
function can be defined, for example, using Linear Temporal
Logic (LTL) rules, as discussed later.

In this section, we first introduce an illustrative example.
We then describe an “on-the-fly” approach for predictive
monitoring presented in [1], which we use as baseline.
Finally, we introduce the proposed PM Framework.

2.1 Running Example
In Fig. 1, we show examples of executions pertaining to
a patient diagnosis process. In trace t1, a message with a
diagnosis request (M) arrives. The request contains a list of
patient’s symptoms, e.g., painA. The patient is required to
do some clinical analysis (A) and, once the results of the
analysis are received, the reception is confirmed (C). Then,
a diagnosis is made by the doctor (D), e.g., d1, and again
two times some new clinical analysis is required. After that,
the hospital fee is paid by the patient (P), a new diagnosis
is made by the doctor and the reception of the analysis is
confirmed. Finally the patient recovers from the disease (R).

Data consumed and produced in the process is glob-
ally visible throughout the whole process execution in the
form of attribute:value pairs carried by event payloads. The
payload of an event, signaling the execution of an activity
A, contains the values of each attribute after the execution
of A as well as the values of attributes for each activity
that occurred before activity A in the trace. For example,
in Fig. 1, the payload associated to the doctor diagnosis ac-
tivity (D) contains the values associated to attributes of the
diagnosis activity, e.g., the diagnosis (dia) and possibly the
prescription (pre) of the doctor, as well as those associated
to past activities, e.g., patient’s symptoms (sym). We write
P (D) = {sym : painA, dia : d1, pre : p1, ...} to refer to the
payload of activity D.

Fig. 1: Patient diagnosis example.

Fig. 2: On-the-fly predictive monitoring.

2.2 On-the-fly Predictive Monitoring

In this section, we report the details of the approach pre-
sented in [1]. This approach builds classification models on-
the-fly at runtime based on historical trace prefixes of com-
pleted cases to provide predictions about the fulfillments of
a predicate in a running trace. In the following, we report
an overview of the approach and of its implementation.

Fig. 2 sketches the approach. It relies on two main
modules: a Trace Processor module to filter (past) execution
traces and a Predictor module, which uses the information
contained in the Trace Processor output as training data to
provide predictions. Both modules operate at runtime.

The Trace prefix-based Filtering submodule of the Trace
Processor module extracts from the set of historical traces
only those traces having a prefix control flow similar to
the one of the running trace (up to the current event). The
filtering is needed since traces with similar prefixes are more
likely to have, eventually in the future, a similar behavior.
The similarity between two traces is evaluated based on
their string-edit distance. We use this abstraction (instead
of considering traces with a prefix that perfectly matches
the current partial trace) to guarantee a sufficient number
of examples to be used for the decision tree learning. In
particular, a similarity threshold can be specified to include
more traces in the training set (by considering also the ones

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

sym

dia dia

yes (2.0) no (1.0)
pre

no (3.0)

yes (2.0/1.0) no (2.0) no (1.0)

painA painB

d1 d2 d1 d2

p1 p2 p3

Fig. 3: Example decision tree.

that are less similar to the running trace).
The traces of the training set (and the corresponding

selected prefixes) are then passed to the Data Encoding sub-
module, in charge of preparing them to be used for training
a decision tree. Specifically, the submodule (i) classifies each
(completed) trace based on whether the desired predicate is
satisfied or not (this is done by using the input classification
function fc); (ii) identifies for each trace prefix the payload
containing the assignment of values for each attribute cor-
responding to the last event in the prefix. The encoding of
the trace is then obtained by combining the value of the
classification function on the specific trace and the trace
payload. For example, given the trace t1 in Fig. 1, and its
prefix 〈M,A,C,D〉, the payload of D is taken. In partic-
ular, assuming that we have the vector of data attributes
〈sym, dia, pre, treat〉, the encoding for the specific trace
prefix will be the vector 〈painA, d1, p1, ?, yes〉, where the
question mark is used to identify not available data values,
while the last value represents the value of the classification
function fc on the specific case. In this example, it represents
the fact that the patient in the historical trace t1 recovered
from the disease.

Once the relevant traces and, therefore, the correspond-
ing payloads, are classified and encoded, they are passed to
the Decision tree learning module, in charge of deriving the
learned decision tree. The decision tree is queried using the
payload of the running trace to derive a prediction. Fig. 3
shows a decision tree related to our running example. The
non-terminal nodes of the tree contain the decision points
for the prediction (the data attributes in our case), while
the arcs are labeled with possible values assigned to the
attribute in the node. The leaves, instead, represent the
value of the classification function on the specific path tree.
The number of data training examples (with values of the
input variables following the path from the root to each
leaf), respectively correctly and non-correctly classified, is
reported on the corresponding leaf of the tree. For example,
if the payload of the current execution trace corresponds to
values painB , d1 and p1, the resulting class is the formula
satisfaction (“yes”), with 2 examples of the training set
following the same path correctly classified (class support)
and 1 non-correctly classified, i.e., with a class probability
prob = 2

2+1 = 0.66. Therefore, in this case, the Predictor
will predict the satisfaction of the formula with a class

Fig. 4: PM Framework.

probability prob = 0.66. Note that if a path from the root
to a leaf of the tree cannot be identified starting from the
payload of the current execution trace (e.g., if some data is
missing) no prediction can be returned.

2.3 Clustering-Based Predictive Monitoring

Differently from the approach described in the previous sec-
tion, in the proposed framework, the on-the-fly construction
of the decision tree can be avoided by applying a simple
pre-processing phase. In such a phase, state-of-the-art ap-
proaches for clustering and classification are applied to the
historical data in order to (i) identify and group historical
trace prefixes with a similar control flow (clustering from a
control flow perspective); and (ii) get a precise classification
based on the data of traces with similar control flow (data-
based classification). At runtime, the classification of the
historical trace prefixes is used to classify new traces during
their execution and predict how they will behave in the
future. The overall picture of the framework is illustrated
in Fig. 4. In the following, we describe each framework
component in detail.

2.3.1 Control flow encoding
Before applying state-of-the-art techniques for clustering
and classification, two propaedeutical steps are applied: (i)
the selection of the historical trace prefixes to consider; and
(ii) their encoding. In particular, prefixes of past execution
traces are selected (rather than the entire trace or all the pre-
fixes for a trace). The reason behind this choice is twofold:
on the one side, taking all the prefixes could become very
expensive in terms of efficiency. On the other side, we
are interested in early predictions, when still reparative
actions can be undertaken to prevent violations. In this light,
considering only the initial parts of the historical traces
seems to be a reasonable choice. For example, given the
6 traces t1, . . . , t6 of Fig. 1, only a selection of k prefixes
for each trace will be considered. Different approaches can
be used for the selection of these k prefixes. For example,
the first k prefixes of each historical trace can be selected
or alternatively k prefixes, one every g events. In the latter
case, two prefixes differ one from another for a gap of g
events.2 Different approaches can also be taken to perform
the encoding of trace prefixes for clustering. Just to name a

2. k and g are user-specified parameters.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

few, a trace (prefix) can be encoded as a sequence of events
or in terms of the frequency of the occurrence of sequence
patterns in the trace. The simplest case is the one related to
the occurrence of unary patterns, i.e., patterns composed of
a single log event. For example, in the scenario in Fig. 1,
we can represent the alphabet of the events as an ordered
vectorL = 〈A,C,D,M,P,R, S, V 〉. In this case, trace t1 will
be encoded as a vector of frequencies 〈3, 2, 2, 1, 1, 1, 0, 0〉,
obtained by replacing each symbol of the alphabet in vector
L by its frequency in trace t1. Trace prefixes encoded in this
way are used as input of the clustering phase.

2.3.2 Clustering
In the clustering phase, a selection of prefixes of the his-
torical traces with the same (control flow) characteristics is
grouped together based on some distance notion. Examples
of distances are Euclidean distance and the string-edit dis-
tance. The historical traces contained in each cluster are then
used to generate a classifier, that is exploited, in turn, to
make predictions on running traces, once identified their
matching cluster. For example, the execution traces in Fig. 1
could be grouped by a clustering algorithm in two clusters
c1 and c2, according to the similarities in their control flow,
so that c1 contains traces t1 and t3 (which have a very
similar control flow), and c2 contains the remaining four
traces.

2.3.3 Trace encoding
Trace prefixes in each cluster are used as input for super-
vised learning. In this case, the data perspective is taken
into consideration. Historical execution traces are encoded
using the available data attributes in the event payloads,
i.e., prefixes clustered based on control flow are now an-
alyzed from a data perspective. Similarly to the on-the-fly
approach, each prefix is encoded as a feature vector that
includes elements corresponding to the data assignments
contained in the payload associated to the last event of the
prefix. In addition, each prefix in a cluster is classified based
on whether the corresponding completed trace is “normal”
or “deviant” with respect to the input labeling function fc.

2.3.4 Supervised learning
Each cluster is used as training set of a supervised learning
technique (e.g., decision tree learning, random forest) to
generate a classifier that allows for discriminating between
deviant and normal behaviors. For example, given two
clusters c1 and c2, for each of them a classifier is built.

2.3.5 Predictive monitoring
At runtime, the set of classifiers generated during the pre-
processing phase is used to make predictions about how
the behavior of a current running trace will develop in the
future. At any point in time, the current prefix of the running
trace is classified as part of one of the clusters identified dur-
ing the pre-processing phase. This is done by considering
the cluster containing the prefix with the minimum distance
from the current prefix. Based on the selected cluster (and,
therefore, based on the control flow characteristics of the
current prefix) the corresponding classifier is selected. This
classifier is queried using the payload of the last event of

the current prefix (exploiting the data perspective of the
current prefix). For example, given a partial execution trace
tp : 〈M,A,C,D〉 and the predicate “the patient will recover
eventually”, we first identify the cluster to which the partial
trace belongs, e.g., c1, and then the classifier associated to
the cluster (e.g., the decision tree in Fig. 3) is exploited in
order to predict whether the predicate will be verified or
not.

3 EVALUATION

We implemented the proposed PM Framework as a so-called
“Operational Support (OS) provider” on top of the ProM
framework.3 In this way, the framework can be used in
a “streaming” mode, meaning that it can take as input a
stream of events coming from an external system. Specifi-
cally, the PM Framework uses the Weka implementation of
the clustering and classification algorithms. Using such an
implementation, we conducted an evaluation of different
configurations of the proposed framework on a real-life
dataset as reported below.

3.1 Dataset

We conducted experiments using the BPI challenge 2011
[6] event log. This log records the execution of a cancer
treatment process in a Dutch academic hospital over a three-
years period. The log contains 1, 143 traces and 150, 291
events. Each trace in the log refers to the treatment of one
patient. Each event represents an execution of one among
623 activities. Each event contains a timestamp, an event
type (i.e., an activity lifecycle state like start or complete),
a case (i.e., patient) identifier, and a number of domain-
specific attributes (e.g., Age, Diagnosis, and Treatment code).
There are 15 domain-specific attributes in total.

Since the goal of predictive monitoring is to classify a
case as normal or deviant, we need to define a notion of
deviance (i.e., a labeling function). We experimented with 4
labeling functions corresponding to the following LTL rules:
• ϕ1 = F(“tumor marker CA − 19.9”) ∨
F(“ca− 125 using meia”),

• ϕ2 = G(“CEA − tumor marker using meia” →
F(“squamous cell carcinoma using eia”)),

• ϕ3 = (¬“histological examination − biopsies nno”)
U(“squamous cell carcinoma using eia”), and

• ϕ4 = F(“histological examination− big resectiep”).
For a given LTL rule, if a case violates the LTL rule, it is
labeled as deviant (herein called a “positive” case); other-
wise it is labeled as normal (herein called a “negative” case).
Each of these labeling functions captures a business rule.
Specifically, ϕ1 assesses that either the diagnostic test for the
tumor marker CA-19.9 or for the tumor marker ca-125 has
to be performed. ϕ2 states that every time the diagnostic
test for the CEA tumor marker is performed, then the eia
test for the squamous cell cancer has also to be performed
eventually. ϕ3 assesses that no histological examination can
be performed until the eia test for the squamous cell cancer
is performed and, finally, ϕ4 states that the resection for
the histological examination has to be performed eventually.

3. http://processmining.org

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

The distribution of positive and negative cases in the event
log is: 458 negative vs. 682 positive for ϕ1, 893 negative vs.
247 positive for ϕ2, 259 negative vs. 881 positive for ϕ3, and
319 negative vs. 821 positive for ϕ4.

3.2 Experimental Settings

The experimentation workflow is outlined in Fig. 5. First,
we order the traces in the log based on the time at which the
first event of each trace has occurred. Then, we split the log
temporally into two parts: 80%-20%. We used the first part
as training log, i.e., we used these traces as historical data
to construct clusters and build the classification models for
prediction. Then, we implemented a log replayer to simulate
the execution of the remaining traces (the testing log) by
pushing them as an event stream to the implementation
of the PM Framework and making predictions for each case
during this replay.

The first step in the offline component of the framework
is to extract a set of prefixes from the historical traces and to
encode each prefix as a vector in order to calculate clusters
of prefixes. For the experiments, we extracted all prefixes of
historical traces starting from prefixes of length 1 and up to
length 21 in steps of g, where g ∈ {3, 5, 10}. For example,
for g = 5, we extracted all prefixes of lengths 1, 6, 11, 16,
and 21 for each trace in the training set.

The second step in the framework is to construct clusters
of prefixes. For this, we used two popular clustering meth-
ods, namely model-based clustering [7] and DBSCAN [8].
In model-based clustering, we need to calculate the center
point and covariance matrix of clusters. These parameters
can only be computed if we use an Euclidean distance. The
string-edit distance – which is otherwise a natural distance
in the context of traces – is not an Euclidean distance. Hence,
we applied model-based clustering using the Euclidean
distance over the frequency-encoded prefixes. On the other
hand, in DBSCAN, we just need to calculate the distance
between two points and this can be done using the edit
distance. Accordingly, for DBSCAN, we used edit distance
over sequence-encoded prefixes.

For the model-based clustering method, it is necessary
to set the number of clusters to be created (parameter k).
Meanwhile, DBSCAN requires the minimum number of
points in a cluster (parameter minPoints) and the min-
imum radius of a cluster (parameter ε). For each of the
three datasets of prefixes (g ∈ {3, 5, 10}), we identified the
optimal parameters for each of these clustering methods. In
the case of model-based clustering, we applied model-based
clustering with k = 15 to 35 clusters and chose the value of
k that achieved the highest Bayesian Information Criteria
(BIC). Meanwhile, the DBSCAN optimal parameters were
estimated by using the sorted k-dist graph [8]. This led us to
set minPoints = 4 and ε = 0.125.

The third step in the framework is to build a classifier
for each cluster of trace prefixes. Specifically, each cluster is
used as training set of a supervised learning technique to
generate a classifier that discriminates between deviant and
normal cases. A range of classification algorithms has been
proposed in the literature. In this paper, we use decision
trees, which are known for the interpretability of the models
they generate, and random forests, which apply similar

figuresCR/Evaluation3-eps-converted-to.pdf

Fig. 5: Experimentation workflow.

principles as decision trees but are designed to maximize
accuracy rather than interpretability.

Combining the two clustering and the two classification
techniques, we obtain the following four PM Framework
instances:
• mbased dt: model-based clustering and decision trees;
• dbscan dt: DBSCAN clustering and decision trees;
• mbased rf : model-based clustering and random forests;
• dbscan rf : DBSCAN clustering and random forests.
We replayed each trace in the testing set and produced a

prediction of the outcome of the case every 5 events (starting
from the first event in each trace). Each prefix of each
running trace is encoded in the same way as the historical
traces and assigned to the closest cluster. In case of model-
based clustering, the closest cluster is the one with the
minimum Euclidean distance from the current prefix, while
for DBSCAN the closest cluster is the cluster containing
the prefix with the minimum edit distance from the current
prefix. We use the classifier associated to the closest cluster
to predict the label for the current running case. To consider
a prediction reliable, the corresponding class support and
class probability need to be above a given minimum class
support and minimum class probability threshold. In our
experiments, the minimum class support is set to s = 6.
The minimum class probability thresholds considered are
prob ∈ {0.6, 0.7, 0.8, 0.9}. The trace in the testing set is
replayed until either a satisfactory prediction is achieved or
the end of the trace is reached. The latter situation is herein
called a prediction failure.

For the on-the-fly approach, the minimum class sup-
port is also set to s = 6. The minimum class probability
thresholds considered are prob ∈ {0.6, 0.7, 0.8, 0.9}. In this
case, we extracted all prefixes of historical traces starting
from prefixes of length 1 and up to length 21, one every
g = 10 events. As for the PM Framework, also in this case,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

we replayed each trace in the testing set and produced a
prediction every 5 events.

3.3 Research Questions and Metrics
The goal of the evaluation is focused on two aspects: the
performance of the approach in terms of the quality of the
results and the performance of the approach in terms of the
time required to provide predictions.

In particular, we are interested in answering the follow-
ing two research questions:

RQ1 How effective is the PM Framework in providing accurate
results as early as possible?

RQ2 How efficient is the PM Framework in providing results?
To answer RQ1, we evaluated the performance of the

approach in terms of its prediction accuracy. However, as
highlighted by Salfner et al. in related work in the field of
failure prediction methods [9], using accuracy measures as
sole indicators of the effectiveness of a prediction technique
may be misleading. Accordingly, we also included metrics
associated to the earliness of the prediction, to reflect the
desire to make a prediction with sufficient confidence as
early as possible. Furthermore, since the proposed method
may sometimes fail to make a prediction at all for a given
trace, we also measured the percentage of cases where a
prediction is not made (failure-rate). Finally, to answer RQ2,
we measured the computation time required to provide a
prediction. Below, we discuss in more detail how each of
these performance dimensions was measured.

F1-score: This measure is defined with respect to
a gold standard that indicates the correct labeling of each
trace. In our experiments, we extracted the gold stan-
dard by evaluating the input predicate on each completed
trace in the testing set. Given the gold standard, we
classify predictions made at runtime into four categories:
i) true-positive (TP : positive outcomes correctly predicted);
ii) false-positive (FP : negative outcomes predicted as pos-
itive); iii) true-negative (TN : negative outcomes correctly
predicted); iv) false-negative (FN : positive outcomes pre-
dicted as negative). F1-score, which intuitively represents
the proportion of correctly classified positive results with
respect to all the possible cases, is defined as:

F1-score =
2TP

2TP + FP + FN
(1)

Earliness: As already mentioned, during the replay
of each trace in the testing log, we give a prediction every
5 events (starting from the first event in the trace). While
replaying a trace, we consider a prediction reliable and we
stop the replay when the corresponding class probability
is above the given minimum class probability threshold. For
this reason, the earliness is directly dependent on the chosen
class probability threshold. The lower the class probability
threshold is, the earlier a prediction is given. The earliness
of the prediction is defined as 1 minus the ratio between
the index indicating the position of the last evaluation point
(the one corresponding to the reliable prediction) and the
size of the trace under examination. Earliness is a crucial
measure since, during the execution of a business process,
the stakeholders must be provided with predictions as soon
as possible to apply possible reparative actions in case there
is high probability of deviance in the future.

Failure-rate: Sometimes it happens that, when replay-
ing a trace of the testing set, the end of the trace is reached
and no prediction has been made with a sufficiently high
class probability. In this case, the answer of the predictor is
“maybe” to indicate that it was not possible to provide a
reliable prediction. The percentage of traces in the log that
lead to a failure in the prediction is called failure-rate. Like
earliness, also the failure-rate is directly dependent on the
chosen minimum class probability threshold. If we set the
class probability threshold to 0.5, a prediction would always
be made right away from the first event in a trace – except
in the very unlikely case where the classifier gives a class
probability of exactly 0.5 to each class. With a slightly higher
threshold (e.g., 0.6), a prediction is very likely to be made
at some point in each trace, and hence the failure-rate is
very low. This latter setting is suitable if the user considers
that “no prediction” (i.e., failure) is equivalent to a “wrong
prediction”.

Computation time: We estimate three different types
of computation times required for providing a prediction:
• init time: the time required for pre-processing, i.e., for

clustering and supervised learning;
• processing time: the total time required for processing the

entire testing set;
• average prediction time: the average time required to the

predictor for returning an answer at each evaluation
point.

3.4 Results

Fig. 6 reports F1-score, failure-rate and earliness obtained
by applying the baseline on-the-fly approach for each of
the four investigated predicates (ϕ1 − ϕ4) with different
minimum class probability thresholds. By looking at the
plots, the four metrics seem not to be particularly affected
by the differences in terms of minimum class probability
thresholds. Overall, for the four predicates, the F1-score
seems to depend on the formula under analysis, ranging
between a minimum value of 0.47 for ϕ1 to a maximum of
0.93 for for ϕ4. The failure-rate is generally high, varying
from a value of 0.36 for ϕ3 up to 0.6 for ϕ1. The earliness
for ϕ1 is slightly lower than for the other predicates.

Fig. 7 plots, for each of the four predicates, F1-score,
failure-rate and earliness obtained by instantiating the PM
Framework with the model-based clustering and with the
decision tree classification (mbased dt) for different min-
imum class probability thresholds and prefix gaps. The
plots show that mbased dt reaches peaks of F1-score of
0.92 for ϕ1 with a threshold for minimum class probability
(prob = 0.8). A high failure-rate influences the F1-score
since, in its computation, we can rely on a lower number
of predictions. On the other hand, a high earliness can also
negatively affect the F1-score. Indeed, a too high earliness
results into very little information carried by the running
trace in terms of control flow. Focusing only on the results
with a reasonably low failure-rate (e.g., with failure-rate
lower than 0.25) and an earliness not excessively high (e.g.,
lower than 0.9), mbased dt still guarantees to find, for each
predicate, a parameter configuration resulting in a good F1-
score. The F1-score values range, indeed, between 0.58 and
0.92 for the four predicates.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 6: On-the-fly predictive monitoring - F1-score, failure-rate and earliness.

Fig. 7: Model-based clustering and decision tree classification (mbased dt) - F1-score, failure-rate and earliness.

In general, by opportunely selecting the minimum class
probability threshold, it is possible to meet different needs
and preferences. For example, for mbased dt, it seems that
prob = 0.9 ensures good values of F1-score, whereas for
the other class probability thresholds, often the predictions
are given too early, thus resulting in a poor F1-score. This

is especially true for ϕ2, the only predicate among the ones
under examination for which the number of deviant cases is
much lower than the number of normal cases.

Fig. 8 shows the same type of plots of Fig. 7 obtained by
instantiating the PM Framework with DBSCAN clustering
and with the decision tree classification (dbscan dt). In this

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 8: DBSCAN clustering and decision tree classification (dbscan dt) - F1-score, failure-rate and earliness.

case, the earliness is always very high and this leads to low
values for F1-score for the two predicates with a low number
of deviant cases, i.e., for ϕ1 and especially for ϕ2. For
class probability thresholds 0.8 and 0.9, the F1-score reaches
values higher than 0.9 for three of the four predicates under
examination (ϕ1, ϕ3, and ϕ4), whereas for ϕ2 it is not able
to perform better than 0.5.

Fig. 9 shows the values of F1-score, failure-rate and
earliness for the model-based clustering and the random
forest classification (mbased rf). For prob = 0.9, the F1-
score reaches values higher than 0.8 for three of the four
predicates under examination (ϕ1, ϕ3, and ϕ4), whereas for
ϕ2 is equal to 0 for all the prefix gaps. By looking at the
only results with failure-rate lower than 0.25 and earliness
lower than 0.9, the F1-score values for all predicates lie in
the range 0.42-0.86.

Fig. 10 reports the values of the three metrics for the last
instance of the PM Framework, i.e., the one using DBSCAN
clustering and random forest classification (dbscan rf). We
note that, also in this case, like in dbscan dt, the earliness
is extremely high (for all the considered configurations it is
always higher than 0.95). This leads to low values for F1-
score for the two predicates with a low number of deviant
cases, i.e., ϕ1 and ϕ2. For prob = 0.9, the F1-score reaches
values higher than 0.7 for three of the four predicates under
examination (ϕ1, ϕ3, and ϕ4), whereas for ϕ2 is equal to 0
for all the prefix gaps.

To quantify the difference in terms of the various evalu-
ation metrics of the PM Framework with respect to the on-
the-fly approach, we (i) evaluated whether a statistically
significant difference exists between each of the four PM
Framework instances (with prefix gap 10) and the on-the-
fly approach; and (ii) measured the strength of the dif-

ference. Specifically, we applied a two-tailed paired sta-
tistical test - the non-parametric Wilcoxon test [10] - on
each of the evaluation metrics and on a global measure
g obtained by combining the three metrics based on the
formula g = F1 score ∗ (1 − failure rate) ∗ earliness.
The idea is that the higher the value of g is, the better the
technique overall performs. Then, we also computed the
Cohen−d effect-size [11] to identify whether the magnitude
of the difference is small (∼ 0.2), medium (∼ 0.5), or large
(> 0.8). Table 1 reports, for each PM Framework instance, the
corresponding p-value and effect-size. The p-values related
to the statistically significant4 differences are reported in
bold in Table 1. The table shows that there is no statistically
significant difference between the on-the-fly approach and
the PM Framework instances mbased dt and dbscan rf in
terms of F1-score. Conversely, the PM Framework instances
mbased rf and dbscan dt perform statistically significantly
worse in terms of F1-score than the on-the-fly approach. On
the other hand, by looking at the failure-rate, we can observe
that a statistically significant difference exists for three of
the four PM Framework instances under examination with
respect to the on-the-fly approach. In particular, the failure-
rate is lower for the PM Framework instances. Similarly,
we found that in two of the four PM Framework instances
under examination, we have a statistical difference in terms
of earliness with respect to the on-the-fly approach; the
earliness is higher for the PM Framework instances, which, in
those case, perform better than the on-the-fly approach. By
looking at the global measure g, we find that on average
the PM Framework instances perform overall better than

4. The analysis is performed with a level of confidence of 95% (p-
value < 0.05), i.e., there is only 5% probability that the results are
obtained by chance.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 9: Model-based clustering and random forest classification (mbased rf) - F1-score, failure-rate and earliness.

Fig. 10: DBSCAN clustering and random forest classification (dbscan rf) - F1-score, failure-rate and earliness.

the on-the-fly approach. While for mbased dt and dbscan rf
there is no statistically significant difference between the
two approaches, in the case of dbscan dt and mbased rf the
PM Framework instances outperform the on-the-fly approach
with a statistically significant difference.

In Fig. 11, we show the results obtained with DBSCAN

clustering and decision tree classification for different pro-
portions of training and testing data, i.e., choosing as train-
ing logs 60%, 70%, and 80% of the traces of the original
log, and as testing logs, 40%, 30% and 20% of the traces,
respectively. The results show that, as expected, F1-score
slightly improves with more training data. However, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fmwk F1-score failure-rate earliness g
avg avg p-value |Cohen-d | avg avg p-value |Cohen-d | avg avg p-value |Cohen-d | avg avg p-value |Cohen-d |instance on-the-fly fmwk on-the-fly fmwk on-the-fly fmwk on-the-fly fmwk

mbased dt 0.809 0.672 0.187 0.523 0.449 0.078 <0.001 3.1 0.824 0.889 0.024 0.595 0.382 0.516 0.187 0.58
dbscan dt 0.809 0.702 0.044 0.604 0.449 0.251 <0.001 1.518 0.824 0.839 <0.001 2.383 0.382 0.505 0.018 0.766
mbased rf 0.809 0.645 0.004 0.924 0.449 0.017 <0.001 3.115 0.824 0.839 0.562 0.149 0.382 0.504 0.034 0.676
dbscan rf 0.809 0.641 0.052 0.699 0.449 0.343 0.083 0.631 0.824 0.977 <0.001 3.125 0.382 0.429 0.495 0.24

TABLE 1: Statistical comparison between each PM Framework instance and the on-the-fly approach

Fig. 11: DBSCAN clustering and decision tree classification - F1-score, failure-rate and earliness- for different proportions
of training and testing data.

Formula F1-score failure-rate earliness
ϕ1 0.046 0.018 0.989
ϕ2 0.481 0.004 0.98
ϕ3 0 0 1
ϕ4 0.107 0.013 0.971

TABLE 2: Only-control-flow baseline results

effectiveness of the approach is not significantly affected in
case of little training data available.

In Fig. 12, we show the results obtained with model-
based clustering and decision tree classification for different
number of clusters. It is relevant to highlight that, without
clustering (number of clusters equal to 1), the failure-rate
is higher than in the other cases. This is probably due to
the fact that the heterogeneity of the traces considered all
together in only one cluster does not allow us to obtain
predictions with a class probability sufficiently high. More-
over, by choosing the optimal number of clusters among
those greater than or equal to 15, we obtain slightly better
performances in terms of F1-score than for smaller numbers
of clusters.

Furthermore, in order to provide a hint of the benefits of
using an approach that exploits both control flow and data
flow, we also compared the PM Framework instances against
an only-control-flow baseline. Such a baseline was obtained
by applying frequency-based encoding to individual activi-

ties and discriminative patterns computed according to the
approach described in [12]. We show the results obtained
with minimum class probability threshold equal to 0.7 and
prefix gap equal to 5. In addition, we use random forest
as classifier to get the predictions. We obtained similar
results for the other configurations. The results show that
the only-control-flow baseline is slightly more accurate than
mbased rf for ϕ2 and has a comparable F1-score with respect
to dbscan rf . The F1-score is significantly lower in all the
other cases. The baseline performs extremely well in terms
of failure-rate and earliness. The considerations and the
plots discussed provide an answer to RQ1.

To answer RQ2, we focus on two of the four PM Frame-
work instances, the ones based on decision tree classification,
since the computational time required by the corresponding
random forest ones, do not present significant differences.
Table 3 reports the init time (which is null for the on-the-
fly approach), the processing time and the average prediction
time obtained by applying the on-the-fly approach for each
of the four investigated predicates with different minimum
class probability thresholds. The results in the table show
that processing a trace with such an approach is very expen-
sive in terms of time required (the processing time ranges
between ∼ 100 to ∼ 130 hours), which makes the approach
difficult to be used in runtime scenarios. The average predic-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 12: Model-based clustering and decision tree classification - F1-score, failure-rate and earliness- for different numbers
of clusters.

prob=0.6 prob=0.7 prob=0.8 prob=0.9
ϕ init processing avg. pred. init processing avg. pred. init processing avg. pred. init processing avg. pred.
ϕ1 453946.354 165.84 456517.477 164.116 466850.858 171.528 474879.207 177.843
ϕ2 368796.069 25.532 366606.233 25.36 368895.547 26.622 371021.759 27.94
ϕ3 395761.404 45.773 396113.806 45.835 395810.652 45.797 384078.402 40.978
ϕ4 234582.674 38.239 238284.95 40.224 247649.381 46.305 290813.698 25.854

TABLE 3: On-the-fly predictive monitoring - Processing and average prediction time (in seconds)

tion time, i.e., the time required at each evaluation point to
provide a prediction, strongly depends on the investigated
predicate, and ranges from about 25 seconds for ϕ2 to about
3 minutes for ϕ1.

Table 4 reports the computational time, and specifically
the init time, processing time and average prediction time,
required for providing a prediction for each of the four
predicates with different minimum class probability thresh-
olds and considering different prefix gaps for mbased dt. By
observing the table, it seems that no significant differences
exist in terms of pre-processing time (init-time) for different
predicates and minimum class probability thresholds. On
the other hand, the pre-processing time depends on the
considered trace prefix gap: the higher the prefix gap is,
the less prefix traces are in the training set, and the less
time is required to process them. In general, very small
differences can be observed in terms of average prediction
time (always ∼ 10 milliseconds), while more significant dif-
ferences occur in terms of the time required for processing
the entire testing set, ranging from a minimum value of 1
second to a maximum value of about 67 seconds. These
values are, however, still reasonable to be considered for
providing predictions at runtime. The differences in terms of
processing time depend on the predicate, on the prefix gap
as well as on the minimum class probability threshold. More

in general, the processing time is related to the failure-rate
and the earliness: a higher failure-rate (and earliness) for
a specific settings leads to a higher number of evaluation
points that have to be processed (so that the processing time
increases).

Finally, Table 5 reports the init time, the processing time
and the average prediction time required to the PM Framework
instance obtained combining the DBSCAN clustering and
the decision tree classification techniques (dbscan dt) for
providing predictions. Also in this case, the initialization is
constant for different minimum class probability thresholds
and predicates, while it depends on the prefix gap (ranging
from about 1.25 minutes to about 5 minutes). Small differ-
ences exist in terms of average prediction times (ranging
from 8 to 31 milliseconds), while more significant ones hold
in terms of processing time. The processing time, indeed,
ranges between 1 to 30 minutes, when the failure-rate is
very high (ϕ3, prob = 0.9, gap = 3).

By comparing the performance of the proposed PM
Framework instances with the on-the-fly approach, it clearly
comes out that, with comparable results in terms of F1-
score, failure-rate and earliness, the time required for pro-
cessing a trace and providing a prediction is much lower
with the clustering-based approach. The processing time
is indeed about 300 times lower for dbscan dt and 16, 000

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

prob=0.6
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 2844.829 2.54 0.007 1660.859 5.824 0.01 713.558 3.429 0.009
ϕ2 2844.444 1.366 0.006 1662.347 7.536 0.01 714.918 5.615 0.009
ϕ3 2843.995 1.378 0.006 1661.454 11.959 0.01 713.166 2.697 0.008
ϕ4 2844.803 10.95 0.006 1661.599 18.301 0.01 713.522 4.644 0.009

prob=0.7
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 2842.966 8.138 0.007 1661.364 34.657 0.01 714.605 15.411 0.009
ϕ2 2843.775 1.344 0.006 1660.577 9.807 0.011 713.023 7.059 0.009
ϕ3 2843.078 4.861 0.007 1661.214 20.782 0.011 713.106 47.958 0.009
ϕ4 2845.012 10.938 0.007 1661.828 39.13 0.01 713.915 13.48 0.009

prob=0.8
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 2843.349 22.655 0.007 1662.209 15.328 0.01 714.142 10.584 0.009
ϕ2 2843.716 16.625 0.006 1661.085 26.023 0.011 713.067 12.912 0.009
ϕ3 2845.504 6.267 0.007 1660.463 8.854 0.011 713.077 4.618 0.009
ϕ4 2844.309 13.942 0.007 1661.118 44.609 0.01 713.349 16.78 0.01

prob=0.9
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 2844.202 25.645 0.007 1660.841 67.494 0.01 713.522 17.333 0.009
ϕ2 2844.342 37.222 0.006 1661.668 15.94 0.011 714.25 6.388 0.009
ϕ3 2844.619 17.646 0.007 1661.371 4.877 0.01 714.319 3.412 0.009
ϕ4 2846.026 29.548 0.007 1660.566 9.377 0.01 713.438 7.065 0.009

TABLE 4: Model-based clustering and decision tree classification (mbased dt)- Init, processing and average prediction time
(in seconds)

prob=0.6
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 296.707 77.535 0.03 174.26 43.927 0.023 94.956 30.457 0.01
ϕ2 296.474 470.605 0.024 174.093 65.692 0.018 76.567 83.382 0.01
ϕ3 299.63 61.476 0.02 172.858 32.376 0.019 82.567 20.599 0.011
ϕ4 301.507 349.717 0.025 172.904 260.02 0.02 76.932 103.178 0.011

prob=0.7
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 297.478 720.306 0.026 172.587 816.293 0.025 78.03 61.288 0.013
ϕ2 299.725 473.14 0.024 173.853 66.565 0.0187 75.541 149.526 0.011
ϕ3 298.888 74.922 0.021 173.233 479.454 0.018 76.189 107.485 0.012
ϕ4 297.841 350.111 0.027 174.746 603.756 0.019 78.221 102.639 0.012

prob=0.8
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 296.225 1313.315 0.031 175.039 937.048 0.025 75.784 308.192 0.015
ϕ2 298.736 1567.935 0.026 173.587 70.065 0.019 79.096 591.503 0.014
ϕ3 294.316 1110.0883 0.027 174.532 545.689 0.022 77.114 176.959 0.015
ϕ4 301.411 784.481 0.028 175.386 642.789 0.019 75.418 128.4 0.011

prob=0.9
gap=3 gap=5 gap=10ϕ

init processing avg. prediction init processing avg. prediction init processing avg. prediction
ϕ1 296.36 1395.725 0.029 174.147 1047.62 0.025 75.997 355.925 0.015
ϕ2 299.012 1577.679 0.028 173.56 1294.726 0.023 78.354 619.202 0.012
ϕ3 297.687 2057.379 0.027 173.599 1018.924 0.019 76.989 420.525 0.008
ϕ4 294.808 1300.652 0.027 176.473 1041.599 0.018 78.387 213.356 0.013

TABLE 5: DBSCAN clustering and decision tree (dbscan dt) - Init, processing and average prediction time (in seconds)

times lower for mbased dt. Even taking into account the init
time required by the clustering-based predictive monitoring
approaches, which is computed once per all traces, such a
time is anyway lower than the processing time of the on-the-
fly approach. Similarly, the average prediction time for the
cluster-based approaches is even 5, 000 times smaller than
the average prediction time of the on-the-fly approach: the
average prediction time for dbscan dt and mbased dt is of the
order of few milliseconds, while for the on-the-fly approach
it can also reach two minutes. Compared to the baseline
the PM Framework is considerably more efficient and can be
used for runtime prediction under high throughput (RQ2).

3.5 Discussion

The observations and the analysis performed so far allow
us to draw some conclusions and guidelines. The solutions
provided by the different instances of the PM Framework
offer the possibility to meet different types of needs, by
opportunely setting the available configuration parameters.

For instance, in settings in which users are more inter-
ested in getting predictions at an early stage of a trace ex-
ecution, low minimum class probability thresholds should
be preferred. The same type of thresholds should also be
preferred to have a prediction even if not always correct
rather than a non-prediction. Indeed, low minimum class
probability thresholds would allow users to get an almost
null failure-rate with an acceptable F1-score in many cases.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

For the choice of the clustering and the classifica-
tion technique to use for instantiating the PM Framework,
mbased rf presents an average F1-score lower than the other
instances. In general, the instances based on random forests
seem to perform slightly worse than the ones based on de-
cision trees. Furthermore, mbased dt outperforms dbscan dt.
The instances based on DBSCAN present a very high ear-
liness. In all the cases, the failure-rate increases with the
minimum class probability threshold.

The choice of the configuration values also depends on
the predicate under consideration. Predicates with a lower
number of positive cases in the historical dataset lead to a
lower F1-score. For instance, in the investigated settings, the
F1-scores derived for ϕ1 and ϕ2 are generally worse than
the ones derived for ϕ3 and ϕ4.

3.6 Threats to Validity

One of the main threats to the external validity of the
evaluation is the application of the PM Framework to a single
event log. The use of more logs would clearly allow for
more general results. However, such a threat is mitigated
by the fact that the considered log is a real-life log with
real data chronologically ordered so as to simulate a realistic
scenario. A second threat is the choice of the predicates used
for the evaluation. Also in this case, we limited ourselves
to 4 predicates. However, they are realistic business rules
covering all the LTL constructs.

4 RELATED WORK

The problem of predictive process monitoring has been
addressed in several previous studies. For example, an
approach for prediction of abnormal termination of busi-
ness processes is presented in [13]. Here, a fault detec-
tion algorithm (local outlier factor) is used to estimate the
probability of a fault occurring. Alarms are provided for
early notification of probable abnormal terminations. In [14],
[15], a technique is presented to predict “late show” events
in transportation processes by applying standard statistical
techniques to find correlations between “late show” events
and external variables related to weather conditions or road
traffic. In [16], the authors evaluate three types of predictive
monitoring techniques and combinations of them on an
industrial case study in the area of transport and logistics.

A key difference between the above predictive monitor-
ing techniques and our technique is that they rely either
on the control-flow or on the data perspective, whereas
we take both perspectives into consideration. In addition,
we provide a general framework for predictive process
monitoring, which is flexible and can be instantiated with
specific clustering and classification techniques to fit differ-
ent scenarios.

Kang et al. [17] propose another predictive process mon-
itoring technique, which starts by constructing a transition
system from the event log. A state in this transition system
represents the set of events that have occurred in the prefix
of a case. Transitions are annotated with probabilities. The
resulting transition system is used at runtime to predict Key
Performance Indicators (KPIs) of a running case. Unlike
our proposal, this approach does not take into account

event payloads. Also, the prediction target is different. Our
framework predicts binary outcomes (compliant vs. non-
compliant) whereas in [17], the goal is to predict KPIs. Other
proposals for predicting numerical KPIs of ongoing cases
include [18], [19] and [20], while [21] and [22] deal with the
problem of predicting the remaining time of a case.

Another body of related work focuses on estimating
risks during the execution of a business process. In [23],
the authors present a technique to support process par-
ticipants in making risk-informed decisions, with the aim
of reducing the materialization of certain predefined risks.
Their technique constructs a decision tree for every decision
point in the process, and uses this model to determine the
probability that a given risk materializes for each branch
of the decision point. The framework uses both control-flow
features and event payloads. Specifically, each activity in the
process is treated as a boolean feature in order to construct
the decision tree: the feature corresponding to activity X is
true iff activity X has occurred in the prefix of the ongoing
case. The PM Framework differs from this proposal in that
it applies clustering prior to constructing the classifier – in
this way each classifier is only constructed for groups of
similar traces. Also, the classifier is constructed using only
data attributes, as the control-flow information is already
taken into account during the clustering step.

The idea of clustering traces prior to building models
from them has been considered in the field of specification
mining in [24]. In this latter work, sets of traces produced
by program executions are first clustered. For each cluster, a
specification (specifically a probabilistic finite state machine)
is constructed. Finally, the finite state machines produced for
each cluster are merged together into a single specification.

5 CONCLUSION

We presented a framework for predictive monitoring of
business processes that exploits data from past execution
traces (both control flow and data attributes associated to
events) to estimate the probability that a given predicate
will be fulfilled upon completion of a running case. The
framework achieves relatively low runtime overhead by
constructing classification models offline – one per cluster
of prefixes of historical traces. At runtime the prediction
is made by matching the running case to a cluster, and
applying the corresponding classification model to extract a
prediction. Compared to a previous method that computes
classification models at runtime [1], this leads to comparable
results in terms of accuracy (measured by F1-score) and
to a significant improvement in terms of response times.
Experimental results show that the framework can achieve
high levels of earliness (i.e., predictions are made early
during the running case) and low failure-rates (i.e., low
number of cases where predictions cannot be made with
sufficiently high class probability).

In separate work, we have investigated the use of al-
ternative early sequence classification techniques for pre-
dictive process monitoring, such as Hidden Markov Models
(HMMs) [25]. We are also investigating the idea of assigning
the uncompleted trace of a running case to multiple clusters
(and thus using multiple classifiers) for making predictions
instead of assigning each uncompleted trace to one single

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

cluster [26]. These and similar ideas can help to derive new
variants of the proposed PM Framework.

As future work, we plan to investigate the application
of techniques for extracting sequence patterns to achieve
further accuracy and earliness improvements. Several types
of sequence pattern extraction techniques have been devel-
oped in related fields, which might be applicable for pre-
dictive process monitoring, including predictive sequence
patterns [12] (which emphasize earliness), discriminative
(dyadic) patterns [27], [28] (which emphasize discriminative
power) and iterative patterns [29] (which have been success-
fully applied to anomaly monitoring).

As the experiments presented in this paper are based on
a single log, the results have low generalizability. Therefore,
another avenue for future work is to conduct further ex-
periments with logs with different characteristics and from
different application domains.

Acknowledgments. This research is partly funded by the
Estonian Research Council.

REFERENCES

[1] F. M. Maggi, C. Di Francescomarino, M. Dumas, and C. Ghidini,
“Predictive monitoring of business processes,” in Proc. of CAiSE,
2014, pp. 457–472.

[2] Z. Xing, J. Pei, and E. J. Keogh, “A brief survey on sequence
classification,” SIGKDD Explorations, vol. 12, no. 1, pp. 40–48, 2010.

[3] W. M. P. van der Aalst, M. Pesic, and M. Song, “Beyond process
mining: From the past to present and future,” in Proc. of CAiSE,
2010, pp. 38–52.

[4] M. Westergaard and F. M. Maggi, “Modelling and Verification of
a Protocol for Operational Support using Coloured Petri Nets,” in
Proc. of ATPN, 2011, pp. 169–188.

[5] F. M. Maggi and M. Westergaard, “Designing software for oper-
ational decision support through coloured petri nets,” Enterprise
Information Systems, to appear.

[6] 3TU Data Center, “BPI Challenge 2011 Event Log,” 2011,
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

[7] C. Fraley and A. E. Raftery, “Enhanced model-based clus-
tering, density estimation, and discriminant analysis software:
MCLUST,” Journal of Classification, vol. 20, pp. 263–286, September
2003.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. of KDD, 1996, pp. 226–231.

[9] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Comput. Surv., vol. 42, no. 3, 2010.

[10] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[11] Statistical Power Analysis for the Behavioral Sciences (2nd Edition),
2nd ed. Routledge, Jul. 1988.

[12] Z. Xing, J. Pei, G. Dong, and P. S. Yu, “Mining sequence classifiers
for early prediction,” in Proc. of the SIAM International Conference
on Data Mining (SDM). SIAM, 2008, pp. 644–655.

[13] B. Kang, D. Kim, and S.-H. Kang, “Real-time business process
monitoring method for prediction of abnormal termination using
KNNI-based LOF prediction,” Expert Syst. Appl., vol. 39, no. 5, pp.
6061–6068, 2012.

[14] A. Metzger, R. Franklin, and Y. Engel, “Predictive monitoring of
heterogeneous service-oriented business networks: The transport
and logistics case,” in Proc. of SRII, 2012.

[15] Z. Feldman, F. Fournier, R. Franklin, and A. Metzger, “Proactive
event processing in action: a case study on the proactive manage-
ment of transport processes,” in Proc. of DEBS, 2013.

[16] A. Metzger, P. Leitner, D. Ivanovic, E. Schmieders, R. Franklin,
M. Carro, S. Dustdar, and K. Pohl, “Comparing and combining
predictive business process monitoring techniques.” IEEE T. Sys-
tems, Man, and Cybernetics: Systems, vol. 45, no. 2, pp. 276–290,
2015.

[17] B. Kang, J. Jung, N. W. Cho, and S. Kang, “Real-time business
process monitoring using formal concept analysis,” Industrial Man-
agement and Data Systems, vol. 111, no. 5, pp. 652–674, 2011.

[18] B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar, and
F. Leymann, “Monitoring and analyzing influential factors of
business process performance,” in Proc. of EDOC. IEEE Computer
Society, 2009, pp. 141–150.

[19] M. Castellanos, N. Salazar, F. Casati, U. Dayal, and M.-C. Shan,
“Predictive business operations management,” in Proc. of DNIS,
2005, pp. 1–14.

[20] F. Folino, M. Guarascio, and L. Pontieri, “Discovering context-
aware models for predicting business process performances,” in
Proc. of OTM, 2012, vol. 7565, pp. 287–304.

[21] W. M. P. van der Aalst, M. H. Schonenberg, and M. Song, “Time
prediction based on process mining,” Inf. Syst., vol. 36, no. 2, pp.
450–475, 2011.

[22] A. Rogge-Solti and M. Weske, “Prediction of remaining service
execution time using stochastic petri nets with arbitrary firing
delays,” in Proc. of ICSOC, 2013, pp. 389–403.

[23] R. Conforti, M. de Leoni, M. La Rosa, and W. M. P. van der Aalst,
“Supporting risk-informed decisions during business process exe-
cution,” in Proc. of CAiSE, 2013, pp. 116–132.

[24] D. Lo and S. Khoo, “Smartic: towards building an accurate, robust
and scalable specification miner,” in Proceedings of ACM SIGSOFT
FSE. ACM, 2006, pp. 265–275.

[25] A. Leontjeva, R. Conforti, C. Di Francescomarino, M. Dumas,
and F. M. Maggi, “Complex symbolic sequence encodings for
predictive monitoring of business processes,” in Proc. of BPM.
Springer, 2015, pp. 297–313.

[26] I. Verenich, M. Dumas, M. La Rosa, F. M. Maggi, and C. Di
Francescomarino, “Complex symbolic sequence clustering and
multiple classifiers for predictive process monitoring,” in Business
Process Management Workshops - BPM 2015, 2015, pp. 218–229.

[27] D. Lo, H. Cheng, J. Han, S. Khoo, and C. Sun, “Classification of
software behaviors for failure detection: a discriminative pattern
mining approach,” in Proceedings of ACM SIGKDD. ACM, 2009,
pp. 557–566.

[28] D. Lo, H. Cheng, and Lucia, “Mining closed discriminative dyadic
sequential patterns,” in Proc. of EDBT. Springer, 2011, pp. 21–32.

[29] N. A. Milea, S. Khoo, D. Lo, and C. Pop, “NORT: runtime anomaly-
based monitoring of malicious behavior for windows,” in Prov. of
Runtime Verification (RV). Springer, 2012, pp. 115–130.

bio/pictures/chiara.jpg

Chiara Di Francescomarino is a researcher at
Fondazione Bruno Kessler (FBK) in the Shape
and Evolve Living Knoweldge (SHELL) unit.
She received her PhD in Information and Com-
munication Technologies from the University of
Trento, working on business process modeling
and reverse engineering from execution logs.
Her current research interests include business
process modeling, collaborative modelling and
the evaluation of tools and techniques for its
support, as well as business process monitoring.

Marlon Dumas is Professor of Software En-
gineering at University of Tartu, Estonia. Prior
to this appointment he was faculty member at
Queensland University of Technology and visit-
ing researcher at SAP Research, Australia. His
research interests span across the fields of soft-
ware engineering, information systems and busi-
ness process management. He is co-author of
the textbook Fundamentals of Business Process
Management (Springer, 2013).

bio/pictures/fabrizio.png

Fabrizio M. Maggi received his Ph.D. degree in
Computer Science in 2010 from the University
of Bari and after a period at the Architecture
of Information Systems (AIS) research group -
Department of Mathematics and Computer Sci-
ence - Eindhoven University of Technology. He
is currently Senior Researcher at the Software
Engineering Group at University of Tartu. His
research interest span across the fields of busi-
ness process management, data mining and
service-oriented computing.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

Irene Teinemaa is a PhD student at the Uni-
versity of Tartu working on predictive monitor-
ing of business processes. Additionally, she is
researcher at the Software Technology and Ap-
plications Competence Center (STACC), where
she works on various industrial data mining
projects. She received her Master degree in
Software Engineering in 2014. Her current re-
search interests include data mining, machine
learning, and process mining.

