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Abstract. A discrete method of accuracy O(hm) is constructed and justi�ed for a class of
Fredholm integral equations of the second kind with kernels that may have weak diagonal and
boundary singularities. The method is based on improving the boundary behaviour of the kernel
with the help of a change of variables, and on the product integration using quasi-interpolation by
smooth splines of order m.
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1. Introduction. In the present paper we call attention to some high order
fully discrete methods for a class of Fredholm integral equations of the second kind
with di�erent weak singularities. The idea of the method is close to those in [2], [4],
[9]. Consider the weakly singular integral equation

u(x) =
∫ 1

0

(
a(x, y)|x− y|−ν + b(x, y)

)
u(y)dy + f(x), 0 ≤ x ≤ 1,(1.1)

depending on the parameter ν, 0 < ν < 1. A traditional product integration method
(see [2], [4] and the literature quoted there) is based on the approximation of (1.1)
by the equation

u(x) =
∫ 1

0

(
|x− y|−νPn,m(a(x, y)u(y)) + Pn,m(b(x, y)u(y))

)
dy + f(x), 0 ≤ x ≤ 1,

where Pn,m is an interpolation projector onto the space of piecewise polynomial
functions of degree m − 1 associated with a subdivision of [0, 1] into n subinter-
vals by some knots 0 = x0,n < x1,n < ... < xn,n = 1; Pn,m is applied to the
products a(x, y)u(y) and b(x, y)u(y) as functions of y treating x as a parameter.
This results to some Nyström type methods of accuracy O(n−m) provided that the
grid {x0,n, x1,n, ..., xn,n} is properly graded to compensate the generic boundary
singularities of the derivatives of the exact solution to (1.1); even the accuracy
O(n−m−1+ν) can be achieved for a skilled choice of the interpolation points, see
[13]. The method of work [9] is di�erent: the authors �rst perform a change of
variables which improves the boundary behaviour of the solution and of the coef-
�cient functions a(x, y), b(x, y), and after that, using a polynomial approximation
of the solution, they apply a Gauss type quadrature formula for the integral in the
transformed equation.

In our method we follow [9], [10] performing a smoothing change of variables
and then, instead of discontinuous piecewise polynomial interpolation by Pn,m, we
use a product quasi-interpolation (or even the real interpolation) by smooth splines
of degree m−1 on the uniform grid of the step size h = 1/n. This leads to some re-
duction of degrees of freedom compared with the use of piecewise polynomials. Our
algorithm still has features of the Nyström method. In Nyström type methods for
weakly singular integral equations, the computation of the quadrature coe�cients
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is a laborious and delicate part of the algorithms. The use of quasi-interpolation
(or real interpolation) by smooth splines on uniform grids enables us to obtain sim-
ple but still somewhat delicate formulae for the quadrature coe�cients, and so we
obtain a fully discrete method of accuracy O(hm). This is the main message of the
present paper.

In our considerations, the coe�cient functions a(x, y) and b(x, y) may have
boundary singularities with respect to y. Denote by T the integral operator of
equation (1.1),

(Tu)(x) =
∫ 1

0

(
a(x, y)|x− y|−ν + b(x, y)

)
u(y)dy.

Lemma 1.1. Assume that a, b ∈ C([0, 1]× (0, 1)) satisfy the inequalities

|a(x, y)| ≤ cy−λ0(1− y)−λ1 , |b(x, y)| ≤ cy−µ0(1− y)−µ1 , (x, y) ∈ [0, 1]× (0, 1),

where 0 < ν < 1, λ0, λ1, µ0, µ1 ∈ R, λ0 + ν < 1, λ1 + ν < 1, µ0 < 1, µ1 < 1. Then
T maps C[0, 1] into C[0, 1], and T : C[0, 1] → C[0, 1] is compact.

The proof is standard, cf. [5], [7]; a detailed argument can be found in [11].
For m ∈ N, θ0, θ1 ∈ R, θ0, θ1 < 1, denote by Cm

? (0, 1) and Cm,θ0,θ1(0, 1) the
weighted spaces of functions u ∈ C[0, 1] ∩ Cm(0, 1) such that, respectively,

‖ u ‖Cm
? (0,1):=

m∑
k=0

sup
0<x<1

xk(1− x)k|u(k)(x)| <∞,

‖ u ‖Cm,θ0,θ1 (0,1):=
m∑

k=0

sup
0<x<1

wk−1+θ0(x)wk−1+θ1(1− x)|u(k)(x)| <∞

where

wρ(r) =

 1, ρ < 0,
1/(1 + |log r|), ρ = 0,

rρ, ρ > 0,
r, ρ ∈ R, r > 0.

Clearly, Cm[0, 1] ⊂ Cm,θ0,θ1(0, 1) ⊂ Cm
? (0, 1).

Lemma 1.2. ([11]). Let a, b ∈ Cm([0, 1]× (0, 1)) and

|∂k
x∂

l
ya(x, y)| ≤ cy−λ0−l(1− y)−λ1−l, |∂k

x∂
l
yb(x, y)| ≤ cy−µ0−l(1− y)−µ1−l,(1.2)

(x, y) ∈ [0, 1]× (0, 1), k + l ≤ m,

where m ∈ N, 0 < ν < 1, λ0 + ν < 1, λ1 + ν < 1, µ0 < 1, µ1 < 1. Then T maps
Cm

? (0, 1) into Cm
? (0, 1), T : Cm

? (0, 1) → Cm
? (0, 1) is bounded and T 2 : Cm

? (0, 1) →
Cm

? (0, 1) is compact. Further, T maps Cm,θ0,θ1(0, 1) with θ0 = max{λ0 + ν, µ0},
θ1 = max{λ1 + ν, µ1} into Cm,θ0,θ1(0, 1) and T : Cm,θ0,θ1(0, 1) → Cm,θ0,θ1(0, 1) is
compact.

Here ∂k
x∂

l
y = (∂/∂x)k(∂/∂y)l. An example of a satisfying (1.2) is given by

a(x, y) = y−λ0(1− y)−λ1a(x, y) where a ∈ Cm([0, 1]× [0, 1]).
Denote N (I − T ) = {u ∈ C[0, 1] : u = Tu}. The following theorem is a

consequence of Lemmas 1.1 and 1.2.
Theorem 1.3. Assume the conditions of Lemma 1.2 and N (I − T ) = {0}.

Then for f ∈ Cm
? (0, 1), equation (1.1) has a solution u ∈ Cm

? (0, 1) which is unique
in C[0, 1], and ‖ u ‖Cm

? (0,1)≤ c ‖ f ‖Cm
? (0,1) where the constant c is independent

of f . Further, if f ∈ Cm,θ0,θ1(0, 1), θ0 = max{λ0 + ν, µ0}, θ1 = max{λ1 + ν, µ1}
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then u ∈ Cm,θ0,θ1(0, 1), and ‖ u ‖Cm,θ0,θ1 (0,1)≤ cm,θ0,θ1 ‖ f ‖Cm,θ0,θ1 (0,1) where the
constant cm,θ0,θ1 is independent of f .

The main results of the paper are established under assumptions of Theorem
1.3. Using the approach of [12], our treatment can be extended to the case where
f has a singularity at a point x = ξ, ξ ∈ (0, 1), and/or a and b have certain
singularities on the lines x = ξ and y = ξ or on a system of such inner points/lines
� we can build the approximate solution on [0, ξ] and [ξ, 1] in a similar manner as
this is done on [0, 1] in the Section 4.

The rest of the paper is organised as follows. In Section 2 we recall some
results about the interpolation and quasi-interpolation of functions by splines with
a uniform knot set and, in particular, about the optimality of such approximations.
In Section 3 we transform equation (1.1) into a new form by the change of variables.
Section 4 is central in the paper � we introduce the product quasi-interpolation
method for the transformed equation, examine its accuracy and present the matrix
form of the method. In Section 5 we discuss di�erent computational details of the
method and in Section 6 we test the algorithms on a numerical example.

Actually the method can be applied to somewhat more general class of equa-
tions rather than (1.1). The case of integral equation with logarithmic diagonal
singularity of the kernel will be treated in a separate work with more attention to
the computational environment. In [17] the method is modi�ed for the Volterra
integral equation corresponding to (1.1).

2. Approximation tools.

2.1. The father B-spline. The father B-spline Bm of order m in the termi-
nology of [3], [15], or of degree m− 1 in the terminology of [6], [16], can be de�ned
by the formula

Bm(x) =
1

(m− 1)!

m∑
i=0

(−1)iC(m)
i (x− i)m−1

+ , x ∈ R, m ∈ N.(2.1)

Here, as usual, 0! = 1, 00 := limx↓0x
x = 1,

C(m)
i =

(
m
i

)
=

m!
i! (m− i)!

, (x− i)m−1
+ =

{
(x− i)m−1, x− i ≥ 0,

0, x− i < 0.

Let us recall some properties of Bm: Bm ∈ C(m−2)(R),

suppBm = [0,m], Bm(x) = Bm(m− x) > 0 for 0 < x < m,(2.2)

B(m−1)
m (x) = (−1)lC(m−1)

l for l < x < l + 1, l = 0, ...,m− 1,(2.3)

∑
j∈Z

Bm(x− j) = 1 for x ∈ R,
∫

R
Bm(x)dx = 1.(2.4)

2.2. Spline interpolation on the uniform grid in R. Introduce in R the
uniform grid hZ = {ih : i ∈ Z} of the step size h > 0. Denote by Sh,m, m ∈ N, the
space of splines of order m (of degree m − 1) and defect 1 with the knot set hZ.
The family B-spline Bm(h−1x − j), j ∈ Z, belongs to Sh,m, and the same is true
for
∑

j∈Z djBm(h−1x− j) with arbitrary coe�cients dj ; there are no problems with
the convergence of the series since it is locally �nite: it follows from (2.2) that



4 E. VAINIKKO AND G. VAINIKKO

∑
j∈Z

djBm(h−1x− j) =
i∑

j=i−m+1

djBm(h−1x− j) for x ∈ [ih, (i+ 1)h), i ∈ Z.

Given a function f ∈ C(R), bounded or of at most polynomial growth as
|x| → ∞, we determine the interpolant Qh,mf∈ Sh,m by the conditions

(Qh,mf)(x) =
∑
j∈Z

djBm(h−1x− j), x ∈ R,(2.5)

(Qh,mf)((k +
m

2
)h) = f((k +

m

2
)h), k ∈ Z.(2.6)

Form = 1 andm = 2, Qh,mf is the usual piecewise constant, respectively, piecewise
linear interpolant which can be determined on every subinterval [ih, (i+1)h), i ∈ Z,
independently of other subintervals. For m ≥ 3, the value of Qh,mf at a given point
x ∈ R depends on the values of f at all interpolation knots (k + m

2 )h, k ∈ Z. It
occurs (see [14], [16]) that for m ≥ 3 conditions (2.5)�(2.6) really determine dj ,
j ∈ Z, uniquely in the space of bounded or polynomially growing bisequences (dj),
namely,

dj =
∑
k∈Z

αj−k,mf((k +
m

2
)h) =

∑
k∈Z

αk,mf((j − k +
m

2
)h), j ∈ Z,(2.7)

where

αk,m =
m0∑
l=1

zm0−1
l,m

P ′m(zl,m)
z
|k|
l,m, k ∈ Z, m0 =

{
(m− 2)/2 if m is even,
(m− 1)/2 if m is odd,

(2.8)

and zl,m ∈ (−1, 0), l = 1, ...,m0, are the roots of the characteristic polynomial

Pm(z) =
∑

|k|≤m0

Bm(k +
m

2
)zk+m0

(it is a polynomial of degree 2m0); it occurs that Pm has exactly m0 simple roots
zl,m, l = 1, ...,m0, in the interval (−1, 0), and the remaining m0 roots are of the
form zl+m0,m = 1/zl,m ∈ (−∞,−1), l = 1, ...,m0.

Denote by BC(R) the space of bounded continuous functions on R equipped
with the norm ‖ f ‖∞= supx∈R |f(x)|, by V m,∞(R) the space of functions having
bounded mth (distributional) derivative in R, by Wm,∞(R) the standard Sobolev
space of functions on R having bounded derivatives of order ≤ m, and byWm,∞

(0,1) (R)
the space of functions f ∈Wm,∞(R) with supports in (0, 1).

Lemma 2.1. ([6,21,22]). For f ∈ V m,∞(R), it holds f −Qh,mf ∈ BC(R) and

‖ f −Qh,mf ‖∞≤ Φm+1π
−mhm ‖ f (m) ‖∞(2.9)

where Φm = 4
π

∑∞
k=0

(−1)km

(2k+1)m , m ∈ N, is the Favard constant,

Φ1 < Φ3 < Φ5 < ... < 4/π < ... < Φ6 < Φ4 < Φ2, lim
m→∞

Φm = 4/π.

The following lemma tells that, in some sense, the spline interpolation yields the
best approximation of the function classes Wm,∞(R) and V m,∞(R), asymptotically
also of Wm,∞

(0,1) (R), compared with other methods that use the same information as
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Qh,mf � the values f |Zh,m
of f on the grid Zh,m = {(j + m

2 )h : j ∈ Z}. Denote by
C(Zh,m) the vector space of all (grid) functions de�ned on Zh,m.

Lemma 2.2. ([21,22]). For given γ > 0, we have by Lemma 2.1

sup
f∈V m,∞(R), ‖f(m)‖∞≤γ

‖ f −Qh,mf ‖∞≤ Φm+1π
−mhmγ,

whereas for any mapping Mh : C(Zh,m) → C(R) (linear or nonlinear, continuous
or discontinuous), it holds

sup
f∈W m,∞(R), ‖f(m)‖∞≤γ

‖ f −Mh(f |Zh,m
) ‖∞≥ Φm+1π

−mhmγ,

lim inf
h→0

sup
f∈W m,∞

(0,1) (R), ‖f(m)‖∞≤γ

‖ f −Mh(f |Zh,m
) ‖∞ /(Φm+1π

−mhmγ) ≥ 1.

2.3. Quasi-interpolation by splines. Let m ≥ 3. In a quasi-interpolant

Q
(p)
h,mf , the in�nite sum (2.7) de�ning the coe�cients dj of the spline interpolant

(2.5)�(2.6) is replaced by a �nite sum:

(Q(p)
h,mf)(x) =

∑
j∈Z

d
(p)
j Bm(h−1x− j), x ∈ R,(2.10)

d
(p)
j =

∑
|k|≤p−1

α
(p)
k,mf((j − k +

m

2
)h), p ∈ N.(2.11)

A simple truncation of the series in (2.7) does not give acceptable results. Using a
special di�erence calculus for fast decaying bisequences, the following formulae for

α
(p)
k,m have been proposed in [8]:

α
(p)
k,m =

p−1∑
q=|k|

(−1)k+q

(
2q
k + q

)
γq,m, |k| ≤ p− 1,(2.12)

γ0,m = 1, γq,m =
m0∑
l=1

(1 + zl,m)zm0+q−1
l,m

(1− zl,m)2q+1P ′m(zl,m)
, q ≥ 1.(2.13)

Then it occurs that

‖ Qh,mf −Q
(p)
h,mf ‖∞≤ cm,ph

2p ‖ f (2p) ‖∞ for f ∈ V 2p,∞(R)(2.14)

with a constant cm,p that can be described. A consequence of (2.14) is that for
f ∈ V m,∞(R) with uniformly continuous f (m) and 2p > m, it holds ‖ Qh,mf −
Q

(p)
h,mf ‖∞ h−m → 0 as h → 0, i.e., the quasi-interpolant Q

(p)
h,mf is asymptotically

of the same accuracy as the interpolant Qh,mf . It is reasonable to take the smallest
p ∈ N for which 2p > m; denote it by m1,

m1 =
{

m
2 + 1, m even
m+1

2 , m odd

}
= m−m0.(2.15)

Denote also Q′h,m := Q
(m1)
h,m , α′k,m := α

(m1)
k,m , |k| < m1. Note that (Q′h,mf)(x) is well

de�ned for x ∈ [ih, (i+1)h] with an i ∈ Z if f is given on [(i−m+1)h, (i+m)h]∩Zh,m.
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Lemma 2.3. ([8]). For i ∈ Z, f ∈ Cm[(i−m+ 1)h, (i+m)h], it holds

max
ih≤x≤(i+1)h

|f(x)− (Q′h,mf)(x))|(2.16)

≤ (Φm+1π
−m + qmc

′
m)hm sup

(i−m+1)h≤x≤(i+m)h

|f (m)(x)|.

For a relatively compact set M in C[−δ, 1 + δ], δ > 0, it holds

sup
f∈M

max
0≤x≤1

|f(x)− (Q′h,mf)(x))| → 0 as h→ 0.(2.17)

Formulae for qm :=‖ Qh,m ‖BC(R)→BC(R), q
′
m :=‖ Q′h,m ‖BC(R)→BC(R) and c

′
m

from (2.16) are presented in [8] with the following numerical values:

m 3 4 5 6 7 8 9 10 20
c′m 0.016 0.019 0.015 0.0085 0.0060 0.0030 0.0022 0.0010 6.5e-6
qm 1.414 1.549 1.706 1.816 1.916 2.000 2.075 2.142 2.583
qmc

′
m 0.023 0.029 0.026 0.015 0.012 0.006 0.005 0.002 1.7e-5

q′m 1.250 1.354 1.329 1.403 1.356 1.413 1.378 1.419 1.514

Relatively small values of the norms qm and q′m tell us about good stability prop-
erties of interpolation and quasi-interpolation processes.

We assumed that m ≥ 3. For m = 1 and m = 2, we may put Q′h,m = Qh,m.

3. A smoothing change of variables. In the integral equation (1), we per-
form the change of variables

x = ϕ(t), y = ϕ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,(3.1)

where ϕ : [0, 1] → [0, 1] is de�ned by the formula

ϕ(t) =
1
c?

∫ t

0

σr0−1(1− σ)r1−1dσ,(3.2)

c? =
∫ 1

0

σr0−1(1− σ)r1−1dσ =
Γ(r0)Γ(r1)
Γ(r0 + r1)

,

Γ is the Euler gamma function. We assume that r0, r1 ∈ R, r0 ≥ 1, r1 ≥ 1, but we
keep in mind that practicable algorithms correspond to the case where at least one
of parameters r0 and r1 is natural. If r1 ∈ N, (3.2) takes the form

ϕ(t) =
1
c?
tr0

r1−1∑
k=0

(−1)k

r0 + k
C(r1−1)

k tk, 0 ≤ t ≤ 1, c? =
(r1 − 1)!

r0(r0 + 1)...(r0 + r1 − 1)
,

but in our computations, the following expansion of ϕ with positive terms occurred
to be preferable (essentially more stable numerically):

ϕ(t) = tr0

[
1 +

r1−1∑
k=1

r0(r0 + 1)...(r0 + k − 1)
k!

(1− t)k

]
, 0 ≤ t ≤ 1.(3.3)

If r0, r1 ∈ N, the integral in (3.2) can be alternatively evaluated [9] in a stable way
by an exact Gauss rule, since the integrand is a polynomial of degree r0 + r1 − 2.
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Clearly, ϕ(0) = 0, ϕ(1) = 1 and ϕ(t) is strictly increasing in [0, 1]. Hence
ϕ(t)−ϕ(s)

t−s > 0, |ϕ(t) − ϕ(s)| = ϕ(t)−ϕ(s)
t−s |t − s| for s 6= t, and equation (1.1) takes

with respect to v(t) = u(ϕ(t)) the form

v(t) =
∫ 1

0

(
A(t, s)|t− s|−ν + B(t, s)

)
v(s)ds+ g(t), 0 ≤ t ≤ 1,(3.4)

where

A(t, s) = a(ϕ(t), ϕ(s))Φ(t, s)−νϕ′(s), Φ(t, s) =
{

ϕ(t)−ϕ(s)
t−s , t 6= s,

ϕ′(s), t = s,
(3.5)

B(t, s) = b(ϕ(t), ϕ(s))ϕ′(s), g(t) = f(ϕ(t)).(3.6)

Let us characterise the boundary behaviour of functions in equation (3.4). Clearly,

0 ≤ ϕ(t) ≤ ctr0 , 0 ≤ 1− ϕ(t) ≤ c(1− t)r1 ,

|ϕ(k)(t)| ≤ ctr0−k(1− t)r1−k, 0 < t < 1, k = 1, ...m.(3.7)

Lemma 3.1. For u ∈ Cm
? (0, 1), v(t) = u(ϕ(t)), it holds v ∈ Cm

? (0, 1) and

‖ v ‖Cm
? (0,1)≤ c ‖ u ‖Cm

? (0,1)(3.8)

where the constant c is independent of u. Further, if u ∈ Cm,θ0,θ1(0, 1), θ0 < 1,
θ1 < 1, then for j = 1, ...,m, 0 < t < 1,

|v(j)(t)| ≤ c ‖ u ‖Cm,θ0,θ1 (0,1) ×(3.9)


tr0−j , θ0 < 0

tr0−j(1 + | log t|), θ0 = 0
t(1−θ0)r0−j , θ0 > 0




(1− t)r1−j , θ1 < 0
(1− t)r1−j(1 + | log(1− t)|), θ1 = 0

(1− t)(1−θ1)r1−j , θ1 > 0

 .

Proof. Clearly ‖ v ‖∞=‖ u ‖∞ . The proof of (3.8) and (3.9) is based on (3.7)
and the formula of Faà di Bruno(

d

dt

)j

u(ϕ(t)) =
∑

k1+...+jkj=j

j!
k1!..kj !

u(k1+...+kj)(ϕ(t))
(
ϕ′(t)
1!

)k1

...

(
ϕ(j)(t)
j!

)kj

where the sum is taken over all k1 ≥ 0, ..., kj ≥ 0 such that k1 + 2k2 + ...+ jkj = j.
Here are the details for (3.9). For 0 < t ≤ 1

2 , 1 ≤ j ≤ m, we have

|v(j)(t)| ≤ c
∑

k1+2k2...+jkj=j


1, k1 + ...+ kj < 1− θ0

1 + | log t|, k1 + ...+ kj = 1− θ0
t(1−θ0−k1−...−kj)r0 , k1 + ...+ kj > 1− θ0

×
× ‖ u ‖Cm,θ0,θ1 t

k1(r0−1)tk2(r0−2)...tkj(r0−j)

= c
∑

k1+...+jkj=j


t(k1+...+kj)r0−j , k1 + ...+ kj < 1− θ0
t(1−θ0)r0−j(1 + | log t|), k1 + ...+ kj = 1− θ0
t(1−θ0)r0−j , k1 + ...+ kj > 1− θ0

 ‖ u ‖Cm,θ0,θ1 .

The condition k1+2k2...+jkj = j implies the following. (i) The relation k1+...+kj <
1 − θ0 is possible only if θ0 < 0, and then tr0−j is the leading term as t → 0 in
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the last sum (it corresponds to k1 = ... = kj−1 = 0, kj = 1). (ii) The relation
k1 + ...+ kj = 1 − θ0 is possible only if θ0 ≤ 0, θ0 ∈ Z; in case θ0 = 0, the leading
term is tr0−j(1 + | log t|) whereas in case θ0 ≤ −1, similarly as in (i), the leading
term is tr0−j . (iii) If 0 < θ0 < 1 then all terms in the last sum are t(1−θ0)r0−j .
These considerations prove (3.9) for 0 < t ≤ 1

2 . By a symmetry argument we obtain
(3.9) also for 1

2 ≤ t < 1.
Lemma 3.2. Let a and b satisfy the conditions of Lemma 1.2. Then for

j = 0, ...,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds

|∂j
sa(ϕ(t), ϕ(s))| ≤ cs−r0λ0−j(1− s)−r1λ1−j ,(3.10)

|∂j
sb(ϕ(t), ϕ(s))| ≤ cs−r0µ0−j(1− s)−r1µ1−j .(3.11)

These inequalities elementarily follow by the formula of Faà di Bruno.
The function Φ(t, s)−ν has singularities at (0, 0) and (1, 1), the only zeroes of

Φ(t, s) in [0, 1]× [0, 1]. It is easy to see that

∂k
s Φ(t, s) � (t+ s)r0−k−1((1− t) + (1− s))r1−k−1 as t, s→ 0 or as t, s→ 1

that together with the formula of Faà di Bruno implies the following result.
Lemma 3.3. For j = 0, ...,m, 0 ≤ t ≤ 1, 0 < s < 1, it holds

∣∣∣∂j
s

(
(Φ(t, s))−ν

)∣∣∣ ≤ c(t+ s)−ν(r0−1)−j((1− t) + (1− s))−ν(r1−1)−j .(3.12)

Next we present estimates for functions A(t, s), B(t, s) and ∂m
s [A(t, s)v(s)],

∂m
s [B(t, s)v(s)] in somewhat speci�c form for the needs of Section 4.

Corollary 3.4. Let a and b satisfy the conditions of Lemma 1.1. Then the
following holds true: (i) if

r0, r1 ≥ 1, r0 > (1− ν)/(1− ν − λ0), r1 > (1− ν)/(1− ν − λ1),(3.13)

then with δ0 := (1− ν − λ0)r0 − (1− ν) > 0, δ1 := (1− ν − λ1)r1 − (1− ν) > 0, it
holds

|A(t, s)| ≤ csδ0(1− s)δ1 , (t, s) ∈ [0, 1]× (0, 1);(3.14)

(ii) if

r0, r1 ≥ 1, r0 > 1/(1− µ0), r1 > 1/(1− µ1),(3.15)

then with δ0 := (1− µ0)r0 − 1 > 0, δ1 := (1− µ1)r1 − 1 > 0, it holds

|B(t, s)| ≤ csδ0(1− s)δ1 , (t, s) ∈ [0, 1]× (0, 1).(3.16)

Proof. These estimates are direct consequences of Lemmas 3.2 and 3.3. By
(3.7), (3.10) and (3.12) we have

|A(t, s)| ≤ cs−r0λ0+r0−1(t+ s)−ν(r0−1)(1− s)−r1λ1+r1−1(2− t− s)−ν(r1−1)

that for r0, r1 satisfying (3.13) yields (3.14). Similarly, by (3.7), (3.11) and (3.12),

|B(t, s)| ≤ cs−r0µ0+r0−1(1− s)−r1µ1+r1−1

that for r0, r1 satisfying (3.15) yields (3.16).
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Corollary 3.5. Let a and b satisfy the conditions of Lemma 1.2, and let
u ∈ Cm

? (0, 1), v(t) = u(ϕ(t)). Then the following estimates hold true for (t, s) ∈
[0, 1]× (0, 1): (i) if

r0, r1 ≥ 1, r0 > m/(1− ν − λ0), r1 > m/(1− ν − λ1),(3.17)

then with δ0 := (1− ν − λ0)r0 −m > 0, δ1 := (1− ν − λ1)r1 −m > 0,

|A(t, s)| ≤ csm−(1−ν)+δ0(1− s)m−(1−ν)+δ1 ,(3.18)

|∂m
s [A(t, s)v(s)]| ≤ cs−(1−ν)+δ0(1− s)−(1−ν)+δ1 ‖ u ‖Cm

? (0,1);(3.19)

(ii) if

r0, r1 ≥ 1, r0 > m/(1− µ0), r1 > m/(1− µ1),(3.20)

then with δ0 := (1− µ0)r0 −m > 0, δ1 := (1− µ1)r1 −m > 0,

|B(t, s)| ≤ csm−1+δ0(1− s)m−1+δ1 ,(3.21)

|∂m
s [B(t, s)v(s)]| ≤ cs−1+δ0(1− s)−1+δ1 ‖ u ‖Cm

? (0,1);(3.22)

(iii) if

r0, r1 ≥ 1, r0 > (m+ ν)/(1− λ0), r1 > (m+ ν)/(1− λ1)(3.23)

then with δ0 := (1− λ0)r0 −m− ν > 0, δ1 := (1− λ1)r1 −m− ν > 0,

ϕ′(t)ν |A(t, s)| ≤ csm−(1−ν)+δ0(1− s)m−(1−ν)+δ1 ,(3.24)

ϕ′(t)ν |∂m
s [A(t, s)v(s)]| ≤ cs−(1−ν)+δ0(1− s)−(1−ν)+δ1 ‖ u ‖Cm

? (0,1) .(3.25)

Proof. These estimates are direct consequences of Lemmas 3.1�3.3. Observe
that |∂k

s [ϕ′(t)νΦ(t, s)−ν ]| ≤ c(t+ s)−k((1− t) + (1− s))−k.
Let us extend A(t, s) and B(t, s) with respect to s outside (0, 1) by the zero

value. Under conditions (3.13) and (3.15) we obtain continuous functions on [0, 1]×
R, see (3.14) and (3.16).

4. The product quasi-interpolation method.

4.1. The operator form of the method. Let h = 1/n, n ∈ N, n ≥ m.
For 0 ≤ s ≤ 1, the quasi-interpolant Q′h,mw of a function w∈ C[−δ, 1 + δ] has the
expansion

(Q′h,mw)(s) =
n−1∑

j=−m+1

∑
|p|<m1

α′p,mw((j − p+
m

2
)h)Bm(ns− j).(4.1)

We approximate equation (3.4) by its discretised version: for 0 ≤ t ≤ 1,

vn(t) =
∫ 1

0

[|t− s|−νQ′h,m(A(t, s)vn(s)) +Q′h,m(B(t, s)vn(s))]ds+ g(t)(4.2)

where Q′h,m is applied to the products A(t, s)v(s) and B(t, s)v(s) as functions of s.
This can be done for v given on [0, 1] since A(t, s) = B(t, s) = 0 for s ≤ 0 and for
s ≥ 1; recall that under condition (3.13) and (3.15), A,B ∈ C([0, 1]× R).
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Theorem 4.1. (i) Let a and b satisfy the conditions of Lemma 1.1, N (I−T ) =
{0}, f ∈ C[0, 1], and let r0 and r1 satisfy condition (3.13) and (3.15). Then for
su�ciently large n, equation (4.2) has a unique solution vn, and

‖ v − vn ‖∞:= max
0≤t≤1

|v(t)− vn(t)| → 0 as n→∞(4.3)

where v is the solution of equation (3.4).
(ii) Under assumptions of Theorem 1.3, f ∈ Cm

? (0, 1) and conditions (3.17)
and (3.20) on r0 and r1, it holds

‖ v − vn ‖∞≤ chm ‖ f ‖Cm
? (0,1) .(4.4)

(iii) Under assumptions of Theorem 1.3, f ∈ Cm
? (0, 1) and conditions (3.20)

and (3.23) on r0 and r1, it holds

max
0≤t≤1

ϕ′(t)ν |v(t)− vn(t)| ≤ chm ‖ f ‖Cm
? (0,1) .(4.5)

The constant c in (4.4) and (4.5) is independent of n and f .
Proof. Accept the assumptions formulated in (i). Denote by T and Tn the

integral operators of equations (3.4) and (4.2),

(T v)(t) =
∫ 1

0

[|t− s|−νA(t, s) + B(t, s)]v(s)ds,

(Tnv)(t) =
∫ 1

0

[|t− s|−νQ′h,m(A(t, s)v(s)) +Q′h,m(B(t, s)v(s))]ds.

We claim that Tn → T compactly in C[0, 1] as n→∞, i.e.,

‖ Tnv − T v ‖∞→ 0 for every v ∈ C[0, 1],(4.6)

(vn) ⊂ C[0, 1], ‖ vn ‖∞≤ 1 ⇒ (Tnvn) is relatively compact in C[0, 1].(4.7)

Indeed, the sets {A(t, ·) : 0 ≤ t ≤ 1} and {B(t, ·) : 0 ≤ t ≤ 1} are relatively compact
in C[−δ, 1 + δ], and by Lemma 2.3, for a �xed v ∈ C[0, 1] extended by v(t) = v(0)
for −δ ≤ s ≤ 0, v(t) = v(1) for 1 ≤ s ≤ 1 + δ, it holds

sup
0≤t≤1

max
0≤s≤1

|A(t, s)v(s)−Q′h,m(A(t, s)v(s))| → 0 for n→∞,

sup
0≤t≤1

max
0≤s≤1

|B(t, s)v(s)−Q′h,m(B(t, s)v(s))| → 0 for n→∞.

This together with the equality ‖ Q′h,m ‖= q′m implies (4.6). The proof of (4.7) can
be built using the Arzela theorem.

Due to the condition N (I − T ) = {0}, also N (I − T ) = {0}. As well known
(see [1], [2], [7] or [18]), relations (4.6), (4.7) and N (I − T ) = {0} imply that, for
su�ciently large n, the operators I−Tn are invertible and the inverses are uniformly
bounded:

‖ (I − Tn)−1 ‖C[0,1]→C[0,1]≤ c, n ≥ n0.(4.8)

Let v and vn be the solutions of equations (3.4) and (4.2), respectively. Then

v − vn = (I − Tn)−1(T v − Tnv),(4.9)
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and due to (4.8) and (4.6), the convergence (4.3) follows.
Next we establish the uniform estimate (4.4). Assume the conditions of The-

orem 1.3, f ∈ Cm
? (0, 1) and (3.17), (3.20). For the solutions u and v of (1.1) and

(3.4) we have v(t) = u(ϕ(t)) and u ∈ Cm
? (0, 1) by Theorem 1.3. On the basis of

(2.16) and (3.19),∫ 1−2mh

2mh

|t− s|−ν |A(t, s)v(s)−Q′h,m(A(t, s)v(s))|ds

≤ chm

∫ 1−mh

mh

|t−s|−νs−(1−ν)+δ0(1−s)−(1−ν)+δ1ds ‖ u ‖Cm
? (0,1)≤ c′hm ‖ u ‖Cm

? (0,1)

where we took into account that for 2mh ≤ s ≤ 1− 2mh, it holds

max
|σ−s|≤mh

σ−(1−ν)+δ0(1− σ)−(1−ν)+δ1 ≤ cs−(1−ν)+δ0(1− s)−(1−ν)+δ1 .

Further, due to (3.18)

max
0≤t≤1, s∈[0,2mh]∪[1−2mh,1]

|A(t, s)| ≤ chm−(1−ν)+δ′ , δ′ = min{δ0, δ1)} > 0,

that implies(∫ 2mh

0

+
∫ 1

1−2mh

)
|t− s|−ν |A(t, s)v(s)−Q′h,m(A(t, s)v(s))|ds

≤ (1 + q′m)chm−(1−ν)+δ′

(∫ 2mh

0

+
∫ 1

1−2mh

)
|t− s|−νds ‖ v ‖∞≤ c′hm+δ′ ‖ u ‖∞

and together with the previous estimate,∫ 1

0

|t− s|−ν |A(t, s)v(s)−Q′h,m(A(t, s)v(s))|ds ≤ chm ‖ u ‖Cm
? (0,1), 0 ≤ t ≤ 1.

With the help of (3.21) and (3.22) we obtain in a similar way that∫ 1

0

|B(t, s)v(s)−Q′h,m(B(t, s)v(s))|ds ≤ chm ‖ u ‖Cm
? (0,1), 0 ≤ t ≤ 1.

Exploiting also Theorem 1.3 we get

‖ T v − Tnv ‖∞≤ chm ‖ u ‖Cm
? (0,1)≤ c′hm ‖ f ‖Cm

? (0,1) .

Together with (4.8) and (4.9) this proves (4.4).
Finally, let us prove the weighted error estimate (4.5) under conditions (3.20),

(3.23) on r0 and r1. Let v and vn be the solutions of equations (3.4) and (4.2),
respectively; then w(t) = ϕ′(t)νv(t) and wn(t) = ϕ′(t)νvn(t) are the solutions of
equations

w(t) =
∫ 1

0

[|t− s|−νA(t, s)w(s) + B(t, s))w(s)]ds+ ϕ′(t)νg(t),(4.10)

wn(t) =
∫ 1

0

[|t− s|−νQ′h,m(A(t, s)wn(s)) +Q′h,m(B(t, s))wn(s))]ds(4.11)
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+ϕ′(t)νg(t), 0 ≤ t ≤ 1,

respectively, where

A(t, s) = ϕ′(t)νA(t, s)ϕ′(s)−ν = ϕ′(t)νa(ϕ(t), ϕ(s))Φ(t, s)−νϕ′(s)1−ν ,

B(t, s) = ϕ′(t)νB(t, s)ϕ′(s)−ν = ϕ′(t)νb(ϕ(t), ϕ(s))ϕ′(s)1−ν .

Denote by T and T n the integral operators of equations (4.10) and (4.11). Arguing
similarly as above it is easily seen that T n → T compactly in C[0, 1]; by the way,
this holds even under the conditions of the theorem part (i), in particular, (3.13)
and (3.15) guarantee the continuity of A(t, s) and B(t, s) on [0, 1]× R. Hence

‖ (I − T n)−1 ‖C[0,1]→C[0,1]≤ c, n ≥ n0,(4.12)

‖ w − wn ‖∞≤ c ‖ T w − T nw ‖∞= c max
0≤t≤1

ϕ′(t)ν |(T v)(t)− (Tnv)(t)|.

Using (3.24), (3.25), (3.21), (3.22) and Theorem 1.3, we obtain

max
0≤t≤1

ϕ′(t)ν |(T v)(t)− (Tnv)(t)| ≤ chm ‖ u ‖Cm
? (0,1)≤ c′hm ‖ f ‖Cm

? (0,1)

that completes the proof of estimate (4.5).
Remark 4.1. Under conditions of Theorem 4.1(i), we have

‖ Tn ‖C[0,1]→C[0,1]≤ c, ‖ T n ‖C[0,1]→C[0,1]≤ c, n ≥ m.(4.13)

Remark 4.2. Under conditions of Theorem 4.1(ii) but slack inequalities instead
of strict ones in (3.17), (3.20), a slight modi�cation in the proof yields

‖ v − vn ‖∞≤ chm| log h| ‖ f ‖Cm
? (0,1) .(4.14)

Similar remark concerns Theorem 4.1(iii).
The numerical example in Section 6 does not con�rm the presence of the factor

| log h| in (4.14). If it really can be dropped, the proof needs new ideas.
Remark 4.3. Assume that m is odd, f∈ Cm+1

? (0, 1), a, b ∈ Cm+1([0, 1]× (0, 1))
satisfy (1.2) for k + l ≤ m+ 1, and N (I − T ) = {0}. Then under conditions

r0, r1 ≥ 1, r0 ≥ (m+ 1− ν)/(1− ν − λ0), r1 ≥ (m+ 1− ν)/(1− ν − λ1),
r0 ≥ (m+ 1− ν)/(1− µ0), r1 ≥ (m+ 1− ν)/(1− µ1)

the convergence order (4.4) of method (4.2) can be improved (cf. [13]):

‖ v − vn ‖∞≤ chm+1−ν ‖ f ‖Cm+1
? (0,1) .(4.15)

The outlines of the proof are as follows. Due to (2.12), α
(p)
k,m = α

(p)
−k,m. Together

with the symmetry property (2.2) of Bm this implies that for a function e which if
odd w.r.t. a point (j+ 1

2 )h, also Q′h,me has the same parity property; a consequence

is that
∫ (j+1)h

jh
(em −Q′h,mem)ds = 0 for odd m and polynomials em of degree ≤m

(note that, due to (2.9) and (2.14), em−1 − Q′h,mem−1 = 0 for polynomials of
degree ≤m− 1). Hence for odd m,

|
∫ (j+1)h

jh

(w −Q′h,mw)ds |≤ chm+2 max
(j−m+ 1

2 )h≤s≤(j+m− 1
2 )h

| w(m+1)(s) | .(4.16)
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For w(s) = A(t, s)v(s), 0 < s < 1, 0 ≤ t ≤ 1, the conditions on r0, r1 yield

| w(m)(s) |≤ c ‖ v ‖Cm
? (0,1), | w(m+1)(s) |≤ c[s−1 + (1− s)−1] ‖ v ‖Cm+1

? (0,1),

and with the help of (2.16) and (4.16) we obtain

εj := max
jh≤s≤(j+1)h

| w(s)− (Q′h,mw)(s) |≤ chm ‖ v ‖Cm
? (0,1), 0 ≤ j ≤ n− 1,

ε′j :=|
∫ (j+1)h

jh

(w −Q′h,mw)ds | ≤ chm+2[(jh)−1 + ((n− j)h)−1] ‖ v ‖Cm+1
? (0,1),

j = m+ 1, ..., n−m− 2.

With i ∈ Z, 0 ≤ i ≤ n− 1, such that | t− (i+ 1
2 )h |≤ h

2 , we get

|
∫ 1

0

| t−s |−ν [w(s)−(Q′h,mw)(s)]ds |≤

 m∑
j=0

+
n−1∑

j=n−m−1

 εj

∫ (j+1)h

jh

| t−s |−ν ds

+
n−m−2∑
j=m+1

{
εj

∫ (j+1)h

jh

| | t− s |−ν − | (i+ 1
2
− j)h |−ν | ds+ ε′j | (i+

1
2
− j)h |−ν

}

≤ chm+1−ν ‖ v ‖Cm+1
? (0,1), 0 ≤ t ≤ 1.

For w(s) = B(t, s)v(s) we get in a straightforward manner, like in the proof of

Theorem 4.1, that |
∫ 1

0
(w − Q′h,mw)ds |≤ chm+1−ν ‖ v ‖Cm+1

? (0,1), and now (4.15)
follows.

For even m, an inequality like (4.16) is violated, and estimate (4.4) for the
method (4.2) cannot be improved; for m = 4, a numerical con�rmation can be seen
from Table 6.1, column r = 9. There are possibilities to modify the basic method
(4.2) so that (4.15) will hold for even m; we do not go into the details here.

4.2. Matrix form of the method. With the help of (4.1) we rewrite equation
(4.2) in the form

vn(t) =
n−1∑

j=−m+1

∑
p∈Z: |p|<m1, 0<j−p+ m

2 <n

α′p,m

[
A(t, (j − p+

m

2
)h)βj(t)(4.17)

+B(t, (j − p+
m

2
)h)β0

j

]
vn((j − p+

m

2
)h) + g(t), 0 ≤ t ≤ 1,

where

βj(t) =
∫ 1

0

|t− s|−νBm(ns− j)ds, β0
j =

∫ 1

0

Bm(ns− j)ds;

we took into account that A(t, s) = 0, B(t, s) = 0 for s ≤ 0 and for s ≥ 1. The
solution vn of (4.17) is determined by its values at the points (k+m

2 )h for k satisfying
0 < (k+ m

2 )h < 1, that is, for k = −m0, ..., n−m1 with m0 and m1 de�ned in (2.8),
(2.15). Collocating (4.17) at (i+ m

2 )h and denoting
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vi,n = vn((i+
m

2
)h), gi = g((i+

m

2
)h), i = −m0, ..., n−m1,

ai,k = A((i+
m

2
)h, (k+

m

2
)h), bi,k = B((i+

m

2
)h, (k+

m

2
)h), i, k = −m0, ..., n−m1,

we arrive at the system of linear algebraic equations

vi,n =
n−1∑

j=−m+1

∑
p∈Z: |p|<m1, 0<j−p+ m

2 <n

α′p,m(βi,jai,j−p + β0
j bi,j−p)vj−p,n(4.18)

+gi, i = −m0, ..., n−m1,

where for i = −m0, ..., n−m1, j = −m+ 1, ..., n− 1,

βi,j =
∫ 1

0

|(i+ m

2
)h− s|−νBm(ns− j)ds, β0

j =
∫ 1

0

Bm(ns− j)ds.(4.19)

To present (4.18) in a standard form, we change the summation ordering:

n−1∑
j=−m+1

∑
p∈Z: |p|<m1, 0<j−p+ m

2 <n

α′p,m(βi,jai,j−p + β0
j bi,j−p)vj−p,n

=
n−1∑

j=−m+1

min{n−m1, j+m1−1}∑
k=max{−m0, j−m1+1}

α′j−k,m(βi,jai,k + β0
j bi,k)vk,n

=
n−m1∑

k=−m0

k+m1−1∑
j=k−m1+1

α′j−k,m(βi,jai,k + β0
j bi,k)vk,n

(the summation goes over (j, k) ∈ D∩Z2 where D ⊂ R2 is the parallelogram re-
stricted by the lines k = j −m1 + 1, k = j +m1 − 1, k = −m0, k = n −m1; note
that m0 +m1 = m). We arrive at the following form of system (4.18):

vi,n =
n−m1∑

k=−m0

τi,kvk,n + gi, i = −m0, ..., n−m1,(4.20)

where

τi,k =
k+m1−1∑

j=k−m1+1

α′j−k,m(βi,jai,k + β0
j bi,k), i, k = −m0, ..., n−m1.(4.21)

The dimension of system (4.20) is, respectively, n − 1 and n for even and odd
m. The computation of matrix elements (4.21) from α′j,m, βi,j , β

0
j , ai,k, bi,k costs

approximately 3mn2 �ops.
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4.3. Quasi-interpolation extension of the discrete solution. Having
found the solution vi,n, i = −m0, ..., n−m1, of system (4.20) we can use (4.17) to
compute vn(t) for any t ∈ [0, 1]. A cheaper way is to construct on every [ih, (i+1)h],
i = 0, ..., n − 1, the quasi-interpolant ṽn(t) of degree m − 1 using the solution of
(4.20) completed by values vi,n = v−m0,n for i < −m0 and vi,n = vn−m1,n for
i > n−m1; a slightly more accurate way is to compute vn(0) and vn(1) from (4.17)
and set vi,n = vn(0) for i < −m0 and vi,n = vn(1) for i > n −m1. To maintain
the convergence orders (4.4) and (4.5) for ṽn, we have to strengthen conditions on
f and parameters r0 and r1.

Theorem 4.2. (i) Under assumptions of Theorem 4.1(i), ‖ v− ṽn ‖∞→ 0 as
n→∞.

(ii) Under assumptions of Theorem 1.3, f ∈ Cm,θ0,θ1(0, 1) with θ0 = max{λ0 +
ν, µ0}, θ1 = max{λ1 + ν, µ1}, (3.17), (3.20) and r0 > m, r1 > m, it holds

‖ v − ṽn ‖∞≤ chm ‖ f ‖Cm,θ0,θ1 (0,1) .(4.22)

(iii) Under assumptions of Theorem 1.3, f ∈ Cm,θ0,θ1(0, 1) as in (ii), (3.20),
(3.23) and r0 > (m+ν)/(1 + ν), r1 > (m+ ν)/(1 + ν), it holds

max
0≤t≤1

ϕ′(t)ν |v(t)− ṽn(t)| ≤ chm ‖ f ‖Cm,θ0,θ1 (0,1) .(4.23)

Proof. Accept the assumptions of (ii). Due to (3.9) and conditions on r0, r1, it
holds v(j)(0) = v(j)(1) = 0, j = 1, ...,m. Extending v(t) = v(0) for t < 0, v(t) = v(1)
for t > 1, we have v ∈ Cm(R). The equality v − ṽn = v − Q′h,mv + Q′h,m(v − vn)
together with (2.16), (3.9) and (4.4) implies

‖ v − ṽn ‖∞≤‖ v −Q′h,mv ‖∞ +q′m ‖ v − vn ‖∞

≤ chm ‖ v(m) ‖∞ +chm ‖ f ‖Cm
? (0,1)≤ chm ‖ u ‖Cm,θ0,θ1 (0,1) +chm ‖ f ‖Cm

? (0,1)

where u is the solution of (1.1), ‖ u ‖Cm,θ0,θ1 (0,1)≤ c ‖ f ‖Cm,θ0,θ1 (0,1) by Theorem
1.3. This completes the proof of (4.22). The proof of (4.23) is similar.

4.4. Modi�cation: the product interpolation method. The considera-
tions of Sections 4.1�4.3 can be easily modi�ed for the case of the product interpo-
lation method de�ned by

vn(t) =
∫ 1

0

[|t− s|−νQh,m(A(t, s)vn(s)) +Qh,m(B(t, s)vn(s))]ds+ g(t)(4.24)

(the spline interpolation projector Qh,m is used instead of the quasi-interpolation
operator Q′h,m, cf. (4.2); A(t, ·)v and B(t, ·)v are still extended from [0, 1] to R with
the zero value). For 0 ≤ s ≤ 1 and a function w de�ned on R we have (see (2.5),
(2.7))

(Qh,mw)(s) =
n−1∑

j=−m+1

∑
k∈Z

αj−k,mw((k +
m

2
)h)Bm(ns− j).

Since in the functions w(s) = A(t, s)v(s) and w(s) = B(t, s)v(s) we have w(s) = 0
for s ≤ 0 and for s ≥ 1, the in�nite sum over k reduces to the sum over k =



16 E. VAINIKKO AND G. VAINIKKO

−m0, ..., n − 1, and the matrix form of method (4.24) takes the form (4.20) with
(cf. (4.21))

τi,k =
n−1∑

j=−m+1

αj−k,m(βi,jai,k + β0
j bi,k)

= ai,k

n−1∑
j=−m+1

αj−k,mβi,j + bi,k

n−1∑
j=−m+1

αj−k,mβ
0
j , i, k = −m0, ..., n−m1.

Now the computation of the elements of the matrix costs O(n3) �ops, but using
the convolution structure of the sums in the last representation form of τi,k, the
cost can be reduced to O(n2 log n) �ops with the help of FFT. Nevertheless, this
is more complicated and slightly more expensive than in the case of the product
quasi-interpolation method.

Theorem 4.1 remains to be valid also for method (4.24), in the proof we simply
exploit Lemma 2.1 instead of Lemma 2.3.

5. Some computational details.

5.1. A numerically stable evaluation of Φ(t, s). The computation of the
divided di�erence Φ(t, s) = (ϕ(t) − ϕ(s))/(t − s) (see (3.5) and (3.2)) for small
|t− s| 6= 0 may cause a loss of accuracy. For r0, r1 ∈ N, the division by t− s can be
performed analytically. For 0 ≤ s < t ≤ 1 we have

Φ(t, s) =
1

t− s

∫ t

s

ϕ′(σ)dσ =
1

c?(t− s)

∫ t

s

σr0−1(1− σ)r1−1dσ

=
1
c?

∫ 1

0

[(t− s)ξ + s]r0−1[(1− t) + (t− s)(1− ξ)]r1−1dξ(5.1)

where we undertook the change of variables σ = (t− s)ξ + s. The last integral can
be computed in a fast and stable way by an exact Gauss rule since the integrand is
a polynomial of degree r0 +r1−2 in ξ. Alternatively, applying the Newton binomial
formula we obtain the expansion

Φ(t, s) = (r0 + r1 − 1)!
r0−1∑
p=0

r1−1∑
q=0

sr0−1−p(1− t)r1−1−q(t− s)p+q

(r0 − 1− p)!(r1 − 1− q)!(p+ q + 1)!

with non-negative terms for 0 ≤ s ≤ t ≤ 1. Nevertheless, the use of this stable
formula is more expensive than the use of an exact Gauss rule in (5.1). For 0 ≤ t <
s ≤ 1, the symmetry Φ(t, s) = Φ(s, t) can be used.

5.2. Computation of the quadrature coe�cients. The integrals βj(t) in
(4.17), in particular the quadrature coe�cients βi,j and β0

j de�ned in (4.19) can be
evaluated on the basis of the following two lemmas.

Lemma 5.1. For a locally integrable function w ∈ L1
loc(R), it holds∫

R
w(s)Bm(ns− j)ds = h(Dm

h w
(−m))(jh), h = 1/n, j ∈ Z,(5.2)

where w(−m) is an integral function of w of order m, i.e., in the sense of distribu-
tions, (d/ds)mw(−m)(s) = w(s), and Dm

h = (Dh)m is de�ned by

(Dhu)(x) = h−1(u(x+h)−u(x)), (Dm
h u)(x) = h−m

m∑
k=0

(−1)m−k

(
m
k

)
u(x+kh).
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Proof. Integrating m− 1 times by parts and using (2.2)�(2.4) we �nd that∫
R
w(s)Bm(ns− j)ds = (−1)m−1nm−1

∫
R
w−(m−1)(s)B(m−1)

m (ns− j)ds

= (−1)m−1nm−1
m−1∑
l=0

(−1)l

(
m− 1
l

)∫ (j+l+1)h

(j+l)h

w−(m−1)(s)ds

= (−1)m−1h−m+1
m−1∑
l=0

(−1)l

(
m− 1
l

)
h(Dhw

(−m))((j + l)h).

We get (5.2) since (−1)m−1h−m+1
∑m−1

l=0 (−1)l

(
m− 1
l

)
u(x+lh) = (Dm−1

h u)(x).

Of course, the r.h.s. of (5.2) is independent of the choice of a particular integral
function w(−m) since Dm

h nulli�es the di�erence of any two integral functions � those
di�er by a polynomial of degree ≤ m− 1.

Lemma 5.2. For w ∈ L1(0, 1), let w(−m)(s) be its integral function of order
m on [0, 1]; put w(k−m)(s) = (d/ds)kw(−m)(s), 0 ≤ s ≤ 1, k = 0, ...,m− 1. Then∫ 1

0

w(s)Bm(ns− j)ds = h(Dm
h w

(−m))(jh), h = 1/n, j ∈ Z,(5.3)

where

w(−m)(s) =


∑m−1

k=0
w(k−m)(0)

k! sk for s < 0,
w(−m)(s) for 0 ≤ s ≤ 1,∑m−1

k=0
w(k−m)(1)

k! (s− 1)k for s > 1.

Proof. This immediately follows from (5.2) representing∫ 1

0

w(s)Bm(ns− j)ds =
∫

R
w(s)Bm(ns− j)ds

where w is the extension of w by the zero value outside (0, 1). The integral functions
of w and w can be taken equal on [0, 1]; for s < 0 the integral function of w must
be a polynomial of degree m − 1, hence the Taylor polynomial of w(−m) with the
expansion centre 0; similarly for s > 1.

To compute β0
j =

∫ 1

0
Bm(ns−j)ds, Lemma 5.2 can be applied with w(−m)(s) =

1
m!s

m
+ for −∞ < s ≤ 1. According to (5.3),

β0
j = h

1
m!
4mγ0

j , j = −m+ 1, ..., n−m+ 1, γ0
j =

{
0, j < 0,
jm, 0 ≤ j ≤ n,

(5.4)

where 4m is the forward di�erence operator of order m de�ned for (γj)j∈Z by

∆γj = γj+1 − γj , 4mγj =
m∑

k=0

(−1)m−k

(
m
k

)
γj+k, j ∈ Z.

Actually it is su�cient to compute β0
j = h 1

m!4
mγ0

j by (5.4) only for j = −m +
1, ...,−1, since β0

j = h for 0 ≤ j ≤ n−m and by a symmetry argument β0
n−m+k =

β0
−k, k = 1, 2, ..., see (2.2).
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For wt(s) = |t− s|−ν , t ∈ (0, 1), an integral function w
(−m)
t (s) on [0, 1] is given

by

w(−m)(s) = w
(−m)
t (s) =

1
(1− ν)...(m− ν)

{
(−1)m(t− s)m−ν , 0 ≤ s ≤ t,
(s− t)m−ν , t ≤ s ≤ 1.

Respectively,

for s ≤ 0, w(−m)(s) =
m−1∑
k=0

1
k!

(−1)m−ktm−k−ν

(1− ν)...(m− k − ν)
sk,

for s ≥ 1, w(−m)(s) =
m−1∑
k=0

1
k!

(1− t)m−k−ν

(1− ν)...(m− k − ν)
(s− 1)k.

For βi,j =
∫ 1

0
|(i+ m

2 )h− s|−νBm(ns− j)ds, Lemma 5.2 yields the formula

βi,j = h1−ν4m
j γi,j , i = −m0, ..., n−m1, j = −m+ 1, ..., n− 1,(5.5)

where 4m is still applied to (γi,j) with respect to j and

γi,j =



∑m−1
k=0

(−1)m−k

k!(1−ν)...(m−k−ν) (i+
m
2 )m−k−νjk, j < 0,

(−1)m

(1−ν)...(m−ν) (i− j + m
2 )m−ν , 0 ≤ j < i+ m

2 ,
1

(1−ν)...(m−ν) (j − i− m
2 )m−ν , i+ m

2 ≤ j ≤ n,∑m−1
k=0

1
k!(1−ν)...(m−k−ν) (n− i− m

2 )m−k−ν(j − n)k, j > n.

(5.6)

There are some symmetries which enable to reduce the computation cost of (5.5)�

(5.6): due to (2.2), for β̃i,j :=
∫

R |(i+
m
2 )h−s|−νBm(ns−j)ds we have β̃i,j = β̃0,|i−j|,

i, j ∈ Z, and βi,j = β̃i,j = β̃0,|i−j| for i = −m0, ..., n−m1, j = 0, ..., n−m.
One must be careful using exact formulae like (5.5)�(5.6): the di�erences4mγi,j

may cause a loss of accuracy in a standard �oating point arithmetic. For instance,
for j − i ≥ m we have

4m(j − i− m

2
)m−ν = (

d

dz
)mzm−ν |z=ξ = (1− ν)...(m− ν)ξ−ν

where ξ is a point from the interval (j− i− m
2 , j− i+

m
2 ), thus 4m(j− i− m

2 )m−ν is
approximately (j− i)m/[(1− ν)...(m− ν)] times smaller than (j− i− m

2 )m−ν itself.
To avoid the loss of accuracy, γi,j and their di�erences should be presented with
su�ciently long mantissas. A simple rule is as follows: in case of single precision
computations, the 7 decimal digits of 4mγi,j are correct if γi,j and their di�erences
are computed with the double precision and nm ≤ 107 · [(1− ν)...(m− ν)]; in case
of double precision computations, the 15 decimal digits of 4mγi,j are correct if γi,j

and their di�erences are computed with the quadruple precision and

nm ≤ 1015 · [(1− ν)...(m− ν)].(5.7)

Actually, condition (5.7) can be somewhat relaxed, since usually we do not need
maximally high precision of βi,j .

Forgetting exact formulae, βi,j can be computed in the framework of a standard
arithmetic approximately using suitable quadratures, with a given accuracy; this
is more laborious than the use of (5.5)�(5.6). Exact formulae for the quadrature
coe�cient seem to be a delicate problem also in other methods of Nyström type
for weakly singular integral equations. For instance, in [9] an unstable recurrence
formula is proposed and successfully used for the computations of the quadrature
coe�cients in a Gauss type quadrature.
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5.3. Solving the system. Due to (4.8) and (4.13), the condition number of
the matrix (δi,k− τi,k)n−m1

i,k=−m0
of system (4.20) is bounded uniformly in n, therefore

standard methods are expected to work well when solving (4.20). The Gauss elimi-
nation with its O(n3) operations can be recommended for moderate n. For large n,
iteration methods with stopping when the discrepancy achieves a value δn−r, δ > 0,
r ≥ m, are preferable. The two grid iteration method with a �xed coarse level [2]
is of complexity O(n2logn) �ops; with suitable enlarging strategy for the dimension
of the coarse level, the complexity can be reduced to O(n2) �ops, cf. [20]; here n2

is the cost of one matrix to vector multiplication. The complexity of GMRES is
o(n2logn) �ops due to (4.6), (4.7), see [19]. In our numerical computations treated
in Section 6, rarely more than 20 GMRES iterations were needed to achieve the
discrepancy level 10−14�10−16.

5.4. Approximate solution of equation (1.1). The solutions of equations
(1.1) and (3.4) are in the relation v(t) = u(ϕ(t)), or u(x) = v(ϕ−1(x)), where
ϕ−1 : [0, 1] → [0, 1] is the inverse function of ϕ de�ned in (3.2)/(3.3). Having
solved the system (4.20), vi,n = vn((i + m

2 )h) are approximations to u(xi,n) at
xi,n = ϕ((i + m

2 )h), 0 < (i + m
2 )h < 1, and a local polynomial interpolation of

degree m− 1 can be used to obtain an approximation for u(x) between the knots.
A more precise way is to determine t = ϕ−1(x) and put ũn(x) = ṽn(ϕ−1(x)), see
Section 4.3. Under conditions of Theorem 4.2(ii), we have the uniform error bound

max
0≤x≤1

|u(x)− ũn(x)| = max
0≤t≤1

|v(t)− ṽn(t)| ≤ chm ‖ f ‖Cm,θ0,θ1 (0,1);

under conditions of Theorem 4.2(iii) we have the weighted error bound

max
0≤x≤1

xν(r0−1)/r0(1− x)ν(r1−1)/r1 |u(x)− ũn(x)|

≤ c′ max
0≤t≤1

ϕ′(t)ν |v(t)− ṽn(t)| ≤ chm ‖ f ‖Cm,θ0,θ1 (0,1) .

In general ϕ is too complicated to present a closed formula for t = ϕ−1(x). For
given x ∈ (0, 1), t = ϕ−1(x) can be approximated by the Newton method

tk = tk−1 − (ϕ(tk−1)− x)/ϕ′(tk−1), k = 1, 2, ... ;

note that according to (3.2) ϕ′(t) = (1/c?)tr0−1(1 − t)r1−1. For any x ∈ (0, 1),
starting from the initial guess t0 = (r0−1)/(r0 +r1−2) which is the only �ex point
of ϕ for r0, r1 > 1, the iterations converge monotonically to t = ϕ−1(x). For x close
to 0 or 1, the initial guess t0 = (c?r0x)1/r0 , respectively, t0 = 1− (c?r1(1− x))1/r1

may be preferable.

6. Numerical example. For the testing of the algorithms we took a simple
equation (1.1) with ν = 1/2:

u(x) =
∫ 1

0

|x− y|−1/2u(y)dy + f(x), 0 ≤ x ≤ 1.

We put u(x) = 1 + x1/2 + (1 − x)1/2 to be the exact solution; it corresponds to
f(x) = 1− π

2−2x1/2−2(1−x)1/2−xlog(1+(1−x)1/2)−(1−x)log(1+x1/2)+ 1
2xlogx+

1
2 (1 − x)log(1 − x). We composed system (4.20), (4.21) for m = 3, 4, ..., 10, n = 2k

with k = 4, 5, ..., 12, and the smoothing parameters r0 = r1 =: r ∈ N with 2 ≤
r ≤ 2m + 1; we solved the system by GMRES. The double precision was used
everywhere except in the computation of βi,j by formulae (5.5)�(5.6) where the
quadruple precision was involved (see Section 5.2). The errors

εm,n,r := max
−m0≤i≤n−m1

|v((i+ m

2
)h)− vi,n|,
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εm,n,r := max
−m0≤i≤n−m1

[ϕ′((i+
m

2
)h)]1/2|v((i+ m

2
)h)− vi,n|

are presented in Tables 6.1 and 6.2 for m = 4, di�erent n and r. The error εm,n,r

for m = 6, di�erent r is presented graphically on Figure 6.1 as a function of log2n.
On Figure 6.2, the error εm,n,2m is presented graphically for di�erent m. The
numerical results are in a good accordance with Theorem 4.1 which in the present
case (ν = 1/2, λ0 = λ1 = 0, b(x, y) ≡ 0) claims that (i) εm,n,r → 0 as n → ∞ for
r > 1; (ii) εm,n,r = O(n−m) for r > 2m; (iii) ε̄m,n,r = O(n−m) for r > m+ 1

2 . We
can see from Tables 6.1 and 6.2 that in the reality, the best results for m = 4 in
the uniform norm are obtained for r = 2m = 8, whereas in the weighted norm, the
best results are obtained for r = m + 1 = 5; for the uniform norm, the empirical
convergence order is ε4,n,r = O(n−4) for r ≥ 8 and lower for r ≤ 7; for the weighted
norm, the empirical convergence order is ε4,n,r = O(n−4) for r ≥ 5 and lower for
m ≤ 4; on the other hand, the logarithmic factor of estimate (4.14) for r = 2m = 8
cannot be observed in the present example.

For r > 2m recommended by Theorem 4.1(ii), and also for r = 2m, the com-
putations occurred to be rather stable in a wide scale of n, see Figure 6.2. A
side remark is that the numerical results presented on Figure 6.2 encourage to use
high order splines in computations: in the present example, already beginning from
n = 32, the use of tenth order splines gave more precise numerical results than the
use of splines of lower order.

n \ r 2 4 6 7 8 9

16 9.145e-02 1.036e-02 4.228e-03 5.434e-03 8.920e-03 1.322e-02

32 3.269e-02 2.318e-03 2.994e-04 2.786e-04 3.003e-04 4.377e-04

64 1.335e-02 5.648e-04 3.382e-05 1.843e-05 1.466e-05 1.930e-05

128 5.950e-03 1.407e-04 4.005e-06 1.353e-06 8.458e-07 1.113e-06

256 2.794e-03 3.521e-05 4.842e-07 1.085e-07 5.206e-08 6.994e-08

512 1.350e-03 8.812e-06 5.936e-08 8.876e-09 3.321e-09 4.460e-09

1024 6.632e-04 2.204e-06 7.339e-09 7.372e-10 2.114e-10 2.839e-10

2048 3.285e-04 5.513e-07 9.121e-10 6.218e-11 1.341e-11 1.809e-11

4096 1.634e-04 1.379e-07 1.137e-10 5.709e-12 8.606e-13 1.163e-12

Table 6.1: Uniform errors ε4,n,r

n \ r 2 3 4 5 6 7

16 5.422e-02 9.333e-03 2.967e-03 1.093e-03 3.582e-03 8.021e-03

32 1.393e-02 1.591e-03 1.872e-04 1.868e-05 1.356e-04 3.039e-04

64 4.055e-03 2.203e-04 1.004e-05 1.746e-06 8.275e-06 1.540e-05

128 1.283e-03 2.865e-05 5.313e-07 1.788e-07 5.478e-07 9.365e-07

256 4.268e-04 3.640e-06 2.924e-08 1.437e-08 3.566e-08 5.952e-08

512 1.460e-04 4.581e-07 1.684e-09 1.019e-09 2.287e-09 3.799e-09

1024 5.074e-05 5.744e-08 1.004e-10 6.794e-11 1.454e-10 2.414e-10

2048 1.777e-05 7.196e-09 6.101e-12 4.372e-12 9.160e-12 1.519e-11

4096 6.254e-06 9.164e-10 4.716e-13 3.281e-13 6.533e-13 9.770e-13

Table 6.2: Weighted errors ε4,n,r

For m = 4 and �xed r ≥ 2, we can see from Table 6.1 a monotone decrease
of errors ε4,n,r in n. For large m but r signi�cantly smaller than 2m, the error
εm,n,r turns to grow beginning from some (relatively large) n = nm,r, see Figure
6.1 (m = 6). We are in di�culties trying to explain this kind of instability for
small r (r = 2 on Figure 6.1 for m = 6). Condition (5.7) guaranteeing a safe use
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of the quadruple precision in formulae (5.5)�(5.6) is violated for m = 6, n ≥ 739.
Nevertheless, when the preciseness of the computations in (5.5)�(5.6) was increased,
no essential change in the behaviour of ε6,n,r has been observed compared with
Figure 6.1. Hence the instability for large m, n, small r cannot be explained by the
violation of (5.7) only.

All programs for given computations were written using the SciPy package
(Scienti�c Tools for Python, http://www.scipy.org). For carrying out higher pre-
cision �oating point arithmetics, a Python interface to a Fortran95 subroutine was
used, which uses the quadruple precision datatype for internal calculations. As
an alternative to Fortran95, we used also Python Decimal datatype for higher preci-
sion calculations. With the Decimal type there is a performance penalty compared
to Frotran95 calculations. But the �exibility of specifying an arbitrary length of
the mantissa in �oating point calculations proved to be very helpful in �nding out
the sensitivity of our algorithms to precision changes.

The source code and numerical results in more detail of provided tests can be
found at the address http://www.ut.ee/~eero/WSIE/Fredholm/ .

Further prospects. We solved the equation λu(x) =
∫ 1

0
| x− y |−ν u(y)du+

f(x) numerically also for some other values of ν ∈ (0, 1). For small and moderate
ν, the method behaves as expected by Theorem 4.1. For ν close to 1, the uniform
accuracy becomes lower due to great values of the smoothing parameter r ∼ m/(1−
ν), see Theorem 4.1(ii).

Returning to general problem (1.1), it is possible to modify our approach to-
wards smaller values of the smoothing parameters r0 and r1. In the arguments of
Section 4 we exploited the fact that the smoothing change of variables suppresses
the coe�cient function by | t − s |−ν but since v(0) 6= 0, v(1) 6= 0 in general, we
were not able to use the fact that also the derivatives of the solution v of (3.4)
are suppressed if f ∈ Cm,θ0,θ1(0, 1) with θ0 < 1, θ1 < 1. The situation changes
if u(0) = u(1) = 0 for the solution of (1.1), then also v(0) = v(1) = 0. The idea
of the modi�cation is to rewrite equation (1.1) w.r.t. unknowns u(0), u(1) and
U(x) = u(x)− u(0)− (u(1)− u(0))ψ(x) where ψ is a function of type (3.2), achiev-
ing V (j)(0) = V (j)(1) = 0, j = 0, ...,m, for V (t) = U(ϕ(t). In the algorithm and its
justi�cation, some new problems arrive. We cannot go into details here because of
the length of the paper but we will return to the question elsewhere.

Acknowledgement. The authors are grateful to the referees for the useful
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paper.
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