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1. INTRODUCTION 

Different methods of Nystrom type for weakly singular Volterra and Fredholm integral equations have been constructed 
in [1], [2], [4]. In the present paper, we propose for a weakly singular Volterra integral equation a method of Nystrom 
type of accuracy 0{hm) based on the smoothing change of variables and on the product quasi-interpolation by smooth 
splines of degree m - 1 on the uniform grid. Similar method for weakly singular Fredholm equations has been 
developed in [5]. 

2. THE P R O B L E M 

Consider the weakly singular Volterra integral equation 

u(x) = J"(a(x,y)(x-y)-v + b(x,y))u(y)dy+f(x), 0 < x < l , (1) 

where 0 < v < 1, a and b are defined and Cm-smooth forO<Jc<l ,0<;y<Jc + 5, 5 > 0 , m e N , and satisfy there for 
k+1 < m the inequalities 

\dtya(x,y)\<cy-x-', \ dtyb(x,y) \< cy-*-', v + A < l , / x < l . (2) 

With the change of variables 

x = f, y = f, 0<t<l, 0<s<t + 8r, r e N , (l + 4 ) r = l + <5, (3) 

equation (1) takes with respect to v(t) = u(f) the form 

v(t)= I (,^(t,s)(t-s)-v + ^(t,s))v(s)ds+g(t), 0<t<l, (4) 

which is similar to (1). Here 

g(t)=f(tr), ^(t,s) = ra(tr,sr)0(t,s)-vsr-i, @{t,s) = rb{t\f)f~\ 

( l^l_ f , „ 1 r-\ 

Q>{t,s) = \ '-v ^ U y r " / , o<?<i, o<s<t+sr. 
{ rf \ t = s j £0 

We assume that the smoothing parameter r G N satisfies the inequalities 
r > ( l - v ) / ( l - v - A ) , r > l / ( l - / x ) . (5) 

Then £?{t,s) —> 0, 3§(t,s) —^Oas*—>0, 0 < ? < 1 . Extending £?{t,s) and 3§(t,s) by the zero value for s < 0, the 
extended £?{t,s) and3§(t,s) are continuous for 0 < t < 1, —°° <s <t + 8r. 
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3. OPERATOR FORM OF THE METHOD 

Let h= 1 /«, n G N, n > [m - 1 )/$.. We call attention to a product quasi-interpolation method which we first present 
in the operator form: 

vn{t)= I' [(t-s) vQ'h,m(^(t,s)vn(s)) + Q'htm(^(t,s)v„(s))}ds+g(t), 0<t<\, 
Jo 

(6) 

vn(t) = (Amv„)(t) fori <t<l + (m-l)h. (7) 

Here Amv is the Lagrange interpolant of v by polynomials of degree m - 1 constructed using, in case of even m, the 
knots l—jh,j = 0,...,m — l, and in case of odd m, the knots l — (J + ^)h,j = 0,...,m — l, whereas g^mwisthe quasi-
interpolant of w by polynomial splines of degree m-l >2, defect 1, with spline knots jh, j > —m + 1 constructed 
in [3]. Namely, for a function w(s), s £ [—{m — \)h,{\ni\ + (m - l))h], depending ont, 0 < t < 1, as a parameter, the 
quasi-interpolant Qh mw is defined for s G [0, t] by the formula 

M - 1 ( m \ 
(&h,mw)(s)= £ £ a'p,mW(U-P+j)h))Bm(ns-j), 

j=-m+\ \\p\<mi-\
 Z J 

where \ni\ is the smallest integer > nt, 

f + 1, meven | [ ? - l , meven 
ffll = 1 f , moddj = M o ' Wo={ V . «odd 

1 m • fm\ 
Bm(x) = - TTT £ ( - ! ) ' ( - K x _ / ) + > * € R, is the father B-spline, 

™o ( i+ z , m ) Z r o + ' ? _ 1 

70,m— 1, 7?,m — 2 ^ / i _ _ \ 2 a + l p / / 7 , V # ^ ! ' 
l=\\l zl,m) rm\z-l,m) 

zi,m G (-1,0), / = l,...,wo, are roots of the characteristic polynomial Pm{z) = *L\k\<m0Bm(k + j)^+m° (they are 
simple; \/z^m G (—°°, -1 ) , / = 1, ...,mo, are the other mo roots ofPm G &2m0)-

4. MATRIX FORM OF THE METHOD 

Note that v„(0) = g(0) = f(0). The solution v„ of problem (6)-(7) is uniquely determined on [0,1] by the knot values 
vn((i+j)h) for 0 < (i+j )h < 1. Collocating (6) atthesepoints, the matrix form of method (6)-(7) follows. For even 
m, we obtain with respect to v(j„ := v„(ih), i = l,...,n + m, the system of linear equations 

i+m—l m—\ 

vt,„= £ Ti,kVk,n+g(ih), i=l,...,n, v(> = £ Oijv»-jt», i = n+l,...,n + m-l, (8) 
k=\ j=0 

where 

°i,j= I I —• /_ • > i = n+\,...,n + m-\, j = 0,...,m-\, 
M'=o J J 

min{£,z— 1} min{£,z— 1} 

Hk = aiik X PiJaj-k+m/2,m + bi,k £ Pi,ja'j-k+m/2,m > * = ! , - , « , * = 1, . . . ,?l + W - 1, 
j=k—m j=k—m 

&i,k = srf{ih,kh), bi^ = £@{ih,kh), , /= l , . . . , n , & = l,...,n + w — 1, 

& ; • = / (ih-syvBm(ns-j)ds, j3°,-= / Bm(ns-j)ds, i=l,...,n, j = -m +1,...,/-1. (9) 
Jo Jo 

The unknowns V;„, / = n + l,...,n + w, can be eliminated from system (8). 
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5. FORMULAE FOR QUADRATURE COEFFICIENTS (9) 

Again for even m>3, 

ft?,. = AA»tf . , piJ = h1-vAmr,j, i=\,...,n, j=-m + \,...,i-\, 

where A™ is the forward difference of order m, Aytj = Yij+i - Yij, 

m—\ / _-i\m—k itn—v—k 

y°. = (j _ ()"> _ f> va=y — — /* for/=-»? +1 - 1 

f — 11m 

ij = U-i)m, ^ = ( i - v ) . . . ( w - v ) ( < " - / ) W " V f010^-/^'-1- ^ = ̂  = ° f o r ^ ' -

There are some symmetries for ftj and ft0; it holds ft0 • = h for 0 <j <i-m. 

6. CONVERGENCE AND ERROR ESTIMATES 

Having solved system (8) we can use the Nystrom extension to compute the solution v„(t) of problem (6)-(7) for all 
t G [0,1]; a cheaper extension v„(t) can be constructed quasi-interpolating by splines of degree m - 1 the solution of 
system (8) completed by v(j„ = / ( 0 ) for / = —m+ 1,..., — 1. Introduce the space 

Qm(0,l] = { / G C [ 0 , l ] n C m ( 0 , l ] : | / « ( x ) | < C / x - f c , 0 < x < l , k = 0,...,m}; 

the smallest constant Cf defines the norm || / ||c™(o,i]-

Theorem 1. 

(i) If f G C[0,1], the functions a,b are continuous and satisfy (2) for k = 1 = 0, and r G N satisfies (5), ?/ie« 
maxo<^<i | v(t) -v„(t) |—> 0 ay n —> °o w/iere v anrf v„ are the solutions of (4) anrf (6)-(7), respectively. 

(ii) Tf/ G C™(0,1], the functions a, 6 are Cm-smooth for 0 < x < l , 0 < y < x + 5 anrf satisfy (2) for k+1 < m, and 
r G N satisfies the inequalities r> (w + v) / ( l - A ) , r>m/{\ —ji), then 

8m,n,r := mwft-1^ | V(0 - V„(0 | < C f l A m i V j a A r / l m || / 11^(0,1) • 

(iii) Under the same conditions on f a, b as in (ii) but r > m/{\ — v - A), r > m/{\ — ji), it holds 

£m,n,r •= mffi | v(t)-Vn(t) | < Ca^my^X^rh
m || / | |c™(0,l) • 

Proof. The proof is based on the compact convergence of operators and on the error estimates of quasi-interpolation 
established in [3]. 

Remark 1. Claim (i) is true also for v„; error estimates like in (i) and (ii) hold for v„ under a slightly strengthened 
condition on /GC[0 , l ] nC m ( 0 , l ] . 

Remark 2. If /(0) = 0, the first condition on r in (ii) and (iii) can be relaxed. 

7. SOME EXTENSIONS OF THE CONSIDERATIONS 

The results of Sections 2- 6 have been extended in the the following directions: 

- in cases m = 1 and m = 2, the algorithms have a special treatment; 
- in the case of odd m>3, the algorithms are similar to those in Sections 4 - 5; 
- equations with logarithmic diagonal singularity of the kernel are treated; 
- the case of a and bin (I) given only for 0 < s < t < 1 is treated. 
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8. NUMERICAL TESTING 

Method (6)-(7) and its modifications were tested numerically on the equation (1) with v = 1/2, a = 1, b = 0, 
f(x) = 1 - x 1 / 2 - §x; the exact solution is then u(x) = 1 +X1/2. About numerical results in the case of Fredholm 
equation, see [5]. 
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