Tartu Ülikool Füüsika Instituut

Valter Kiisk

SPEKTROSKOOPIA

Loengukonspekt kursusele LTFY.01.014

Viimati täiendatud: 12. september 2023. a.

SISUKORD

Spektroskoopia üldmõisteid

1	Siss	Sissejuhatus	
	1.1	Spektroskoopia olemus	4
	1.2	Spektroskoopia rakendused	5
2	Elek	tromagnetkiirgus	8
	2.1	Elektromagnetkiirguse klassikaline teooria	8
	2.2	Kiirguse kvantteooria	14
	2.3	Spektraalmuutujad	18
	2.4	Elektromagnetlainete skaala	18
	2.5	Kiirguse spekter ja selle mõõtmine	20
3	Kiir	guse neeldumine ja hajumine	23
	3.1	Valguse levimise mehhanism optiliselt homogeenses keskkonnas	23
	3.2	Neeldumiskoefitsient. Bouguer'-Lamberti seadus.	24
	3.3	Neeldumisristlõige. Beeri seadus	25
	3.4	Läbilaskvustegur ja optiline tihedus	26
	3.5	Neeldumisspektroskoopia kui kvantitatiivse keemilise analüüsi meetod	28
	3.6	Valguse hajumine	28
	3.7	Neeldumise mõõtmine	30
4	Lum	ninestsents	30
	4.1	Luminestsents ja soojuskiirgus	30
	4.2	Luminestsentsi kineetika	32
	4.3	Fotoluminestsents ja selle spektraalkarakteristikad	35

	4.4	Luminestsentsi kvantsaagis, kustumisaeg ja temperatuur	37
	4.5	Luminestsentsi mõõtmine	38
F	Cree	letvije ovato kuji u je letvo	40
Э	Spe		40
	5.1	Spektrijoone karakteristikud	40
	5.2	Põhilised mudelprofiilid	42
	5.3	Spektrijoonte laienemise mehhanismid	42
	5.4	Spektri mittehomogeenne laienemine tahkises ja selle rakendused .	46
S	oekt	raalkarakteristika ja aine ehitus	49
6	Aato	omispektroskoopia	49
	6.1	Ühe-elektronilised (vesinikusarnased) aatomid	49
	6.2	Mitme-elektronilised aatomid	54
	6.3	Spektrijoonte intensiivsused	58
	6.4	Aatomispektroskoopia eksperimentaalsest teostusest	63
7	Mol	ekulispektroskoopia	64
	7.1	Molekuli elektronseisundid	64
	7.2	Infrapunaspektroskoopia	65
	7.3	Kombinatsioonhajumine	69
	7.4	Raman- ja infrapunaspektroskoopiate võrdlus	74
	7.5	Vibroonsiirded: UV-Vis neeldumine ja fluorestsents	75
8	Kris	talliliste ainete optilised omadused	76
	8.1	Sissejuhatus	76
	8.2	Kristalli tsooniteooria	77
	8.3	Elektrijuhtivus vs tsoonistruktuur	78

	8.4	Kvaasiosakesed	79
	8.5	Eksitonid	80
	8.6	Pooljuhtide ja dielektrikute neeldumisspektrite üldised iseärasused. Fundamentaalneeldumisserv.	80
	8.7	Tsoonistruktuur ja selle avaldumine neeldumisspektris	81
	8.8	Fundamentaalneeldumisserva kuju	82
S	pekti	roskoopia aparatuur	84
9	Kiirg	gusallikad	84
	9.1	Kiirgusallikate liigitus ja spektroskoopiline otstarve	84
	9.2	Hõõgkehad	85
	9.3	Gaaslahenduslambid	87
	9.4	Valgusdioodid	89
	9.5	Sünkrotron	91
10	Lase	erid	93
	10.1	Stimuleeritud kiirgus, pöördhõive ja valguse võimendamine	93
	10.2	Laseri tööpõhimõte	93
	10.3	Laserkiirguse omadused	94
	10.4	Laserite tüübid	95
	10.5	Impulsslaserid	97
11	Spel	ktraalriistad	98
	11.1	Spektraalseadmete otstarve, tööpõhimõte ja liigitus	98
	11.2	Spektraalriista põhikarakteristikud	101
	11.3	Difraktsioonvõre spektraalseadmes	102
	11.4	Fourier' spektromeeter	105

12	12 Kiirguse vastuvõtjad 108		
	12.1 Fotodetektorite olemus ja liigitus		
	12.2	2 Spektroskoopiliste detektorite tööpõhimõtted	109
	12.3	3 Detektorite põhilised karakteristikud	110
	12.4	1 Müra	110
	12.5	5 Vaakumfotoelement ja fotoelektronkordisti	111
	12.6	6 Fotodiood ja laviinfotodiood	113
	12.7	7 CCD sensor	114
K	irjan	idus ja viited	16
	-		
Li	Lisad 118		
Α	A Kaootilise kiirguse kirieldamine 118		
В	Pois	ssoni jaotus	119
С	Kva	intmehaanika alused	120
	C1	Sissejuhatus	120
	C2	Lainemehaanika põhimõisted ja -printsiibid	120
	C3	Osake potentsiaaliaugus	123
D	Terr	moluminestsents	124
Е	Spe	ktrijoone profiili arvutamine	125
	E1	Neeldumine	125
	E2	Kiirgus	126
	E3	Põrkelaienemine	126

	E4 Doppleri laienemine	127
F	Neeldumisristlõige ja ostsillaatorijõud	127
G	Kaheaatomilise ühikrakuga lineaarse ahela võnkumised	128
н	Plancki kiirgusseaduse tuletus	129
I.	Einsteini koefitsientide teooria	131
J	Laser kui optiline generaator	132
κ	Difraktsioonvõre dispersioon ja lahutusvõime	133

SPEKTROSKOOPIA ÜLDMÕISTEID

Joonis 1.1. Loomuliku (valge) valguse dispergeerumine erivärvilisteks komponentideks prisma läbimisel.

riks nimetatakse ainega interaktsioonis olnud kiirguse tugevust mõõdetuna süstemaatiliselt erinevatel lainepikkustel (täpne definitsioon sõltub konkreetsest spektroskoopia meetodist).² Spektroskoopia teoreetiline probleem on spektris leiduvate iseärasuste seostamine aine ehitusega.

Kõige huvipakkuvamad (informatiivsemad) on sellised nähtused, mis on spektraalselt selektiivsed. Intensiivsed, sageli palja silmaga tajutavad spektraalnähtused on neeldumine ja luminestsents (joon. 1.2). On olemas huvitavaid ja kasulikke spektroskoopilisi nähtusi (nt Raman-hajumine), mida on peaaegu võimatu silmaga või primitiivsete katsevahenditega tuvastada. Leidub ka selliseid spektroskoopilise olemusega nähtuseid, mis on küll üsna intensiivsed, aga võrdlemisi ebahuvitavad ehk väheselektiivsed (soojuskiirgus, Rayleigh hajumine, Mie hajumine jms).

Optika ja spektroskoopiaga piirnev kolmas valdkond on fotoonika, mis keskendub optika tehnoloogilistele rakendustele (sh elektroonikalülituste optiliste analoogide väljatöötamisele). See hõlmab optiliste signaalide tekitamist, edastamist, võimendamist, töötlemist, detekteerimist, jne. Nii spektroskoopiat kui ka fotoonikat võib vaadelda optikast lähtuvate kitsamate teadusharudena. Samas spektroskoopia ja fotoonika teatud osas kattuvad, näiteks mõlemal juhul vajatakse eksperimendis mitmesuguseid kiirgusallikaid ja detektoreid, kuigi viimaste otstarve ja karakteristikud võivad oluliselt erineda.

Optiline kiirgus vastastikmõjustub tugevasti mitmesuguste elektroonsete ja vibroonsete seisunditega aines. Lihtsate atomaarsete või molekulaarsete süsteemide (hõre

1 SISSEJUHATUS

1.1 Spektroskoopia olemus

Spektroskoopia hõlmab üldiselt selliseid füüsikaharusid, mis käsitlevad kiirguse vastastikmõju ainega.¹ Kiirguse all peame silmas laineid või osakesi, mis levivad keskkonnas. Antud kursuses on selleks elektromagnetiline kiirgus, veelgi täpsemalt optiline kiirgus, millest omakorda olulise osa moodustab valgus, st selline elektromagnetkiirgus, mis on tajutav inimsilmaga. Kiirguse ja aine vastastikmõju põhivormid on kiirguse neeldumine aines, emissioon ainest ja hajumine ainel. Viimase erilised avaldumisvormid on ka valguse peegeldumine ja murdumine. Optika on teadusharu, mis uurib eelkõige valgust ennast (valguse olemust, tekkimist, levimist ja kadumist). Seevastu spektroskoopia uurib kiirguse vahendusel ainet. Täpsemalt, spektroskoopia analüüsib kiirgust, mis on olnud interaktsioonis ainega ja mille spekter kannab infot aine kohta. Nimelt mistahes kiirguse puhul esineb teatav spektraalne vabadusaste, milleks valitakse, sõltuvalt olukorrast ja vajadusest, kas lainepikkus, lainete võnkesagedus või osakeste energia. Seda saab kõige lihtsamini demonstreerida valguse korral — valge valguskiire suunamisel läbi prisma võib veenduda, et see koosneb erineva värvusega komponentidest (joon. 1.1). Viimased eristuvadki üksteisest lainepikkuse poolest.

Lisaks spektraalkoordinaadile on kiirguse universaalseks mõõdetavaks omaduseks intensiivsus. Seega spektroskoopilise nähtuse spektraalkarakteristikaks ehk spekt-

²Mõiste "spekter" üldine teaduslik tähendus on avaram: "spekter" tähendab teatavat objekti iseloomustava suuruse väärtuste kogumit ja nende väärtuste jaotumist mingi tunnuse järgi (antud juhul lainepikkuse järgi).

¹Sõna *spektroskoopia* on tuletatud ld. k. sõnast *spectrum* (kujutluspilt) ja kr. k. sõnast *skopeō* (vaatlen), sest algselt tegeles spektroskoopia nähtava valguse spektrikujutise uurimisega.

Joonis 1.2. Mõned lihtsad spektroskoopilised nähtused. (a) Valguse selektiivne neeldumine annab objektidele iseloomuliku värvuse läbivas valguses. (b) Paljud ained hakkavad ultraviolettkiirguse all iseloomuliku värvusega helenduma (luminestsents).

gaas) kiirgus- või neeldumisspektrid sisaldavad hulga eraldiseisvate (ehk diskreetsete) lainepikkustega komponente. Selliseid spektreid nimetatakse joonspektriteks, kuna piluspektroskoobis paistab selline spekter koosnevat üksikutest heledatest või tumedatest triipudest (joon. 1.3). Seevastu kondenseeritud keskkondi (tahkised, vedelikud, plasma) iseloomustab reeglina pidev spekter, sest sellised süsteemid koosnevad suurest arvust tugevasti interakteeruvatest osakestest ja nende spektraalkarakteristika iseloomustab vastastikmõjustuvate aatomite ansamblit tervikuna. Sellest hoolimata võib ka kondenseeritud keskkondade korral leiduda spektroskoopilisi efekte (nt Raman-hajumine kristallidel), mis avalduvad spektris võrdlemisi teravate resonantsidena.

Joonspektrid edastavad kõige konkreetsemat informatsiooni uurimisobjekti kohta, sest sellistest spektritest saab kohe välja lugeda terve rea kvantitatiivseid karakteristikuid — spektrijoonte lainepikkused, tugevused ja laiused. Seejuures spektrijoonte lainepikkused on seotud aineosakeste (elektronide, aatomite) energeetilise oleku muutusega. Seega saame spektroskoopiale veel ühe omapärase definitsiooni:

Joonis 1.3. Heeliumi kiirgusspekter nähtuna spektroskoobis.

spektraalmõõtmisega sondeeritakse aine energeetilist struktuuri, kusjuures siirded energiaseisundite vahel avalduvad spektris resonantsidena.

1.2 Spektroskoopia rakendused

Tinglikult võib eristada vähemalt nelja spektroskoopia rakendusvaldkonda:

- 1. Analüütilise spektroskoopia ülesanne on aine keemilise koostise kvalitatiivne või kvantitatiivne määramine. See on aktuaalne keemias, materjaliteaduses, bioloogias, meditsiinis.
- 2. Füüsikas on eesmärgiks uudse teabe hankimine aine ehituse kohta.
- 3. Astrofüüsikas on eesmärgiks uudse teabe hankimine Universumi kohta.
- 4. Sensoorikas püütakse proovikeha (sensorelemendi) spektri (väikeste) muutuste kaudu jälgida ümbruskeskkonna füüsikalist või keemilist seisundit.

Iga spektroskoopiline meetod keskendub ainult kindlat tüüpi interaktsioonile aine ja kiirguse vahel, mis leiab aset aine teatud struktuuritasandil ja avaldub karakteersel viisil kiirguse spektris (võrdlemisi piiratud spektraaldiapasoonis). Viimane registreeritakse kasutades iga meetodi jaoks spetsiifilist spektraalaparatuuri.

Optiliste ja spektroskoopiliste meetodite teatud eripärad avardavad oluliselt nende rakenduslikku väärtust:

 Põhimõtteliselt kõik optilised mõõtmised teostatakse distantsilt ehk mittekontaktselt, sest info uurimisobjektilt toob kohale valgussignaal. Distantsilt info hankimise vajadus võib tuleneda sellest, et uurimisobjekt on liiga väike või liiga kaugel kontaktmõõtmiste teostamiseks, või sellest, et uurimisobjektile ei saa või ei ole soovitatav läheneda (lõhkeainete detekteerimine vms). Läbipaistva, mittehajutava proovi korral saab "vaadata" ka objekti sisse.

- Optilised mõõtmised saab teostada ruumiliselt lokaalselt, nii et signaali detekteeritakse vaid kindlast ruumipunktist (mikroskoobi vahendusel) või kindlast ruumisuunast (teleskoobi vahendusel). See võimaldab ühtlasi kaardistada detekteeritava aine ruumilist jaotust. Mikroskoopiliste mõõtmiste korral tähendab suur ruumiline lahutus ka seda, et on võimalik analüüsida väga väikeseid ainekoguseid. Näiteks hariliku optilise mikroskoobi ruumiline lahutus on kiirguse lainepikkuse (ehk umbes 1 µm) suurusjärgus.
- Mitmed informatiivsed spektroskoopiameetodid (nt Raman-hajumine ja luminestsents) on mittedestruktiivsed, st katseobjekt ei hävine ega kahjustu mõõtmiste käigus (sh ei vaja tingimata spetsiaalset ettevalmistust, nt sobivatesse mõõtudesse lõikamist vms). See võib hädatarvilik olla kunstiteoste jm väärtuslike ajalooliste objektide analüüsil ning samuti elusorganismide uurimisel.
- Mitmete spektroskoopiameetodite korral võib saavutada suure tundlikkuse ja selektiivsuse tänu sellele, et spektrijooned on hästi kitsad ja nende lainepikkusi (või vähemalt nihkeid) on võimalik registreerida äärmiselt suure täpsusega (üldotstarbeliste spektraalriistadega saab lainepikkust registreerida kuni 5 tüvenumbri täpsusega, interferomeetriliste vahenditega koguni 10 tüvenumbri täpsusega).

Optiliste mõõtmiste teostamine distantsilt, lokaalselt ja uurimisobjekti kahjustamata tähendab sageli *in situ* mõõtmiste võimalust, st mõõtmised teostatakse otse loodusliku või tehnoloogilise katse- või uurimisobjekti asukohas reaalajas häirimata vaadeldava protsessi kulgu. Bioloogias ja meditsiinis võimaldavad need eelised kasutada optilisi mõõtmisi elusobjekti uurimisel (*in vivo*).

1.2.1 Analüütiline spektroskoopia

Aatomid, molekulid, kristallid ja sageli isegi paljud keerukamad struktuurid kiirgavad, neelavad või hajutavad valgust iseloomulikel lainepikkustel. Kui õnnestub leida sobiv spektroskoopiline meetod, mida saab antud proovi peal rakendada, nii et igal huvipakkuval komponendil proovi koosseisus on teistest selgelt eristuv spektraalne "sõrmejälg", saab sel viisil tuvastada selle komponendi olemasolu proovis. Kirjeldatud juhul on tegemist kvalitatiivse analüüsimeetodiga. Kui õnnestub määrata ka spektrijoonte tugevused ja selle põhjal arvutada vastava aine kogus, on tegemist juba kvantitatiivse meetodiga. On meetodeid, mis ei sobi üldiseks kvalitatiivseks analüüsiks (näiteks spektrijooned on väga laiad ja väheselektiivsed), kuid on just väga sobivad kvantitatiivseks analüüsiks, ja vastupidi. Tabelis 1 on loetletud mõned analüütilise spektroskoopia meetodid.

Analüütilise spektroskoopia meetodeid realiseeritakse harilikult rutiinseks tööks viimistletud seadmetel, sest analüüsimist vajavate proovide hulk võib olla suur. Aine (kvalitatiivse) koostise määramisel põhimõtteliselt uuritava proovi spektrit võrreldakse kõigi teadaolevate (puhaste ainete) spektritega, mis võivad eksisteerida näiteks digitaalse andmebaasina. Kui tuvastatavad spektrijooned on piisavalt konkreetsed ja kindlate lainepikkustega, võib analüüsi teostada tõepoolest arvuti, muudel juhtudel võib spektri interpreteerimine vajada erialast oskusteavet ja kogemust.

Tabel 1. Analüütilise spektroskoopia meetodid. Nimetatud on ka röntgen- ja raadiospektroskoopia meetodid, kuigi need ei kuulu optilise spektroskoopia valda.

Meetod	Mille suhtes on selektiivne
Aatomispektroskoopia	Vabade aatomite valentselektronide energia-
(neeldumises või kiirguses)	seisundid
UV-nähtav neeldumine	Molekulide ja kristalli lisanditsentrite elektron-
ja luminestsents	võnkeseisundid
Infrapunaneeldumine	Molekulide, funktsionaalsete rühmade ja kris-
ja Raman-hajumine	tallide võnkeseisundid
Röntgen-spektroskoopia	Aatomi sisemiste elektronide energiatasemed
Raadio-spektroskoopia	Aatomituumade või elektronide spinn-
(TMR ja ESR)	seisundid

1.2.2 Füüsika

Fundamentaal- ja materjalifüüsika seisukohalt on spektroskoopia põhiülesandeks uudse teabe hankimine aine ehituse kohta. Teiste sõnadega, tuleb välja selgitada spektraalkarakteristika seos aine ehitusega. Erinevalt analüütilisest spektroskoopiast füüsikalisel mõõtmisel saadud spekter on sageli niivõrd originaalne, et selle päritolu mõistmine nõuab juba teooria edasiarendamist. Selline tulemus saavutatakse juhul, kui uuritakse täiesti uudset materjali, rakendatakse erakordseid mõõtmistingimusi (temperatuur, rõhk, väljad), aine puhtus ja signaali registreerimise tundlikkus on viidud uuele tasemele, vms.

Traditsiooniline näide spektroskoopiast kui aine fundamentaalehituse uurimise meetodist on aatomispektroskoopia, mis on olnud aluseks aatomi ehituse mudelite püstitamisel ja ühtlasi ka kvantmehaanika aluste rajamisel. Kõige lihtsama, vesinikuaatomi spektri analüüsimisel selgus, et selle kõikide spektrijoonte lainepikkusi (λ) või sagedusi (ν) on võimalik kirjeldada lihtsa empiirilise valemiga

$$\frac{1}{\lambda} = R_{\mathsf{H}} \left(\frac{1}{n^2} - \frac{1}{m^2} \right) \quad \mathsf{ehk} \quad \nu = c R_{\mathsf{H}} \left(\frac{1}{n^2} - \frac{1}{m^2} \right)$$

kus *m*, *n* on positiivsed täisarvud, *c* on valguse kiirus ja $R_{\rm H}$ on konstant. Täisarvuliste parameetrite esinemine füüsikalise süsteemi kirjelduses on klassikalise füüsika kontekstis üsna arusaamatu. Selle seletamine oli oluliseks tõukeks kvantmehaanika arengule. Toodud lihtne valem sisaldab tegelikult terve hulga kvantteoreetilisi arusaamu: (1) aatomid kiirgavad ja neelavad valgust kvantidena; (2) valguskvandi energia on võrdeline valguse sagedusega; (3) aatomi sisemine energia võib omada vaid teatud diskreetseid väärtuseid (vesinikuaatomi korral $E = R_{\rm H}/n^2$); (4) valguskvandi kiirgamisel või neelamisel siirdub aatom ühest kindla energiaga seisundist teise. Täpsemad (suurema spektraallahutusega) mõõtmised võimaldasid avastada veelgi sügavamaid detaile aatomi ehituses ning mikromaailma kvantolemuses.

Analoogiliselt molekulispektrid kannavad informatsiooni molekuli ehituse kohta. Molekulide spektraalkarakteristika on märksa rikkam kuna lisaks elektroonsetele energiatasemetele peab see kajastama ka molekulide võnkumist ja pöörlemist, mille energiad sõltuvad molekuli tuumakonfiguratsioonist, keemiliste sidemete jäikusest ning aatomite massidest. Iseloomulikud ilmingud on ka kristallide, klaaside jm kondenseeritud keskkondade spektraalkarakteristikas. Kaasaegne materjalifüüsika lisab spektroskoopiliselt huvipakkuvate ainete nimekirja veel mitmesugused nanomaterjalid, nagu pooljuht-nanostruktuurid (kvantpunktid ja -niidid), süsinikupõhised nanostruktuurid (fullereenid, nanotorud, grafeen), plasmonaktiivsed struktuurid (nt kulla või hõbeda nanoosakesed), jms.

1.2.3 Astrofüüsika

Astrofüüsikas on spektroskoopia (nii optiline kui ka raadio- ja röntgenspektroskoopia) põhiline meetod info hankimiseks taevakehade kohta. Kõige ilmsemad näited on taevakeha temperatuuri ja keemilise koostise määramine spektri kaudu.³ Doppleri efekti vahendusel kajastab spekter isegi taevakeha liikumist.

1.2.4 Sensoorika

Aine optilised omadused (sh spektraalkarakteristika) võivad osutuda tundlikuks temperatuuri, rõhu, elektri- ja magnetvälja tugevuse või isegi ümbruskeskkonna keemilise koostise suhtes. Selles mõttes saab spektroskoopilisi mõõtmisi kasutada distantsilt aine või seda ümbritseva meediumi seisundi sondeerimiseks. Näiteks elektronide paigutumine aatomi erinevatele energiatasemetele ja järelikult ka vastavate spektrijoonte intensiivsuste suhe sõltub aine temperatuurist, samas rõhk ja elektriväli võivad esile kutsuda spktrijoonte nihkumise või lõhenemise. Mõned nimetatud efektidest tulevad selgelt esile vaid juhul kui spektraalkarakteristikas leiduvad piisavalt kitsad spektrijooned, mille muutuseid on võimalik suure täpsusega registreerida (joon. 1.4).

Mõningatel juhtudel on võimalik spektraalmõõtmiste tundlikkus tõsta sellise tasemeni, kus õnnestub jälgida üheltainsalt molekulilt pärinevat optilist signaali. Selline molekul käitub siis nagu nanomeeter-mõõdus sensorelement, mis optilise signaali vahendusel edastab teavet enda lähiümbruses toimuva kohta.

³Siinkohal väärib märkimist, et selliste keemiliste elementide nagu heeliumi, tseesiumi ja rubiidiumi olemasolu järeldati esmakordselt 19. sajandil Päikese spektrit uurides.

Joonis 1.4. Rubiini kristalli (Al₂O₃:Cr³⁺) fluorestsentsi spektrit võib kalibreerida nii temperatuuri kui ka (suurte) rõhkude mõõtmiseks.

2 ELEKTROMAGNETKIIRGUS

Optika ajaloolise arengu käigus on püstitatud terve rida üha täpsemaid mudeleid valguse olemuse ja optiliste nähtuste kirjeldamiseks. Valguse kõige ilmsemaid omadusi (sirgjooneline levimine, peegeldumine, murdumine) saab üllatavalt hästi kirjeldada kiirteoptika ehk geomeetrilise optika lihtsate seadustega. Samas ei anna kiirteoptika sisuliselt mitte mingit selgitust valguse olemuse ning valguse ja aine vastastikmõju mehhanismide kohta. Keerukuselt järgmine käsitlus, laineoptika, annab mõista, et valgus on laineprotsess ja võimaldab selgitada ka difraktsiooni- ja interferentsinähtusi (st valguse paindumine geomeetrilise varju piirkonda ja valgusväljade võime üksteist tugevdada või kustutada) ning polarisatsiooni olemasolu (ristlainetus). Valguse elektromagnetteooria konkretiseerib laineoptika seisukohti käsitledes valgust elektromagnetilise välja lainetusena. See võimaldab kirjeldada küllalt suure täpsusega keerukamaid optilisi nähtusi nagu dispersioon, kaksikmurdvus, mittelineaarsed efektid jms. Need kolm lähenemist moodustavad klassikalise optika. Lõpuks, kvantoptika seletab ka valguse korpuskulaarseid aspekte (nt fotoefekt). Iga järgnev teooria hõlmab endas piirjuhuna ka eelneva (joon. 2.1). Näiteks laineoptika põh-

Joonis 2.1. Valguse olemust käsitlevad teooriad.

jendab otseselt ära geomeetrilise optika seadused (mille seletamiseks kiirteoptika raames tuli postuleerida Fermat' printsiip: valguskiir liigub piki trajektoori, mille läbimiseks kulub kõige vähem aega). Me alustame kohe elektromagnetteooriast, mis annab valguse kõige põhjalikuma kirjelduse klassikalise optika raames.

2.1 Elektromagnetkiirguse klassikaline teooria

2.1.1 Elektromagnetlainete olemus

Juba koolifüüsikast on teada, et mõningatel elementaarosakestel (nt elektronid ja prootonid) esineb teatav omadus, mida nimetatakse elektrilaenguks. See avaldub nn elektromagnetilise vastastikmõju olemasolus selliste osakeste vahel. See interaktsioon mõjub justkui üle osakesi eraldava "tühjuse" (ja lisaks levib märgatava viivisega pikkade vahemaade taha). Sellise vastasmõju kirjeldamiseks tuuakse sisse välja mõiste, mis vahendab interaktsiooni osakeste vahel. Üksteise suhtes liikumatute laetud osakeste vahel mõjub elektrostaatiline jõud ja öeldakse, et laetud osake tekitab ümbritsevas ruumis elektrivälja, mis avaldab toimet teistele sellesse välja asetatud laetud osakestele (joon. 2.2). Elektrivälja tugevus *E* kui füüsikaline suurus näitab jõudu, millega väli mõjutab ühikulise suurusega proovilaengut antud ruumipunktis (*E* on niisiis vektor, mida iseloomustab suurus ja suund). Üksteise suhtes liikuvate laetud osakeste vahel mõjuvad lisaks elektrilistele jõududele veel magnetilised jõud, mida kirjeldatakse magnetvälja mõiste sissetoomise teel. Makroskoopiliselt avaldub magnetiline interaktsioon nt elektrivooluga juhtide vahel (elektrimootor), samuti tekitavad magnetvälja püsimagnetid. Magnetvälja iseloomustab kvantitatiivselt magnetiline induktsioon *B*, mis näitab ühikulise pikkusega ja ühikulist voolutugevust kandvale juhtmele mõjuvat jõudu magnetväljas.

Joonis 2.2. Vasakult paremale: elektrivälja jõujooned kahe punktlaengu ümbruses, magnetvälja jõujooned vooluga juhtme ümbruses, magnetvälja jõujooned püsimagneti ümbruses.

Staatilisel juhul on elektri- ja magnetväli üksteisega seostamata, seega elektrostaatikat ja magnetostaatikat saab käsitleda eraldi distsipliinidena. Dünaamilisel juhul on aga E ja B üksteisega tihedalt seotud — elektrivälja ajaline muutumine kutsub esile magnetvälja tekkimise ja muutuv magnetväli indutseerib omakorda elektrivälja (joon. 2.3). Samuti E ja B sõltuvad sellest, millises taustsüsteemis neid vaadeldamõõta. Seega võib neid käsitleda kui ühe ja sama füüsikalise objekti, elektromagnetvälja, erinevaid avaldumisvorme (komponente). Ei ole ka üllatav, et mingis ruumipunktis tekitatud elektromagnetiline häiritus on suuteline lainetena levima ülejäänud ruumi. Selline väli kujutab endast teatavat mateeriavormi, st ta kannab energiat ja impulssi.

Klassikalise elektrodünaamika alusseadused on sõnastatavad nn Maxwelli võrrandite näol. Need võrrandid seostavad ruumis eksisteeriva elektri- ja magnetvälja laengute ja voolude ruumilise paigutusega. Samuti kirjeldavad Maxwelli võrrandid seda, kuidas elektri- ja magnetväli transformeeruvad üksteiseks. Kui laengute ja voolude paigutus ruumis (ja selle muutumine ajas) on etteantud, siis Maxwelli võrrandite lahendamise teel saab põhimõtteliselt välja arvutada elektri- ja magnetvälja tugevuse suvalises ruumipunktis suvalisel ajahetkel, st $E(\mathbf{r}, t)$ ja $B(\mathbf{r}, t)$. Ülevaade Maxwelli võrrandeist on toodud lisamaterjalis [9].

On teada, et igasugused lineaarsed laineprotsessid (nagu heli levimine aines, häiri-

Joonis 2.3. Näide elektromagnetilisest induktsioonist: püsimagneti teljesihilisel võngutamisel tekib pooluste juures elektriväli. Kondensaatori laadimisel tekitab muutuv elektriväli kondensaatori plaatide vahel aga magnetvälja.

tuse levimine pinguletõmmatud nööris jms) on kirjeldatavad järgmise lainevõrrandiga (ühemõõtmelisel juhul):

$$\frac{\partial^2 \xi}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \xi}{\partial t^2} = 0, \qquad (2.1)$$

kus $\xi(z, t)$ on häirituse suurus ruumipunktis koordinaadiga z ajahetkel t ning c on laine levimise kiirus. Saab näidata, et ka Maxwelli võrranditest järelduvad vaba ruumi jaoks eelnevaga sarnased lainevõrrandid:

$$\frac{\partial^2 \boldsymbol{E}}{\partial z^2} - \varepsilon_0 \mu_0 \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0, \quad \frac{\partial^2 \boldsymbol{B}}{\partial z^2} - \varepsilon_0 \mu_0 \frac{\partial^2 \boldsymbol{B}}{\partial t^2} = 0$$

Siin ε_0, μ_0 on konstandid, mis on tingitud SI mõõtühikute süsteemi kasutamisest: $\varepsilon_0 = 8,85 \times 10^{-12} \,\mathrm{Fm^{-1}}, \,\mu_0 = 4\pi \times 10^{-7} \,\mathrm{Hm^{-1}}. \,\varepsilon_0$ määratakse eksperimendist. Seega Maxwelli võrrandid ennustavad elektromagnetiliste lainete olemasolu, kusjuures võrdlus üldise lainevõrrandiga 2.1 näitab, et need lained peavad levima vabas ruumis kiirusega

$$c = 1/\sqrt{\varepsilon_0 \mu_0} \approx 2,998 \times 10^8 \,\mathrm{m \, s^{-1}}$$

mis on universaalkonstant. See kiirus ühtib täpselt eksperimentaalselt mõõdetud valguse levimise kiirusega vaakumis, vihjates et ka valgus on elektromagnetiline lainetus (mis on tajutav silmaga).

Erinevalt helilainetest ei vaja elektromagnetlained materiaalse keskkonna olemasolu ja levivad ka vaakumis (aines on nende levimise mehhanism ja ka kiirus mõnevõrra teistsugused).

2.1.2 Harmooniline tasalaine

Elektromagnetlaine ei saa olla muutumatu ja paigalseisev (lainevõrrandi ainus statsionaarne lahend on $E \equiv 0$, $B \equiv 0$). Mistahes lineaarses keskkonnas on lihtsaim elektromagnetlaine harmooniline tasalaine:

$$\boldsymbol{E}(z,t) = \boldsymbol{E}_0 \cos(kz \pm \omega t), \quad \boldsymbol{B}(z,t) = \boldsymbol{B}_0 \cos(kz \pm \omega t).$$
(2.2)

Sellisel kujul laine levib *z*-telje sihis ja laine frondiks on *z*-teljega ristuv tasapind (määratud tingimusega $kz \pm \omega t = \text{Const}$), seepärast nimetatakse sellist lainet tasalaineks. Lainefrondi liikumisvõrrand on niisiis $z = \mp \frac{\omega}{k}t + \text{Const}$, seega laine liigub edasi kiirusega $v = \omega/k$, sõltuvalt märgi valikust kas *z*-telje negatiivses või positiivses suunas (edaspidi konkreetsuse huvides eeldame, et laine levib *z*-telje positiivses suunas). Vaakumis muidugi v = c.

Hoolimata sellest, et tegemist on matemaatiliselt kõige lihtsama mõeldava lainekujuga, on sellisel kirjeldusel suur praktiline väärtus. Nimelt iga piisavalt monokromaatne ja suunatud kiirgus on vähemalt ligikaudu kirjeldatav tasalainena. Isegi mõni keerulisem lainekuju (nt keralaine) võib lokaalselt sarnaneda tasalainele. Veelgi enam, vajadusel saab ka täiesti meelevaldset lainekuju kirjeldada suure hulga harmooniliste tasalainete superpositsioonina (sellega tegeleb Fourier' analüüs).

Niisiis väljatugevus ostsilleerib siinuseliselt nii ajas kui ka ruumis (joon. 2.4). Sellest tulenevalt me saame defineerida kaks komplekti karakteristikuid, mis kõik iseloomustavad sellisele lainele vastava kiirguse "värvust": ühed viitavad perioodilisusele ruumikoordinaadi suhtes, teised aja suhtes. Konstandid k ja ω ilmselt mõlemad väljendavad faasinurga muutumise kiirust (üks täisvõnge vastab faasinihkele 2π radiaani). Konstant k (lainearv) väljendab ruumilist sagedust ja konstant ω (ring-sagedus) ajalist sagedust. Ruumilise korduvuse perioodi λ nimetatakse lainepikkuseks, ajalist perioodi T aga võnkeperioodiks. Arvestades et üks täisvõnge vastab faasimutusele 2π radiaani, võime harmoonilise tasalaine esitada ka alternatiivsel kujul nimetatud perioodide kaudu:

$$\boldsymbol{E}(z,t) = \boldsymbol{E}_0 \cos\left(2\pi \frac{z}{\lambda} - 2\pi \frac{t}{T}\right), \quad \boldsymbol{B}(z,t) = \boldsymbol{B}_0 \cos\left(2\pi \frac{z}{\lambda} - 2\pi \frac{t}{T}\right).$$

Siit on ilmne, et $k = 2\pi/\lambda$ ja $\omega = 2\pi/T$. Ajavahemiku *T* jooksul teostab väljatugevus ühe täisvõnke, seega ajaühikus leiab aset 1/T võnget. Suurust v = 1/T nimetatakse võnkesageduseks. Analoogiliselt võib defineerida ruumilise sageduse $\bar{v} = 1/\lambda$,

mis näitab seda, mitu täislainet mahub pikkusühiku sisse. Seda suurust nimetatakse spektroskoopiliseks lainearvuks. Ilmselt $\omega = 2\pi v$ ja $k = 2\pi \bar{v}$. ω ja k on mõneti fundamentaalsemad suurused ja võimaldavad harmoonilise võnkumise avaldisi (nt 2.2) kõige kompaktsemalt kirja panna.

Joonis 2.4. Siinuslaine. (a) Elektrivälja ruumiline käik E(z) fikseeritud ajahetkel. (b) Elektrivälja ajaline käik E(t) fikseeritud ruumipunktis.

Vektorit k, mille moodul võrdub k-ga ja mille suund ühtib laine leviku suunaga, nimetatakse lainevektoriks. Lainevektori abil võime väljendada meelevaldses suunas levivat tasalainet kompaktsel kujul:

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_0 \cos(\boldsymbol{k}\boldsymbol{r} - \omega t), \quad \boldsymbol{B}(\boldsymbol{r},t) = \boldsymbol{B}_0 \cos(\boldsymbol{k}\boldsymbol{r} - \omega t), \quad (2.3)$$

kus kr tähistab vektorite k ja r skalaarkorrutist. Tõepoolest, samafaasipindadeks on sel juhul tasandid, mis on määratud tingimusega $kr - \omega t = \text{Const}$ ehk lahtikirjutatuna

$$k_x x + k_y y + k_z z - \omega t = \text{Const.}$$

Analüütilisest geomeetriast on teada, et viimane võrrand määrab tasapinna, mis on risti vektoriga k. Või teisipidi, skalaarkorrutis kr projitseerib vektori r vektori k sihile.

Kõik loetletud suurused on seotud laine levimise kiirusega c:

$$c = \frac{\lambda}{T} = \nu\lambda = \frac{\omega}{k}$$

Tõepoolest, kahe laineharja vaheline distants λ kaetakse parajasti ühe võnkeperioodi jooksul. Teisipidi, sekundis läbitakse ν korda teepikkus λ ehk kokku $\nu\lambda$. Lisaks lainevõrranditele peab igasugune elektromagnetlaine rahuldama ka algseid Maxwelli võrrandeid (millest lainevõrrandid on tuletatud). Osutub (vt [9]), et Maxwelli võrrandid seavad täiendavad kitsendused vektorite E, B ja k vahekorrale: vektorid E, B ja k peavad olema omavahel risti (ristlainetus) ning E ja B võnguvad samas faasis ning nende moodulid on seotud valemiga B = E/c. Niisiis lainepilt näeb kokkuvõttes välja selline nagu kujutatud joonisel 2.5.

Joonis 2.5. Elektri- ja magnetvälja võnkumine tasalaines.

2.1.3 Polarisatsioon

Kindla sagedusega ja kindlas suunas levivat (ω , k fikseeritud) ristlainet iseloomustab lisaks võnkeamplituudile ka võnkumise siht (nt elektrivektori võnketasand), mis määrab laine polarisatsiooni. Seni vaadeldud juhul oli tegu lineaarselt polariseeritud lainega, st elektrivälja vektor võnkus kogu aeg samas tasapinnas. Üldisemat juhtu võime kirjeldada vaadeldes kahe tasalaine superpositsiooni, kus elektrivektori võnketasandid on üksteisega risti (teiste sõnadega, polarisatsioonil on kaks vabadusastet). Vaatleme lihtsuse mõttes *z*-telje suunas levivat lainet:

$$\boldsymbol{E}(\boldsymbol{r},t) = \boldsymbol{E}_{0x}\cos(kz-\omega t) + \boldsymbol{E}_{0y}\cos(kz-\omega t+\phi), \qquad (2.4)$$

kus $E_{0x} \perp E_{0y}$. Amplituudide suhte E_{0x}/E_{0y} ja faasinihke ϕ valikuga on võimalik realiseerida rida erinevaid polarisatsiooniseisundeid (joon. 2.6). Kui faasinihe $\phi = 0$, on tegemist lineaarselt polariseeritud lainega, mille võnketasand asetseb mõnesuguse nurga all koordinaattelgedega (nurk määratud suhtega E_{0x}/E_{0y}); kui $\phi = \pm \pi/2$ ja $|E_{0x}| = |E_{0y}| = E_0$, on tegu ringpolariseeritud lainega (elektrivektor konstantse mooduliga E_0 pöörleb sagedusega ω). Üldisel juhul võib näidata, et pöörleva elektrivektori lõpp-punkt kirjeldab ellipsi; sellist lainet nimetatakse elliptiliselt polariseerituks.

Joonis 2.6. Harmoonilise tasalaine polarisatsiooniseisundid. Graafikud väljendavad elektrivektori otspunkti liikumise trajektoori tasandis, mis on risti laine levimise suunaga.

Lisaks valemitega 2.4 kirjeldatud lainetele on võimalik ka polariseerimata e. loomulik kiirgus, kus elektrivektori suund ja suurus muutub kaootiliselt. Osutub, et koos polariseerimata kiirgusega eksisteerib kokku seitse erinevat polarisatsiooniseisundit: polariseerimata kiirgus, eespool vaadeldud kolm liiki polariseeritud kiirgust ning polariseerimata ja polariseeritud kiirguse kombinatsioonid.

Optilisi elemente, mille ülesandeks on polariseerimata kiirgusest mingisuguse polariseeritusega kiirguse tegemine, nimetatakse polarisaatoriteks. Need võivad tugineda mitmesugustele füüsikalistele mehhanismidele, nagu dikroism (erinevate polarisatsioonikomponentide erinev neeldumine aines), hajumine, peegeldumine (Brewsteri nurga lähedal) või kaksikmurdvus. Polarisaatorit, mille ülesandeks on kiirguse polarisatsiooni analüüsimine, nimetatakse analüsaatoriks. Lisaks nimetatud seadmetele kasutatakse polariseeritud kiirgusega manipuleerimiseks laineplaate. Need on kaksikmurdvusel põhinevad optilised elemendid, mis tekitavad *x*- ja *y*-komponendile mõnesuguse täiendava faasivahe $\Delta \phi$ (valem 2.4). Näiteks veerandlaineplaadiga ($\Delta \phi = \pi/2$) saab muuta lineaarselt polariseeritud valguse ringpolariseerituks (ja vastupidi). Eksisteerib protseduur, mis võimaldab analüsaatori ja veerandlaineplaadi abil täielikult kindlaks teha monokromaatse kiirguse suvalise polarisatsiooniseisundi [7].

Lihtne eksperimentaalne karakteristik kiirguse polarisatsiooni kirjeldamiseks on po-

larisatsiooniaste

$$p = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

kus I_{max} , I_{min} tähistavad analüsaatorit läbinud kiirguse maksimaalset ja minimaalset intensiivsust, mis saavutatakse analüsaatori polarisatsioonitasandi pööramisel. Lineaarselt polariseeritud kiirguse jaoks p = 1, loomuliku ja ringpolariseeritud kiirguse jaoks p = 0 jne. Sageli peetakse polarisatsiooniastme all silmas hoopis suhet

$$p = rac{I_{
m polar}}{I_{
m polar} + I_{
m loomulik}}$$

kus I_{polar} on polariseeritud ja I_{loomulik} on polariseerimata osa intensiivsus valgusvoos.

Täielikult polariseeritud kiirgust iseloomustavad ilmselt amplituudid E_{0x} ja E_{0y} ning faasinihe ϕ . Osaliselt polariseeritud kiirguse korral lisandub veel polarisatsiooniaste. Nende baasil saab konstrueerida polarisatsiooniseisundit kirjeldavad vektorid, nii et polarisaatori läbimist, laineplaadi läbimist, peegeldust pinnalt, vms operatsiooni kirjeldab maatriks, mis vastavalt teisendab polarisatsioonivektorit. Näiteks täielikult polariseeritud kiirguse (valem 2.4) seisundit väljendab ammendavalt Jones'i vektor

$$\begin{bmatrix} A \\ Be^{i\phi} \end{bmatrix}, \quad \text{kus} \quad A = \frac{E_{0x}}{\sqrt{|E_{0x}|^2 + |E_{0y}|^2}}, \quad B = \frac{E_{0y}}{\sqrt{|E_{0x}|^2 + |E_{0y}|^2}}.$$

Nüüd näiteks risti kiirguse teele asetatud lineaarse polarisaatori mõju väljendab maatriks

$$\begin{bmatrix} \cos^2\theta & \sin\theta\cos\theta\\ \sin\theta\cos\theta & \sin^2\theta \end{bmatrix}$$

kus θ on polarisatsioonitasandi nurk *x*-telje suhtes.

2.1.4 Kiiritustihedus. Valguse rõhk ja pöördemoment.

Elektromagnetväli kannab energiat. Energia edasikandumist ruumis karakteriseerib kiiritustihedus, st energia, mis kandub ajaühikus läbi laine levimise suunaga risti asetatud ühikpinna. Elektrodünaamikas näidatakse, et kiiritustihedus on antud Poyntingi

vektoriga (vt [9]):

$$\boldsymbol{S} = \frac{1}{\mu_0} \boldsymbol{E} \times \boldsymbol{B},$$

kus $E \times B$ tähistab vektorkorrutist. Tasalaine puhul $E \times B \uparrow\uparrow k$, seega siis k näitabki energia levimise suunda. Kuna B = E/c ja $E \perp B$, siis S moodul avaldub

$$S = \frac{1}{\mu_0} EB = \frac{1}{c\mu_0} E^2 = \frac{1}{c\mu_0} E_0^2 \cos^2 \phi = c\varepsilon_0 E_0^2 \cos^2 \phi,$$

kus $\phi = kz - \omega t$. See on kiiritustiheduse *hetkväärtus*. Kuna ükski detektor ei suuda järgida valguse sagedusel (~10¹⁵ Hz) toimuvaid kiiritustiheduse fluktuatsioone (detektori reaktsiooniaeg jääb parimal juhul 1 ns piiresse), siis praktikas pakub huvi *keskmine* kiiritustihedus, mille me tähistame *I*. Arvestades, et üle perioodi keskmistatult $\langle \cos^2 \phi \rangle = 1/2$, saame

$$I = \langle S \rangle = \frac{1}{2} c \varepsilon_0 E_0^2$$
(2.5)

Seda võib tõlgendada nii, et laine energiatihedus (J m⁻³) on keskmiselt $\varepsilon_0 E_0^2/2$ ja see kulgeb ruumis edasi kiirusega *c*:

$$\frac{J}{m^3} \times \frac{m}{s} = \frac{J}{s m^2} = \frac{W}{m^2}.$$

Enamike võnkumiste (lainete) korral, sarnaselt valemile 2.5, on võnkumise energia (laine energiatihedus) võrdeline amplituudi ruuduga. Selle põhjust võib aimata analoogia põhjal kineetilise energia $(mv^2/2)$ või deformeeritud vedru potentsiaalse energia avaldistega $(kx^2/2)$. Samas, meelevaldse võnkumise/laine korral võime energia arendada ritta amplituudi järgi: $E = a_1A + a_2A^2 + a_3A^3 + \ldots$ Kuivõrd energia ei saa sõltuda võnkefaasist, siis kõik paarituarvulised liikmed peavad olema nullid: $E = a_2A^2 + a_4A^4 + \ldots$ Seega piisavalt väikese amplituudiga võnkumiste korral paratamatult $E \propto A^2$.

Olgu märgitud, et välja energia on võrdselt jaotunud elektri- ja magnetkomponendi vahel, kuid nagu edaspidi selgub, elektrivälja roll on põhiline kiirguse ja aine vahelises vastasmõjus.

Lisaks energiale kannab elektromagnetlaine ka liikumishulka e. impulssi. Elektrodünaamikas näidatakse, et valgusvoo energia E ja impulsi p vahel on seos E = cp. Siit järeldub, et täielikult neelavale pinnale risti langev valgusvoog avaldab rõhumisjõudu F = dp/dt = P/c (täielikult peegeldava pinna puhul vastavalt 2P/c), kus P on kiirguse võimsus.⁴ Sellist valguse rõhku on võimalik ka eksperimentaalselt jälgida. Tugevasti fokuseeritud laserikiirtega on võimalik näiteks liigutada mikro- ja nanoosakesi ("optilised pintsetid").

Ringpolariseeritud valgus omab ka pöördimpulssi.⁵ Valgusvoo energia *E*, impulsimoment *L* ja ringsagedus ω on omavahel seoses $E = L\omega$. Analoogilselt eelnevaga pole raske läbi näha, et sellise valguslaine langemisel täielikult neelavale pinnale avaldatakse viimasele pöördemomenti suurusega $M = dL/dt = P/\omega$. Sarnast toimet avaldab valgus ka kaksikmurdvale keskkonnale, mis muudab valguse polarisatsiooniseisundit (ja seega impulsimomenti). Seegi efekt võib omada perspektiivi molekulide jm mikroskoopiliste osakeste orienteerimisel.

ÜLESANNE 1. Laserkiir võimsusega 100 mW on fokuseeritud täpiks diameetriga 0,1 mm. Leidke elektri- ja magnetvälja amplituudväärtused selles täpis. Kiiritustiheduse kiire ristlõike ulatuses võib lugeda ühtlaseks. *Vastus:* $E_0 \approx 98 \text{ kV/m}, B_0 \approx 0,33 \text{ mT}.$

ÜLESANNE 2. Kui suurt jõudu ja pöördemomenti suudab avaldada 1 W ringpolariseeritud valguskiir (500 nm) langedes absoluutselt mustale pinnale? *Vastus:* $F \approx 3.3$ nN, $M \approx 2.7 \times 10^{-16}$ N m.

2.1.5 Elektromagnetlainete tekitamine

Klassikalise elektromagnetteooria kohaselt on igasuguse elektromagnetkiirguse allikaiks *kiirendusega liikuvad* elektrilaengud. Kui laeng liigub ühtlaselt ja sirgjooneliselt, siis selle väli järgib laengut muutumatul kujul nagu jäik keha, kusjuures elektrivälja jõujooned on radiaalsed (joon. 2.7a). Poyntingi vektor on küll igas ruumipunktis nullist erinev, kuid selle radiaalsihiline komponent on null; energiavoog

Joonis 2.7. Elektromagnetilise kiirguse tekkimine laetud osakese järsul pidurdamisel.

on suunatud selliselt et välja energia liigub laenguga kaasa. Oletagem nüüd, et ühtlase kiirusega liikuvat laengut pidurdatakse järsult kuni seismajäämiseni punktis P_1 (joon. 2.7b). Ajavahemiku Δt vältel jõuab signaal laengu seismajäämisest levida kuni kauguseni $c\Delta t$, kus c on valguse kiirus. Väljaspool seda ulatust jääb välja jõujoonte pilt selliseks nagu oleks laeng jätkanud liikumist ühtlase kiirusega ja jõudnud punkti P_2 . Sfääri pinnal raadiusega $c\Delta t$ tekib järelikult jõujoonte kõverdumine, nii et E omab raadiusvektoriga ristisihilist komponenti. Seega Poyntingi vektor omab jõujoonte kõverdumiskohas radiaalsihilist komponenti. Niisiis laengu hetkelisel kiirendamisel/pidurdamisel moodustub järsk elektromagnetvälja häiritus, mis kannab energiat laengust eemale. Ei ole raske ette kujutada, et laengu (või laengute süsteemi) sujuval perioodilisel liikumisel (harmoonilisel võnkumisel, tsirkuleerimisel vms) tekivad samasugused sujuvad perioodilised muutused ka elektromagnetväljas, st süsteem hakkab kiirgama samasuguse sagedusega elektromagnetilisi laineid.

Kõige kergem on elektromagnetlainete tekitamist demonstreerida raadiolainete diapasoonis kasutades mitmesuguseid antenne, kus leiavad aset elektrivõnkumised. Osutub, et optilises diapasoonis on sobilikeks "antennideks" aatomid ja molekulid ise.⁶ Seda võib ette kujutada nõnda nagu joonisel 2.8. Massiivne positiivne laeng (aatomituum) on fikseeritud koordinaatide alguspunktis, kerge negatiivne laeng (elektron, või täpsemalt osa aatomi elektronpilvest) aga ostsilleerib nt piki *x*-telge. Võib kujutleda, nagu oleksid osakesed elastse "vedruga" seotud. Kui dissipatsioon

 $^{^{4}}$ Selle seose saab kergesti meelde jätta arvestades et dimensioonide mõttes võimsus = jõud × kiirus.

⁵Tuletame meelde, et pöördimpulss ehk impulsimoment iseloomustab pöörleva keha liikumishulka. Punktmass *m*, mis tiirleb kiirusega *v* pöörlemisteljest kaugusel *r*, annab pöördimpulssi panuse $m\mathbf{r} \times \mathbf{v}$. Impulss ja pöördimpulss ei saa meelevaldselt tekkida ega kaduda, vaid on isoleeritud süsteemis jäävad suurused, seega valguse neeldumine aines peab avalduma ainele avaldatava rõhuna ja pöördemomendina.

⁶Olgu märgitud, et lisaks sidestuvad optiliste sagedustega ka näiteks laenguvõnkumised metalsetes nanostruktuurides.

Joonis 2.8. Aatomi kui võnkuva elektrilise dipooli kiirgus.

on väike, siis omapead jäetud süsteem võngub harmooniliselt:

$$x(t) = x_0 \cos(\omega_0 t),$$

kus ω_0 on antud süsteemile iseloomulik omavõnkesagedus. Atomaarsete süsteemide korral on see sagedus suurusjärgus $10^{14} \dots 10^{15}$ Hz, mis on parajasti optilises diapasoonis. Elektrodünaamikas iseloomustatakse sellist neutraalset laengusüsteemi dipoolmomendiga p = ex (seda mõistet saab laiendada ka süsteemile, mis sisaldab palju erinevaid punktlaenguid). Näiteks kiirguse koguvõimsus (summeerituna üle kõigi ruumisuundade) avaldub järgmiselt:

$$P = \frac{\omega_0^4 p_0^2}{12\pi\varepsilon_0 c^3},\tag{2.6}$$

kus p_0 on ostsilleeriva dipoolmomendi amplituudväärtus.

2.2 Kiirguse kvantteooria

2.2.1 Footoni mõiste

Juba varsti peale klassikalise elektromagnetteooria valmimist märgati, et teatud elektromagnetkiirgusega seotud nähtused (nagu soojuskiirguse spekter või fo-toefekt) ei ole seletatavad selle teooria raames. Nende nähtuste analüüsimisel jõuti

järeldusele, et energiavahetus kiirguse ja aine (elektronide) vahel ei ole klassikaliselt pidev, vaid toimub kindla suurusega energiaportsionite kaupa. Eriti fotoefekti nähtus vihjas, et kiirgus ise eksisteerib kvantidena. Selliseid kiirguskvante nimetatakse footoniteks. Osakestefüüsika mõistes võib footonit vaadelda kui fundamentaalosakest, kuid tema loomus on märksa kummalisem kui tavalistel mateeriaosakestel (nt elektronil). Esiteks on footonid massitud ja liiguvad seetõttu alati maksimaalse ehk absoluutse kiirusega, st valguse kiirusega. Teiseks on nad bosonid ehk väljaosakesed (vastandina elektronile, mis on aineosake ehk fermion), seetõttu nad ei interakteeru üksteisega ja võivad ruumis levida väga tiheda paketina. See on ka põhjuseks, miks paljudel juhtudel elektromagnetvälja granulaarne loomus ei avaldu.

Fotoefekti jms katsete põhjal võib oletada, et energiavahetus monokromaatse kiirguse (sagedusega v) ja aine vahel toimub energiaportsionite

$$\epsilon = hv, \quad h = 6,626 \times 10^{-34} \,\mathrm{Js}$$
 (2.7)

kaupa, kus võrdetegurit h nimetatakse Plancki konstandiks (ringsagedusskaala jaoks defineeritakse $\hbar = h/2\pi$). See on üks fundamentaalkonstantidest ja ilmutab ennast kõikides kvantteoreetilistes valemites. Valemiga 2.7 arvutatava energiakvandi tähendus on järgmine. Nimelt kvantoptikas vaadeldakse elektromagnetvälja igat kindla sagedusega moodi kui kvantostsillaatorit. On hästi teada, et sagedusega v võnkuva kvantmehaanilise otsillaatori energia võib omandada vaid järgmiseid diskreetseid väärtuseid (vt lisa C):

$$E_n = \left(n + \frac{1}{2}\right)h\nu, \quad n = 0, 1, \dots$$

Seega on ilmne, et energiavahetus sellise kiirgusvälja ja aine vahel saab toimuda ainult energiakvantide hv kaupa. Suurust $\epsilon = hv$ nimetame footoni energiaks ja see on veel üks täiendav spektraalmuutuja, mida võib kasutada lainepikkuse, sageduse või lainearvu asemel.

Plancki valemi 2.7 näol on tegemist universaalse kvantteoreetilise seadusega, mis seostab igasuguse harmoonilise võnkeliikumisega elementaarse võnkekvandi suuruse. See seos kehtib ühtviisi nii valguslainete korral kui ka näiteks aatomite võnkumise jaoks molekulis ja kristallis. Põhimõtteliselt kehtib see ka makroskoopiliste liikumiste korral, ent sel juhul on võnkesagedused väikesed ja objektide massid

suured, nii et suhteliselt on võnkekvant hv täiesti tühine ja kvantefektid ei ilmuta ennast.

Nagu eespool mainitud, on valguse impulsi ja energia vahel seos E = cp. See seos jääb kehtima ka ühe footoni jaoks. See on igati kooskõlas erirelatiivsusteooriaga, mille järgi osakese energia ϵ , impulss p ja mass m on seotud valemiga $\epsilon^2 = m^2 c^4 + p^2 c^2$, millest footoni jaoks (mass m = 0) järeldub $\epsilon = cp$. Niisiis footoni impulsi suuruseks tuleb

$$p = \frac{\epsilon}{c} = \frac{h\nu}{c} = \frac{h}{\lambda} = \hbar k, \qquad (2.8)$$

ehk arvestades, et $p \uparrow\uparrow k$,

$$\boldsymbol{p} = \hbar \boldsymbol{k} \tag{2.9}$$

Analoogiliselt Plancki valemile on ka see valem võrdlemisi universaalne ja rakendatav nii elektromagnetilistele kui ka muudele lainetele.

Üks ilmekamaid nähtusi footoni impulsi demonstreerimiseks on kiirguse lainepikkuse suurenemine röntgen- või γ -kiirguse hajumisel elektronidelt (Comptoni efekt).⁷ Omistades footonile valemiga 2.9 antud impulsi, on seda nähtust võimalik üsna lihtsalt kirjeldada kui footonite mitteelastset hajumist elektronidel. Samamoodi avaldub footoni impulss näiteks hetkel, kui aatom kiirgab välja valguskvandi: aatom tajub sel hetkel tagasilööki nagu püss tulistamise hetkel.

2.2.2 Valguse laineliste ja korpuskulaarsete omaduste vahekord

Mis määrab selle, kas teatavas situatsioonis avalduvad elektromagnetvälja lainelised või korpuskulaarsed omadused? Sellele küsimusele vastamiseks on kasulik võrrelda omavahel kiirgusi, mis vastavad elektromagnetlainete spektri kummalegi piirile. Teatavasti raadiolained on väga hästi kirjeldatavad klassikalise elektromagnetteooria raames samas kui gamma-kiirgust käsitletakse peaaegu alati kvantidena. Ilmsed tähelepanekud on siin järgmised:

- Sama võimsuse juures on pikalainelise kiirguse kvante hulga rohkem (arvestades kui palju suurusjärke varieerub footoni energia üle elektromagnetlainete kogu diapasooni).
- Suure energiaga footonid avaldavad aines neeldudes suuremat efekti, seetõttu on neid ka lihtsam individuaalselt detekteerida.
- Kiirguse lainelised ilmingud (interferents, difraktsioon) muutuvad lainepikkuse vähenedes järjest raskemini vaadeldavaks. Teiste sõnadega, lainepikkuse lähenemisel nullile taandub laineoptika geomeetriliseks optikaks.

Optilises diapasoonis on $h\nu$ üsna väike, mistõttu normaalse tugevusega valgusväljas on footonite arv niivõrd suur, et sellise valguskimbu omadused on praktiliselt eristamatud klassikalise pideva valguslaine omadustest ja valguse granulaarne olemus ei pruugi avalduda. Kvantomadused hakkavad ilmnema suhteliselt nõrkade valgusvoogude juures; küllalt tundlik valguse detektor ei anna siis enam pidevat signaali vaid diskreetseid impulsse, mis vastavad üksikute footonite neeldumisele detektoris. Heaks näiteks on valguse difraktsioon- või interferentspildi jälgimine, kui valguse intensiivsust on kahandatud sedavõrd, et seadet läbib igal ajahetkel ainult üks footon korraga. Loendades ekraanile langevaid footoneid positsioonitundliku detektoriga (nt fotoplaadiga või tänapäeval pigem tundliku CCD sensoriga), saadakse footonite statistiline jaotus, mis piisavalt pikaajalise ekspositsiooni korral koondub klassikaliseks intensiivsuse jaotuseks (joon. 2.9). Seega võib väita, et klassikaline elektromagnetlaine (täpsemalt, kiiritustiheduse jaotus) kirjeldab footoni detekteerimise tõenäosust erinevates ruumipunktides. Monokromaatse kiirguse kiiritustihedusele $I_{\rm e}$ (W/cm²) vastab footonite voo tihedus $I_{\rm n} = I_{\rm e}/hv$ (footonit sekundis cm² kohta).

Joonisel 2.9 kujutatud katsetulemus näitab ühtlasi ka seda, et laineilmingud (interferents) on seostatavad footoniga individuaalselt (footon interfereerub iseendaga) mitte ei ole paljude footonite kollektiivse käitumise tulemus. Mingit kollektiivset efekti ei saagi ilmneda, sest on hästi teada, et vähemalt vaakumis valguskiired üksteist ei mõjusta. Kvantmehaanika seisukohalt võib klassikalist elektromagnetlainet (Maxwelli võrrandite lahendit) vaadelda kui footoni lainefunktsiooni (kvantmehaanika mõistete kohta vt lisa C).

Footonil kui elementaarosakesel on olemas ka omaimpulsimoment ehk spinn. Kui impulsimomendi ühikuks võtta Plancki konstant \hbar , siis footoni spinni suuruseks on 1.

⁷Selle nähtuse jälgimiseks peab footoni energia olema märksa suurem kui (valents)elektroni seoseenergia aatomis, muidu interakteerub valgus aatomi kui tervikuga. Seepärast ongi efekt jälgitav vaid röntgen- või γ -kiirguse korral.

Joonis 2.9. Positsioonitundliku footondetektoriga registreeritud ülinõrga valguse interferentsipilt sõltuvana signaali akumuleerimise ajast.

Ringpolariseeritud valguse puhul spinni projektsioon liikumissuunale on ± 1 sõltuvalt sellest kummas suunas elektrivektor pöörleb. Ülejäänud polarisatsiooniga footoneid tuleb lugeda viibivana superpositsioonilises olekus.

Tabelis 2 on kokkuvõtvalt esitatud vastavused elektromagnetkiirguse laine- ja kvantaspektide vahel.

ÜLESANNE 3. Monokromaatse kiirguse (lainepikkus 500 nm) kiiritustihedus on 0,03 μW/cm². Risti selle kiirguse teele asetatakse footondetektor, mille valgustundliku ala diameeter on 1 mm ja kvantsaagis 20% (st footoni neeldumine kutsub 20%lise tõenäosusega esile detekteeritava tugevusega vooluimpulsi). Mitu impulssi väljastab detektor keskmiselt igas sekundis? *Vastus:* 1,2 × 10⁸ s⁻¹

ÜLESANNE 4. Üks intensiivsemaid jooni vesiniku gaaslahenduses on lainepikkusel 656 nm. Kui suure kiiruse omandab algselt paigalseisev vesiniku aatom pärast sellise footoni emissiooni? *Vastus:* 0,6 m/s.

2.2.3 Footonite detekteerimine ja haavelmüra

Küllalt suure energiaga footoneid optilises diapasoonis on võimalik individuaalselt registreerida, kui valguse intensiivsus on hästi väike ning detektor on piisavalt kiire ja tundlik (joon. 2.10). Oletagem, et tegemist on *statsionaarse* ja *koherentse* kiirgusega, mida klassikaliselt saaks tõlgendada ideaalse siinuslainena. Sellist kiirgust saab optilises diapasoonis põhimõtteliselt tekitada spetsiaalsete, stabiliseeritud võimsu-

Tabel 2. Vastavused elektromagnetkiirguse laine- ja kvantaspektide vahel.

laine	osake	
lainevektor k	footoni impulss $oldsymbol{p}=\hbaroldsymbol{k}$	
sagedus ω	footoni energia $\epsilon=\hbar\omega$	
intensiivsus	footoni leidmise tõenäosus antud ruumipunktis	
interferents	footoni lainefunktsioonide superpositsioon	
difraktsioon	määramatuse relatsioon ($\Delta x \Delta p_x \gtrsim \hbar$)	
polarisatsioon	footoni spinn	

sega ühemoodiliste laserite abil (võrdluseks olgu märgitud, et raadiolainete näol on sellise kiirguse tekitamine triviaalne). Ometi näitab footonloendur intensiivsuse fluktuatsioone ka sellises kiirguses, st igas järgnevas kindla pikkusega ajaintervallis registreeritav footonite arv ei ole konstant vaid varieerub teatud piirides (nagu on ilmne jooniselt 2.10).

Joonis 2.10. Ülinõrka statsionaarset kiirgusvoogu mõõtva tundliku fotodetektori signaal.

Footonite registreerimine sellises kiirguses kujutab endast Poissoni protsessi. Tegemist on üsna levinud tüüpi juhusliku protsessiga, mida rakendatakse nii füüsikas kui ka paljudes muudes valdkondades. Sellisele statistikale allub näiteks ajaühikus teatud pinnale langevate vihmapiiskade arv, radioaktiivse aine lähedusse asetatud Geigeri loenduri näit, gaasimolekuli poolt sooritatavate põrgete arv ajaühikus (vt lisa E), klientide arv teenindusasutuses (vt ülesanne 5), looduskatastroofide esinemine jms. Ilmselt kõigil nimetatud juhtudel (1) protsess on statsionaarne, (2) sündmused on sõltumatud ja (3) kahe või enama sündmuse samaaegne esinemine

Joonis 2.11. Poissoni jaotuse kuju mõningate \bar{n} väärtuste jaoks.

on kaduvväikese tõenäosusega. Saab näidata (vt lisa B), et sellistel tingimustel tõenäosus, et teatud kindla pikkusega ajavahemiku vältel registreeritakse *n* sündmust (footonit), on antud Poissoni jaotusega:

$$P(n) = \frac{\bar{n}^n}{n!} e^{-\bar{n}},$$
 (2.10)

kus \bar{n} on keskmine sündmuste arv selles ajavahemikus. \bar{n} on selle jaotuse ainus parameeter. Selle jaotuse kuju (joon. 2.11) on lähedane normaaljaotusele, mis on tsentreeritud kohal $n = \bar{n}$.

Niisiis kirjeldatud statsionaarse kiirguse intensiivsuse registreerimine footonloenduse režiimis võib anda tulemiks põhimõtteliselt mistahes väärtuse nullist lõpmatuseni, kuigi suurima tõenäosusega on lugem \bar{n} ümbruses. Fluktuatsioonide ulatust (ehk siis jaotusfunktsiooni laiust) iseloomustab ruutkeskmine hälve keskväärtuse suhtes:

$$\sigma = \sqrt{\left\langle (n - \bar{n})^2 \right\rangle} = \sqrt{\sum_{n=0}^{\infty} (n - \bar{n})^2 P(n)}$$

Joonis 2.12. Ülinõrga statsionaarse kiirguse intensiivsust registreeriva footonloenduri näit sõltuvana ajast.

Vastav rehkendus Poissoni jaotuse korral annab $\sigma = \sqrt{\bar{n}}$. Seega signaal-müra suhe $\bar{n}/\sigma = \sqrt{\bar{n}}$ ehk siis paraneb võrdeliselt ruutjuurega signaali tugevusest (ehk signaali kogumise või keskmistamise ajast Δt , sest $\bar{n} = \mu \Delta t$, kus μ on footonite keskmine arv sekundis). Kui näiteks $\mu = 100 \text{ s}^{-1}$ ja $\Delta t = 1 \text{ s}$, siis $\bar{n} = 100$ ja müra suhteline amplituud on 10%; kui aga $\mu = 10^6 \text{ s}^{-1}$ (lihtsa fotoelektronkordisti lineaarsuse piir), on müra suhteline amplituud kõigest 0,1%. Sellist liiki müra nimetatakse haavelmüraks. Joonisel 2.12 on modelleeritud haavelmüraga signaali mõõtmise tulemust. Üks näide haavelmüra mõjust mõõdetud signaalile on toodud ka jaotises 4.2 (joon. 4.5).

Klassikaliste kiirgusallikate teises äärmuses on termilised kiirgusallikad, mis tekitavad kaootilist kiirgust, mis on suure hulga sõltumatute kiirgusaktide resultant. Kaootilises kiirguses on koherents tuvastatav vaid (üsna lühikese) koherentsiaja vältel, pikemas ajasmastaabis toimub aga kiirgusvõimsuse fluktueerumine. Kui õnnestuks sellise kiirguse intensiivsust registreerida kiiremini kui on selle koherentsikestus, peaks tulemus olema determineeritud Boltzmanni jaotusega nagu kohane termilise tasakaalu korral. Enamasti on aga signaali akumuleerimise (keskmistamise) aeg hulga pikem kiirguse koherentsiajast, mispuhul footonloenduse statistika on ikkagi kirjeldatav Poissoni jaotusega.

Saab realiseerida ka mitteklassikalisi kiirgusallikaid, mis tõepoolest kiirgavad footoneid enam-vähem ühtlase intervalli tagant (st jaotus P(n) on kitsam kui valemiga 2.10 kirjeldatud Poissoni jaotus). Selline on näiteks üksikmolekulil põhinev kvantkiirgur, mida ergastatakse lühikese laserimpulsiga. Sest kui ergastatud molekul on footoni kiiranud, ei saa ta koheselt kiirata järgmist footonit vaid peab ootama järjekordset laserimpulssi, et uuesti ergastuda.

ÜLESANNE 5. Juuksurisalongi külastab keskmiselt 5 klienti tunnis. Kui suur on tõenäosus, et järgneva poole tunni jooksul ei saabu ühtegi klienti?

2.3 Spektraalmuutujad

Footoni mõiste sissetoomisega oleme võtnud kasutusele veel ühe spektraalmuutuja, footoni energia ϵ . Monokromaatse kiirguse "värvust" võime niisiis identifitseerida ükskõik millisega suurustest λ , v, \bar{v} ja ϵ . Optilise diapasooni ultravioletses osas mõõdetakse lainepikkust enamasti nanomeetrites (1 nm = 10⁻⁹ m), infrapunases piirkonnas on sobilikum mikromeeter (1 µm = 10⁻⁶ m, tuntud ka nimetuse "mikron" all). Nähtavas diapasoonis kasutatakse mõlemat. Levinud ühik on ka ongström (1 Å = 0,1 nm). Lainearvu on mugav mõõta pöördsentimeetrites (cm⁻¹), footoni energiat on aga tavaks väljendada elektronvoltides (1 eV ≈ 1,6 × 10⁻¹⁹ J).⁸ Praktiliseks teisendamiseks kõige levinumate ühikute vahel on kasulik meeles pidada seosed

$$\bar{\nu}/\mathrm{cm}^{-1} = \frac{10^7}{\lambda/\mathrm{nm}}, \quad \epsilon/\mathrm{eV} \approx \frac{1240}{\lambda/\mathrm{nm}}.$$

See, millist nendest neljast suurusest on kõige otstarbekam kasutada, sõltub kontekstist. Näiteks valguse difraktsioonist rääkides on loomulik kasutada lainepikkust, kuna just viimase võrdlus pilu laiusega või difraktsioonvõre triipude sammuga määrab difrageerumise määra. Samas gamma-kiirguse laineomadused reeglina ei ilmne, gamma-kiirguse osalusel toimuvate protsesside puhul on oluline hoopis gammakvandi energia. Käsitledes valguse võimalikku interaktsiooni võnkuva molekuliga, on printsipiaalne jällegi valguse sagedus (võrrelduna molekuli omavõnkesagedusega).

Optilises diapasoonis on primaarseks mõõdetavaks spektraalmuutujaks traditsiooniliselt lainepikkus, mida vajadusel saab mõõta väga suure täpsusega. Märgime, et lainepikkus sõltub keskkonnast, seepärast peetakse lainepikkusest rääkides enamasti silmas lainepikkust vaakumis (või õhus). Sageduse ja energia otsene mõõtmine on keeruline. Lainepikkuse probleem on aga selles, et ta ei ole proportsionaalne energiaga. Sellest puudusest on vaba lainepikkuse pöördväärtus ehk lainearv, mis on võrdeline nii sageduse kui ka footoni energiaga, kuid erinevalt sagedusest või energiast ei nõua valguse kiiruse ega Plancki konstandi täpse väärtuse teadmist. Sisuliselt lainearv on sama mis sagedus ja vahel ka ühikut cm⁻¹ ennast nimetatakse lainearvuks. Näiteks kiirguse 15000 cm⁻¹ kohta öeldakse, et selle sagedus lainearvudes on 15000.

Teoreetilisteks arvutusteks on sageli \bar{v} ja v asemel mugavam kasutada analoogseid nurgaühikutes mõõdetavaid suuruseid k ja ω , mille kaudu harmoonilisi võnkumisi kirjeldavad avaldised on esitatavad kompaktsemalt, näiteks

 $E = E_0 \cos(2\pi \bar{v}x - 2\pi vt) \quad \text{vs} \quad E = E_0 \cos(kx - \omega t).$

2.4 Elektromagnetlainete skaala

Elektronide energiad aatomi sisemistes elektronkihtides on keV piirkonnas, valentselektronidel aga eV piirkonnas. Spektrite peenstruktuuri tingivad energiatasemete lõhenemised on 10⁻³ eV (10 cm⁻¹) suurusjärgus, ülipeenstruktuur aga 10⁻⁶ eV (300 MHz) suurusjärgus. Molekulide võnkeergastuste energiad on tüüpiliselt 10⁻¹ eV, pöörlemisergastustel 10⁻³ eV suurusjärgus. Niisiis kiirguse ja aine interaktsioonis aset leidvate füüsikaliste protsesside iseloom sõltub oluliselt kiirguse spektraaldiapasoonist. Põhimõtteliselt varieerub elektromagnetilise kiirguse lainepikkus nullist lõpmatuseni.⁹ Kogu elektromagnetlainete skaala on tinglikult jaotatud väiksemateks piirkondadeks (joon. 2.13). See jaotus tuleneb vastavalt iseloomulikele füüsikalistele protsessidele, milles elektromagnetkiirgus osaleb. Põhimõttelist erinevust erineva nimetusega elektromagnetkiirguste vahel ei ole.

⁸On olemas ka aatomi kvantteooriast pärinev loomulik energiaühik hartree = $m_e e^4 / (4h^2 \varepsilon_0^2) \approx$ 27,2 eV (jaotis 6.1.1), kuid eksperimentaalfüüsikas kasutatakse seda harva.

 $^{^9}$ Rangelt võttes seab alumise piiri nn Plancki pikkus (~10⁻³⁵ m), ülemise piiri aga nähtava universumi ulatus (~10²⁶ m).

Joonis 2.13. Elektromagnetlainete skaala.

Raadiolained hõlmavad selliseid lainepikkusi, mida on võimalik kergesti tekitada ja detekteerida mitmesuguste antennide abil. Mikrolained on sellised elektromagnetlained, mis levivad metallist lainejuhtides. Raadio- ja mikrolainete kasutamisele tugineb kaks spektroskoopiavaldkonda: tuumamagnetresonants (NMR) ja elektronspinnresonants (EPR). Nendes katsetes jälgitakse üleminekuid erinevate aatomituuma või elektroni spinnseisundite vahel. Seejuures kiirguse sagedus on fikseeritud, resonants i otsitakse aga välise magnetvälja muutmise teel, kuna magnetvälja rakendamine nihutab spinnseisundite energiaid.

Aatomid molekulides ja kristallides võnguvad sagedusega $10^{13}...10^{14}$ Hz. Need sagedused kuuluvad infrapunasesse piirkonda. Kogu infrapunane diapasoon liigendatakse spektroskoopia seisukohalt kolmeks. Kauges infrapunases piirkonnas $(10...400 \text{ cm}^{-1} \text{ ehk } 30...1000 \mu\text{m})$ interakteerub kiirgus molekulide pöörlemisega. Keskmine infrapunane ala $(400...400 \text{ cm}^{-1} \text{ ehk } 2,5...30 \mu\text{m})$ on karakteerne võnkumistele. Nähtava piirkonnani ulatuvas lähi-infrapunases diapasoonis $(4000...14000 \text{ cm}^{-1} \text{ ehk } 0,8...2,5 \mu\text{m})$ võivad avalduda võnkumiste ülemtoonid. Võnke- ja pöörlemisergastustega seondub kaks spektroskoopiavaldkonda: infrapunaneeldumine ning kombinatsioonhajumine (ehk Raman-hajumine). Tegemist on üksteist täiendavate meetoditega, sest resonantsid, mis ilmutavad ennast Ramanspektrites, ei pruugi avalduda neeldumises ja vastupidi.

Nähtav diapasoon hõlmab ligikaudu vahemiku 400...700 nm, mis on määratud

Joonis 2.14. Inimsilma suhteline tundlikkus erineva lainepikkusega optilisele kiirgusele.

silma tundlikkusega elektromagnetilisele kiirgusele (joon. 2.14). Sellele järgneb ultravioletne piirkond, mis ulatub 10 nm-ni. Piirkonda 10...180 nm nimetatakse ka vaakumultravioletiks, sest 180 nm-st lühematel lainepikkustel hakkab õhuhapnik tugevasti neelama ja katsete teostamiseks selles spektraalpiirkonnas tuleb katseseade asetada vaakumisse. Nii ultravioletses kui ka nähtavas piirkonnas on kiirguse ja aine põhiliseks interaktsioonimehhanismiks üleminekud aatomi välistes elektronkihtides. Ultraviolettkiirgust ja sellest veel suurema energiaga kiirgusi nimetatakse ioniseerivaks kiirguseks, kuna sellise kiirguse kvandi energia on piisav aatomite ioniseerimiseks. Ultraviolettkiirgusele järgneb röntgendiapasoon energiatel $10^2 \dots 10^5$ eV. Kiirgus on oma nime saanud teadlase W. Röntgeni järgi, kes 1895 a. selle avastas. Röntgenkiiriguse allikaks on üleminekud aatomi sisemistes elektronkihtides. Röntgenkiiri lainepikkusega >0,1 nm nimetatakse pehmeks tingituna asjaolust, et see kiirgus neeldub tugevasti õhus (nagu ka vaakumultraviolett). Pehme röntgeni lainepikkused $10^{-9} \dots 10^{-10}$ m on võrreldavad aatomitevaheliste kaugustega kristallides, seega kristalli läbides selline röntgenkiirgus difrageerub. Tekkiv difraktsioonipilt on karakteerne iga kristallstruktuuri jaoks olles aluseks röntgenstruktuuranalüüsile. Röntgenkiiri lainepikkusega <0,1 nm nimetatakse aga kalgiks tingituna nende suurest läbitungimisvõimest. Kalgi röntgeni ja sellele järgneva gamma-kiirguse (mis on tingitud tuumareaktsioonidest) lainepikkused on väiksemad kui aatomite mõõtmed mistõttu selline kiirgus käitub pigemini osakeste kui lainetena ja suudab kergesti ainet läbida.

Käesolevas kursuses käsitletakse optilise spektroskoopia aluseid. Optilise kiirguse all peetakse silmas sellist elektromagnetkiirgust, mis on manipuleeritav optiliste süsteemidega: peegel, lääts, prisma, difraktsioonvõre jne. Optiline diapasoon hõlmab ultravioletse, nähtava ja infrapunase piirkonna (orienteeruvalt 10 nm...1 mm). Mõnikord defineeritakse optilise diapasoonina vahemik 200 nm...2,5 µm, mis on nähtavat diapasooni katva üldotstarbelise spektraalaparatuuri (nt spektrofotomeetrite) valdav tööpiirkond.

2.5 Kiirguse spekter ja selle mõõtmine

Kiirguse spekter ehk spektraalkoostis iseloomustab kiirguse võimsuse jaotust lainepikkuse, sageduse või mõne muu spektraalmuutuja järgi. Kvalitatiivse ettekujutuse kiirguse spektraalkoosseisust võib anda näiteks viisil, mis oli toodud joonisel 1.3. See on sobilik peamiselt joonspektrite korral.¹⁰ Esmapilgul näib, et spektri täpseks kvantitatiivseks kirjeldamiseks tuleb lihtsalt esitada kiirguse võimsuse väärtused kõigil lainepikkustel. Kuid seda pole võimalik teha, sest lainepikkus muutub pidevalt ja omab seega lõpmata palju väärtuseid, samas kui kiirguse koguvõimsus on lõplik, mis tähendab, et konkreetset lainepikkust omava kiirguse võimsus on null. (Analoo-

Joonis 2.15. Kiirguse spektraalkoostise mõõtmise põhimõte.

giliselt ei oma mõtet näiteks küsimus, kui palju on maailmas inimesi, kelle pikkus on täpselt 180 cm.) Küll aga saab rääkida kiirguse võimsusest mingis lainepikkuste vahemikus. Kiirguse võimsus *spektraalmuutuja ühikulise vahemiku kohta* ehk võimsuse *spektraaltihedus* ongi sobilik karakteristik kiirguse tugevuse iseloomustamiseks konkreetsel lainepikkusel. Näiteks ereda valge valgusdioodi summaarne kiirgusvõimsus on umbes 1 W ja valdav osa kiirgusest asub nähtavas diapasoonis (vahemikus 450...650 nm), seega kiirguse võimsuse spektraalne tihedus tuleb keskmiselt 1 W/200 nm = 5 mW/nm.

Vaatleme sisulist mõõtmisprotseduuri, mis tuleb kiirguse spektri registreerimiseks läbi viia. Enamus spektraalriistu kasutab mõnesugust optilist elementi, mis võimaldab erineva lainepikkusega komponendid üksteisest ruumiliselt eraldada. Lihtsamal juhul võib selleks olla prisma (prisma materjali murdumisnäitaja sõltub lainepikkusest).

¹⁰Vanemas kirjanduses võib sageli leida joonisele 1.3 sarnanevaid halltoonis pilte, mis saadi fotoplaati detektorina kasutades.

Sel viisil saadud ruumiliselt dispergeeritud spektri registreerimiseks võib näiteks kitsa pilu abil välja eraldada küllalt monokromaatse osa kiirgusest ja mõõta pilu taha paigutatud fotodetektoriga saadud valguskiire intensiivsust (joon. 2.15). Seejärel tuleb pilu nihutada järgmisse positsiooni ja korrata mõõtmist. (Ekvivalentselt võib muidugi kogu spektri registreerida ka ühekorraga, kasutades rividetektorit, nagu näidatud joonisel.) Seejuures pilu ei saa olla siiski lõpmata kitsas, sest siis oleks pilu läbinud valguse intensiivsus null. Tehes aga pilu lõpliku laiusega, langeb detektorile kiirgus teatud väikeses kuid lõplikus lainepikkuste vahemikus $\lambda \dots \lambda + \Delta \lambda$. Seega sellise mõõtmise otseseks tulemiks on mitte sile spekter, vaid histogramm, kus tulpasid on lõplik arv ja tõepoolest intensiivsuse teljele saab kanda võimsuse (joon. 2.16). Arvutades aga detektoriga mõõdetud võimsuse ΔI ja lainepikkuste vahemikus $\lambda \lambda$ suhte, saame hinnangu kiirguse võimsuse spektraalsele tihedusele lainepikkusel λ . Nimetatud suhe esimeses lähenduses ei sõltu pilu laiusest, sest nii $\Delta \lambda$ kui ka ΔI kasvavad proportsioonis pilu laiusega. Matemaatiliselt rangelt väljendudes tuleks võimsuse spektraalne tihedus lainepikkusel λ defineerida järgmiselt:

$$\Phi(\lambda) = \lim_{\Delta \lambda \to 0} \frac{\Delta I}{\Delta \lambda}$$

Vajadusel võime kiirguse võimsuse lisaks normeerida veel ka ühikulisele pindalale või ühikulisele ruuminurgale. See annab vastavalt spektraalse kiiritustiheduse või spektraalse kiirgustugevuse. Igal juhul selle suuruse integreerimine üle kõikide koordinaatide (sh spektraalkoordinaadi) annab kiirguse koguvõimsuse.

Kiirguse intensiivsuse mõõduna võib kasutada võimsuse (vattides) asemel ka footonite arvu sekundis. Kumba varianti praktiliselt eelistada, sõltub mingil määral detektorist (termilise detektori korral on loomulikum valik võimsus, tundliku fotoelektrilise detektori korral footonite arv). Esimesel juhul tähistame spektrit $\Phi_{e}(\lambda)$, teisel juhul $\Phi_{n}(\lambda)$. Teades Plancki valemit 2.7, on nende vahel konverteerimine triviaalne:

$$\Phi_{\mathsf{e}}(\lambda) = \Phi_{\mathsf{n}}(\lambda) h v = \Phi_{\mathsf{n}}(\lambda) \frac{hc}{\lambda}.$$

Joonisel 2.17 on näitena toodud mõningate tuntud valgusallikate spektrid.

Asjaolu, et kiirguse spekter ei kirjelda mitte kiirguse võimsust konkreetsel lainepikkusel, vaid võimsuse spektraalset tihedust, muutub oluliseks siis, kui on tarvis teostada

Joonis 2.16. Valge valgusdioodi spektri mõõtmise tulemus sõltuvalt spektraalakna laiusest. Viimasel graafikul on spektraallahutus juba nii suur, et spekter muutub praktiliselt pidevaks ning võimsuse asemel tuleb kasutusele võtta võimsuse spektraaltihedus.

spektraalmuutuja vahetus, kusjuures uus spektraalmuutuja ja algne spektraalmuutuja ei ole omavahel proportsionaalsed (nt lainepikkuselt sagedusele või vastupidi). Olgu meil näiteks antud kiirguse spekter (spektraalne kiiritustihedus) lainepikkuse skaalas, mille me tähistame $I_{\lambda}(\lambda)$. Niisiis $I_{\lambda}(\lambda)\Delta\lambda$ on kiiritustihedus väikeses lainepikkuste vahemikus $\lambda \dots \lambda + \Delta\lambda$. Sama spektri saamiseks energiaskaalas, $I_{\varepsilon}(\epsilon)$, paneme tähele, et kiirgusvõimsused vastavates spektraalvahemikes peavad olema võrdsed: $I_{\varepsilon}(\epsilon)\Delta\epsilon = I_{\lambda}(\lambda)\Delta\lambda$, kus vahemikud $\Delta\epsilon$ ja $\Delta\lambda$ on üksteisega vastavuses (joon. 2.18). Seega

$$I_{\epsilon}(\epsilon) = I_{\lambda}(\lambda) \frac{\Delta \lambda}{\Delta \epsilon}.$$

Piirjuhul $\Delta \lambda \to 0$ pole suhe $\Delta \lambda / \Delta \epsilon$ midagi muud kui λ tuletis ϵ järgi. Kuna $\lambda = c/\nu = ch/\epsilon$, siis $d\lambda / d\epsilon = -ch/\epsilon^2$. Miinusmärk näitab siin vaid seda, et λ kasvades

Joonis 2.17. Mõningate tuntud valgusallikate kiirguste spektrid. Vertikaalteljel on suhtelised ühikud (selle tõttu on numbriline skaala üldse ära jäetud), sest absoluutsete väärtuste näitamiseks tuleks määratleda, millisel kaugusel valgusallikast on kiirgust registreeritud, milline on valgusallika koguvõimsus jms (vrdl. joon. 9.5).

Joonis 2.18. Päikesekiirguse spektraalne kiiritustihedus erinevates spektraalmuutujates.

c väheneb, mis pole siinjuures oluline.¹¹ Seega kokkuvõttes

$$I_{\epsilon}(\epsilon) = I_{\lambda}(ch/\epsilon) \frac{ch}{\epsilon^2}.$$

Nagu näha, tuleb lisaks abstsiss-telje väärtuste muutmisele (λ asemel ch/λ) spektri ordinaat-telje väärtused läbi jagada ϵ^2 -ga, mille tulemusena modifitseerub nii spektri kuju kui ka selle maksimumi asukoht. Kitsaste spektrijoonte puhul on see muutus tühine, seevastu laiade kiirgusribade korral (nagu joonisel 2.17 või 2.18 kujutatud hõõglambi, valgusdioodi, Päikese või ksenoonlambi spekter) on efekt märgatav. Siiski, ka joonspektri korral muutub vähemalt spektrijoonte tugevuste vahekord.

Spektreid, mis sisaldavad kiirgus- või neeldumisjooni diskreetsetel lainepikkustel (st spektrijoonte laius $\Delta \lambda \ll \lambda$), nimetatakse joonspektriteks. Joonspektri näiteks on üksikute aatomite kiirgus- ja neeldumisjooned, mis on tingitud diskreetsete energiatasemete olemasolust aatomis. Pidevspektrite puhul leiavad intensiivsuse mär-

$$\lambda + \Delta \lambda = \frac{ch}{\epsilon - \Delta \epsilon} = \frac{ch(\epsilon + \Delta \epsilon)}{\epsilon^2 - \Delta \epsilon^2} \approx \frac{ch(\epsilon + \Delta \epsilon)}{\epsilon^2} = \frac{ch}{\epsilon} + \frac{ch\Delta \epsilon}{\epsilon^2} = \lambda + \frac{ch\Delta \epsilon}{\epsilon^2}$$

 $\frac{\Delta\lambda}{\Delta\epsilon} = \frac{ch}{\epsilon^2}.$

millest

¹¹Praegusel lihtsal juhul võib läbi ajada ka üldse ilma diferentsiaalarvutuseta:

gatavad muutused aset alles sagedusvahemikus, mis on võrreldav λ -ga. Sellised spektrid esinevad kondensaine puhul (tahkised ja vedelikud, ka gaasid kõrge rõhu all). Tüüpiline näide on hõõguva keha soojuskiirguse spekter. Praktilisi näiteid nimetatud spektritüüpidest võib leida ka joonisel 2.17.

ÜLESANNE 6. Absoluutselt musta keha soojuskiirguse spekter (spektraalne kiirgavus) temperatuuril T avaldub sagedusskaalas järgmiselt:

$$M_{\rm e,\nu}(\nu) = \frac{2\pi h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}.$$
 (2.11)

Siin intensiivsust väljendatakse võimsusega pinnaühiku kohta. Teisendage see kiirgusspekter lainepikkuste skaalasse ja väljendage intensiivsus footonite arvu kaudu. *Vastus:*

$$M_{\mathsf{n},\lambda}(\lambda) = \frac{2\pi c}{\lambda^4} \frac{1}{e^{hc/\lambda kT} - 1}.$$

ÜLESANNE 7. Joonisel 2.19 on toodud 1000 W hõõglambi spektraalne kiiritustihedus mõõdetuna 0,5 m kaugusel hõõgniidist. Veenduge, et arvväärtused graafiku vertikaalteljel on kooskõlas lambi koguvõimsusega, eeldades et lambi kiirgus on enam-vähem isotroopne.

3 KIIRGUSE NEELDUMINE JA HAJUMINE

3.1 Valguse levimise mehhanism optiliselt homogeenses keskkonnas

Paljud materjalid on optiliselt hästi läbipaistvad: valgus levib neis sirgjooneliselt ja ilma märgatava sumbumiseta, nagu vaakumis. Võrreldes vaakumiga on valguse leviku mehhanism ja levimise kiirus aines siiski erinevad. Kuigi mikroskoopiliselt järgib valgus endiselt fundamentaalseid optikaseaduseid (st Maxwelli võrrandeid), toimub samas ka pidev energiavahetus valguslaine ja aineosakeste vahel. Laineprotsessist haaratud ruumipiirkonnas aine laetud koostisosakesed (põhiliselt elektronid, mis on aatomituumadest märksa kergemad) hakkavad ostsilleerima elektromagnetlaine toimel. Võnkuvad laetud osakesed kiirgavad sekundaarseid elektromagnetlaineid.

Joonis 2.19. 1000-vatise hõõglambi spektraalne kiiritustihedus (vt ül. 7).

Viimased on koherentsed primaarlainega, sest elektronide võnkumine toimub samas rütmis primaarlainega (sundvõnkumine). Primaarlaine ja lainefrondi kõikidest punktidest pärinevate sekundaarlainete superpositsioon (interferents) annab resultantlaine (Huygensi-Fresneli printsiip). Täpne analüüs näiteb, et optiliselt homogeenses keskkonnas (st keskkonnas, mille heterogeensus avaldub alles lainepikkusest palju väiksemas mastaabis) sekundaarlained kustutavad üksteist praktiliselt täielikult kõigis suundades, välja arvatud primaarlaine suunal. Järelikult resultantlaine levib samas suunas kui primaarlaine.

Samas on sekundaarlaine primaarlaine suhtes teatava faasinihkega. Selle tõttu resultantlaine faasikiirus tuleb erinev valguse kiirusest vaakumis: v = c/n, kus n on keskkonna murdumisnäitaja. Vastavalt väheneb ka lainepikkus (sest sagedus jääb samaks). Nagu on teada mehaanikast (sundvõnkumiste teooriast), keha võngub küll sundiva jõu sagedusega, ent võnkeamplituud ja faasinihe sundiva jõu suhtes sõltuvad sagedusest. Sellest tingituna ka valguse levimise kiirus hakkab sõltuma valguse sagedusest ehk ilmneb murdumisnäitaja dispersioon.

Märgime, et valguse hajumine (kõrvalekaldumine sirgjoonelisest levimisest) on ala-

ti seotud aine heterogeensusega. Optiliselt homogeense aine korral on hajumine küll väga väike, kuid täielikult elimineerida ei õnnestu seda kunagi, sest hiljemalt atomaarsel tasandil ilmneb ikkagi aine granulaarne struktuur. See seab näiteks teoreetilise piiri valguse levikule optilistes kaablites (klaaskius ehk fiibris). Optiliselt homogeenseks võib pidada kõiki vedelikke ja tahkiseid (aatomite vahekaugus on mõne Å suurusjärgus). Gaasides võivad aatomite vahekaugused olla küll märksa suuremad (standardtingimustel mõnikümmend Å) ent samas on hajutavate osakeste (aatomite) paigutus ka hõredam. Gaaside korral on hoopis olulisemateks hajutamistsentriteks aine tiheduse termilised fluktuatsioonid.

Niisiis valguse läbiminekul ainest kulub osa valguse energiast elektronide vm aine koostisosiste võnkumapanemiseks. Ergastatud osakeste energia võidakse ära kulutada mitmesugusel viisil: osa energiast ühineb primaarlainega sekundaarlainete näol, osa energiat hajub muudes suundades keskkonna mittehomogeensuste tõttu, osa energiast kiiratakse välja teistsuguse sagedusega elektromagnetlainetena (luminestsentsina) ja osa energiat muundub aine siseenergiaks (soojuseks). Järgnevalt vaatleme, milliste füüsikaliste suuruste ja seaduspärasustega saab valguse sumbumist kirjeldada.

3.2 Neeldumiskoefitsient. Bouguer'-Lamberti seadus.

Vaatleme suunatud monokromaatse kiirguse levimist homogeenses keskkonnas. Kuna ükski materjal ei ole ideaalselt läbipaistev, siis selle kiirguse intensiivsus järkjärgult kahaneb läbitud teepikkusega. Vastava üldise seaduspära saab leida väga kergesti, ilma et oleks tarvis teada kiirguse neeldumise füüsikalist mehhanismi. Olgu *d* sellise ainekihi paksus, mida läbides selle konkreetse lainepikkusega kiirgus nõrgeneb mingi kindel arv kordi, nt 2 korda. Kui nüüd lisada teine sama paksusega ainekiht, siis kiirgus nõrgeneb veel täiendavalt 2 korda, ehk kokku juba 4 korda. Selliselt jätkates saame, et *n* sellise kihi järjestikusel läbimisel nõrgeneb kiirgus 2^{*n*} korda ja järgijäänud kiirguse intensiivsus on $I = I_0/2^n = I_0 \cdot 2^{-n}$, kus I_0 on algintensiivsus. Teiselt poolt, kogu läbitud teepikkus aines on ilmselt x = nd, millest n = x/d, seega $I = I_0 \cdot 2^{-x/d}$. Kuigi tegur 2 (või ka 10) tundub praktilises mõttes mugav, on matemaatiliseks fundamentaalkonstandiks siiski arv e = 2,7182... (naturaallogaritmide alus). Seega suuruse *d* asemel toome sisse hoopis kihi paksuse δ , mida läbides kiirgus nõrgeneb *e* korda. Veelgi sagedamini iseloomustatakse aine neelamisvõimet pikkuse δ pöördväärtusega $\alpha = 1/\delta$, mida nimetatakse neeldumisteguriks. Kokkuvõttes olemegi välja jõudnud kiirguse neeldumist kirjeldava Bouguer'-Lamberti seaduseni:

$$I(x) = I_0 e^{-\alpha x} \tag{3.1}$$

Esitatud arvutus tugines siiski eeldusele, et aine koste valguse läbitungimisele on lineaarne, st algintensiivsuse muutmine muudab proportsionaalselt ka läbitunginud valguse intensiivsust. Tavapäraste valgustugevuste korral on see eeldus alati täidetud, kuid väga suure intensiivsuse puhul (fokuseeritud laserkiires vms) võib neeldumine küllastuda ja valem 3.1 kaotab kehtivuse.

Valemi 3.1 traditsiooniline tuletuskäik on veidi erinev ülaltoodust. Vaatleme õhukese ainekihi Δx läbimist, mis neelab pealelangevast kiirgusvoost I ainult hästi väikese osa ΔI . Äsjamainitud lineaarse koste eeldusel ilmselt $\Delta I \propto I$. Ei ole ka raske läbi näha, et intensiivsuse suhteline muutus on omakorda võrdeline Δx -ga: $\Delta I/I = -\alpha \Delta x$, kus α on võrdetegur ja miinusmärk viitab sellele, et kiirgus nõrgeneb ainet läbides ($\Delta I < 0$). Leitud seosest järeldub I(x) määramiseks diferentsiaalvõrrand $dI/dx = -\alpha I$, mille lahendiks ongi seadus 3.1.

Diferentsiaalvõrrand kujul

$$\frac{dy}{dx} = ay$$

esineb väga sageli lineaarsete füüsikaprotsesside analüüsimisel. Meenutame, et *diferentsiaalvõrrandi lahendamine* tähendab sellise funktsiooni y = y(x) leidmist, mis rahuldab seda võrrandit ja algtingimust $y(0) = y_0$. Praegu on tegemist üsna lihtsa eralduvate muutujatega võrrandiga, mille saab kergesti integreerida:

$$\frac{dy}{y} = a \, dx \quad \Rightarrow \quad \ln y = ax + C \quad \Rightarrow \quad y(x) = e^{ax + C}.$$

Viimane on üldlahend, kus *C* on meelevaldne konstant. Viimase saab fikseerida algtingimusega $y(0) = y_0$, mis annab $C = \ln y_0$. Seega $y(x) = y_0 e^{ax}$. Ülesande saab lahendada ka määratud integraali abil:

$$\int_{y_0}^{y} \frac{dy}{y} = a \int_0^x dx \quad \Rightarrow \quad \ln y \Big|_{y_0}^{y} = ax \Big|_0^x \quad \Rightarrow \quad y(x) = y_0 e^{ax}.$$

Neeldumistegur sõltub üldiselt kiirguse lainepikkusest. Seda sõltuvust $\alpha(\lambda)$ nimetatakse neeldumisspektriks. Kristallilised ained võivad olla mitteisotroopsed, st α sõltub ka kiirguse levimissuunast ja polarisatsioonist. Karakteerset ainekihi paksust $\delta = 1/\alpha$ võib tõlgendada ka kui keskmist teepikkust, mille footon jõuab aines läbida enne neeldumist. Pooljuhi või dielektriku neeldumistegur kristalli omaneeldumise alas võib küündida suurusjärku 10^6 cm⁻¹, samas kvaliteetse optilise kiu neeldumistegur parima läbipaistvuse alas on alla 10^{-6} cm⁻¹. Vastavad karakteersed pikkusmõõdud (δ) on 10 nm ja 10 km, st üliõhuke pooljuhikiht võib kiirguse peaaegu täielikult neelata samas kui optilises kius säilib märkimisväärne osa kiirgusest ka peale kümnete kilomeetrite läbimist.

Bouguer'-Lamberti seadust saab lihtsasti demonstreerida ühtlases kontsentratsioonis fluorestseeruvaid osakesi sisaldava keskkonna näitel (joon. 3.1). Kui suunata sellisele keskkonnale intensiivne luminestsentsi ergastav valgusvihk (nt laserkiir), saab jälgida fluorestseeruvate osakeste helendumist laserkiire teel. Osakesed helenduvad konkreetses ruumipunktis seda tugevamini mida intensiivsem on laserkiir selles ruumipunktis, markeerides seeläbi laserkiire intensiivsuse vähenemist neeldumise tõttu aines.

Joonis 3.1. Värvaine lahus fluorestsentsi ergastava laserkiire teel (värvi kontsentratsioon kasvab vasakult paremale). Ergastava laseri kiir langeb küvetile paremalt.

Murdumisnäitaja ja neeldumistegur on aine põhilised optilised karakteristikud, mis määravad lineaarse optika piires kiirguse leviku aines. Nagu selgub lineaarsete süsteemide teoorias, on spektraalsõltuvused $n(\lambda)$ ja $\alpha(\lambda)$ omavahel seotud läbi teatava integraalteisenduse (Kramers-Kronigi seosed), nii et kui üks neist on teada (mõõdetud) avaras spektraaldiapasoonis, on võimalik välja arvutada ka teine. Vastav analüüs väljub siiski meie kursuse raamest.

Märgime, et neeldumist iseloomustavad karakteristikud α ja δ ning seadus 3.1 kehtivad peale optilise kiirguse ka muude (sh mitte-elektromagnetiliste) kiirguste korral, kuigi teistes valdkondades suuruste α ja δ nimed, tähised ja definitsioonid võivad erineda. Näiteks radioaktiivse kiirguse korral tuuakse sisse teepikkus aines, mille läbimisel kiirguse intensiivsus väheneb kaks korda. Kui näiteks teatud gamma-kiirgus vajab selleks 1 cm paksust plii kihti, siis sama tulemuse annaks 4 cm paksune graniitkivim, 6 cm paksune betoon või 9 cm paksune pressitud pinnas. Kui optilise kiirguse korral kirjeldatakse peamiselt neeldumise sõltuvust lainepikkusest, siis osakestekiirguse korral on loomulikum vaadelda sõltuvust osakese energiast.

3.3 Neeldumisristlõige. Beeri seadus.

Neeldumiskoefitsient kirjeldab fenomenoloogiliselt valguse neeldumist homogeenses ainelises keskkonnas, ent ei ole senise käsitluse raames kuidagi seostatud aine ehitusega mikrotasandil. Vaatleme nüüd veidi spetsiifilisemat, aga sageliesinevat juhtu, kus neeldumine on tingitud ruumis hõredalt jaotunud ühetaolistest osakestest, millede omavaheline interaktsioon on nõrk. Sel juhul kõik osakesed panustavad neeldumisse individuaalselt. Selline mudel kõlbab näiteks gaasilise keskkonna, lisanditega legeeritud tahkiste või väikese kontsentratsiooniga lahuste neeldumise analüüsimiseks (esimesel juhul on osakesteks gaasiaatomid, teisel juhul lisandiaatomid ja kolmandal juhul lahustunud aine molekulid). Sõltuvalt osakese loomusest ja suurusest osake võib pealelangevat valgust neelata osaliselt või täielikult oma ristlõike ulatuses või haarata valguslainest energiat koguni suuremalt pinnalt kui on osakese tegelik ristlõige. Seetõttu üksiku osakese neelamisvõimet on tavaks kirjeldada pindaladimensiooni omava efektiivse karakteristikuga, mida nimetatakse neeldumisristlõikeks ja tähistatakse σ . Niisiis osake neeldumisristlõikega σ neelab pealelangevast kiirgusest energiat sama tempoga nagu absoluutselt must, kiirguse levimissuunaga risti asetatud ketas pindalaga σ . Aatomite, molekulide jms valguse lainepikkusest hulga väiksemate objektide korral σ ei ole üldiselt võrreldav osakese füüsilise suurusega (st elektronpilve karakteerse ulatusega, mis on aatomite korral 10⁻¹⁶ cm² suurusjärgus), vaid võib olla sellest nii oluliselt suurem kui ka väiksem, sõltuvalt sellest kui efektiivselt osake sidestub valguslainega (vt lisa F). Samal põhjusel ei teki atomaarsete objektide puhul ka valguse ekraneerimise ehk varjamise efekti nii nagu suurte objektide korral, st kui kaks aatomit või molekuli on joondatud piki valguse levimise sihti, siis nad ikkagi võrdselt panustavad valguse neeldumisse.

Neeldumise ristlõige mõistagi sõltub oluliselt valguse lainepikkusest ehk sagedusest. Näiteks aatomite korral on σ oluliselt erinev nullist vaid kitsaste spektraalsete resonantside ümbruses, mis vastavad tingimusele $\hbar \omega = E_2 - E_1$. Sel juhul antakse harilikult neeldumisristlõike maksimaalne väärtus resonantsi kohal.

Märgime, et ristlõige on üsna avara rakendusega mõiste nii optiliste kui ka mitte-optiliste protsesside efektiivsuse iseloomustamisel. Näiteks optikas saab osakest iseloomustada terve hulga erinevate ristlõigetega vastavalt valguse neeldumise, hajumise, stimuleeritud kiirgamise jne kirjeldamiseks. Seevastu tuuma- ja elementaarosakeste füüsikas saab omistada ristlõike väärtuse igale kindlat tüüpi muundumisprotsessile (nt kindla energiaga neutroni haaramine teatud tüüpi aatomituuma poolt vms). Juba elementaarse loogika ja dimensioonanalüüsi põhjal on selge, et neeldumisristlõiget σ omavatest osakestest koosneva meediumi neeldumistegur on võrdne korrutisega $N\sigma$, kus N on osakeste arv ruumalaühikus. Täpsem analüüs on järgmine. Kui kiiritustihedus osakese asukohas on I (W/cm²), siis osake neelab kiirgusenergiat võimsusega σI (W). Ühikruumalas neelduva kiirguse võimsus on niisiis $N\sigma I$. Vaatleme risti kiirguse levimise sihiga õhukest ainekihti paksusega Δx ja ristlõike pindalaga S (joon. 3.2). Sellesse ainekihti siseneb kiirgus intensiivsusega I ja väljub intensiivsusega $I + \Delta I$ ($\Delta I < 0$). Ilmselt kiirgusenergia, mis vaadeldavas ruumalas "kaotsi läheb", on võrdne kiirgusenergiaga, mis selles ruumalas neeldub:

$$IS - (I + \Delta I)S = (S\Delta x)N\sigma I$$

(Parema poole üleskirjutamisel on võetud keskmiseks intensiivsuseks kihis I, sest $|\Delta I| \ll I$.) Kui läheme nüüd piirile $\Delta x \rightarrow 0$ ja arvestame tuletise definitsiooni, saame

$$\frac{dI}{dx} = -\sigma NI.$$

Üldine neeldumisseadus 3.1 on aga diferentsiaalkujul $dI/dx = -\alpha I$. Nende avaldiste võrdlus näitab, et

$$\alpha = \sigma N \tag{3.2}$$

Seost 3.2 nimetatakse Beeri seaduseks. Neeldumiskoefitsient on niisiis võrdeline neelavate osakeste kontsentratsiooniga.

Kui prepareerida proov, kus osakeste kontsentratsioon N on täpselt teada, ja mõõta selle proovi neeldumistegur, saab Beeri seaduse põhjal kergesti määrata osakese neeldumisristlõike, mis on üksiku osakese jaoks märksa konkreetsem karakteristik,

võrreldes aine üldise neeldumisteguriga. Näiteks aatomi neeldumisristlõike saab juba otseselt seostada aatomi ehitusega, st elektronide lainefunktsioonidega (vt ptk 6).

Üldistatult ütleb Beeri seadus lihtsalt seda, et keskkonna neeldumiskoefitsient α on võrdeline neelava aine kontsentratsiooniga (misiganes ühikutes on viimane väljendatud). See on samuti võrdlemisi universaalne seadus, nii nagu ka kiirguse intensiivsuse eksponentsiaalne sumbumine keskkonnas.

3.4 Läbilaskvustegur ja optiline tihedus

Neeldumiskoefitsient on aine enese karakteristik (nagu murdumisnäitajagi), mis ei sõltu ainetüki suurusest ega kujust. Neeldumiskoefitsienti tuleb määrata rohkem või vähem kaudsete võtetega, sest praktiliselt kunagi ei realiseeru situatsioon, kus katseobjekti läbipaistvus oleks üheselt määratud vaid uuritava substantsi neeldumisteguri kaudu, nii nagu Bouguer'-Lamberti seadus seda ette näeb.

Olgu meil monokromaatne paralleelsete valguskiirte kimp lainepikkusega λ ja intensiivsusega I_0 . Asetame risti selle kiire teele tasaparalleelsete pindadega objekti (kristall, kile või vedelik küvetis). Sellise geomeetria korral kindlustame vähemalt selle, et ei teki valguse hajumist ega valguse murdumisest tingitud suunamuutust. Objekti läbinud kiirguse intensiivsus I on üldiselt väiksem kui I_0 , sest osa kiirguse energiat neeldub materjalis ja märgatava kao võib anda ka peegeldumine objekti otspindadel. Suhet

nimetatakse selle objekti läbilaskvusteguriks lainepikkusel λ . T on üldiselt sõltuv λ -st ja seda sõltuvust $T(\lambda)$ kutsutakse objekti läbilaskvusspektriks. Analoogilisel teel defineeritakse peegeldustegur R, kus seekord I tähistab objektilt peegeldunud valguse intensiivsust. Läbilaskvus- ja peegeldustegur ongi primaarsed eksperimentaalselt mõõdetavad suurused. Need on dimensioonitud suurused, mille võimalikud väärtused jäävad ilmselt vahemikku 0...1 ehk 0...100% (kui just tegu ei ole võimendava ehk laserkeskkonnaga).

Seega tõstatub küsimus, kuidas on T ja R seotud aine optiliste ja geomeetriliste

karakteristikutega, milleks on neeldumiskoefitsient α , murdumisnäitaja n ja objekti paksus d. Tugevasti neelavate või suure paksusega katsekehade korral annab ilmselt põhipanuse neeldumine, vastavalt Bouguer-Lambert'i seadusele 3.1,

$$T = \frac{I}{I_0} \sim e^{-\alpha d}$$

Sellele lisanduvad peegelduskaod. Nagu optikas näidatakse, on läbipaistva materjali üksiku pinna peegeldus- ja läbivustegurid risti langevale kiirgusele antud valemitega:

$$\rho = \left(\frac{n-1}{n+1}\right)^2, \quad \tau = 1 - \rho = \frac{4n}{(n+1)^2}$$

Need tulenevad üldisematest Fresneli valemitest.

Näiteks tavalise klaasi murdumisnäitaja on n = 1,5, seega igal klaas/õhk piirpinnal läheb peegelduse tõttu kaduma 4% valgust. Teemandi korral aga n = 2,42 ja $\rho \approx 17\%$.

Arvestades, et objektil on kaks pinda, võime kokkuvõttes kirjutada

$$T = \rho^2 e^{-\alpha d}.$$
 (3.3)

See valem kehtib võrdlemisi paksude objektide korral. Õhukeste kilede läbilaskvusspektris võivad tekkida ostsillatsioonid tingituna kile pindadelt peegeldunud valguslainete interfereerumisest (lihtsaimad näited on seebimull ja õlikile veepinnal).

Sageli kasutatakse *T* asemel optilist tihedust $D = -\log T$. Optiline tihedus näitab seega, mitu *suurusjärku* kiirgus nõrgeneb objekti läbimisel. Kuna 0 < T < 1, siis D > 0 (joon. 3.3). Valemist 3.3 saame

$$D = -\log T \approx \log \rho^2 + 0.43\alpha d. \tag{3.4}$$

Esimene liidetav paremal pool võrdusmärki on määratud aine murdumisnäitajaga ning nõrga dispersiooni korral võib selle lugeda konstandiks (pealegi, võrdlusmõõtmisega taandub see välja). Seega *D* käitub aditiivse konstandi täpsusega samuti nagu neeldumiskoefitsient.¹²

Optilise tiheduse mõistet rakendatakse laialdaselt näiteks mitmesuguste optiliste filtrite kirjeldamisel. Ta annab läbipaistvuse graafilisel esitamisel märgatava eelise

Joonis 3.3. Optilise tiheduse ja läbilaskvuse võrdlus.

kui $T(\lambda)$ varieerub vaadeldavas spektraalvahemikus mitmeid suurusjärke. Näiteks joonisel 3.4 toodud filtri optilise tiheduse graafikult võime kergesti tuvastada, et kiirgust lainepikkusega 514 nm summutab selline filter rohkem kui 10⁶ korda samas kui lineaarselt (läbilaskvuse) skaalalt on selle info väljalugemine praktiliselt võimatu.¹³ Lisaks on optiline tihedus aditiivne tulenevalt logaritmide tuntud omadusest $\log(ab) = \log a + \log b$. Kui näiteks kaks valgusfiltrit on järjestikku, siis nende summaarne läbilaskvustegur on $T = T_1 T_2$ ja summaarne optiline tihedus $D = D_1 + D_2$.

Joonis 3.4. 514 nm laserikiirguse blokeerimiseks ettenähtud ribatõkkefiltri läbilaskvusteguri ja optilise tiheduse võrdlus.

ÜLESANNE 8. Tasaparalleelsete pindadega kristallitüki paksus on 5,0 mm. Kui suur osa kristallile risti langevast valgusest neeldub, kui valguse lainepikkusel on aine

¹²Kuna optiline tihedus on praktilise otstarbega suurus, siis tema defineerimisel kasutatakse kümnend-, mitte naturaallogaritmi. Sellest tuleneb ka koefitsient $0,43 = \log e$ valemis 3.4.

¹³Logaritmilise skaala kasutamine sellisel eesmärgil on muidugi üldlevinud võte mistahes graafikute konstrueerimisel (vt nt jooniseid 9.1 ja 9.5).

murdumisnäitaja 2,0 ja neeldumistegur 3,0 cm⁻¹? Piisab 1% täpsusega õigest vastusest. *Vastus:* \sim 71%.

3.5 Neeldumisspektroskoopia kui kvantitatiivse keemilise analüüsi meetod

Kui molekulide neelamisvõime on teada, võib Beeri seadust kasutada lahustunud aine kontsentratsiooni määramiseks neeldumise kaudu. Lahuste korral on Beeri seaduse kasutamine iseäranis mugav, sest kui mõõta paralleelselt ka puhta lahusti neeldumist samasuguses küvetis, saab nii peegelduse panuse kui ka lahusti enda neeldumise (kui see esineb) kergesti elimineerida.

Antud kontekstis esitatakse neeldumise valemid alternatiivsel kujul, mis teeb nende praktilise kasutamise mugavamaks. Esiteks, lahuste korral on kontsentratsiooni loomulikum väljendada aine hulgaga moolides ruumalaühiku kohta, nii et Beeri seadus omandab kuju $\alpha = \varepsilon c$, kus c on lahustunud aine kontsentratsioon ühikutes M (M = mol/L) ja võrdetegurit ε saab vastavalt nimetada molaarseks neeldumisteguriks. Selle ühik on ilmselt M⁻¹cm⁻¹. Teiseks, Bouguer'-Lamberti seadus esitatakse 10-ne astme baasil. Optilise tiheduse asemel kasutatakse siin sagedamini terminit neelduvus, mille tähis on A (sõnast *absorbance*). Kõike seda kokku võttes saame

$$-\log T \equiv A = \varepsilon c l,$$

kus *l* on lahusekihi paksus küvetis. Kui lahuses on väikeses kontsentratsioonis mitu erinevat analüüti, siis need panustavad valguse neeldumisse üksteisest sõltumatult (st aditiivselt). Et ka sellisel juhul analüütide sisaldust määrata, tuleb mõõta juba spektraalsõltuvusi (mitte lihtsalt neeldumist ühel lainepikkusel). Järelikult antud meetodi jaoks kõige üldisemal kujul võib alusvalemi esitada järgmiselt:

$$A(\lambda) = lc_1\varepsilon_1(\lambda) + lc_2\varepsilon_2(\lambda) + \dots$$
(3.5)

Kuigi molekulide neeldumisribad nähtavas ja UV diapasoonis on reeglina laiad ja vähespetsiifilised, on need siiski üksteisest mingil määral erinevad. Kui mõõta segulahuse neelduvusspekter $A(\lambda)$ ning tuntud kontsentratsioonis ühtainust analüüti sisaldavate testlahuste mõõtmise teel teha kindlaks kõik funktsioonid $\varepsilon_i(\lambda)$, peaksime

saama vastavate spektraalsõltuvuste sobitamise teel määrata ainete kontentratsioonid. Erinevaid lainepikkuseid on spektris palju, seega kujul 3.5 võrrandite arv saab olema hulga suurem kui tundmatute (c_1 , c_2 jne) arv. Sel juhul võime eesmärgiks seada minimeerida nende võrrandite vasakute ja paremate poolte ruutkeskmise erinevuse. Vastav analüüs näitab, et selline ülesandepüstitus viib lineaarse võrrandisüsteemini, kus võrrandeid on täpselt sama palju kui tundmatuid. Selle võrrandisüsteemi kordajaisse on kaasatud neeldumise info kõigil mõõdetud lainepikkustel.

Võib võtta ka piisava arvu üksikuid karakteerseid lainepikkuseid ja nende kaudu kirja panna võrrandisüsteem tundmatute c_1 , c_2 jne määramiseks. Sel juhul muidugi kõigil ülejäänud lainepikkustel saadud neeldumise info läheb kaotsi.

ÜLESANNE 9. Graafikul 3.5 on toodud kahe analüüdi molaarse neelduvuse sõltuvused lainepikkusest teatud lahustis (punane ja sinine kõver). Samas on toodud ka nende ainete segu sisaldava proovi neelduvus (must kõver). Küveti paksus on 10 mm. Hinnake kummagi komponendi sisaldust proovis!

Joonis 3.5. Vt ülesanne 9.

3.6 Valguse hajumine

Hajumiseks nimetatakse üldjuhul valguse kõrvalekaldumist sirgjoonelisest levimisest tingituna keskkonna mikroskoopilisest mittehomogeensusest. Kui aine mittehomogeensus on staatiline (ajas muutumatu), on hajumine elastne, st hajumise käigus valguse sagedus ei muutu. Seevastu ajast sõltuv mittehomogeensus (aatomite vibreerimine aines jms) võib esile kutsuda mitte-elastse hajumise (st hajunud kiirguse sagedus erineb primaarlaine sagedusest).

Optiliselt homogeenses keskkonnas on põhilise tähtsusega valguse elastne e. Rayleigh hajumine aatomitel, molekulidel, kolloidosakestel vm lainepikkusest hulga väiksemal osakestel. Nii väikest osakest võib vaadelda punktikujulise hajutamistsentrina, mis primaarlaine poolt ergutatuna muutub ostsilleerivaks elektriliseks dipooliks kiirates neelatud energia arvel sfäärilisi laineid. Ideaalselt korrapärases keskkonnas need sekundaarlained praktiliselt elimineerivad üksteist kõigis suundades väljaarvatud primaarlaine suunal. Seega makroskoopiliselt vaadeldavat Rayleigh hajumist kutsuvad valdavalt esile mõnesugused staatilised või soojusliikumisest tingitud aine tiheduse fluktuatsioonid. Nagu elektrodünaamikast teada, sõltub võnkuva dipooli kiirguse intensiivsus tugevasti sagedusest (vt valem 2.6). Üldisemalt, polariseerimata kiirguse hajumisel osakestelt karakteerse diameetriga d avaldub hajunud kiirguse intensiivsus suunas θ (primaarlaine suuna ja hajutamise suuna vaheline nurk) ühikulise ruuminurga kohta järgmiselt:

$$I(\theta) = I_0 \frac{1 + \cos^2 \theta}{2} \left(\frac{2\pi}{\lambda}\right)^4 \left(\frac{n^2 - 1}{n^2 + 2}\right)^2 \left(\frac{d}{2}\right)^6,$$

kus *n* on osakese murdumisnäitaja (ümbritseva keskkonna suhtes) ja I_0 on primaarkiirguse intensiivsus. Niisiis sõltub Rayleigh hajumise efektiivsus tugevasti lainepikkusest kasvades pöördvõrdeliselt lainepikkuse neljanda astmega. Sellega seletub muuhulgas taeva sinine värvus: päikesekiirgus hajub tolmuosakestel, veepiiskadel ja õhutiheduse termilistel fluktuatsioonidel ning silma jõuvad eelkõige sinised kiired, mis hajuvad kõige intensiivsemalt (joon. 3.6). Samal põhjusel on tõusev ja loojuv päike punaka värvusega, sest pikalaineline kiirgus sumbub atmosfääri läbides kõige vähem.

Leidmaks hajunud kiirguse koguintensiivsust, tuleb eelnevat avaldist integreerida üle kõigi ruumisuundade. Tulemuseks on

$$I_{s} = \sigma_{s}I_{0}, \quad \text{kus} \quad \sigma_{s} = \frac{2\pi^{5}}{3} \times \frac{d^{6}}{\lambda^{4}} \times \left(\frac{n^{2}-1}{n^{2}+2}\right)^{2}$$

Seega, nagu ka neeldumise korral, on osakese individuaalset hajutamisvõimet võimalik iseloomustada vastava ristlõike (hajutamisristlõike) kaudu.

Joonis 3.6. Nähtavas diapasoonis päikesekiirguse Rayleigh hajumine õhus.

Üksiku aatomi või molekuli korral ei saa rääkida eraldi murdumisnäitajast ja diameetrist, selle asemel tuleb neid iseloomustada polariseeritavusega α (selle mõistega tutvume lähemalt jaotises 7.3.2):

$$I(\theta) = I_0 \frac{1 + \cos^2 \theta}{2} \left(\frac{2\pi}{\lambda}\right)^4 \alpha^2$$
$$\sigma_s = \frac{128\pi^5 \alpha^2}{3\lambda^4}.$$

Lainepikkuse- ja suunasõltuvused on aga Rayleigh hajumise jaoks universaalse iseloomuga kehtides ühtviisi mistahes lainepikkusest hulga väiksemate hajutavate osakeste jaoks. Mõnikord reserveeritakse Rayleigh hajumise mõiste ainult aatomite, molekulide ja aine tiheduse termiliste fluktuatsioonide jaoks, intensiivset hajumist molekulist palju suurematelt (ent lainepikkusest siiski väiksematelt) osakestelt (nt kolloidosakesed lahuses) nimetatakse aga Tyndalli efektiks.

Valguse elastset hajumist mistahes diameetriga sfäärilistel osakestel (udu, pilved jms) nimetatakse Mie hajumiseks (Mie hajumine taandub Rayleigh hajumiseks piisavalt väikeste osakeste korral). Erinevalt Rayleigh hajumisest sõltub Mie hajumine võrdlemisi nõrgalt lainepikkusest. Selle üks tuntum avaldumisvorm on pilvede valge värvus.

Põhiline mitte-elastse hajumise näide on Raman-hajumine, millega kaasneb molekuli elektron-, võnke- või pöörlemisseisundi muutus. Mitte-elastset hajumist akustiliste võnkumiste (helilainete) poolt tekitatud aine tiheduse fluktuatsioonidel nimetatakse Brillouini hajumiseks. Põhimõtteliselt on kahe viimase hajumise puhul tegemist siiski ühe ja sama nähtusega. Mitteelastse hajumise ristlõige on aga väga väike võrreldes elastse hajumise ristlõikega.

Niisiis ainet läbides toimub valguse sumbumine nii neeldumise kui ka hajumise tõttu. Nende koosmõju nimetatakse valguse ekstinktsiooniks. Matemaatiliselt avaldub valguse ekstinktsioon endiselt valemi 3.1 kujul, kus ekstinktsioonikoefitsienti α panustab üldjuhul nii neeldumine kui ka hajumine.

ÜLESANNE 10. Tuntud keskkond Rayleigh hajumise jälgimiseks on kvartsi kolloidosakeste lahus. Oletagem, et spetsifikatsiooni järgi on tegemist 10%-lise vesilahusega (massi järgi), kus kolloidosakeste diameeter on 50 nm. Hinnake sellise lahuse ekstinktsioonikoefitsienti lainepikkusel 500 nm. Arvandmed, mida võib vaja minna: $\rho_{SiO_2} = 2,6 \text{ g/cm}^3$, $\rho_{H_2O} = 1,0 \text{ g/cm}^3$, $n_{SiO_2} = 1,46$, $n_{H_2O} = 1,33$.

ÜLESANNE 11. Benseeni Raman-hajumist jälgitakse mikroskoobi vahendusel. Benseen (C₆H₆) on vedelik tihedusega 0,9 g/cm³. Benseeni molekuli Raman-hajumise ristlõige on 3 × 10⁻²⁹ cm². Ergastav laser lainepikkusega 488 nm ja intensiivsusega 20 mW on fokuseeritud täpiks diameetriga 2 µm. Spektromeetrisse jõuab vaid kiirgus, mis genereeritakse õhukeses kihis objektiivi fookuses; olgu selle kihi paksus 10 µm. Objektiiviga haaratakse kiirgus, mis hajub koonusesse tipunurgaga 30°. Hinnake Raman-hajunud footonite arvu sekundis, mis õnnestub koguda objektiiviga sellistes tingimustes. *Vastus:* 2×10^5 footonit/s.

3.7 Neeldumise mõõtmine

Võttes aluseks prisma (või difraktsioonvõre), saame läbilaskvusspektri mõõtmiseks püstitada kaks erinevat optilist skeemi, mis järelduvad otseselt vastavatest kiirgusspektri mõõteskeemidest (joon. 2.15). Erinevus viimastest seisneb vaid selles, et kiirguse teele tuleb mingil etapil asetada uuritav proov (tingimusel, et sellega ei muutu valguse levimise suund). Spektrofotomeetrites (need on seadmed läbilaskvus-, peegeldus- ja neeldumisteguri spektraalmõõtmisteks) kasutatakse valdavalt joonisel 3.7a kujutatud skeemi, mida on üldotstarbeliste mõõtmiste vajadusteks tehniliselt lihtsam realiseerida. Pideva valge spektriga valgusallikast pärinev kiirgus esmalt monokromatiseeritakse (juhitakse läbi monokromaatori) ja seejärel suunatakse detektorisse. Teostada tuleb kaks järjestikust mõõtmist, üks kord ilma katseobjektita (detektori näit I_0) ja teine kord koos katseobjektiga (detektori näit I). Suhe I/I_0 annab läbilaskvusteguri antud lainepikkusel. Spektri saamiseks tuleb monokromaatorit skaneerida üle huvipakkuva spektraalvahemiku (antud juhul pöörata prismat).

Mõnikord rakendatakse ka joonisel 3.7b kujutatud skeemi, kus katseobjektile suunatakse otse valgusallikast lähtuv valge kiirgus, mis peale proovi läbimist suunatakse spektraalanalüüsiks spektromeetrisse. Teostada tuleb jällegi kaks mõõtmist, kiirgusspektrite suhe $\Phi(\lambda)/\Phi_0(\lambda)$ annab läbilaskvusspektri. Kui spektromeeter on varustatud rividetektoriga, siis spektri saab registreerida ühekorraga (ilma skaneerimata), seega selline meetod on skeemiga 3.7a võrreldes hulga kiirem.

4 LUMINESTSENTS

4.1 Luminestsents ja soojuskiirgus

Aine saab valgust kiirata vaid mõnesuguse sisemise energiavaru arvelt. Et selline kiirgus saaks olla kestev, tuleb energiakadu kompenseerida (ainele energiat juurde andes). Kujutleme, et aine absorbeerib mõnesuguse koguse energiat. Nüüd võib ette kujutada kahte erinevat stsenaariumi, kuidas see energia muundub kiirguseks:

 Ainele antud energia hajub paljude väikeste soojusliikumise kvantidena ühtlaselt kogu materjalis. Tulemuseks on (võrdlemisi pikalaineline) soojuskiirgus. Viimase

Joonis 3.7. Läbilaskvusspektri mõõtmise põhimõtteskeem.

omadused (intensiivsus, värvus) sõltuvad peamiselt temperatuurist, mitte niivõrd konkreetsest ainest. Soojuskiirguse esilekutsumiseks piisab, kui ainet kuumutada.

 On mõeldav, et osa ainele antud energiast lokaliseerub võrdlemisi suurte energiakvantidena teatud (lisandi)aatomitel või defektidel. Sel juhul tekib (võrdlemisi lühilaineline) luminestsentskiirgus. Viimase omadused sõltuvad peamiselt aine ehitusest, mitte temperatuurist. Vaid kuumutamisega ei saa luminestsentsi esile kutsuda.¹⁴

Soojuskiirgust kiirgab iga keha, mille temperatuur on absoluutsest nullist kõrgemal (temperatuur ongi soojusliikumisega seotud siseenergia mõõt). Soojusliku tasakaalu tingimustes asustavad aineosakesed mõnesuguse tõenäosusega kõiki võimalikke

energiatasemeid, seega soojuskiirguse spekter on üsna ulatuslik ja sõltub tugevasti temperatuurist (mida kõrgem temperatuur, seda kõrgemaid energiatasemeid asustatakse ja seda lühilainelisemaks kiirgus muutub). Absoluutselt musta keha soojuskiirguse spekter ja intensiivsus on üheselt määratud temperatuuriga (jaotis 9.2.1).

Seevastu luminestsentsi algpõhjuseks on mõnesugune *mittesoojuslik* energia juhtimine ainesse, nii et vaid teatud energiatasemed aines ergastuvad ja aine satub termiliselt mittetasakaalulisse olekusse. Luminestsentsi tingiva energia andmist ainele nimetatakse luminestsentsi ergastamiseks; selleks võib olla valgusega kiiritamine, elektrivool, elektronidega pommitamine, radioaktiivse aine kiirgus (α -, β -, γ -kiirgus), keemiline reaktsioon, hõõrdumine või isegi helilained. Vastavalt räägitakse foto-, elektro-, katood-, raadio-, kemo-, tribo- ja sonoluminestsentsist. Seega luminestseeruvad materjalid töötavad energiamuunditena transformeerides erinevaid mittesoojuslikke energialiike valgusenergiaks. Mõistagi luminestseeruv aine jätkab ühtlasi ka (enda temperatuurile vastava) soojuskiirguse emissiooni, nii et luminestsentskiirgus on justkui täiendav kiirgus, mis lisandub soojuskiirguse foonile.¹⁵

Luminestsents pole siiski nii universaalne fenomen nagu soojuskiirgus — enamus aineid ei luminestseeru praktiliselt üldse või teevad seda spetsiifilistel tingimustel. Üks tuntumaid luminestsentsi ilminguid on mitmesuguste mineraalide ja orgaaniliste ühendite helendumine ultraviolettkiirguse käes (joon. 4.1 ja 1.2b). Aine kuumutamine võib mõnikord kiirendada ainesse akumuleerunud energia vabanemist luminestsentsina. Sel juhul räägitakse termostimuleeritud luminestsentsist e. termoluminestsestestest. Viimasest terminist ei maksa aga järeldada nagu võiks kuumutamine olla luminestsentsi algpõhjuseks.

Luminestsentsi iseloomustab ka teatava järelhelenduse olemasolu, sest kõik energia muundumise ja relaksatsiooni protsessid nõuavad mingil määral aega. Tavaliselt on järelhelendus siiski liiga kiire, et seda oleks võimalik silmaga tuvastada. Välistamaks peegeldunud või hajunud kiirguse liigitumist luminestsentsi mõiste alla, nõutakse et luminestsentsi järelhelenduse kestus peab ületama valguslaine võnkeperioodi. Teisisõnu, *ei säili faasikorrelatsiooni* pealelangeva ja kiirguva valguslaine vahel (nagu hajumise korral).

Luminestsentskiirgust võib nimetada "külmaks" kiirguseks selles mõttes, et reeglina

¹⁴Suure hulga väikeste soojuskvantide kombineerumine üheks suureks energiakvandiks on kaduvväikese tõenäosusega (sisuliselt termodünaamika II seadus).

¹⁵Eksisteerib ka haruldasem nähtus, negatiivne luminestsents, mis vähendab soojuskiirguse taset.

Joonis 4.1. Mitmesuguste mineraalide luminestseerumine ultraviolettkiirguse käes.

on ta hästi jälgitav eelkõige madalatel temperatuuridel, samas kui soojuskiirgus on hästi jälgitav kõrgetel temperatuuridel (alles mitmesaja kraadini kuumutatud keha kiirgab silmale nähtavat punast valgust). Niisiis näiteks hõõglambi kiirgus on soojuskiirgus, kuid päevavalgustoru või valgusdioodi (mis muide on käega katsudes võrdlemisi jahedad) kiirgused tuleb liigitada luminestsentsi alla.

Luminestsentskiirguse põhikarakteristikud on spekter ja kineetika (sh järelhelenduse kestus). Fotoluminestsentsi saab iseloomustada ka kvantsaagise ning ergastusspektriga. Orienteeritud molekulide või monokristallide korral võib huvi pakkuda ka kiirguse polarisatsioon.

Luminestsentskiirguse tekitamise protsessis ei pruugi sugugi osaleda aine tervikuna, oma kõikides mikroskoopilistes detailides. Vastupidi, luminestsentsi footonite otseseks allikaks on harilikult konkreetsed atomaarsed või molekulaarsed üksused aines, millel on teatud kindel lokaalne struktuur ja energiaseisundid, ning peale ergastumist sobivale kõrgemale energiatasemele järgneb footoni kiirgamine. Hõredas gaasilises keskkonnas on sellisteks valguse kiirgajateks (või neelajateks) tõepoolest individuaalsed aatomid või molekulid, seevastu vedelikes või tahkistes on nende omadused mõjutatud ka peremeeskeskkonna (maatriksi) poolt. Neid osakesi nimetatakse kromofoorideks, kui nad ilmutavad ennast neeldumises (st annavad ainele iseloomuliku värvuse läbivas valguses), ning luminofoorideks või fluorofoorideks, kui nad ilmutavad ennast luminestsentsi kaudu (mõnikord nimetatakse luminofooriks ka luminestseeruvat ainet tervikuna). Tahkesse maatriksisse viidud lisandiaatomit (vms võredefekti), mis annab ainele intensiivse luminestsentsi, nimetatakse ka kiirgustsentriks, luminestsentsitsentriks või aktivaatoriks. On olemas ka selliseid kiirgavaid struktuure (näiteks eksimeermolekulid gaasis, eksitonid teatud kristallides, vms), mis tekivad alles aine ergastamise käigus ja mis peale relakseerumist lakkavad eksisteerimast.

4.2 Luminestsentsi kineetika

Luminestsentskiirguse iseloomulikuks omaduseks on mõnesuguse kestusega järelhelenduse säilimine pärast ergastamise peatamist. Selle järelhelenduse kineetika (st ajast sõltuvuse) uurimine võib anda informatsiooni luminestsentsi mehhanismi kohta ja on samas oluline ka luminestsentsmaterjali võimalike rakenduste valikul. On tavaks saanud järelhelenduse karakteerse kestuse põhjal liigitada luminestsentsnähtusi kahte kategooriasse. Hästi üldiselt ja lihtsustatult võib öelda, et fluorestsents on selline luminestsentskiirgus, mis lakkab "praktiliselt hetkeliselt", seevastu fosforestsents on jälgitav veel "tükk aega" pärast aine ergastamist. Sõna "fluorestsents" tuleneb mineraal fluoriidi (CaF₂) nimetusest (üks tuntumaid fluorestseeruvaid mineraale), sõna "fosforestsents" pärineb aga keemilise elemendi fosfori nimetusest, mille õhus jälgitav nõrk helendus (mida alguses peeti ekslikult luminestsentsi järelhelenduseks) on tegelikult tingitud fosfori aeglasest oksüdeerumisest õhus (st kemoluminestsents).

Juhul kui fluorofoori ergastumine toimub peaaegu hetkeliselt, siis järelhelenduse kestus ongi määratud fluorofoori ergastatud seisundi elueaga. Reeglina on see väiksem kui 10 ms (tüüpiliselt 10 ns). Orgaaniliste molekulide puhul sellist kiirgust nimetataksegi fluorestsentsiks. Kui aga tegemist on tugevalt keelatud üleminekuga, siis ergastatud seisundi eluiga on hulga pikem (teiste sõnadega, ergastatud seisund on metastabiiline) ja räägitakse fosforestsentsist (sel juhul pole enam korrektne nimetada kiirgajat fluorofooriks).

Seevastu anorgaaniliste tahkiste korral nimetatakse fosforestsentsiks sellist prot-

Joonis 4.2. Mõningaid näiteid pika järelhelendusega luminofooride rakendustest.

Joonis 4.3. Fluorestsentsi ja fosforestsentsi erinevust selgitav skeem.

sessi, kus maatriksis paikneva luminestsentsitsentri ergastamine toimub *viivitusega*, andes tulemuseks äärmiselt pika, juba inimsilmaga täheldatava järelhelenduse. Leidub aineid, mille järelhelenduse kestus (pärast "laadimist" heleda valguse käes) ulatub tundidesse. Selliseid aineid kasutatakse pimedas helenduvates liiklus-, ohuja avariimärkides, kellaosutites, värvainetes, jm (joon. 4.2). Lihtsustatult võib kujutleda, et algselt ergastatud elektron (mis võib kuuluda luminestsentsitsentri koosseisu) vabaneb oma aatomist ja aines edasi liikudes võib sattuda mõnesugusesse "lõksu", kus ta viibib seni kuni vabaneb soojuslike fluktuatsioonide toimel. Sellisel viisil migreerudes jõuab ta viimaks järgmise luminestsentsitsentrini, kus ta rekombineerub (joon. 4.3). On arusaadav, et sellist protsessi saab termiliselt stimuleerida, seega fosforestsents on tihedalt seotud termoluminestsentsiga.

Kõige lihtsam on kirjeldada fluorestsentsi kustumise kineetikat (selle füüsikalisi põhjuseid analüüsitakse täpsemalt jaotises 6.3.2 vabade aatomite korral). Isegi kui

ergastatud fluorofoori ei mõjutata mitte mingil viisil, siis ikkagi mõnesuguse ajavahemiku möödudes süsteem iseeneslikult relakseerub ja kiirgab footoni (viimast juhul kui ei leidu konkureerivaid kanaleid energiast vabanemiseks). Tegemist on juhusliku kvantmehaanilise sündmusega, mille toimumise hetke iga konkreetse fluorofoori puhul ei ole võimalik ette ennustada, kuid suure hulga ühesuguste fluorofooride ansambli jaoks on statistiline käitumine täpselt determineeritud. Joonis 4.4 kujutab ergastatud seisundisse jäänud fluorofooride arvu N sõltuvana ajast t. Oletagem, et alghetkel on ergastatud seisundis N_0 fluorofoori. Pärast teatava ajavahemiku Tmöödumist on ergastatud seisundisse jäänud vaid pooled algselt ergastatud süsteemid. Järgmise sama pika ajavahemiku järel on nende arv kahanenud veel kaks korda jne. Kirjeldatud protsess on analoogiline radioaktiivse lagunemise seadusega, kus ajavahemikku T nimetatakse poolestusajaks. Niisiis

$$N(t) = N_0 2^{-t/T}$$

Kuigi poolestusaja mõiste tundub praktiliseks kasutamiseks mugav ja loomulik, ei oma fundamentaalset tähtsust siiski mitte arv 2, vaid arv e = 2,7182... Seega eelnev avaldis asendub mõnevõrra fundamentaalsema seosega

$$N(t) = N_0 e^{-t/\tau}$$
(4.1)

kus τ on defineeritud kui ajavahemik, mille jooksul ergastatud fluorofooride arv kahaneb *e* korda (ilmselt $\tau = T/\ln 2$). τ sõltub kvantsüsteemi alg- ja lõppseisundi loomusest ning sageli ka fluorestsentsi kustutavate protsesside panusest. Kiirguse intensiivsus $I \propto dN/dt \propto N$ (eksponendi tuletis on eksponent), seega täpselt samasugune seaduspära jääb püsima ka kiirguse intensiivsuse ajasõltuvuse jaoks:

$$I(t) = I_0 e^{-t/\tau}$$
(4.2)

Seega peale ergastuse peatamist fluorestsentsi intensiivsus monotoonselt kahaneb aja jooksul, kuigi matemaatiliselt ranges mõttes ei muutu kunagi päris nulliks. Protsessi *karakteerset kestust* saab siiski iseloomustada parameetriga τ , mida selles kontekstis nimetatakse fluorestsentsi elueaks ehk kustumisajaks.

Valemiga 4.2 väljendatud seaduspära kehtib eeldusel, et kõik fluorofoorid on identsed, kiirgavad üksteisest sõltumatult ja kiirgus lähtub ainult ühelt ergastatud seisundilt, mille asustamine toimub kiiresti (võrreldes τ -ga). Keerulisematel juhtudel

ei pruugi valem 4.2 tõepäraselt kirjeldada fluorestsentsi kineetikat. Kui eksisteerib mitu erinevate omadustega fluorofooride ansamblit (mis siiski kiirgavad samas spektrialas), siis on kustumine multieksponentsiaalne:

$$I(t) = \sum_{i} A_{i} e^{-t/\tau_{i}}.$$
(4.3)

See kineetika kirjeldab näiteks sellist mudelsitutatsiooni, kus kristalli viidud luminestseeruv võõraatom saab positsioneeruda mitmesse kristallograafiliselt erinevasse võresõlme. Erinev kristalliümbrus tingib ka erinevad luminestsentsomadused, sh mõjutab fluorestsentsi eluiga.

Fluorofoori ergastamine ei pruugi alati toimuda hetkeliselt. Sel juhul on kineetikas olemas ka (sujuvalt) tõusev osa (vt jaotis 6.3.2). Fosforestsentsi käigus leiabki üldiselt aset hulk erineva iseloomuga protsesse, sh ergastatud laengukandjate sattumine lõksudesse, lõksudest vabanemine termilise agitatsiooni toel, migreerumine ja lõpuks rekombinatsioon luminestsentsitsentriga. Eraldi võttes võivad need protsessid olla kirjeldatavad nn esimest järku kineetikaga (mis on aluseks ka mudelile 4.1), kuid nende kombineeritud kineetika võib osutuda keerulisemaks. Vaatleme siinkohal kõige lihtsamat mudelsituatsiooni, kus pärast aine "laadimist" on laengukandjad kogunenud ühte tüüpi lõksudesse, mille energeetiline sügavus on *E*. Tõenäosus, et laengukandja suudab termiliste võnkumiste toel (temperatuuril *T*) sellisest lõksust vabaneda, on võrdeline suurusega $\exp(-E/kT)$. Kui me teeme nüüd täiendava lihtsustuse, et vabanenud laengukandja haaratakse pea hetkeliselt luminestsentsitsentri poolt, mis seejärel kiiresti relakseerub ja kiirgab footoni, siis saame endiselt kiirguse eksponentsiaalse kustumise, kuigi see on nüüd determineeritud fluorofoori ergastamise, mitte kiirgamise tempoga. Kustumisaeg hakkab ilmselt sõltuma tem-

peratuurist:

 $\tau = \tau_0 \exp(E/kT).$

Juhul, kui aine ergastamise hetkel on $T \ll E/k$, siis toimub lõksude täitmine laengukandjatega (aine "laadimine"). Piisavalt sügavate lõksude korral ja konkureerivate relaksatsioonimehhanismide puudumisel võivad laengukandjad lõksudesse pidama jääda väga pikaks ajaks (tuhandeid aastaid). Kui nüüd sellist ainetükki hakata soojendama, siis temperatuuri süstemaatilisel tõstmisel leiab mingil perioodil (orienteeruvalt siis kui $T \sim \frac{1}{25}E/k$) aset laengukandjate massiline vabanemine lõksudest ja luminestsentsi intensiivne puhang (vt lisa D). Seda nähtust nimetatakse termoluminestsentsiks. Termoluminestsents on leidnud laialdast rakendamist ioniseeriva kiirguse dosimeetrias, luminestsentsmaterjalide karakteriseerimisel ja arheoloogiliste leidude dateerimisel.

Üldisemal juhul võib aines esineda mitmesuguse sügavusega (või koguni pideva energeetilise spektriga) lõkse. Sellisel juhul ei ole fosforestsentsi kustumise kineetika eksponentsiaalne. Paljudel juhtudel võib täheldada järgmist seaduspära:

$$I(t) = \frac{I_0}{(1+\gamma t)^n}.$$
(4.4)

Niisiis asümptootiliselt $I(t) \propto t^{-n}$ (astmeseadus).

Illustreerimaks ühe või teise kustumiskineetika mudeli kehtivust tuleks katsetulemused esitada sobivas teljestikus. Lihtsa eksponentsiaalse kustumise korral on selleks pool-logaritmiline teljestik, kus valem 4.2 kirjeldab sirget, mille tõusust saab määrata kustumisaja τ (joon. 4.5). Multieksponentsiaalse kustumise korral võib sobivatel tingimusel eristada pool-logaritmilises teljestikus mitut lõikuvat sirget (joon. 4.6).

Luminestsentsi kustumiskineetika mõõtmisel on ka praktilisi rakendusi. Näiteks mitmete orgaaniliste molekulide fluorestsentsi kustutab efektiivselt hapniku olemasolu ümbruskeskkonnas. See on aluseks vastavatele gaasisensoritele. Samuti võib teatud luminofooride kustumisaeg spetsiifiliselt sõltuda temperatuurist, võimaldades distantsilt määrata aine temperatuuri. Kustumisaja registreerimine on eelistatud võrreldes luminestsentsi intensiivsuse mõõtmisega, kuna viimane on mõjutatud paljudest tehnilistest probleemidest (nt ergastava kiirgusallika stabiilsus, mõõdetava aine kontsentratsioon jms).

ÜLESANNE 12. Miks pool-logaritmilises teljestikus müra näiline amplituud oluliselt kasvab kustumiskineetika sabaosas (joon. 4.5)?

Joonis 4.5. Fluorestsentsi kustumiskineetika võrdlus lineaarses ja pool-logaritmilises teljestikus. Mõõtmisprotsessi on simuleeritud lisades signaalile footonloendusega kaasnevat haavelmüra. Samuti on kasutatud lõpliku kestusega ergastavat valgusimpulssi illustreerimaks luminestsentsi tekkimist.

ÜLESANNE 13. Hinnake jooniselt 4.5 fluorestsentsi kustumisaeg!

4.3 Fotoluminestsents ja selle spektraalkarakteristikad

Üks olulisemaid luminestsentsiliike on fotoluminestsents, mis tekib aine fotoergastusel. Fotoluminestsentsi mõningate põhiliste seaduspärasuste formuleerimiseks vaatleme ühetaoliste fluorofooride ansamblit, näiteks konkreetse keemilise ühendi molekule lahuses või kindlat tüüpi kiirgustsentreid kristallis. Eksperiment viib järgmiste empiiriliste seaduspärasuste tuvastamisele:

- Luminestsentskiirguse spekter üldjuhul ei sõltu ergastava kiirguse lainepikkusest (või kui selline sõltuvus siiski eksisteerib, viitab see pigemini mitmete erinevate fluorofooride esinemisele proovis).
- Luminestsentsi lainepikkus on reeglina suurem ergastava kiirguse lainepikkusest. Täpsemalt, kiirgusspektri maksimum on neeldumisspektri maksimumiga võrreldes nihutatud suuremate lainepikkuste poole. Seda nimetatakse Stokes'i seaduseks ja vastavat lainepikkuste erinevust Stokes'i nihkeks.

Joonis 4.6. Kahe-eksponentsiaalse kustumiskineetika $I(t) = A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$ graafik pool-logaritmilises teljestikus.

 Luminestsentsi kiirgusspekter meenutab oma kujult ligikaudu neeldumisspektri peegelpilti.

Neid tähelepanekuid põhjendatakse molekuli energiatasemete skeemi baasil jaotises 7.5. Siinkohal piisab tõdemusest, et reeglina nii pärast ergastava valguskvandi neelamist kui ka fluorestsentsi footoni kiirgamist süsteem relakseerub mingil määral, nii et mõningane osa energiat läheb paratamatult soojuseks.

Leidub ka luminofoore, mille luminestsentsi lainepikkus on väiksem ergastava kiirguse lainepikkusest (põhimõtet selgitab joonis 4.7a), kuid see efekt tugineb juba mittelineaarse iseloomuga protsessidele, mis toimivad efektiivselt vaid suurte kiiritustiheduste korral.

Olulist informatsiooni fotoluminestsentsi tekkimise kohta võib anda ka selle ergastusspekter. Viimane kirjeldab *luminestsentsi intensiivsuse sõltuvust ergastava kiirguse lainepikkusest*. Kuigi ergastusspekter põhimõtteliselt kirjeldab neeldumist, on sellel neeldumisspektriga võrreldes mõningad eelised. Esiteks, signaali (luminestsentskiirguse tugevust) registreeritakse ideaalis nullise fooni taustal, seega saavutatakse

Joonis 4.7. (a) Stokes'i seadust rikkuva kiirguse saamise põhimõte. (b) Rohkem kui 100%-lise kvantsaagise saamise põhimõte ("footoni poolitamine").

parem signaal-müra suhe kui läbilaskvuse mõõtmisel, mille puhul on tarvis määrata neeldumisest tingitud signaali vähenemist võrreldes 100%-se läbilaskvusega. Teiseks, ergastusspekter väljendab ainult neid neeldumiskanaleid, mis viivad vaadeldava luminestsentsi tekkele. Lõpuks, mõningate katseobjektide puhul (pulbrid, läbipaistmatule alusele kantud kiled, keerulise kujuga kristallid jms) on neeldumise mõõtmine keeruline.

Ergastusspektrist rääkides eeldasime, et luminestsentsi spekter ei sõltu ergastava kiirguse lainepikkusest. Sellisel juhul annab luminestsentsi kiirgusspekter koos ergastusspektriga ammendava spektraalse kirjelduse. Keerulisemate süsteemide korral ei pruugi selline tingimus kehtida. Luminestsentsi ja selle ergastusspektri mõisteid on võimalik siduda moodustamaks veelgi üldisemat spektraalkarakteristikat, mida võiks nimetada ergastus-kiirgusspektriks (kasutatakse ka termineid totaalspekter, ergastus-kiirgusmaatriks jms). Seda võib esitada 3D graafikuna nagu kujutatud joonisel 4.8, kus ühel teljel jookseb ergastava kiirguse lainepikkus, teisel teljel detekteeritava kiirguse lainepikkus ja värvusskaalasse on kodeeritud vastava luminestsentsisignaali tugevus. Kui kiirgusspektri korral tuleb spetsifitseerida kiirguse lainepikkus, millega ainet on ergastatud, ning ergastusspektri korral määratleda lainepikkus, mida on detekteeritud, siis ergastus-kiirgusspekter sisaldab juba kogu vajaliku informatsiooni. Lõigates seda maatriksit ühe koordinaadi sihis, saab välja lugeda kiirgus- või ergastusspektri (vt graafikud all ja paremal joonisel 4.8).

Joonis 4.8. Ergastus-kiirgusspektri simulatsioon aine jaoks, mis sisaldab kolme erinevat luminofoori, kusjuures luminofoori A spektrijooned on homogeenselt laienenud, luminofooridel B ja C aga mittehomogeenselt laienenud (vt ptk 5). Alumine graafik on kiirgusspekter, mis vastab horisontaalsele kriipsjoonele; parempoolne graafik on ergastusspekter, mis vastab vertikaalsele kriipsjoonele.

Lõpetuseks märgime, et fotoluminestsentsi spektraalkarakteristika ei pruugi olla määratud vaid uuritava aine koostisega vaid võib mingil määral sõltuda ka proovi suurusest ja kujust. Esiteks, kui luminofooride kontsentratsioon aines on väga kõrge, võib osa emiteeritud kiirgusest uuesti neelduda, mistõttu kiirgusspektri kuju moonutub vastavalt. Teiseks, neeldunud ergastava kiirguse hulk varieerub lainepikkusega vastavalt proovi neelduvusspektrile. Seetõttu näiteks mahumaterjali ja õhukese kile ergastusspektrid võivad olla üsna erinevad. Et teha ergastusspektri põhjal järeldusi luminestsentsi efektiivsuse (st kvantsaagise) kohta erinevatel ergastuse lainepikkustel, tuleb ergastusspektrit kombineerida sama objekti neelduvusega.

4.4 Luminestsentsi kvantsaagis, kustumisaeg ja temperatuur

Rakendusi silmas pidades on väga oluline ka luminestsentsi *efektiivsus*. Seda võib väljendada mitmesugusel viisil. Näiteks energeetilise kasuteguri e. energiasaagise võiks defineerida kui luminestsentsi ja primaarkiirguse energiate (võimsuste) suhte. Iga konkreetse olukorra jaoks tuleb siiski täpsustada, mis energiaid silmas peetakse, sest mitte kogu primaarkiirgus, mis ainele langeb, ei panusta luminestsentsitsentrite ergastamisse, ja samuti ei pruugi kogu luminestsents, mis aine sees kiiratakse, olla "kasulik" (õige lainepikkusega, õiges suunas, vms).

Kuna kiirguse elementaaraktid toimuvad valguskvantidega, siis alternatiivselt võime kasutada ka kvantsaagist (η), mis näitab, mitu luminestsentsi footonit kiirgub iga primaarkiirguse kvandi kohta. Jällegi tasub täpsustada, milliseid kvante me loendame. Konkreetse luminestseeruva objekti välist (summaarset) kvantsaagist mõjutab peale sisemise kvantsaagise mõistagi ka rida muid tegureid. Välist kvantsaagist võiksime vaadelda näiteks nelja järjestikuse protsessi efektiivsuste korrutisena: (a) ergastava kiirguse footoni neeldumine aines, (b) luminestsentsitsentri ergastumine neeldunud energiakvandi arvel, (c) ergastatud luminestsentsitsentri kiirguslik relaksatsioon ja (d) emiteeritud footoni väljapääsemine ainest. Protsesside (a) ja (d) tõenäosus sõltub eelkõige materjali paksusest, kujust, neeldumistegurist ja murdumisnäitajast, protsessid (b) ja (c) sõltuvad aga luminofoori iseloomust ja sageli ka temperatuurist ning määravad sisemise kvantsaagise.

Reeglina $\eta \ll 1$, sest suurem osa neeldunud energiast muundub ühel või teisel põhjusel soojuseks. Rakendustesse jõudnud luminofooride kvantsaagis on tavaliselt siiski üsna lähedal ühele. Põhimõtteliselt võib kvantsaagis olla ka ühest suurem (joon. 4.7b). Sellist olukorda püütakse realiseerida näiteks Xe-lahendusega ($\lambda = 172$ nm) luminestsentslampides saavutamaks suuremat energeetilist kasutegurit (vastasel korral tuleks 550 nm/172 nm \approx 3 kordne energiakadu juba ainuüksi värvuse konverteerimisest). Kuigi η võib olla ühest suurem, jääb energiasaagis arusaadavalt alati väiksemaks ühest.

Luminestsentsi olemasolu või puudumise põhjuseid aitab sageli selgitada luminest-

sentsi järelhelenduse kineetika mõõtmine. Käsitleme esmalt fluorestsentskiirgust. Mitte alati ei pruugi ergastatud aatomi või molekuli relakseerumisega kaasneda footoni teke — energia võib vabaneda ka soojusena (muunduda aatomite võnkumise energiaks). Seega fluorestsentsi kustumisaeg valemis 4.2 sisaldab endas üldjuhul kahte panust, kiirguslikku (*radiative*) ja mittekiirguslikku (*non-radiative*):

$$\frac{1}{\tau} = \frac{1}{\tau_{\text{rad}}} + \frac{1}{\tau_{\text{nr}}}.$$

Põhimõtteliselt mõlemat ajakomponenti on võimalik teatud määral mõjutada. Kiirguslikku eluiga τ_{rad} kontrollivad suuresti kiirgava aatomi peremeeskeskkonna ehk maatriksi omadused, sh vahetu keemiline ümbrus (mis mõjutab otseselt aatomi elektronseisundeid) ja keskkonna murdumisnäitaja (millest sõltub spontaanset siiret esile kutsuva elektromagnetvälja moodide tihedus). Seevastu mittekiirguslikud protsessid peaksid ideaaljuhul üldse puuduma. Mittekiirguslikku relaksatsiooni tingib lõppkokkuvõttes mingit laadi elektron- ja võnkeseisundite vaheline interaktsioon, mille kaudu elektroonne ergastusenergia saab muunduda maatriksi või molekuli võnkumisteks (st soojuseks). Selle tõenäosust kirjeldab sageli Arrheniuse-tüüpi mehhanism (potentsiaalibarjääri ületamine):

$$\frac{1}{\tau_{\rm nr}} = s \exp\left(-\frac{\Delta E}{kT}\right),\,$$

kus ΔE on barjääri kõrgus (aktivatsioonienergia), k on Boltzmanni konstant, T on absoluutne temperatuur ja s on temperatuurist sõltumatu konstant (võib tõlgendada, et s näitab, mitu katset tehakse igas sekundis barjääri ületamiseks). Kiirguse kvantsaagis on niisiis

$$\eta = \frac{1/\tau_{\rm rad}}{1/\tau_{\rm rad} + 1/\tau_{\rm nr}} = \frac{1}{1 + K \exp(-\Delta E/kT)},$$

kus $K \equiv s\tau_{rad}$. Järelikult selle mudeli järgi fluorestsentsi intensiivsus kahaneb temperatuuri tõustes, kusjuures karakteerne fluorestsentsi kustutamise temperatuur on $\Delta E/k$.

Fluorestsentsi järelhelenduse kineetika uurimine võimaldab lihtsamatel juhtudel välja selgitada, kas fluorestsentsi intensiivsuse muutus on seotud kiirgusliku või mittekiirgusliku protsessiga või hoopis mõne muu põhjusega. Tugineme kahele tähelepanekule: (1) järelhelenduse eksponentsiaalset kustumist (valem 4.2) kirjeldab pool-logaritmilises teljestikus sirge, mille tõus on võrdeline summaarse kustumisaja pöördväärtusega $1/\tau$; (2) järelhelenduse algintensiivsus vahetult pärast ergastavat (laser)impulssi on määratud aga ergastatud osakeste hulga ja kiirgusliku siirde tõenäosuse $1/\tau_{rad}$ korrutisega. Selle alusel saab kustumiskineetika käitumises eristada mitut erinevat stsenaariumit nagu kujutatud joonisel 4.9.

Joonis 4.9. Fluorestsentsi järelhelenduse kustumiskineetika käitumine (pidevjoon — algne, katkendjoon — muutunud). (a) Kiirgavate aatomite arvu kasv; (b) mittekiirguslike protsesside intensiivistumine; (c) kiirgusliku eluea lühenemine.

Fosforestseeruvate materjalide korral võivad nimetatud mehhanismid osutuda teisejärguliseks. Selle asemel kontrollib luminestsentsi tugevust hoopis luminestsentsitsentri ergastamise efektiivsus. Nimelt kõrgematel temperatuuridel on laengukandjatel väiksem tõenäosus pikemaks ajaks "lõksudesse" kinni jääda, mistõttu nad migreeruvad kiiremini luminestsentsitsentrini. Seega fosforestseeruvate materjalide korral luminestsentsi intensiivsus sageli kasvab temperatuuri tõstmisel.

4.5 Luminestsentsi mõõtmine

4.5.1 Spektri mõõtmine

Võrreldes läbilaskvus- või isegi neeldumisspektri mõõtmisega spektrofotomeetris on luminestsentsi- ja selle ergastusspektri kvantitatiivselt täpne registreerimine märksa komplitseeritum, sest isegi ühte kindlat optilist skeemi rakendades sõltub tulemus konkreetsest mõõteseadmest. Puudub spektrofotomeetrilisele mõõtmisele iseloomulik lihtne ja universaalne võrdlusmõõtmise teostamise võimalus. Kui näiteks läbilaskvuse või neeldumise mõõtmisel saab spektri graafiku vertikaalteljele kanda konkreetsed ühikud (vastavalt % ja cm⁻¹), siis luminestsentsspektri graafikul piirdutakse tavaliselt suhtelise intensiivsusega või äärmisel juhul detektori otsese näiduga (*Counts per second* vms), mis on sõltuv kasutatavast mõõteseadmest. Seega luminestsentsspektroskoopias taotletakse tavaliselt, et vähemalt mõõdetud spektri kuju oleks adekvaatne (st seda saaks seostada teooriaga). Sageli pakub huvi ka see, et erinevaid proove oleks võimalik omavahel kvantitatiivselt võrrelda luminestsentsi tugevuse kaudu.

Konkreetsemalt fotoluminestsentsi mõõtmisel tuleb sobilik (reeglina monokromaatne) ergastav kiirgus koondada uurimisobjektile ja samal ajal viimase poolt emiteeritav luminestsentskiirgus koondada läätse või nõguspeegli abil spektraalriista sisendpilule. Sõltuvalt proovi iseloomust on kasutusel rida erinevaid skeeme ergastava kiire suuna, luminestsentsi vaatluse suuna ja objekti orientatsiooni valikul (joon. 4.10). Spektrofluorimeetrites on kõige levinum ristuv konfiguratsioon (joon. 4.10a). Vähemalt fluorestseeruvate lahuste mõõtmine küvetis on sellise konfiguratsiooni korral äärmiselt mugav ja tulemuse korratavuse mõttes võrreldav spektrofotomeetrilise mõõtmisega. Sama skeemiga saab mõõta ka õhukesi või tugevasti neelavaid objekte, mis asetatakse kiire teele kaldu, püüdes seejuures vältida ergastava kiire otsest peegeldamist spektraalriista (joon. 4.10b,c). Suhteliselt universaalse rakendusega on nn tagasihajumisgeomeetria (joon. 4.10d,e). Skeem 4.10e on kasutusel kui mõõtmine toimub mikroskoobi vahendusel (sel juhul "läätseks" on mikroskoobi objektiiv).

Luminestsentsi spektraalkarakteristika mõõtmisega kaasneb rida spetsiifilisi probleeme.

- Kuna luminestsents kiirgub enam-vähem isotroopselt kõikidesse suundadesse (ja on sageli ka suhteliselt nõrk), tuleb kiirgust koguda võimalikult suurde ruuminurka (st kasutada võimalikult suure apertuurarvuga kondensorläätse, -peeglit või objektiivi).
- Üldiselt tuleb vältida ergastava kiirguse otsest sattumist spektraalriista, kus see võib tekitada hajumise tõttu tugeva fooni või tingida muid artefakte mõõdetud spektris. Probleem ilmneb peamiselt siis, kui uuritav luminestsents on väga nõrk. Ergastava kiirguse blokeerimiseks asetatakse spektraalseadme sisendpilu ette sobilik madalpääs- või ribapääsfilter, samuti leevendab probleemi kahekordse spektromeetri kasutamine. Tarvilikuks võib osutuda ka ergastava kiirgusallika

Joonis 4.10. Fotoluminestsentsi mõõtmise skeemid sõltuvalt katseobjekti iseloomust: (a) läbipaistev lausmaterjal; (b) õhuke läbipaistev objekt; (c) õhuke läbipaistmatu objekt; (d,e) universaalne.

spektraalne puhastamine (näiteks valgusdioodid ja laserdioodid annavad võrdlemisi tugevat spektraalset fooni ka kiirgusmaksimumist kaugel).

 Luminestsentsi registreerimiseks kasutatava spektraalaparatuuri ning detektori efektiivsused sõltuvad üldiselt lainepikkusest (see probleem ei pruugi olla aktuaalne kui mõõtmine hõlmab hästi kitsa spektrivahemiku). Detektsiooni koste kalibreerimiseks võib võrdlevalt mõõta mõnesugust hästituntud spektriga luminofoori (erialasest kirjandusest leiab rida standardaineid selleks otstarbeks). Samuti võib kasutada tuntud või teoreetiliselt arvutatava spektriga kiirgusallikat. Näiteks küllalt suure täpsusega on võimalik arvutada hõõglambi spektrit (määrates püromeetriga hõõgniidi temperatuuri ja võttes arvesse hõõgniidi kiirgamisvõimet ning kolvi läbilaskvust). Enamasti muretsetakse selleks otstarbeks siiski spetsiaalne kalibreeritud spektriga kiirgusallikas.

Juhul kui kvantitatiivselt täpse spektraaljaotuse mõõtmine ei ole hädatarvilik, piirdutakse sageli parandamata ehk tehnilise spektriga.

 Eelnevaga analoogiline komplikatsioon (mis on eriti oluline ergastusspektrite registreerimisel) tuleneb asjaolust, et luminestsentsi ergastamiseks kasutatava kiirgusallika intensiivsus sõltub valitud lainepikkusest. Ergastusspektri mõõtmisel on ideaaljuhul tarvilik selline kiirgusallikas, mille intensiivsus on ühesugune kõigil lainepikkustel. Vähegi suurema spektraalvahemiku katmisel on seda tingimust tehniliselt keeruline realiseerida. Kui aga tegemist ei ole liiga intensiivse kiirgusallikaga, siis võib eeldada, et aine optiline koste on lineaarne, st luminestsentsisignaal on proportsionaalne ergastava kiire intensiivsusega. Sel juhul korrektse ergastusspektri saab kui registreerida nende kahe signaali jagatist (st normeerida ühikulise tugevusega ergastuse intensiivsusele). Selleks tuleb väike osa ergastavast kiirest välja eraldada kiirejagaja (nt kvartsplaadi) abil ning registreerida paralleelselt selle intensiivsust fotodioodi abil. Teine variant on teostada võrdlusmõõtmine kasutades võrdlusobjektina mõnesugust standardluminofoori, mille ergastusspekter on täpselt teada või kergesti leitav. Näiteks väheses kontsentratsioonis luminofoori sisaldava lahuse korral on ergastusspekter kujult identne sama lahuse neelduvusega, juhul kui luminofoori kvantsaagis ei sõltu ergastava kiirguse lainepikkusest.

ÜLESANNE 14. Luminestsentsi ergastusspektrit registreeritakse joonisel 4.10d kujutatud katseskeemi kohaselt. Materjali paksus on *d* ning on teada selle neeldumisspekter $\alpha(\lambda)$ (peegelduskaod pindadel lugeda tühiseks). Luminestsentsi kvantsaagise võib lugeda konstandiks vaadeldavas spektraaldiapasoonis. Ainekiht on piisavalt õhuke, nii et kogu kihi paksuse ulatuses tekkiv luminestsentskiirgus väljub katseobjektist ja registreeritakse. Avaldage ergastusspektri kuju *d* ja $\alpha(\lambda)$ kaudu.

4.5.2 Kvantsaagise mõõtmine

Kvantsaagise otsene mõõtmine on mittetriviaalne ülesanne kuna nõuab nii aines neeldunud kui ka aine poolt kiiratud footonite täpset "üleloendamist" (ühte võimalust käsitleb ülesanne 15). Teatavatel juhtudel on probleemi jällegi märksa lihtsam lahendada võrdlusmeetodil. Fluorestsentsi korral, kus kvantsaagis on limiteeritud põhiliselt mittekiirguslike protsessidega (nagu kirjeldatud jaotises 4.4), on kvantsaagis arvutatav luminestsentsi kustumisaja τ kaudu:

$$\eta = \frac{1/\tau_{\rm rad}}{1/\tau_{\rm rad} + 1/\tau_{\rm nr}} = \frac{\tau}{\tau_{\rm rad}}, \quad \tau = \frac{\tau_{\rm rad}\tau_{\rm nr}}{\tau_{\rm rad} + \tau_{\rm nr}}$$

Piisavalt madalatel temperatuuridel (rutiinsete vahenditega on võimalik saavutada vedela heeliumi keemistemperatuur 4,2 K) on mittekiirguslike protsesside osakaal

eeldatavasti tühine ja mõõdetud fluorestsentsi kustumisaeg identifitseeritav kui τ_{rad} . Seejärel saab η arvutada eespooltoodud valemiga.

Teine lihtne mudelsituatsioon on selline, kus on tegemist optiliselt homogeense (mittehajutava) katseobjektiga (kristall, klaas, lahus küvetis) ja kasutada on ka samalaadne võrdlusobjekt, mis kiirgab teadaoleva kvantsaagisega η_R (indeks sõnast *reference*). Oletame konkreetsuse mõttes, et mõõtmise geomeetria on selline nagu kujutatud joonisel 4.10d ja katseobjektid on piisavalt õhukesed, nii et kogu objekti paksuse ulatuses genereeritud valgus annab ühetaolise panuse signaali tugevusse. Kui kummagi objekti spektraalselt integreeritud luminestsentsisignaali tugevused I ja I_R (footonit/s) on registreeritud identsetes tingimustes, siis kvantsaagise võib avaldada järgmise valemiga:

$$\eta = \eta_0 \times \frac{I}{I_{\rm R}} \times \frac{A_{\rm R}}{A} \times \frac{n^2}{n_{\rm R}^2}.$$
(4.5)

Siin *A* tähistab objektis neeldunud ergastava kiirguse osakaalu. Selle valemi juures vajab kommenteerimist vaid murdumisnäitajate suhe, mis on tingitud sellest, et katseobjekti sisemuses genereeritud kiirgus murdub objekti pindadel, mistõttu suurema murdumisnäitajaga objekti korral on väljunud kiirguse hajuvus suurem ja vastavalt väiksema osa kiirgusest õnnestub haarata kiirgust koguva läätse või peegli apertuuriga (joon. 4.11).

Joonis 4.11. Joonis valemi 4.5 juurde (vt ka joonist 4.10d).

ÜLESANNE 15. Õhukese luminestseeruva ainekihi kvantsaagise mõõtmiseks suunatakse sellele pinnanormaali sihis luminestsentsi ergastav laserkiir ning väikese detektoriga mõõdetakse tekkiva luminestsentskiirguse suunadiagramm, st luminestsentsi intensiivsuse sõltuvust nurgast θ vaatesuuna ja laserkiire vahel. Detektoriks on fotodiood, mille voolutugevus I on võrdeline detektoris neelduvate footonite arvuga sekundis. Korrutise $I\sin\theta$ väärtus sõltuvana nurgast θ on toodud joonisel 4.12. Fotodioodi aktiivala on ringikujuline diameetriga 9,5 mm ning selle kaugus helenduvast täpist aine pinnal on 88 mm. Otse laserkiirt mõõtes on fotodioodi vool 12,5 mA. Hinnake luminestsentsi kvantsaagist! Lihtsuse mõttes eeldame, et detektori enda kvantsaagis ei sõltu lainepikkusest ja laseri kiirgus neeldub aines täielikult. *Vastus:* ~92%.

5 SPEKTRIJOONTE KUJU JA LAIUS

5.1 Spektrijoone karakteristikud

Lihtsad kvantsüsteemid, eelkõige atomaarsed või molekulaarsed üksused gaasis, vedelikus (lahuses) või tahkises, on diskreetse energiaspektriga. Selle tõttu ka optilistes spektrites nad annavad harilikult teatud hulga teravaid resonantse e. spektrijooni, kusjuures spektrijoone sagedus on määratud alg- ja lõppseisundi energiate vahega: $v = (E_2 - E_1)/h$. Spektrijoont karakteriseerib lisaks sagedusele (või lainepikkusele) veel ka tugevus. Viimane kajastab seda, millise tõenäosusega antud optiline üleminek toimub või kui palju molekule viibib algseisundis. Täpsem mõõtmine näitab siiski, et spektrijoontel on alati olemas ka nullist erinev laius, st ei kiirgus- ega neeldumisaktis osalenud footoni energia ei ole lõpmata täpselt määratud. See on täiendav spektraalne info, mis kajastab ühelt poolt vaadeldavate kvantsüsteemide loomust, aga teiselt poolt võib see seostuda aine korrastatusega (näiteks üleminekul amorfne → nanokristalne → (mono-/polü-)kristalne võivad spektrijooned märgatavalt kitseneda). Eksperimentaalses mõttes on teravate spektrijoonte laiuse ja profiili täpne määramine muidugi tõsisem väljakutse, võrreldes lihtsalt resonantsi lainepikkuse kindlakstegemisega.

Sõnastame kõigepealt spektrijoone kvantitatiivsed karakteristikud. Spektrijoone sageduse ω_0 all peame nüüdsest silmas spektrijoone kesksagedust, st maksimumintensiivsusele vastavat sagedust (vaikimisi kasutame edaspidi ringsagedusskaalat). Lihtsaim spektrijoone laiust kirjeldav parameeter on täislaius poolel kõrgusel $\Delta \omega$ (kasutatakse ka lühendit FWHM — *Full Width at Half Maximum*). Need on kujutatud joonisel 5.1. Spektrijoone intensiivsuse väljendamiseks on kaks (üldiselt mitteekvivalentset) karakteristikut: amplituud ja pindala. Üldiselt spektrijoone pindala on mõistlikum optilise protsessi tugevust karakteriseeriv parameeter, sest sageli eksperimentaalsetel või ka füüsikalistel põhjustel spektrijoone laius kasvab ja amplituud vastavalt kahaneb, kuid pindala jääb muutumatuks. Lõpuks, spektrijoone kuju e. kontuuri e. profiili kirjeldab mõnesugune funktsioon $f(\omega)$. Vaid spektrijoone kujust rääkides absoluutne intensiivsus ei paku enam huvi, nii et $f(\omega)$ võib normeerida vastavalt vajadusele kas pindala või amplituudi järgi:

$$\int f(\omega) \, d\omega = 1$$
 või $f(\omega_0) = 1$

Märgime, et spektrijoone laiust iseloomustava karakteristiku definitsioon on mõneti kokkuleppe küsimus, sest spektrijoonel ei ole selget algust ega lõppu — tsentrist eemaldumisel funktsioon $f(\omega)$ sujuvalt läheneb nullile.

Üks alternatiivne võimalus spektrijoone kirjeldamiseks on kasutada parameetreid, mida tõenäosusteoorias nimetatakse momentideks. Ühikule normeeritud pindalaga funktsiooni $f(\omega)$ *n*-järku momendiks nimetatakse suurust

$$M_n = \left\langle \omega^n \right\rangle = \int \omega^n f(\omega) \, d\omega.$$

Esimest järku momenti M_1 nimetatakse keskväärtuseks e. ooteväärtuseks. Vähemalt sümmeetrilise joone korral on $M_1 = \omega_0$. Funktsiooni $f(\omega)$ *n*-järku tsentraalmomendiks nimetatakse suurust

$$\mu_n = \left\langle \left(\omega - M_1\right)^n \right\rangle = \int \left(\omega - M_1\right)^n f(\omega) \, d\omega.$$

Teist järku tsentraalmomenti $\mu_2 \equiv \sigma^2$ nimetatakse dispersiooniks. Suurus σ on ruutkeskmine e. standardhälve ja iseloomustab joone laiust. Fikseeritud joonekuju puhul on σ võrdeline $\Delta \omega$ -ga. μ_3 kirjeldab joone asümmeetriat, μ_4 iseloomustab jaotuse tipu teravust ja tiibade lamedust.

Paraku esineb jaotusfunktsioone (sh tuntud Lorentzi profiil), millel momente ei eksisteerigi (st integraalid ei koondu) hoolimata sellest, et profiil on pindala järgi normeeritav.

Spektrijoonte laiusi käsitledes võib esineda tarvidus konverteerida joone laiust erinevate spektraalmuutujate vahel (tähistagem neid $\Delta\lambda$, $\Delta\nu$, jne). Seejuures paneme tähele, et spektrijoone mõiste sissetoomisega juba eeldame, et spektrijoone laius on hulga väiksem kui sagedus (kui see tingimus pole täidetud, tuleks rääkida spektraalribast, mitte spektrijoonest). Tänu sellele eeldusele on spektrijoone laiuse konverteerimine triviaalne protseduur, sest joone laiust saab käsitleda diferentsiaalselt väikese suurusena. On ilmne, et kui spektraalkoordinaatide vahel on võrdeline seos (näiteks sagedus, lainearv ja energia), siis spektrijoone suhteline laius jääb muutumatuks sõltumata spektraalmuutuja valikust. Kuid on lihtne veenduda, et väide jääb kehtima ka pöördvõrdelise sõltuvuse korral, näiteks üleminekul $\lambda \leftrightarrow \bar{\nu}$:

$$\bar{v} = \frac{1}{\lambda} \implies \Delta \bar{v} = \left| \frac{d\bar{v}}{d\lambda} \right|_{\lambda_0} \Delta \lambda = \frac{1}{\lambda_0^2} \Delta \lambda \implies \frac{\Delta \bar{v}}{\bar{v}_0} = \frac{\Delta \lambda}{\lambda_0}$$

Niisiis kokkuvõttes

$$\frac{\Delta\omega}{\omega_0} = \frac{\Delta\lambda}{\lambda_0} = \frac{\Delta\nu}{\nu_0} = \frac{\Delta\bar{\nu}}{\bar{\nu}_0} = \frac{\Delta\epsilon}{\epsilon_0}$$

5.2 Põhilised mudelprofiilid

Kaks lihtsaimat ja olulisimat kellukesekujulist mudelkõverat on Lorentzi profiil ja Doppleri profiil, mida kirjeldavad vastavalt järgmised kaks avaldist (normeerituna pindala järgi):

$$f(\omega) = \frac{1}{\pi} \frac{\Delta \omega/2}{(\omega - \omega_0)^2 + (\Delta \omega/2)^2}$$
$$f(\omega) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(\omega - \omega_0)^2}{2\sigma^2}\right]$$

Matemaatikas (tõenäosusteoorias) tuntakse Lorentzi profiili Cauchy jaotuse nime all ning Doppleri kontuuri vasteks on Gaussi jaotus ehk normaaljaotus. Nagu toodud avaldistest näha, Lorentzi profiili on mugav esitada otseselt FWHM laiuse $\Delta \omega$ kaudu. Seevastu Doppleri profiili puhul on loomulikum kasutada standardhälvet σ . Viimasele vastava FWHM laiuse leidmiseks lähtume definitsioonist: eemaldudes joone tsentrist $\Delta \omega/2$ kaugusele, peab $f(\omega)$ väärtus kaks korda vähenema. See annab lihtsa seose

$$\Delta \omega = \sqrt{8 \ln(2)\sigma}.$$
(5.1)

Kui spektrijoone laienemist põhjustavad kaks sõltumatut mehhanismi, mis eraldi mõjudes annaksid joone kujuks vastavalt $f(\omega)$ ja $g(\omega)$, siis nende koosmõjul on joone kujuks $f(\omega)$ ja $g(\omega)$ sidum ehk konvolutsioon:

$$h(\omega) = f(\omega) \otimes g(\omega) = \int_{-\infty}^{\infty} f(s)g(\omega - s) \, ds.$$

Kui komponendid on Doppleri profiilid, siis ka nende sidum on Doppleri profiil, kusjuures laiused liituvad ruuteeskirja kohaselt: $\Delta \omega = \sqrt{\Delta \omega_1^2 + \Delta \omega_2^2}$. Kahe Lorentzi profiili sidum on samuti lorentziaan, aga sel korral komponentide laiused liituvad lineaarselt: $\Delta \omega = \Delta \omega_1 + \Delta \omega_2$. Doppleri ja Lorentzi funktsioonide sidumit nimetatakse Voigti kontuuriks. Voigti profiil on oma kujult Doppleri ja Lorentzi profiili vahepealne (joon. 5.2). Parameetrite valikuga saab selle kuju timmida ühest äärmusest teise. Voigti kontuur ei avaldu elementaarfunktsioonides.

Täpse, keerulist integraali sisaldava avaldise asemel kasutatakse sageli mõnda ligikaudset nn pseudo-Voigti funktsiooni, nt Doppleri ja Lorentzi kontuuri kaalutud summat. Üks sagelikasutatav lähendus on järgmine:

$$Voigt(\omega, \Delta \omega) = \eta \operatorname{Lorentz}(\omega, \Delta \omega) + (1 - \eta) \operatorname{Doppler}(\omega, \Delta \omega),$$

kus Lorentzi komponendi kaalu η ja resultantprofiili laiuse $\Delta \omega$ võib arvutada järgmiste valemitega:

$$\begin{split} \Delta \omega &= \left(\Delta \omega_{\mathrm{D}}^{5} + 2,693 \Delta \omega_{\mathrm{D}}^{4} \Delta \omega_{\mathrm{L}} + 2,428 \Delta \omega_{\mathrm{D}}^{3} \Delta \omega_{\mathrm{L}}^{2} + 4,472 \Delta \omega_{\mathrm{D}}^{2} \Delta \omega_{\mathrm{L}}^{3} \right. \\ &+ 0,0784 \Delta \omega_{\mathrm{D}} \Delta \omega_{\mathrm{L}}^{4} + \Delta \omega_{\mathrm{L}}^{5} \right)^{1/5}, \\ \eta &= 1,366 \frac{\Delta \omega_{\mathrm{L}}}{\Delta \omega} - 0,477 \left(\frac{\Delta \omega_{\mathrm{L}}}{\Delta \omega} \right)^{2} + 0,111 \left(\frac{\Delta \omega_{\mathrm{L}}}{\Delta \omega} \right)^{3}. \end{split}$$

Kui Voigti kontuuri kasutatakse vaid eksperimentaalse spektrijoone aproksimeerimiseks (nt eesmärgiga võimalikult täpselt määrata ω_0 ja $\Delta \omega$), siis viimaseid valemeid ei lähe üldse tarvis vaid η , ω_0 ja $\Delta \omega$ vaadeldakse kui lähendusparameetreid, mis tuleb määrata parimas kooskõlas katseandmetega.

ÜLESANNE 16. Rubiini kristalli Cr³⁺ lisandiooni luminestsentsi kiirgusspektris on kaks teravat spektrijoont (joon. 5.3). Valige üks spektrijoon ja kirjeldage selle profiil võimalikult täpselt konkreetse arvulise valemiga, eeldades et tegemist on Lorentzi kontuuriga. Kui suur on selle spektrijoone laius lainearvudes?

5.3 Spektrijoonte laienemise mehhanismid

Spektrijoonte füüsikalised laienemismehhanismid võib liigitada kaheks (joon. 5.4). Spektrijoone homogeense laienemise all mõistetakse molekulide individuaalsete

spektrijoonte ühetaolist laienemist. Seega homogeenne laienemine oleks tuvastatav ka juhul, kui vaatluse all oleks üksainus molekul. Homogeenne laienemine on tingitud sellistest mehhanismidest, mis mõjutavad kõiki molekule ühtviisi. Mittehomogeenne laienemine tuleneb aga asjaolust, et korraga vaadeldakse makroskoopilisest hulgast molekulidest koosnevat ansamblit, kus molekulide individuaalsed siirdesagedused ei pruugi ühtida vaid alluvad mingile jaotusele, nii et resulteeriv spektrijoon on statistilises mõttes laienenud (joon. 5.5). Selline olukord on tingitud mehhanismidest, mis mõjutavad molekulide individuaalseid siirdesagedusi ja mille toimeulatus on iga konkreetse molekuli korral erinev. Üldjuhul võivad mõlemad laienemismehhanismid anda võrreldava panuse (joon. 5.6).

Homogeenne laienemine tuleneb määramatuse relatsioonist, mis väidab, et kvantseisundis, mis ei ole statsionaarne, vaid püsib ajavahemiku τ vältel, on energia määratud vaid täpsusega $\Delta E \sim \hbar/\tau$. Seega molekuli energiatasemed on "laiali määritud" ulatuses ΔE . Ajavahemikku τ annavad panuse kaks protsessi: energeetiline ja faasirelaksatsioon. Esimese all peetakse silmas ergastatud molekuli relaksatsiooni madalamale energiatasemele. Kui molekul ei interakteeru teiste osakestega, siis see relaksatsioon leiab aset spontaanselt mõningase ajavahemiku (nn optilise eluea) möödudes ja selle käigus kiirgub footon. Ainuüksi lõplikust optilisest elueast tingitud spektrijoone laiust nimetatakse loomulikuks laiuseks. See on kõige fundamentaalsem ja alati eksisteeriv panus spektrijoone laiusse. Relaksatsioon võib olla

Joonis 5.4. Spektrijoone homogeense ja mittehomogeense laienemise erinevus. Iga kontuur kujutab üksiku aatomi või molekuli spektrit.

indutseeritud ka molekuli interaktsioonist ümbritseva keskkonnaga. Selline relaksatsioon on mittekiirguslik (vabanenud energia võib hajuda nt kristallvõre võnkumiste näol soojusena).

Faasirelaksatsioon on tingitud kiirguri korduvast lühiajalisest interaktsioonist ümbritsevate molekulidega. Sellise interaktsooniakti tulemusena muutub ainult kvantoleku faas, molekul jääb aga püsima samale energiatasemele. Sellisteks protsessideks on aatomitevahelised põrked gaasides, interaktsioon kristallvõre võnkumistega ("põrked" foononitega) jms. Tavatemperatuuridel annab faasirelaksatsioon põhilise panuse spektrijoone homogeensesse laienemisse.

Mittehomogeense laienemise põhilised vormid on Doppleri laienemine ja kiirguri staatiline (või suhteliselt aeglaselt muutuv) interaktsioon enda lähiümbrusega. Esimene tuleneb aatomite erinevast (kaootilisest) liikumisest vaatleja suhtes (soojus-liikumine). Interaktsioon ümbrusega põhjustab aga individuaalsete homogeenselt laienenud spektrijoonte nihkumist või lõhenemist. Nihke või lõhenemise ulatus varieerub aga aatomilt aatomile juhuslikult. Sellist interaktsiooni tajuvad näiteks kiirgustsentrid kristallides ja klaasides.

Järgnevalt anname ülevaate spektrijoone kontuuridest, mis tekivad erinevate protsesside tulemusena. Need tulemused võib saada täielikult klassikaliste mudelite baasil. Selleks tuleb esiteks analüüsida, milline on aatomite individuaalsete lainejadade spektraalne koostis (Fourier' analüüs). Mittehomogeense laienemise puhul tuleb tulemust keskmistada üle aatomite ansambli. Vastavad arvutused on teostatud

lisas E.

5.3.1 Loomulik laius

Tuletame kõigepealt meelde, et klassikalise elektromagnetteooria kohaselt on igasuguse elektromagnetkiirguse allikaiks kiirendusega liikuvad elektrilaengud. Pooleldi klassikalise kujutluse järgi kiirgab aatom seetõttu, et aatomi elektronpilv ostsilleerib

Joonis 5.6. Makroskoopilise objekti spektrijoone laius kui homogeense ja mittehomogeense laienemise resultant.

Joonis 5.7. Sumbuv harmooniline võnkumine ja selle spekter. Eksponendis olev koefitsient 2 tuleneb sellest, et intensiivsus on võrdeline elektrivälja amplituudi ruuduga.

harmooniliselt oma tasakaaluasendi suhtes. Järelikult selline aatom kiirgab siinuslainet. Siinuslaine spektriks on üksik δ -piik sagedusel ω_0 . Ent tuleb arvestada, et kiirgamise käigus kaotab aatom energiat. Seetõttu kiiratava siinuslaine amplituud aja jooksul kahaneb (joon. 5.7). Selle sumbumise kiirust iseloomustabki kiirguse kustumisaeg τ , mis spontaanse kiirguse korral on võrdne aatomi ergastatud seisundi optilise elueaga. Sellise lainejada harmooniline analüüs annab spektri kujuks Lorentzi profiil, mille laius $\Delta \omega = 1/\tau$.

Kui mittekiirguslikud üleminekud puuduvad, siis dipool-lähenduses lubatud siirete jaoks $\tau \sim 10^{-8}$ s ja seega $\Delta \lambda \sim 10^{-5}$ nm, $\Delta \bar{\nu} \sim 10^{-3}$ cm⁻¹, $\Delta \nu \sim 0.01$ GHz.

5.3.2 Põrkelaienemine

Kiirgavaid gaasimolekule vaatleme jällegi kui sagedusega ω_0 võnkuvaid ostsillaatoreid. Võib kujutleda, et põrke tulemusena muutub hüppeliselt võnkefaas, seega elektriväli $E(t) = E_0 \cos(\omega_0 t + \phi)$, kus algfaas ϕ omandab pärast iga järjekordset põrget juhusliku väärtuse 0 ja 2π vahel (joon. 5.8). Seega meil tuleb teha Fourier' analüüs lõpliku kestusega τ harmoonilisest lainejadast, kus τ on ajavahemik kahe järjestikuse põrke vahel. Viimane on aga statistiline suurus (teatava jaotusseadusega), nii et tulemust peab veel keskmistama üle kõikide τ väärtuste. Arvutus annab sellelgi korral tulemuseks Lorentzi profiili, mille laiuseks on seekord $\Delta \omega = 2/\tau_c$, kus τ_c on keskmine põrgetevaheline ajavahemik.

Joonis 5.8. Aatomi poolt kiiratava lainejada algfaasi juhuslik muutumine põrgete käigus. Siin me ei arvesta ostsillaatori võnkeamplituudi kahanemist.

Hindame $\Delta \bar{v}$ väärtust normaaltingimustel T = 300 K, p = 100 kPa. Molekulide arv ruumalaühikus on n = p/(kT) (k on Boltzmanni konstant). Molekulide kiirused on suurusjärgus $\bar{v} \sim \sqrt{kT/m}$, kus m on molekuli mass (kT on karakteerne soojusliikumise energia). Vaba tee keskmine pikkus $\bar{l} \sim 1/(d^2n)$, kus d on molekuli efektiivne diameeter (kui molekul liigub vahemaa l, siis tema ristlõige d^2 katab ruumala d^2l , seega tema teele jääb keskmiselt d^2ln molekuli). Keskmine põrgetevaheline aeg $\tau_c \sim \bar{l}/\bar{v}$. Kokkuvõttes $\Delta \omega \sim d^2p/\sqrt{mkT}$. Gaasi rõhu asemel võime kasutada ka tihedust $\rho = nm = mp/(kT)$, millest $p = \rho kT/m$, nii et $\Delta \omega \sim d^2\rho \sqrt{kT}/m^{3/2}$. Järelikult, kui gaasi tihedus on konstant (nt suletud ampullis vms), siis spektrijoone laius kasvab võrdeliselt ruutjuurega temperatuurist (sest vaba tee pikkus jääb samaks, aga molekulide kiirus kasvab võrdeliselt \sqrt{T} -ga).

Igatahes normaaltingimustel, ja hinnates $m \sim 10 m_p \approx 10^{-26} \text{ kg}$ ja $d \sim 10^{-9} \text{ m}$, saa-

Joonis 5.9. Doppleri efekti selgitus. Tsentraalne objekt on valgusallikas, mis liigub noolega näidatud suunas. Ringjooned kujutavad järjestikuseid laineharju. Punktis A viibiva vaatlejani jõuavad laineharjad sagedamini kui vaatlejani punktis B.

me $\tau_c \sim 10^{-10}$ s ja vastavalt $\Delta \lambda \sim 10^{-3}$ nm, $\Delta \bar{\nu} \sim 0.1 \text{ cm}^{-1}$, $\Delta \nu \sim 1 \text{ GHz}$. Seega põrkelaienemine on $\sim 10^2$ korda suurem loomulikust laiusest.

5.3.3 Doppleri laienemine

Doppleri efekt seisneb teatavasti selles, et valguse sagedus sõltub allika liikumisest vaatleja suhtes (joon. 5.9). Kui allikas liigub vaatleja poole mitterelativistliku kiirusega $v \ll c$, siis vaatleja registreerib valguse sageduseks

$$\omega = \omega_0 (1 + \nu/c). \tag{5.2}$$

Olgu v_x molekuli kiiruskomponent vaatesuuna sihile. Siis $\omega = \omega_0(1 + v_x/c)$. Spektrijoone laienemise efekt tuleneb sellest, et kõik molekulid liiguvad erinevas suunas erineva kiirusega, nii et molekulide ansamblit vaadeldes realiseerub põhimõtteliselt selline pilt nagu kujutatud joonisel 5.6.

Avaldise 5.2 tuletamiseks analüüsime situatsiooni vaatlejaga seotud taustsüsteemis. Kui me relativistlikke effekte (aja dilatsiooni) ei arvesta, siis valguse lainepikkus selles süsteemis avaldub

$$\lambda = cT_0 - \nu T_0 = cT_0(1 - \nu/c) = \lambda_0(1 - \nu/c),$$

kus T_0 ja λ_0 on vastavalt võnkeperiood ja lainepikkus allikaga kaasaliikuvas taustsüsteemis. Arvestades, et valguse kiirus on mõlemas taustsüsteemis ühesugune, saame

$$\omega = \omega_0 / (1 - v/c) \approx \omega_0 (1 + v/c),$$

kus on loetud $v \ll c$.

Kvantfüüsikas seletub footoni energia erinevus $\hbar\omega_0$ -st energiamuuduga, mille aatom saab tagasilöögi tõttu. Kui aatom kiirgab footoni energiaga $\hbar\omega$ ja impulsiga $\hbar k$, siis energia ja impulsi jäävuse alusel

$$E_1 + mv_1^2/2 = E_2 + \hbar\omega + mv_2^2/2,$$

$$m\boldsymbol{v}_1 = m\boldsymbol{v}_2 + \hbar\boldsymbol{k},$$

kus v_1 , E_1 on aatomi algkiirgus ja -energia ning v_2 , E_2 on lõppkiirus ja -energia. Elimineerides v_2 ja arvestades, et $E_1 - E_2 = \hbar \omega_0$, saame

$$\hbar\omega_0 = \hbar\omega - \hbar \boldsymbol{v}_1 \boldsymbol{k} + \hbar^2 k^2 / 2m.$$

Kuna $k = \omega/c$ ja aatomi kiiruskomponent vaatesuuna sihile on $v = v_1 e_k$, siis

$$\omega_0 = \omega - \omega \nu / c + \hbar \omega^2 / 2mc^2$$

Optiliste sageduste piirkonnas on viimase liikme panus tühine. Arvestades, et $v \ll c$, saame jällegi avaldise 5.2. Seega näiteks punanihkel "kaotsi" minev footoni energia läheb tegelikult kiirgusallika kineetiliseks energiaks.

Termodünaamikas ja gaaside kineetilises teoorias näidatakse, et v_x allub normaaljaotusele. Sellest tulenevalt järeldub $f(\omega)$ jaoks Doppleri profiil, mille ruutkeskmine hälve

$$\sigma = \omega_0 \sqrt{\frac{kT}{mc^2}}.$$

Viimane sõltub arusaadavalt temperatuurist ja molekuli massist (mida kõrgem temperatuur ja mida kergem molekul, seda suurem on soojusliikumise kiirus). Seose 5.1 põhjal saame profiili FWHM laiuseks

$$\Delta \omega = \omega_0 \sqrt{\frac{8kT}{mc^2} \ln(2)}.$$

Võttes T = 300 K, $m \sim 10^{-26} \text{ kg}$, saame laiuse numbrilise väärtuse ligikaudu sama mis põrkelaienemise korral. $\Delta \omega$ kasvab jällegi nagu ruutjuur temperatuurist, sest Doppleri nihe on võrdeline kiirusega, aga viimane on omakorda võrdeline \sqrt{T} -ga.

5.4 Spektri mittehomogeenne laienemine tahkises ja selle rakendused

5.4.1 Mittehomogeenne laienemine tahkises

Kristallide ja klaaside optilisi omadusi (eelkõige värvus ja luminestsentsomadused) saab kontrollida mitmesuguste lisandite abil. Lihtsamal juhul asendab lisandiaatom ühe põhiaine aatomi kristalli regulaarses võresõlmes. Sageli on aga lisanditsenter keerulisema struktuuriga (lisandiaatom võib hõivata mitu võresõlme, selle lähedusse võib tekkida vakants jne). Kui optilistes protsessides osalevad elektronid interaktee-ruvad nõrgalt ümbritseva kristalli võnkumistega, on lisanditsentri spektrijooned suhteliselt teravad. Need võivad olla koguni märksa kitsamad kui spektrijooned samal temperatuuril gaasis, sest puudub Doppleri laienemine.

Seda enam on sellised kitsad spektrijooned tundlikud kõikvõimalike staatiliste väljade suhtes lisanditsentri lokaalses ümbruses. Ainult ideaalsel juhul kui kristallvõre on täiesti korrapärane ja lisandiaatomid hõivavad identsed positsioonid kristallvõres, on kõikide lisanditsentrite lähiümbrus ühesugune ning nende spektrijoonte sagedused ühtivad. Reaalsetes kristallides on reeglina kristalli korrapära tugevalt häiritud mitut liiki defektide olemasolu tõttu (joon. 5.10). Nendeks defektideks on võre struktuurdefektid (vakantsid, interstitsiaalid, dislokatsioonid), lisandid (kaasa-arvatud kõnealused lisandiaatomid ise) ja kristalli pind. Nende defektide mõju kiirgustsentrile võib üle kanduda põhiliselt kahel viisil: deformatsioonivälja kaudu (st kiirgurit ümbritsevate aatomite nihe defekti olemasolu tõttu) või elektrivälja vahendusel (kui defekt omab võre suhtes lisalaengut või dipoolmomenti). Niisiis defektid tekitavad mõnesuguse juhusliku mikroskoopilise deformatsiooni- ning elektrivälja jaotuse kristallis. Järelikult lisanditsentri elektronseisundite energiad ja sellest tulenevalt ka üleminekute sagedused omavad juhuslikku varieeruvust. Madalatel temperatuuridel on homogeense joone nihe oluliselt suurem kui on selle laius, mistõttu efekt tuleb eriti hästi esile. Makroskoopilise kristallitüki vaatlemisel osaleb optilises aktsioonis korraga suur hulk lisanditsentreid, seega resulteeriv spektrijoon on märgatavalt laiem kui homogeenne laius. Seda protsessi on simuleeritud joonisel 5.5. See on üks spektrijoone mittehomogeense laienemise mehhanism.

Spektrijoone mittehomogeense laienemise analüüsimisel tahkistes tehakse enamasti järgmised lihtsustavad eeldused:

Joonis 5.10. Primitiivne mudel, mis illustreerib mitmesuguseid punktdefekte kristallis. Potentsiaalselt iga sellise defekti (kaasa arvatud ja eriti lisandiaatomite) asukohas võib kujuneda sobilik energiaseisundite skeem, mis avaldub neeldumises või luminestsentsis, kuid defektide juhuslik paiknemine rikub süsteemi korrapära ja märgatavalt laiendab kitsaid spektrijooni.

- 1. Kiirgustsentri elektronseisundi energia nihe on võrdeline häirituse tugevusega, st pingevälja kirjeldava deformatsioonitensori komponentidega või elektrivälja vektori komponentidega.
- 2. Erinevat tüüpi defektide olemasolust tingitud summaarne elektronseisundi energia nihe on üksikutest defektidest eraldi tingitud nihete superpositsioon.
- 3. Defektid ei ole üksteisega korreleeritud, st. nad on jaotunud kristallis üksteisest sõltumatult.

Käesolevas meil ei ole võimalik süveneda vastavatesse arvutustesse. Analüüs näitab, et mittehomogeenselt laienenud spektrijoone kuju sõltub nii defektide iseloomust (punktdefektid, dislokatsioonid vm.) kui ka kontsentratsioonist. Lihtsamate mudelsituatsioonide puhul on spektrijoon Lorentzi, Gaussi või Voigti profiiliga.

5.4.2 Mittehomogeense laienemise rakendusi

Lisanditsentri spektri mittehomogeense laienemisega seondub rida spektroskoopilisi meetodeid, millest me siinkohal mainime vaid spektraalsälkamist ja ühe molekuli spektroskoopiat.

Spektraalsälkamise all mõistetakse nähtust, mille puhul leiab aset neeldumise selektiivne vähenemine laseri vms spektraalselt intensiivse kiirgusallikaga kiiritamise tulemusena. Spektraalsälkamise jälgimiseks peab olema täidetud kaks tingimust: (1) spekter peab olema mittehomogeenselt laienenud ja (2) peab eksisteerima mõnesugune fotoindutseeritud protsess, mis muudab lisanditsentri optilisi omadusi. Need fotoindutseeritud protsessid liigitatakse tinglikult kaheks. Fotokeemilise protsessi puhul muutub kiirgustsentri struktuur peale valguskvandi neelamist, toimub näiteks lisandimolekuli lagunemine või lisandiaatomi ioniseerimine. Seega lisanditsenter lakkab sisuliselt olemast (või hakkab neelama-kiirgama hoopis teises spektraaldiapasoonis), samuti kaob tema panus mittehomogeenselt lainenenud spektrisse. Fotofüüsikalise protsessi puhul indutseerib kiiritamine muutusi lisanditsentri lähiümbruses, mille tulemusena homogeense joone sagedus muutub. Mõlemal juhul tekib neeldumisspektrisse "auk" esialgse siirdesageduse kohale (joon. 5.11). Sageli on spektraalsälkamine pööratav selles mõttes, et lisanditsentri saab algsel kujul taastada, näiteks temperatuuri tõstmisega või teistsuguse sagedusega valgusega kiiritamise teel.

Kuigi spektraalsälkamist on püütud rakendada optilistes mälumaterjalides ning kõrgselektiivsetes optilistes filtrites, on see põhiliselt jäänud siiski vaid üheks tahkisespektroskoopia meetodiks.

Ainumolekuli spektroskoopia eesmärgiks on optiliste mõõtmiste teostamine üheainsa molekuliga. Selleks kasutatakse väga väikese kontsentratsiooniga preparaati, millest laserikiire fokuseerimisega (enamasti mikroskoobi all) selekteeritakse välja võimalikult väike ainehulk. Isegi kui ruumilisest selektiivsusest ei piisa üksiku molekuli väljaeraldamiseks, võib tahkises ühe lisanditsentri selektiivsuse saavutada ikkagi homogeensete joonte spektraalse eraldatuse tõttu, tingimusel et homogeense joone laius on hulga väiksem mittehomogeense jaotuse laiusest (joon. 5.5). Hoopis tõsisemaks probleemiks on sageli üksiku molekuli signaali väljaeraldamine muust "mürast". Selleks on tarvis, et molekul oleks lühikese ergastatud seisundi elueaga ja kõrge kvantsaagisega (need tagavad maksimaalse signaali) ning fotokeemiliselt

Joonis 5.11. Spektraalsälkamise põhimõte.

stabiilne (vastasel korral võib ilmneda spektraalsälkamise efekt ja molekuli ei saa pikaajaliselt jälgida).

Ainumolekuli spektroskoopia näol on mõnes mõttes tegemist ülima tundlikkuse ja selektiivsusega, mida on võimalik spektroskoopilisel vaatlusel saavutada. Üksiku molekuli optiline signaal kajastab ainult selle konkreetse molekuli lähiümbruse struktuuri ja dünaamikat. Seega saadakse informatsiooni molekulaarsel tasemel toimuvate protsesside, fluktuatsioonide ja aine heterogeensuste kohta, mille ilminguid makroskoopilistel mõõtmistel on keeruline tuvastada.

Optilised eksperimendid ühe molekuli tasemel on ka tehnoloogiliselt aktuaalsed. Suurematest rakendustest või eesmärkidest võiks ära mainida bioloogiliste molekulide fluorestsentsmärgistamist, alla valguse difraktsioonipiiri tungiva optilise mikroskoopia meetodeid, kvantkrüptograafiat (stabiilse ühe footoni allika realiseerimine) ja kvantarvuteid (q-bittide ja nende põimseisundite realiseerimine).

SPEKTRAALKARAKTERISTIKA JA AINE EHITUS

6 AATOMISPEKTROSKOOPIA

Aatomifüüsika põhiülesanne on aatomi elektronkatte ehituse kirjeldamine koos järeldustega optiliste, spektroskoopiliste ja keemiliste omaduste kohta. Aatomi (nagu ka molekuli või tahkise) spektroskoopiliste omaduste aluseks on energeetilise struktuuri kindlakstegemine ja süstematiseerimine, sh füüsikaliselt mõtestatud tähistusviisi leidmine kõikvõimalikele energiaseisunditele. See teave on aluseks näiteks laserite ehituses, aatomispektroskoopias spektrite interpreteerimisel (elementanalüüsis, plasmauuringutes, astrofüüsikas jm) ja isegi mõningate füüsikaliste suuruste põhiühikute defineerimisel.

Aatomispektrite esmane ilmne omadus on, et piisavalt hõreda ja külma atomaarse (või ioniseeritud) gaasi neeldumis- või kiirgusspekter koosneb hästi kitsastest, antud elemendile iseloomulike lainepikkustega spektrijoontest. Spektrijoonte arv iga elemendi spektris on põhimõtteliselt lõpmatu, kuigi vaadeldavas spektrialas (nt nähtavas diapasoonis) võib leiduda vaid väike arv spektrijooni. Kui eriti suure spektraallahutusega neid spektrijooni ühekaupa uurida, võib tuvastada ka teatava peenstruktuuri olemasolu (st iga selline spektrijoon võib omakorda koosneda mitmest lähestikku paiknevast komponendist). Nagu alati, tuleb spektraalkarakteristika selgitamist alustada kõige lihtsamate mudelsüsteemide analüüsimisega.

Järgneva mõistmiseks on vaja tunda mõningaid kvantmehaanika mõisteid, mida tutvustatakse lisas C.

6.1 Ühe-elektronilised (vesinikusarnased) aatomid

Ühe-elektronilised aatomid on H, He⁺, Li²⁺ jne. Aatomispektroskoopias on neil eriline roll, kuna nad esindavad ainult kahest laetud osakesest (tuum+elektron) koosnevat mudelsüsteemi, mis on kvantteoreetiliselt kirjeldatav võrdlemisi lihtsate valemitega. Nende aatomite spektrid on ka kõige lihtsama iseloomuga. Nimelt täheldati juba tükk aega enne kvantteooria loomist (1889 a.), et vesinikuaatomi poolt kiiratavate kõikvõimalike spektrijoonte lainepikkused on arvutatavad lihtsa valemiga (Rydbergi valem)

$$\frac{1}{\lambda} = R_{\mathsf{H}} \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{6.1}$$

kus m, n on positiivsed täisarvud ja $R_{\rm H} \approx 109677,58 \,{\rm cm}^{-1}$ (nn Rydbergi konstant). He⁺, Li²⁺ jms ühe-elektroniliste ioonide korral kehtib analoogiline seos:

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),$$

kus Z on tuumalaeng ja $R \approx R_{\rm H}$.

Mitmeelektroniliste aatomite korral ei õnnestunud üldjuhul nii lihtsaid empiirilisi avaldisi leida (v.a. üksiku valentselektroniga aatomite, nt leelismetallide korral). Küll aga saab sõnastada rida üldisemaid empiirilisi tähelepanekuid spektrijoonte lainepikkuste kohta, mis annavad vihjeid aatomi elektronkatte seisundite kohta:

- Aatomi iga spektrijoone sagedus on avaldatav kui kombinatsioon (summa või vahe) kahe teise sama aatomi spektrijoone sagedusest (Ritzi kombinatsiooniprintsiip).
- Kiirgusspektris leidub hulga rohkem spektrijooni kui neeldumisspektris. Seejuures igale neeldumisjoonele leidub sama sagedusega kiirgusjoon.
- Aatomi ergastamine kiirgusega, mille lainepikkus on väiksem kui λ , tingib kiirgusspektris kõiki spektrijooni, mille lainepikkus on suurem kui λ .

6.1.1 Bohri teooria

Klassikalises (Rutherfordi) aatomimudelis elektron tiirleb ümber aatomituuma nagu planeet ümber päikese (gravitatsiooni asemel on vaid kulooniline vastasmõju). Kõverjoonelisel trajektooril liigub aga elektron kiirendusega ja peaks seega kiirgama elektromagnetlaineid. Selle tõttu peaks elektron aegmööda kaotama kogu oma energia ja kukkuma spiraalset trajektoori mööda tuumale. Ükski klassikaline aatomimudel ei suuda seletada ei aatomite stabiilsust ega spektraalkarakteristikat (k.a. valemi 6.1 päritolu). Selles võib veenduda kas või selle põhjal, et klassikalisele füüsikale teadaolevate teemakohaste fundamentaalkonstantide (m_e , e, ε_0 , c) baasil ei õnnestu konstrueerida ühtegi sellist pikkuse dimensiooniga kombinatsiooni, mis oleks aatomite teadaolevate mõõtmete suurusjärgus (~10⁻¹⁰ m). Seetõttu kvantmehaanika valemites figureerib klassikalisele füüsikale tundmatu Plancki konstant. Lisaks tulevad kvantsüsteemi erinevate olekute kirjeldamisel mängu täisarvulised parameetrid nagu näha valemis 6.1.

Ühte vaheetappi üleminekul kaasaegsele kvantteooriale kirjeldab Bohri teooria (1913), mis täiendas klassikalist aatomimudelit järgmiste hüpoteesidega.

- 1. Lõputust hulgast elektronorbiitidest, mis on võimalikud klassikalise mehaanika järgi, realiseeruvad tegelikult vaid mõned diskreetsed liikumised, mis rahuldavad teatud kvanttingimust. Nimelt elektroni orbitaalne impulsimoment peab olema Plancki konstandi täisarvkordne: $L = n\hbar$, kus n = 1, 2, ... Sellistel orbiitidel elektron ei kiirga elektromagnetlaineid vaatamata sellele, et ta liigub kiirendusega.
- 2. Valgus kiirgub või neeldub üksikute kvantide kaupa aatomi siirdumisel ühest sellisest olekust teise (joon. 6.1), nii et energia jäävuse seadus on täidetud:

$$\hbar\omega = E_m - E_n.$$

Esimest hüpoteesi põhjendas de Broglie hiljem sellega, et orbiidi pikkusele peab mahtuma täisarv elektroni lainepikkusi ($\lambda = h/p = h/mv$), nii et tekib seisevlaine.

Edasi järgneb Bohri teoorias klassikaline analüüs elektroni tsirkuleerimisest aatomituuma kuloonilises jõuväljas

$$F(r) = \frac{Ze^2}{4\pi\varepsilon_0 r^2},$$
(6.2)

kus Ze on tuumalaeng ja r on elektroni kaugus tuumast. Selgub, et kvanttingimu-

Joonis 6.1. Valguskvandi kiirgumine Bohri vesinikuaatomi mudelis.

sega lubatavatel orbiitidel on elektroni koguenergia antud valemiga¹⁶

$$E_n = -\frac{m_e e^4}{8h^2 \varepsilon_0^2} \times \frac{Z^2}{n^2} \approx -13.6 \,\mathrm{eV} \times \frac{Z^2}{n^2} \tag{6.3}$$

ja kaugus tuumast valemiga

$$r_n = \frac{h^2 \varepsilon_0}{\pi m_{\rm e} e^2} \times \frac{n^2}{Z} = a_0 \frac{n^2}{Z},\tag{6.4}$$

kus orbiidi vähim raadius $a_0 \approx 5,29 \times 10^{-11}$ m (nn Bohri raadius). Selle võibki lugeda vesinikuaatomi karakteerseks suuruseks.

Bohri teise postulaadi põhjal võib nüüd arvutada spektrijoonte sagedused: $\hbar \omega = E_n - E_m$. Kuna $\omega = 2\pi c/\lambda$, siis

$$\frac{1}{\lambda} = \frac{m_e e^4 Z^2}{8h^3 c \varepsilon_0^2} \left(\frac{1}{n^2} - \frac{1}{m^2}\right).$$
(6.5)

Saadud valem on oma kujult identne empiirilise seosega 6.1 ja Rydbergi konstandi teoreetiline väärtus ühtib üsna täpselt eksperimendist saaduga. Nagu ilmneb vesinikuaatomi energiatasemete diagrammilt (joon. 6.2), on võimalik spektrijooned grupeerida erinevatesse spektraalseeriatesse, kus samasse seeriasse kuuluvad

¹⁶Siin negatiivne energia tähendab seda, et kui aatomituum ja elektron on viidud üksteisest lõpmata kaugele, siis süsteemi potentsiaalne energia on null. Energia nullnivoo saab valida meelevaldse, sest potentsiaalne energia on määratud vaid aditiivse konstandi täpsusega.

Joonis 6.2. Vesinikuaatomi energiatasemete diagramm ja spektraalseeriad.

spektrijooned asuvad spektraalselt võrdlemisi lähestikku. Selliste seeriate olemasolu aitas kaasa empiirilise seose 6.1 leidmisele. Kuna vesinikuaatom on suhteliselt lihtsa ehitusega, siis energiatasemete arv on võrdlemisi väike (st nad paiknevad üsna hõredalt) ja nähtavasse diapasooni langevad ainult mõningad Balmeri seeria jooned. Keerulisemate aatomite puhul on nähtavate spektrijoonte arv märksa suurem.

Kuigi Bohri teooria annab vesinikusarnaste aatomite korral mõningaid kvantitatiivselt õigeid tulemusi, jääb sisuliselt siiski selgusetuks, miks on teatud elektronorbiidid üldse stabiilsed, milline on kiirguse tekkimise/neeldumise täpsem mehhanism ning mis määrab siirde tõenäosuse ühest seisundist teise (st vastava spektrijoone tugevuse). Samuti ei ole Bohri teooriat võimalik üldistada mitme-elektronilistele süsteemidele, sest puudub võimalus elektronide omavaheliste interaktsioonide arvestamiseks. Seega muutub võimatuks ka keemilise sideme jm kvantfenomenide kirjeldamine molekulide jm keerulisemate süsteemide korral.

Bohri teooriat on võimalik mingil määral edasi arendada vaadeldes elliptilisi orbiite ja relativistlikke parandusi elektroni energiale. Sellises laiendatud käsitluses kvantarvu *n* ei seota impulsimomendiga, vaid energia ja impulsimoment on kumbki eraldi kvantiseeritud. Selgub, et spektrijoonel peab eksisteerima peenstruktuur tingituna valemiga 6.3 antud energiatasemete lõhenemisest. Need teooriad moodustavad nn vana kvantmehaanika, millel tänaseks on vaid ajalooline väärtus.

ÜLESANNE 17. Leidke, kui suur on elektroni kiirus vesinikuaatomi esimesel orbiidil Bohri teooria järgi. *Vastus:* v = 0,0073c.

ÜLESANNE 18. Vesinikuaatomi teatud spektrijoone lainepikkus on 486,1320 nm. Hiljem avastati sellele lähedane spektrijoon lainepikkusega 485,9975 nm. Näidake, et viimane peab kuuluma deuteeriumile. Nimelt valemi 6.5 tuletamisel on kasutatud eeldust, et aatomituum on hulga raskem kui elektron, tegelikult oleks õigem eeldada, et elektron ja tuum tiirlevad ühise masskeskme ümber, mistõttu valemis 6.5 tuleks elektroni massi asemel kasutada elektroni ja tuuma taandatud massi.

6.1.2 Kvantmehaaniline teooria

Kvantmehaanika seisukohalt viibib aatomituuma läheduses liikuv elektron potentsiaaliaugus, mida kirjeldab avaldis (elektroni potentsiaalne energia jõuväljas 6.2)

$$U(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}.$$

Siinkohal me ei lasku Schrödingeri võrrandi (vt lisa C) lahendamisesse, sest isegi niivõrd lihtsa süsteemi korral hõlmab see hulk lehekülgi matemaatilist analüüsi. Sõnastame vaid tulemused. Ei ole üllatav, et kõikvõimalike statsionaarsete olekute energiad ühtivad täpselt Bohri teooria tulemustega. Kuid erinevalt Bohri teooriast ei ole tarvis mingit täiendavat oletust orbiitide kvantiseerimisest, vaid olekute diskreetsus tuleneb Schrödingeri võrrandi iseloomust. Täisarvulist indeksit *n*, mis sisaldub valemis 6.3, nimetatakse peakvantarvuks. See on üks kvantarvudest, mis kerkib esile Schrödingeri võrrandi lahendamise käigus ja millele tuleb omistada teatud täisarvulisi väärtusi selleks, et Schrödingeri võrrand oleks üldse lahenduv. Selgub, et energiatasemed 6.3 on kõdunud, st igale tasemele vastab mitu erinevat lainefunktsiooni. Neid olekuid tuleb eristada täiendavate kvantarvudega. Orbitaalkvantarv ℓ fikseerib elektroni orbitaalse pöördimpulsi l mooduli $|l| = \sqrt{\ell(\ell+1)}\hbar$. Antud n korral võib orbitaalkvantarv omandada n erinevat väärtust $\ell = 0, 1, 2, ..., n-1$. Pöördimpulsi vektori suund ei olegi kvantmehaanikas täpselt määratud, küll on aga määratud selle vektori üks komponent (nt välise magnetvälja sihiline komponent). Selle fikseerib magnetkvantarv m_{ℓ} vastavalt valemile $l_z = m_{\ell}\hbar$. Magnetkvantarvu võimalikud väärtused on $m_{\ell} = 0, \pm 1, ..., \pm \ell$, kokku $2\ell + 1$ tükki. Kõduvust m_{ℓ} järgi on võimalik eemaldada magnetvälja rakendamisega, sellest ka kvantarvu nimetus. Viimaks tuleb arvesse võtta asjaolu, et elektronil (nagu ka paljudel teistel elementaarosakestel) on olemas sisemine pöördimpulss ehk spinn s, mida karakteriseerib kvantarv s = 1/2 ($|s| = \sqrt{s(s+1)}\hbar$). Spinn-momendil on järelikult kaks erinevat orientatsiooni, mida määratleb kvantarv $m_s = \pm 1/2$. Kokkuvõttes saame, et energiatasemele E_n vastab $2n^2$ erinevat kvantolekut.

Algelise ettekujutuse spinnist (ja sellega kaasnevast magnetmomendist) saab kui vaadelda elektroni kui pöörlevat laetud kerakest. Selline tõlgendus on siiski probleemne, sest elektron on praeguste teadmiste kohaselt punkt-osake, millel puudub sisemine struktuur ja füüsiline mõõde. Pöördimpulsi klassikaline määratlus nõuab aga liikuvat massi, millel on nullist erinev õlg pöörlemistelje suhtes. Spinn on elementaarosakese muutumatu sisemine omadus, st elektroni "pöörlemist" pole võimalik aeglustada ega kiirendada nagu makroskoopilise keha (nt vurri) korral.

Niisiis vesinikusarnase aatomi iga kvantolekut (lainefunktsiooni) võib identifitseerida kindla kvantarvude komplektiga $n \ell s m_{\ell} m_s$. Sellist olekut on kvantmehaanikas tavaks tähistada kirjutisega $|n \ell s m_{\ell} m_s\rangle$ (sellise kirjutise otstarve selgub veidi üldisemas kvantmehaanika käsitluses kui seda on lainemehaanika). Ajaloolistel põhjustel on tavaks tähistada orbitaalkvantarvu ℓ väärtusi tähtedega:

$\ell =$	0	1	2	3	4	5	
	s	р	d	f	g	h	

(edasi tähestiku järjekorras). Fikseeritud *n* ja ℓ väärtusega olekut tähistatakse $n\ell$. Näiteks 3p tähistab olekut ($n = 3, \ell = 1$).

Elektroni lainefunktsiooni võib vaadelda kui kahe teguri korrutist. Üks teguritest on radiaalne osa, mis kirjeldab elektroni paiknemise tõenäosustihedust erinevatel kaugustel tuumast. See sõltub kvantarvudest n ja ℓ (joon. 6.3). Nagu näha, Bohri teooriast saadud orbiitide raadiusi 6.4 tuleb tõlgendada kui elektroni karakteerset (kõige

Joonis 6.3. Elektroni erinevate orbitaalide tõenäosuspilve radiaalne jaotus vesinikusarnases aatomis. Kaugus tuumast on antud Bohri raadiustes (valem 6.4).

tõenäolisemat) kaugust tuumast. Teine tegur lainefunktsioonis kirjeldab aga tõenäosuspilve suunakarakteristikut. See on määratud kvantarvudega ℓ ja m_{ℓ} (joon. 6.4). Lainefunktsiooni suunakarakteristika määrab näiteks keemiliste sidemete orientatsiooni.

Väärib mainimist, et kõigis olekutes $\ell = 0$ (st 1s, 2s, jne) on lainefunktsioon tervikuna sfäärilise sümmeetriaga. See on tingitud sellest, et nendes olekutes orbitaalne impulsimoment ($\sqrt{\ell(\ell+1)}\hbar$) on null, seega mingit eelisorientatsiooni elektroni liikumisel ümber tuuma ei saa olla. Lisaks, kui tegemist on vaba, isoleeritud aatomiga, siis ka $\ell > 0$ korral kõik erinevad m_{ℓ} olekud on ühesuguse energiaga ehk kõdunud, nii et elektron viibib superpositsioonilises olekus, kus lainefunktsioon on ikkagi sfäärilise sümmeetriaga.

Joonis 6.4. Elektroni erinevate orbitaalide tõenäosuspilve suunasõltuvus vesinikusarnases aatomis. Vertikaalne, *z*-telg on sümmeetriateljeks.

6.1.3 Spektri peenstruktuur

Osutub, et kui võtta arvesse mitmesuguseid peenemaid efekte, ei ole vesinikusarnase aatomi energiatasemed 6.3 siiski täielikult kõdunud. Nende lõhenemine on aga nii väike, et jämeda spektroskoopilise mõõtmise käigus võib see jääda märkamata. Suurima panuse lõhenemisse annavad mitmesugused relativistliku iseloomuga efektid: relativistlik parandus elektroni energia arvutamisel ja spinn-orbitaalne vastasmõju. Need tingivad spektri nn. peenstruktuuri.

Bohri teooria võimaldab kergesti hinnata elektroni kiirust ringorbiidil aatomituuma suhtes (ülesanne 17). Vesinikuaatomi esimesel orbiidil tuleb see võrdseks $v = \alpha c$, kus $\alpha = e^2/(2hc\varepsilon_0) \approx 1/137$ (seda nimetatakse peenstruktuurikonstandiks järgnevas selguvatel põhjustel). Seega tõepoolest $v \ll c$, mis õigustab mitte-relativistliku füüsika kasutamist. Ent suure lahutusega spektraalmõõtmiste puhul on siiski alust oodata relativistlike efektide avaldumist. Klassikalise füüsika järgi on elektroni energia antud valemiga $mv^2/2 = p^2/(2m)$. Erirelatiivsusteooria järgi on aga elektroni kineetiline energia (koguenergia miinus seisuenergia) $\sqrt{m^2c^4 + p^2c^2} - mc^2 \approx p^2/(2m) + p^4/(8m^3c^2) + \dots$ Väikeste kiiruste juures on see üsna lähedane klassikalisele energiaavaldisele. Kõige jämedamat parandust võib kvantmehaanilises

analüüsis arvesse võtta kui väikest häiritust. Vastav arvutus vesinikusarnase aatomi lainefunktsioonide korral annab tulemuseks energiatasemete nihke suurusega

$$\Delta E = -\alpha^2 \left(\frac{1}{\ell + 1/2} - \frac{3}{4n} \right) \frac{Z^4}{n^3} R.$$
(6.6)

Seega kaob ära kõduvus orbitaalkvantarvu ℓ järgi.

Vaatleme nüüd lähemalt spinn-orbitaalse vastasmõju tekkimist. Elektron liigub üsna suure kiirusega tuuma poolt tekitatud kuloonilises elektriväljas. Nagu elektrodünaamikas näidatakse, sõltub elektromagnetväli sellest, millises taustsüsteemis seda vaadeldakse. Kui tuumaga seotud taustsüsteemis eksisteerib ainult elektriväli, siis elektroniga kaasaliikuv vaatleja tajub lisaks ka magnetvälja olemasolu.¹⁷ Viimane interakteerub elektroni spinn-magnetmomendiga (nagu kompassinõel Maa magnetväljas). Selle interaktsiooni energia sõltub elektroni spinn-momendi *s* orientatsioonist orbitaalse impulsimomendi *l* suhtes. Nende impulsimomentide vastastikune orientatsioon määrab aga summaarse impulsimomendi j = l + s, mille mooduli fikseerib kvantarv *j* vastavalt valemile $|j| = \sqrt{j(j+1)}\hbar$. Kvantarv *j* võib omandada väärtusi $|\ell \pm s|$, kus s = 1/2 on elektroni spinn-kvantarv.

Järjekindla põhjenduse spinni olemasolule annab relativistlik kvantmehaanika. Vastav arvutus näitab, spinn-orbitaalse vastasmõju tulemusel leiab aset energiatasemete nihe suurusega

$$\Delta E = \alpha^2 \frac{j(j+1) - \ell(\ell+1) - s(s+1)}{2\ell(\ell+1)(\ell+1/2)} \frac{Z^4}{n^3} R.$$
(6.7)

Huvitaval kombel on kummastki mehhanismist tingitud lõhenemised samas suurusjärgus (~ $\alpha^2 Z^4 R_{\infty}/n^3$). Summaarne energiatasemete nihe (mis saadakse avaldiste 6.6 ja 6.7 summeerimisel) jääb sõltuma ainult kvantarvudest n ja j:

$$\Delta E = \alpha^2 \left(\frac{3}{4n} - \frac{1}{j+1/2} \right) \frac{Z^4}{n^3} R.$$
(6.8)

Seega lõppkokkuvõttes sõltub elektroni energia vesinikusarnases aatomis lisaks peakvantarvule ka kvantarvust *j*. Vesinikuaatomi energiatasemeid tähistatakse kirjutisega $n\ell_j$. Näiteks $2p_{3/2}$ tähistab olekut ($n = 2, \ell = 1, j = 3/2$).

¹⁷Võib arutleda ka nii et elektroniga kaasaliikuva vaatleja seisukohalt tsirkuleerib prooton ümber elektroni ja tekitab seeläbi magnetvälja elektroni asukohas.

Joonis 6.5. Vesinikuaatomi spektrijoonte peenstruktuuri moodustumine. Energiad on antud cm⁻¹-tes.

Nagu näha, sõltub peenstruktuuri suurus oluliselt tuumalaengust *Z*. Kergete tuumade korral on ΔE hinnanguliselt $\alpha^2 R \sim 5 \text{ cm}^{-1}$. Raskemate aatomite korral võib peenstruktuuri panus olla märksa suurem.

Iga *j*-ga identifitseeritud energiatase on omakorda 2j + 1-kordselt kõdunud vastavalt kvantarvule m_j , mis määrab **j** ühe komponendi j_z ja võib omandada väärtusi $m_j = 0, \pm 1, \ldots, \pm j$. Niisiis spinn-orbitaalse vastasmõju arvestamisel on sobilik kvantarvude komplekt vesinikusarnase aatomi olekute identifitseerimiseks $n \ell s j m_j$. Neid nimetatakse "headeks" kvantarvudeks antud olukorra jaoks, sest need kvantarvud vastavad hästidefineeritud suurustele. Seevastu **l** ja **s** interaktsiooni tõttu nende komponendid l_z ja s_z ei ole täpselt määratud ja kvantarvude m_ℓ ja m_s kasutamine on ebaotstarbekas. Peenstruktuurist veelgi väiksema, nn ülipeenstruktuuri annab spektrile tuumaspinni ja elektroni spinni vastasmõju. See on 0,01 cm⁻¹ suurusjärgus.

Energiatasemete lõhenemist võib esile kutsuda ka välise elektri- või magnetvälja rakendamisega. Esimesel juhul räägitakse Starki efektist, teisel juhul Zeemani efektist. Starki efekt võib ilmneda näiteks juhul kui aatom asetada kristallvõresse, kus ta kogeb ümbritsevate ioonide elektrivälja.

ÜLESANNE 19. Lähtudes valemist 6.8 leidke, mitmeks komponendiks laguneb vesiniku energiatase peakvantarvuga n = 4, joonestage vastav energiatasemete skeem ja identifitseeriga energianivood kvantarvuga j.

6.2 Mitme-elektronilised aatomid

6.2.1 Tsentraalse välja lähendus. Aatomi elektronkonfiguratsioon.

Mitme-elektroniliste aatomite analüüs on märksa keerukam, kuna arvesse tuleb võtta elektronide omavahelisi interaktsioone. Analüütilisi tulemusi on võimalik saada ainult sobivate lähenduste tegemisel. Lähtekohaks taolises olukorras on enamasti sõltumatute elektronide lähendus, st iga elektroni vaadeldakse liikuvana ajaliselt keskmistatud potentsiaaliväljas, mida tekitavad ülejäänud elektronid. Järgmine lähendus on tsentraalse välja lähendus, mille puhul eeldatakse, et ajaliselt keskmistatud potentsiaal on ligikaudu sfäärilise sümmeetriaga (joon. 6.6). Seega ülesanne on analüüsida üksiku elektroni liikumist mittekuloonilises, ent siiski tsentraalses jõuväljas U(r).¹⁸ Analüüs näitab, et põhiline erinevus võrreldes vesinikusarnase aatomiga on kõduvuse kadumine kvantarvu ℓ järgi. Seejuures suurema ℓ puhul on ka elektroni energia suurem, sest suure impulsimomendi tõttu elektroni lainefunktsioon ei tungi eriti tuuma lähedale. $(2\ell + 1)$ -kordne kõduvus m_{ℓ} järgi ja 2-kordne kõduvus m_s järgi jäävad siiski püsima.

Niisiis ühe-elektroonseid seisundeid saab endiselt kirjeldada kvantarvude komplektiga $n \ell m_{\ell} m_s$. Osutub, et peakvantarv n iseloomustab endiselt elektronpilve karakteerset (keskmist) kaugust tuumast. Seetõttu öeldakse, et need seisundid, mida iseloomustab sama peakvantarv, moodustavad elektronkihi. Sama n ja ℓ väär-

¹⁸Suurtel kaugustel tuumast muutub U(r) kulooniliseks, sest elektroni eemaldamisel jääb järgi ühekordselt laetud ioon.

Joonis 6.6. Sõltumatute elektronide ja tsentraalse välja lähendus.

tusega olekud moodustavad alamkihi. Alamkiht koosneb omakorda orbitaalidest — orbitaal kirjeldab elektroni lainefunktsiooni ruumilist kuju ja on määratud kvantarvudega $n \ell m_{\ell}$ (vt joon. 6.3 ja 6.4). Igale orbitaalile mahub kaks vastassuunalise spinniga elektroni.

Elektronide jaotust kihtidel ja alamkihtidel nimetatakse aatomi elektronkonfiguratsiooniks. Seda tähistatakse jadana 1s² 2s² 2p⁶..., kus ülaindeks tähistab elektronide arvu alamkihis. Aatomi põhiolekus hõivavad elektronid energeetiliselt kõige soodsama konfiguratsiooni. Selle moodustamisel tuleb arvesse võtta asjaolu, et elektronid on fermionid, mis tähendab seda, et ühte olekut (spetsifitseeritud kvantarvudega n, ℓ, m_{ℓ}, m_s) saab hõivata ainult üks elektron korraga (Pauli keeluprintsiip).¹⁹ Arvestades kõduvust m_{ℓ} ja m_s järgi, saab alamkihile orbitaalkvantarvuga ℓ paigutada kuni $2(2\ell + 1)$ elektroni:

 ℓ		р	d	f	
$2(2\ell + 1)$	2	6	10	14	

Nendest kaalutlustest tulenev elektronkihtide täitumise järjekord määrab perioodilisuse tabeli struktuuri ja keemiliste elementide omadused (joon. 6.7). Näiteks kõige välimise (valents) elektronkihi täituvus määrab ionisatsioonienergia, mis omakorda määrab aatomite oksüdeerivad või redutseerivad omadused. Kvantarvud ℓ ja m_{ℓ} iseloomustavad orbitaalide kuju, mis määrab keemiliste sidemete orienteerituse jne.

Osutub, et reas 1s, 2s, 2p, 3s, ... orbitaalide energia ei kasva monotoonselt, vaid ligikaudu proportsioonis summaga $n + \ell$. Näiteks alles peale 5s, 5p ja 6s orbitaalide täitumist hakkavad elektronid paigutuma sisemistele 4f orbitaalidele, tingides lantaniidide rea moodustumise. Kuna 4f elektronkiht on ruumiliselt väiksema ulatusega kui 5s, 5p ja 6s, siis kõigi lantaniidide keemilised omadused on sarnased.

Selle jaotise kokkuvõtteks võib tõdeda, et aatomi elektronkonfiguratsioon ongi parim resultaat, mida on võimalik sõltumatute elektronide ja tsentraalse välja lähenduses saavutada. Elektronkonfiguratsioon kirjeldab vaid väga jämedalt aatomi energiaseisundeid, viimaste detailsem klassifitseerimine nõuab juba peenemate interaktsioonide arvestamist.

6.2.2 Russell-Saundersi skeem

Tsentraalse välja lähenduses ignoreeritakse mitmeid interaktsioone elektronide vahel. Need on: mittetsentraalne kulooniline vastasmõju (e. orbitaalmomentide vastasmõju), spinn-orbitaalne vastasmõju ja spinn-spinn vastasmõju. Nende interaktsioonide tõttu tekib elektronkonfiguratsiooniga kirjeldatavate energiaseisundite lõhenemine. Samuti nagu vesinikuaatomi korral ei ole kvantarvud m_{ℓ} ja m_s sobilikud energeetiliste olekute klassifitseerimiseks, sest üksikute elektronide orbitaalsete ja spinn-momentide orientatsioonid omaette võetuna ei pruugi olla täpselt määratud.

Olenevalt sellest, milline nimetatud vastasmõjudest on tugevaim, eksisteerib mitu erinevat lähenemist sobilike olekute (ja neid kirjeldavate kvantarvude) konstrueerimiseks. Meie piirdume siin nn Russell-Saundersi skeemiga, mis on levinud kergemate aatomite korral. Selle puhul eeldatakse, et orbitaalmomentide vastasmõju on hulga tugevam kui spinn-orbitaalne vastasmõju. Elektronsüsteemi energia sõltub orbitaalsete impulsimomentide vastastikusest orientatsioonist (joon. 6.8). Seega tuuakse sisse kvantarv *L*, mis määrab summaarse orbitaalse pöördimpulsi $L = \sum_i l_i$ (summa üle kõigi elektronide). Analoogiliselt eeldatakse, et spinn-momentide omavaheline interaktsioon on hulga tugevam kui spinn-orbitaalne interaktsioon, seega on alust defineerida kvantarv *S*, mis määrab summaarse spinni $S = \sum_i s_i$. Viimaks

¹⁹Arvestamaks asjaolu, et elektronid on eristamatud, moodustatakse aatomi kui terviku lainefunktsioon ühe-elektroonsete seisundite lineaarkombinatsioonina. Viimane on selliselt konstrueeritud, et ta on identselt null niipea kui kaks elektroni omavad ühesugust lainefunktsiooni (st sama kvantarvude komplekti).

Joonis 6.7. Perioodilisuse tabeli laiendatud vaade, mis toob rohkem esile elektronkihtide täitumise järjekorda liikumisel piki perioodi.

võetakse arvesse interaktsiooni L ja S vahel. Nende vektorite vastastikust orientatsiooni iseloomustab kvantarv J, mis määrab süsteemi summaarse pöördimpulsi J = L + S. J võib omandada väärtusi vahemikus |L - S| kuni L + S. Seega erineva Jväärtusega olekuid on 2L + 1 või 2S + 1 sõltuvalt sellest, milline on L ja S vahekord. Enamasti $S \le L$, seega erinevate energiatasemete arv on 2S + 1. Viimast nimetatakse seetõttu seisundi (L, S) multipletsuseks. Seda terminoloogiat säilitatakse ka juhul kui L < S. Vektori J projektsiooni etteantud sihile määrab kvantarv M_J , mis võib omandada väärtusi -J, -J + 1, ..., J. Kuna M_J mõjutab vaid resultatiivse impulsimomendi suunda, millest aatomi energia vabas ruumis ei saa sõltuda, siis J-ga fikseeritud olekud on 2J + 1 kordselt kõdunud.

Niisiis antud olukorras on kvantarvude komplekt $(n_i l_i) LSJM_J$ piisav aatomi erine-

vate olekute identifitseerimiseks (sulgudes olev avaldis määrab elektronkonfiguratsiooni). On tavaks tähistada kvantarvu *L* väärtusi tähtedega:

L =	0	1	2	3	4	5	
	S	P	D	F	G	Η	

Konkreetset energiataset (antud elektronkonfiguratsiooni juures) identifitseeritakse kirjutisega ${}^{2S+1}L_J$. Näiteks ${}^{3}P_2$ tähistab olekut (L = 1, S = 1, J = 2).

Russell-Saundersi skeemi rakendamine palju-elektronilise aatomi korral võib tunduda esmapilgul töömahukas. Olukorda lihtsustab märgatavalt asjaolu, et täielikult täidetud alamkihtide impulsimomendid ja spinnmomendid on nullid. Seda saab näidata lähtudes asjaolust, et täidetud alamkihis esinevad ühe korra kõikvõimalikud m_l ja m_s väärtused, mis paarikaupa kompenseerivad üksteist. Seega jääb üle analüüsida vaid poolikult täidetud elektronkihte (sageli vaid loetud arv valentselektrone). Lisaks võib kasulikuks osutuda tähelepanek, et kui antud alamkihile mahub maksimaalselt N elektroni, siis n elektroni sisaldava alamkihi termid on samad mis N-nelektroni (ehk n "auku") sisaldaval alamkihil. Seega ekvivalentsed konfiguratsioonid on p^n ja p^{6-n} , d^n ja d^{10-n} , f^n ja f^{14-n} jne. Vaatleme paari näite varal detailsemalt olekute ${}^{2S+1}L_J$ konstrueerimist. Olgu aatomi välises elektronkihis kaks elektroni, nii et $L = l_1 + l_2$, $S = s_1 + s_2$. Kui need elektronid kuuluvad samasse alamkihti ($\ell_1 = \ell_2$), nimetatakse neid ekvivalentseteks. Vastasel korral ($\ell_1 \neq \ell_2$) on tegemist mitteekvivalentsete elektronidega. Viimasel juhul on olukorda lihtsam analüüsida, kuna ei tule arvestada Pauli keeldu (kvantarv ℓ on elektronidel garanteeritult erinev). Kvantarv $m_{\ell 1}$ muutub vahemikus $-\ell_1 \leq m_{\ell 1} \leq \ell_1$. Analoogiliselt kvantarv $m_{\ell 2}$ muutub vahemikus $-\ell_2 \leq m_{\ell 2} \leq \ell_2$. Samas summaarse impulsimomendi projektsiooni määrav kvantarv $M_L = m_{\ell 1} + m_{\ell 2}$. Arvestades $m_{\ell 1}$ ja $m_{\ell 2}$ muutumispiirkonda, võime viimase võrduse esitada tabelina (näitena võetud $\ell_1 = 3, \ell_2 = 2$):

$m_{\ell 1}$ $m_{\ell 2}$	3	2	1	0	-1	-2	-3
2	5	4	3	2	1	0	-1
1	4	3	2	1	0	-1	-2
0	3	2	1	0	-1	-2	-3
-1	2	1	0	-1	-2	-3	-4
-2	1	0	-1	-2	-3	-4	-5
L		1		2	3	4	5

m_{s1} m_{s2}	-1/2	1/2
-1/2	-1	0
1/2	0	1
S	0	1

Piki tabeli veerge muutub $m_{\ell 1}$, piki ridu $m_{\ell 2}$ ja lahtritesse on märgitud summa $M_L = m_{\ell 1} + m_{\ell 2}$. Nagu näha, on võimalik tabeli lahtreid grupeerida nõnda, et igas grupis sisalduvad need M_L väärtused, mis vastavad ühele võimalikest L väärtustest kooskõlas tingimusega $|\ell_1 - \ell_2| \le L \le \ell_1 + \ell_2$ (antud juhul L = 1, 2, 3, 4, 5). Analoo-gilise tabeli võib teha ka spinnkvantarvude liitmiseks. Kuna aga $m_s = \pm 1/2$, siis on kergesti läbinähtav, et S võimalikud väärtused on 0 ja 1. Niisiis L ja S vahelist vastasmõju arvestamata oleme antud näites saanud kümme termi ¹P, ³P, ¹D, ³D, ¹F, ³F, ¹G, ³G, ¹H, ³H. Viimaks kvantarvu J võimalikud väärtused tulenevad tingimusest $|L-S| \le J \le L + S$. Näiteks term ³D (L = 2, S = 1) lõheneb tasemeteks ³D₁, ³D₂, ³D₃.

Ekvivalentsete elektronide korral on olukord veidi keerulisem, kuna tuleb arvestada Pauli keeldu (kummagi elektroni kõik neli kvantarvu ei saa ühtida). Vaatleme seda kahe *d*-elektroni näitel ($\ell_1 = \ell_2 = 2$). Eelneva juhuga analoogiline tabel orbitaalmomentide liitmiseks näeb nüüd välja järgmine:

$m_{\ell 1} m_{\ell 2}$	2	1	0	-1	-2
2	4	3	2	1	0
1	3	2	1	0	-1
0	2	1	0	-1	-2
-1	1	0	-1	-2	-3
-2	0	-1	-2	-3	-4

Diagonaalelemendid vastavad olukorrale $m_{\ell 1} = m_{\ell 2}$. See on lubatav ainult tingimusel $m_{s1} \neq m_{s2}$ ehk $M_S = 0$. Sel juhul saame L = 0, 1, 2, 3, 4. Kui aga $m_{s1} = m_{s2}$ ehk $M_S = \pm 1$, ei ole $m_{\ell 1} = m_{\ell 2}$ lubatav ja me saame L = 1, 3 (see, et need väärtused esinevad tabelis kahekordselt, ülal- ja allpool diagonaali, ei oma tähtsust, kuna elektronid on ekvivalentsed). Need kaks varianti võime kokku võtta järgmise tabeliga:

$M_S = 1$		Ρ		F	
$M_S = 0$	S	Ρ	D	F	G
$M_S = -1$		Ρ		F	
	¹ S	³ P	¹ D	³ F	¹ G

ÜLESANNE 20. Leidke kvantarvu *S* võimalikud väärtused aatomis, mille välises elektronkihis on 4 elektroni.

6.2.3 Hund'i reeglid

Hund'i reeglid võimaldavad määrata mitme-elektronilise aatomi antud elektronkonfiguratsiooni minimaalsele energiale vastava termi.

- 1. Elektronid eelistavad paikneda alamkihi erinevatele orbitaalidele nii, et nende spinnid on samasuunalised, st kvantarv *S* maksimaalne.
- 2. Antud S juures omab vähimat energiat term, millel kvantarv L on suurim, st elektronide orbitaalsed impulsimomendid on eelistatult samasuunalised.
- 3. Kui alamkiht on täidetud alla poole, omab antud *S* ja *L* puhul minimaalset energiat term, millel on minimaalne *J*. Kui alamkiht on täidetud üle poole, annab minimaalse energia maksimaalne J.²⁰

Hund'i reeglite rakendamiseks ei ole vaja teostada eelmises jaotises esitatud analüüsi aatomi kõikvõimalike energiatasemete leidmiseks, kuna otsitakse vaid maksimaalse *S* ja *L* väärtusega olekuid. Näiteks d⁴ konfiguratsiooni põhiseisundi leidmiseks koostame tabeli kõikvõimalike d-olekute jaoks ja paigutame need 4 elektroni ükshaaval orbitaalidele kooskõlas Hund'i reeglitega. Hund'i esimese ja teise reegli kohaselt tuleb elektronid paigutada erinevatele d-orbitaalidele nii, et nende spinnid oleksid samasuunalised ja $\sum m_{\ell}$ võimalikult suur:

$m_l =$	2	1	0	-1	-2
	1	1	1	1	

Niisiis $M_L = \sum m_\ell = 2$ ja $M_S = \sum m_s = 2$, seega L = 2, S = 2 ja põhiolek on ⁵D₀ (J väärtus tuleneb kolmandast reeglist).

ÜLESANNE 21. Leidke hapniku aatomi (1s²2s²2p⁴) põhiolek.

6.3 Spektrijoonte intensiivsused

6.3.1 Kiirgusaktid aatomi ja elektromagnetvälja vahel

Nagu eespool selgus, eksisteerib aatomitel, molekulidel jm kvantsüsteemidel rida kindla energiaga statsionaarseid seisundeid. Et viia aatomit ühest sellisest olekust

teise, tuleb teda vastavalt mõjustada, nt resonantse valgusega kiiritamise teel (oleku *statsionaarsus* tähendabki seda, et igasuguste välismõjude puudumisel jääb kvantsüsteem sellesse olekusse piiramata ajaks).

Olgu E_1 ja E_2 aatomi kaks energiataset, kusjuures $E_2 > E_1$ (E_1 võib olla näiteks aatomi põhiolek). Nende energiatasemete vahega on resonantsis kiirgus kvandi energiaga $\hbar \omega = E_2 - E_1$. Einstein püstitas lihtsa fenomenoloogilise teooria, kus postuleeritakse järgmised kolm termodünaamiliselt kooskõlalist elementaarprotsessi, mille kaudu aatomid saavad interakteeruda (vahetada energiat) kiirgusväljaga (joon. 6.9).

Kui aatom viibib madalamas energiaseisundis E_1 ja ümbritsev elektromagnetväli sisaldab footoneid energiaga $\hbar\omega$, siis on võimalik protsess, mille käigus aatom neelab kiirgusväljast energiakvandi $\hbar\omega$ ja ergastub olekusse E_2 . Selle protsessi tõenäosus on ilmselt seda suurem mida intensiivsem on kiirgusväli sagedusel ω . Ergastatud seisundis E_2 viibiva aatomi relakseerumiseks tagasi olekusse E_1 on aga kaks teed. Esiteks, aatom võib mõningase ajavahemiku möödudes iseeneslikult (st sõltumatult välisest väljast) siirduda madalamale energiatasemele, kiirates vabanenud energia footoni näol juhuslikus suunas. Sellist kiirgusakti nimetatakse **spontaanseks** e. vabakiirguseks. Alternatiivselt, ülemineku $2 \rightarrow 1$ saab esile kutsuda täpselt samuti nagu ka neeldumisakti $1 \rightarrow 2$, st resonantse kiirgusega. Seda nimetatakse stimuleeritud e. **sundkiirguseks**. Ka selle protsessi tõenäosus on võrdeline kiirguse intensiivsusega resonantsisagedusel ω . Kuigi see Einsteini teooriast otseselt ei järeldu, on stimuleeritud kiirgusel eripärane omadus: kiiratud footon on identne siiret esile kutsunud footoniga (sama sagedus, suund, faas ja polarisatsioon).

Nagu selgub lihtsast termodünaamilisest analüüsist, on neeldumine ja stimuleeritud kiirgamine võrdtõenäosed (vt lisa l). Niisiis sõltuvalt sellest, milline on seisundites E_1 ja E_2 viibivate aatomite suhe, võib ainet läbiv resonantne kiirgus kas nõrgeneda neeldumise tõttu või hoopis tugevneda stimuleeritud kiirguse abil. Selle tõttu on stimuleeritud kiirgus aluseks laserite tööle (jaotis 10).

Spontaanne kiirgus ei ole siiski päris isetekkeline, vaid on indutseeritud aatomi ja elektromagnetvälja nn vaakumoleku vastasmõjust. Kuna aga vaakumolek on elektromagnetvälja vähima energiaga seisund, siis ta saab stimuleerida ainult kiirgamist, mitte aga neelamist. Spontaanse kiirguse tõenäosus on mõjustatud elektromagnetvälja moodide tihedusest aatomi läheduses. Kui näiteks asetada aatom hästi

²⁰Täpsemalt, kahe järjestikuse peenstruktuuri taseme energeetiline kaugus on määratud järgmise empiirilise (Lande) reegliga: $E_J - E_{J-1} = A_{LS}J$, kus A_{LS} on konstant (antud *LS* paari jaoks). Juhul kui alamkiht on täidetud alla poole, on $A_{LS} > 0$, kui aga alamkiht on täidetud üle poole, siis $A_{LS} < 0$. Kui alamkiht on täpselt poolenisti täidetud, on A_{LS} esimeses lähenduses null ja peenstruktuur puudub.

Joonis 6.9. Elementaarsed kiirgusaktid aatomi ja elektromagnetvälja vahel.

väikesesse (lainepikkuse suurusjärgus mõõtmetega) õõnsusesse, mille suurus või kuju ei võimalda sagedusega ω seisulaine moodustumist, on spontaanne kiirgus sellel sagedusel pärsitud.

6.3.2 Spontaanse kiirguse tõenäosus ja kestus

Vaatleme ühesuguste aatomite ansamblit, kus igal aatomil on vaid kaks energiataset (põhiolek ja üks ergastatud seisund). Oletagem, et mõnesuguse mõjutuse tulemusena õnnestus alghetkel teatud hulk aatomeid viia ergastatud seisundisse. Nagu juba mainitud, relakseeruvad ergastatud aatomid mõne aja pärast iseeneslikult tagasi põhiolekusse, kiirates vabanenud energia valguskvandina. Kõnealune protsess ei toimu siiski järsku, vaid ergastatud aatomite arv hakkab järk-järgult vähenema vastavalt eksponentsiaalsele sõltuvusele, nagu mainiti juba jaotises 4.2 seoses fluorestsentsi kustumise kineetikaga.

Vaatleme, millistest teoreetilistest kaalutlustest kirjeldatud seaduspära tuleneb. Kvantmehaanikas on kõik protsessid tõenäosuslikud, sealhulgas ka ergastatud aatomi iseeneslik relakseerumine madalamale energiatasemele või radioaktiivse aatomituuma lagunemine. Ei ole võimalik täpselt ette ennustada, mis ajamomendil see sündmus aset leiab, küll aga on võimalik seda juhuslikku protsessi kirjeldada tõenäosusteooria vahenditega. Näiteks eksisteerib teatav tõenäosus ΔP , et nimetatud sündmus leiab aset järgneva ajavahemiku Δt jooksul. Seejuures see tõenäosus ilmselt ei sõltu sellest kui kaua on aatom algseisundis juba viibinud, sest seni kuni

aatom ei ole muutnud oma olekut, jäävad muutumatuks ka tema omadused (st kvantobjektidel puudub mälu). Kui näiteks sündmus leiab aset 20%-lise tõenäosusega 1 µs jooksul, aga aatomil on ometigi õnnestunud viibida algolekus juba 10 µs, siis tõenäosus, et sündmus toimub ajavahemikus 10...11 µs, on endiselt 20%. Makroskoopilisest maailmast leiab kergesti kontranäiteid. On näiteks üsna ilmne, et põleva hõõglambi järgijäänud tööiga sõltub sellest, kui kaua on lamp juba põlenud, sest põlemise käigus hõõgniit tasapidi degradeerub ja selle läbipõlemise tõenäosus aina kasvab.

Ilmselt hästi väikeste ajavahemike Δt korral on ΔP võrdeline Δt -ga. Järelikult seda tüüpi (ilma mäluta) juhuslike protsesside jaoks saab defineerida siirde tõenäosuse ajaühikus $A = \lim_{\Delta t \to 0} \Delta P / \Delta t$, mis on kogu protsessi vältel muutumatu suurus ja on karakteerne antud tüüpi aatomite konkreetsele algseisundile. Niisiis väikese ajavahemiku Δt jooksul väheneb ergastatud aatomite arv $\Delta N = \Delta P N = (A\Delta t)N$ võrra. Järelikult ergastatud aatomite populatsiooni muutumist kirjeldab võrrand

$$\frac{dN}{dt} = -AN$$

Selle diferentsiaalvõrrandi lahendiks on (vt märkust lk 24)

$$N(t) = N_0 e^{-At},$$

kus N_0 on ergastatud aatomite arv alghetkel. Parameetri A pöördväärtus on aja dimensiooniga suurus, mille me tähistame sümboliga τ . Seega olemegi saanud seaduse 4.1. Spontaanse kiirguse karakteerset kestust τ nimetatakse ergastatud aatomi optiliseks elueaks.

Üldjuhul on aatomis väga palju erinevaid energiatasemeid, mis võivad olla mingil viisil kaasatud vaadeldavas optilises protsessis. Tähistame algnivoo E_i , lõppnivoo E_j ja spontaanse siirde $E_i \rightarrow E_j$ tõenäosuse ajaühikus A_{ij} (siin *i* ja *j* tähistavad indekseid, millega me nummerdame aatomi kõiki energiatasemeid). A_{ij} on määratud alg- ja lõppoleku lainefunktsioonidega nagu selgub edaspidi. Ergastatud seisundist energiaga E_i võib aatom relakseeruda ilmselt mistahes energiatasemele, mille energia $E_j < E_i$. Järelikult energiataseme E_i populatsiooni vähenemise kiiruse määrab suurus

$$A_i = \sum_{E_j < E_i} A_{ij}$$

ja seisundi E_i optilise eluea väärtus on seega $\tau_i = 1/A_i$.

Viimaks vaatleme harjutuse mõttes veidi keerukamat juhtu. Olgu aatomis vaid kolm energiataset, mis energia kasvu järjekorras olgu tähistatud indeksitega 1, 2 ja 3, kusjuures alghetkel on teatud hulk (N_{30}) aatomeid ergastatud olekusse 3. Kui vaadeldav kiirgus lähtub vahepealselt seisundilt 2, siis milline on selle kineetika? Ilmselt alghetkel on kiirguse intensiivsus null, kuna $N_2 = 0$. Seejärel nivoo 2 hakkab tasapisi asustuma nivoo 3 relaksatsiooni tõttu kuni mingil hetkel saavutab selle hõive (ja vastavalt ka kiirguse intensiivsus) maksimumi. Edasi kiirgus järkjärgult sumbub kuni kõik aatomid on relakseerunud põhiseisundisse 1. Vaadeldavat süsteemi kirjeldab ilmselt järgmine diferentsiaalvõrrandite süsteem:

$$\frac{dN_3}{dt} = -(A_{31} + A_{32})N_3,$$

$$\frac{dN_2}{dt} = A_{32}N_3 - A_{21}N_2.$$

(Analoogiliselt saaks kolmanda võrrandi kirjutada N_1 kohta, ent see ei oleks enam sõltumatu kuna kõigi aatomite koguarv $N_1 + N_2 + N_3$ püsib muutumatu.) Esimese võrrandi saab kohe integreerida, kuna selles sisaldub vaid N_3 :

$$N_3(t) = N_{30}e^{-(A_{31}+A_{32})t}$$

Asendades selle teise võrrandisse, saame

$$\frac{dN_2}{dt} + A_{21}N_2 = A_{32}N_{30}e^{-(A_{31}+A_{32})t}$$

Selle võrrandi lahendamine nõuab juba diferentsiaalvõrrandite kursuses käsitletavaid erivõtteid; siin toome vaid vastuse:

$$N_2(t) = \frac{A_{32}N_{30}}{A_{31} + A_{32} - A_{21}} \left[e^{-A_{21}t} - e^{-(A_{31} + A_{32})t} \right].$$
 (6.9)

Tulemus on kujutatud joonisel 6.10.

Analoogilisel teel saab analüüsida meelevaldsete süsteemide dünaamikat, k.a. selliseid olukordi, kus mingi mõjutuse toimel (nt resonantse valgusega kiiritamine või elektrilahendus) leiab aset mõnede üleminekute täiendav stimuleerimine või aatomite ülesergastamine.

Joonis 6.10. Kolmenivoolise süsteemi kineetika (valem 6.9), kus $A_{21} = 1$, $A_{32} = 5$ ja $A_{31} = 0$.

6.3.3 Aatomi spektrijoonte intensiivsused

Aatomi konkreetse kiirgusjoone (mis vastab näiteks üleminekule energiatasemelt E_i energiatasemele E_j) intensiivsuse (footonit sekundis) määrab ühelt poolt algnivoo E_i asustatus (selles seisundis viibivate aatomite arv N_i) ja teiselt poolt siirde $E_i \rightarrow E_j$ tõenäosus A_{ij} :

$$I_{ii} = N_i A_{ii}$$
.

Suuruse A_{ij} asemel iseloomustatakse üleminekut sageli ostsillaatorijõuga f_{ij} . See on dimensioonitu suurus, mis väljendab efektiivset elektronide arvu, mis osalevad antud üleminekus. A_{ij} ja f_{ij} on seotud järgmiselt:

$$A_{ij} = \frac{1}{2\pi\varepsilon_0} \frac{\omega^2 e^2}{mc^3} f_{ij}.$$
(6.10)

Üldiselt $f_{ij} \leq 1$ ja reeglina $f_{ij} \ll 1$. Ainult kõige intensiivsematel üleminekutel $f_{ij} \sim 1$. Tabelis 3 on toodud mõningad näited.

Algnivoo E_i asustamine võib toimuda mitmeti, näiteks sobivalt valitud resonantse valgusega kiiritamise teel. Gaaslahenduse jms protsesside käigus toimub aatomite

Tabel 3. Mõningate tuntud optiliste üleminekute karakteristikud.

Üleminek	λ (nm)	A_{ij}	$ au_i$	f_{ij}
rubiinlaseri üleminek ${}^{2}E \rightarrow {}^{4}A_{2}$	694 nm	230 s ⁻¹	4,3 ms	10 ⁻⁶
He-Ne laseri üleminek $3s_2 \rightarrow 2p_4$	633 nm	$1,4 \times 10^{6} { m s}^{-1}$	0,7 µs	0,0084
naatriumi D-joon $3s_{1/2} ightarrow 3p_{1/2}$	589 nm	$6,3 \times 10^7 \mathrm{s}^{-1}$	1,6 ns	0,33
Rhodamin 6G värvilaseri üleminek $S_1 \rightarrow S_0$	620 nm	$3 \times 10^8 {\rm s}^{-1}$	3,3 ns	1,1

termiline ergastumine (põrked teiste aatomite ja elektronidega). Teatavasti termilise tasakaalu korral määrab energia jaotumise identsete osakeste vahel suletud süsteemis klassikaline Boltzmanni jaotus. Kõnealuseks energiaks võib olla aatomite siseenergia, kineetiline energia või potentsiaalne energia välisjõudude väljas.²¹ Nende aatomite suhtarv, mis viibivad energianivool E_i , avaldub vastavalt Boltzmanni jaotusele järgmiselt:

$$\frac{N_i}{N} = \frac{e^{-E_i/k_{\rm B}T}}{\sum_k e^{-E_k/k_{\rm B}T}}.$$
(6.11)

Siin $k_{\rm B} = 1,38 \times 10^{-23}$ J/K on Boltzmanni konstant ja T on absoluutne temperatuur. Nimetajas summeeritakse üle kõikide aatomi energiatasemete. Valem 6.11 näitab, et mida kõrgem on gaasi temperatuur, seda kõrgema energiaga seisundid on aatomites ergastatud (sest soojusliikumisest tingitud põrked aatomite vahel muutuvad tugevamaks).

Nagu eespool mainitud, võib juhtuda, et paljud aatomi energiatasemed on kõdunud. Antud energiatasemele E_k vastavate erinevate kvantolekute arvu nimetatakse selle energiataseme kõduvuskordsuseks ja tähistatakse g_k . Niisiis kui loendada ainult erinevaid energiatasemeid, omandab valem 6.11 kuju

$$\frac{N_i}{N} = \frac{g_i e^{-E_i/k_{\mathsf{B}}T}}{\sum_k g_k e^{-E_k/k_{\mathsf{B}}T}}.$$

Eksperimentaalselt määratud A_{ik} , f_{ik} ja g_i väärtused võib sageli leida spektrijoonte tabeleist jm teatmekirjandusest (vt nt [17]).

Neeldumises tekkivate spektrijoonte tugevuse kirjeldamine on natuke tülikam, sest neeldumine on juba väliselt stimuleeritud protsess ja sõltub sellest, kui hästi on ergastav kiirgus resonantsis üleminekuga 1 \rightarrow 2. Üksiku aatomi jaoks kirjeldab konkreetset neeldumissiiret neeldumisristlõike σ sõltuvus kiirguse sagedusest ω . Kui rääkida vaid spektrijoone kujust e. profiilist, võib kasutusele võtta normeeritud kujufunktsiooni $f(\omega)$ (jaotis 5.1). Saab näidata (vt lisa I), et neeldumisristlõige avaldub järgmiselt:

$$\sigma(\omega) = \frac{g_1}{g_2} \times \frac{f(\omega)A_{21}}{4n^2}\lambda_0^2,$$

kus λ_0 on neeldumisriba lainepikkus (vaakumis) ja *n* on keskkonna murdumisnäitaja. Integreerides $\sigma(\omega)$ avaldist üle kogu neeldumisriba, vabaneme funktsioonist $f(\omega)$:

$$\int \sigma(\omega) \, d\omega = A_{21} \frac{g_1}{g_2} \times \frac{\lambda_0^2}{4n^2}.$$

Seega neeldumisriba integraalse tugevuse mõõtmise teel (rakendades Beeri seadust) saame eksperimentaalselt määrata A_{21} , ja kaudselt ka kõik muud sellega seotud suurused, nagu siirde ostsillaatorijõud (6.10) või dipoolmoment (6.16).

6.3.4 Spontaanne kiirgus poolklassikalises teoorias

Spontaanse kiirguse protsessi on võimalik teatud ulatuses kirjeldada poolklassikalise teooriaga, kus aatomit vaadeldakse kvantsüsteemina, valgust aga klassikalise elektromagnetlainena. Vaatleme kiirgusprotsessi kahenivoolises süsteemis, kus elektroni statsionaarsed seisundid on $\Psi_1(\mathbf{r}, t)$ ja $\Psi_2(\mathbf{r}, t)$ energiatega E_1 ja E_2 $(E_2 > E_1)$. Statsionaarsete seisundite lainefunktsioonides sisaldub aeg ainult faasikordajas:

$$\Psi_1(\mathbf{r},t) = \psi_1(\mathbf{r})e^{-iE_1t/\hbar}, \quad \Psi_2(\mathbf{r},t) = \psi_2(\mathbf{r})e^{-iE_2t/\hbar}.$$

²¹Kineetilisele energiale rakendades annab Boltzmanni jaotus gaasimolekulide kiiruste jaotuse. Rakendades seda aga molekulide potentsiaalsele energiale Maa raskusväljas saadakse tuntud baromeetriline valem, mis annab õhurõhu sõltuvuse kõrgusest.

Siirde 2 \rightarrow 1 kestel avaldub lainefunktsioon kui $\Psi_1(\mathbf{r}, t)$ ja $\Psi_2(\mathbf{r}, t)$ lineaarkombinatsioon:

$$\Psi(\mathbf{r},t) = a_1(t)\Psi_1(\mathbf{r},t) + a_2(t)\Psi_2(\mathbf{r},t).$$
(6.12)

Siin $|a_i|^2$ annab tõenäosuse, et süsteemi võib leida viibivana olekus Ψ_i . Kui näiteks aatom on alghetkel t = 0 ergastatud seisundis Ψ_2 , siis $|a_2(0)|^2 = 1$ ja $|a_1(0)|^2 = 0$. $|a_1(t)|^2$ annab siis tõenäosuse, et süsteem on ajahetkeks t relakseerunud seisundisse Ψ_1 , st on kiiranud footoni.

Nagu eelnevalt mainitud, väljendab $|\Psi(\mathbf{r}, t)|^2$ elektroni leidmise tõenäosust ruumipunktis \mathbf{r} ajahetkel t. Elektronpilve laengutihedus on valemit 6.12 arvestades

$$\rho(\mathbf{r},t) = (-e)|\Psi(\mathbf{r},t)|^{2}$$

$$= (-e)|a_{1}\Psi_{1} + a_{2}\Psi_{2}|^{2}$$

$$= -e[|a_{1}|^{2}|\psi_{1}|^{2} + |a_{2}|^{2}|\psi_{2}|^{2}$$

$$+ a_{1}^{*}a_{2}\psi_{1}^{*}\psi_{2}e^{-i(E_{2}-E_{1})t/\hbar} + a_{1}a_{2}^{*}\psi_{1}\psi_{2}^{*}e^{i(E_{2}-E_{1})t/\hbar}]$$

$$= -e[|a_{1}|^{2}|\psi_{1}|^{2} + |a_{2}|^{2}|\psi_{2}|^{2} + 2\operatorname{Re}\{a_{1}^{*}a_{2}\psi_{1}^{*}\psi_{2}\}\cos\omega t], (6.13)$$

kus $\omega = (E_2 - E_1)/\hbar$ (lihtsuse huvides oleme jätnud funktsioonide argumendid väljakirjutamata). Seega leiavad aset elektronpilve laengutiheduse ostsillatsioonid sagedusega ω . Klassikalisest elektrodünaamikast on teada, et ostsilleerivad laengud kiirgavad sama sagedusega elektromagnetlaineid. Kõige intensiivsem on kiirgus juhul, kui süsteemi elektriline dipoolmoment on nullist erinev. Dipoolmoment arvutatakse pideva laengujaotuse korral järgmiselt:

$$\boldsymbol{p}(t) = \int \boldsymbol{r} \rho(\boldsymbol{r}, t) \, dV. \tag{6.14}$$

Võimalikud on ka muud tüüpi üleminekud (magnetdipool, kvadrupool, jne), aga need on hulga nõrgemad ja neid me siinkohal ei vaatle. Avaldistest 6.13 ja 6.14 saame, et sagedusega ω ostsilleeriv dipoolmomendi panus eksisteerib vaid juhul, kui suurus

$$\boldsymbol{\mu} = \int \boldsymbol{\psi}_1^* \boldsymbol{e} \boldsymbol{r} \boldsymbol{\psi}_2 \, dV \tag{6.15}$$

on nullist erinev. Viimast nimetatakse ülemineku 2→1 dipoolmomendiks.²² Täpsem

analüüs annab ka avaldise spontaanse siirde 2→1 tõenäosuse jaoks:

$$A_{21} = \frac{n\omega^3 |\boldsymbol{\mu}|^2}{3\varepsilon_0 \hbar c^3} = \frac{16\pi^3 n |\boldsymbol{\mu}|^2}{3\varepsilon_0 h \lambda^3},$$
(6.16)

kus *n* on keskkonna murdumisnäitaja. Hindame A_{21} väärtust. Nähtavas diapasoonis $\lambda \sim 500$ nm. Lubatud siirde jaoks võib | μ | väärtuseks hinnanguliselt võtta ea_0 , kus a_0 on Bohri raadius (jaotis 6.1.1). Seega $A_{21} \sim 10^7 \text{ s}^{-1}$ ja järelikult spontaanse kiirguse karakteerne kestus $\tau_{sp} = 1/A_{21} \sim 10^{-7}$ s. Dipoollähenduses keelatud üleminekute jaoks on τ_{sp} hulga pikem ja võib ulatuda millisekunditesse.

6.3.5 Valikureeglid

See, kas dipool-üleminek kahe energiataseme vahel on võimalik (dipoolmoment 6.15 nullist erinev), on määratud alg- ja lõppoleku lainefunktsioonide sümmeetriaomadustega. Avaldist 6.15 vaadates on näiteks selge, et lainefunktsioonid peavad olema erineva paarsusega, vastasel korral on integrand tervikuna paaritufunktsioon (joon. 6.11). Osutub, et lainefunktsiooni sümmeetriaomadused kajastuvad kvantarvudes. See võimaldab kvantarvude kaudu sõnastada teatavad tingimused e. valikureeglid, mille korral dipool-siire on lubatud. Vesinikulaadse süsteemi puhul on need reeglid eriti lihtsad:

$$\begin{aligned} \Delta \ell &= \pm 1, \\ \Delta m_{\ell} &= 0, \pm 1, \\ \Delta m_s &= 0, \\ \Delta j &= 0, \pm 1 \text{ (v.a. } j = 0 \rightarrow j = 0). \end{aligned}$$

Need tingimused tulenevad pöördimpulsi jäävuse seadusest (footon viib süsteemist ära ühe ühiku suuruse pöördimpulsi) ja asjaolust, et elektroni spinn ei osale dipoolüleminekus.

ÜLESANNE 22. Üks tugevamaid vesinikujooni nähtavas diapasoonis on punane Balmeri seeria joon, mis vastab üleminekule tasemelt n = 3 tasemele n = 2. Leidke, mitmest komponendist koosneb selle joone peenstruktuur.

²²Kvantmehaanikas nimetatakse seda ka dipooloperaatori maatrikselemendiks, kuid sellest mõistest arusaamine nõuab mõnevõrra süvendatumat kvantmehaanika käsitlust.

Joonis 6.11. Lainefunktsiooni paarsus kui valikureegel. Punaseks värvitud pind märgib positiivset, siniseks värvitud pind aga negatiivset panust siirde dipoolmomenti μ .

6.4 Aatomispektroskoopia eksperimentaalsest teostusest

Aatomispektroskoopia tugineb põhiliselt aatomite valentselektronide energiaseisundite sondeerimisel, viimased on aga tugevasti mõjutatud kui aatomid on keemiliselt seotud. Järelikult aatomispektroskoopia eksperimentaalse realiseerimine eelduseks on aatomite viimine vabasse olekusse (gaasilisse faasi), alles seejärel saab registreerida teravad karakteersed spektrijooned neeldumises või kiirguses. Gaaside uurimiseks gaas hõrendatakse ja sellest juhitakse läbi elektrivoolu (gaaslahendus), mille tulemusena gaasi aatomid ergastuvad ja hakkavad kiirgama. Mittegaasiliste kehade uurimiseks tuleb neid eelnevalt aurustada. Selleks on mitmeid meetodeid. Traditsioonilised võtted on näiteks aine pihustamine gaasileeki või gaaslahendusse. Vaatleme siinkohal lähemalt ühte veidi uuemat meetodit, nn laser-indutseeritud plasma spektroskoopiat, mis on keemia ja materjaliteaduse seisukohast atraktiivne selle poolest, et pakub suhteliselt universaalse ja lihtsa võimaluse mistahes materjali element-koostise määramiseks mikroskoopilise ruumilise lahutusega kuigi nõuab suhteliselt kallist aparatuuri. Meetodi sisuks on küllalt võimsa laserimpulsiga aine pinnal plasmatombu tekitamine ja viimase kiirgusspektri registreerimine. Küllalt võimsas teravalt fokuseeritud laserimpulsis on elektriväljatugevus piisav tekitamaks aines dielektrilist läbilööki. Optilistel sagedustel tekib läbilöök väljatugevustel suurusjärgus 10 MV/cm. Läbilöök seisneb aine laviinitaolises ioniseerumises, mille algatavad üksikud elektronid, mis kiirenevad tugevas elektriväljas suurte kiirusteni. Peale läbilööki eraldub aine pinnalt paisuv plasmapilv algtemperatuuriga ca 10⁴...10⁵ K. Mikrosekundite jooksul toimub plasma jahtumine, elektronide ja ioonide rekombineerumine ning kiirguse teke.

Kuna plasma omadused muutuvad paisumise käigus, leiavad aset ka vastavad muutused kiirguse iseloomus. Laserimpulsist alates kuni mõnesaja nanosekundi vältel on valdavaks vabade elektronide pidurdumisest ning rekombinatsioonist ioonidega tingitud ulatusliku spektriga (valge) kiirgus. Selle kiirguse foonil võib märgata ka ioonide diskreetseid spektrijooni, kuid need on kõrge temperatuuri tõttu tugevalt laienenud. Ergastatud neutraalsete aatomite emissioon saab valdavaks peale rekombinatsiooni lõppemist (mõned µs). Selleks ajaks on ka temperatuur langenud ja spektrijooned on muutunud kitsaks. Nende spektrijoonte identifitseerimine ongi aluseks atomaarse koostise määramisele. Veelgi pikema viivisega hakkavad moodustuma juba molekulid. Seega on antud meetodi juures vajalik aeglahutust võimaldava detektori olemasolu.

Kõige kallim komponent antud meetodi realiseerimisel ongi spetsiaalne CCD põhine spektromeeter (või mitme spektromeetri kombinatsioon), mis võimaldaks ainsa ekspositsiooniga (ühe laserpulsiga) kiirgusspektri võimalikult avaras spektraaldiapasoonis üles võtta piisavalt suure spektraallahutusega, et eristada kõiki vajalikke spektrijooni proovi element-koostise määramiseks. Muude optiliste komponentide osas on antud meetod üsna sarnane mitmete teiste spektroskoopiameetoditega nagu laser-ergastusega fotoluminestsentsi ja Raman-hajumise mõõtmine (jaotis 4.5.1).

7 MOLEKULISPEKTROSKOOPIA

7.1 Molekuli elektronseisundid

Nii nagu aatomitel, on ka molekulidel olemas elektronseisundid. Lisaks saavad molekulid võnkuda ja pöörelda (aatomitel sellised vabadusastmed puuduvad). Vähemalt mingil määral saab kõiki neid erinevaid liikumisi analüüsida sõltumatult. Suurima energiaga on elektronseisundid, mis põhjustavad neeldumist ja kiirgust nähtava spektraalpiirkonna ümbruses.

Lihtsaimate molekulide korral on mõeldav elektronseisundeid analüüsida ja süstematiseerida samas vaimus nagu tegime aatomifüüsikas. Piirdume siin palju lihtsama käsitlusega, mis see-eest on relevantne ka suuremate molekulide korral.

Joonisel 7.1 on näitena toodud paari tsüaniinvärvainete klassi kuuluva molekuli struktuurid. Kui jätta mõned iseärasused kõrvale, siis sellist laadi molekul on põhiosas vaadeldav kui lineaarne süsinikuaatomite ahel. Süsiniku valentskihis on neli elektroni. Nendest kolm kulub keemiliste sidemete moodustamiseks naabritega. Üks elektron jääb üle, ja võib ette kujutada, et see on "jagatud" kõigi aatomite vahel nimetatud lineaarses ahelas. Samas on ta siiski molekulis "kinni". Seega see elektron efektiivselt liigub ühemõõtmelises potentsiaaliaugus, nagu kujutatud joonisel 7.1. Esimeses lähenduses aproksimeerime seda kastikujulise potentsiaaliga. Näiteks Cy5 molekuli jaoks hindame potentsiaaliaugu laiuseks $L \simeq 10,5l$, kus l = 0,14 nm on süsinikuaatomite vaheline keskmine kaugus.

Elektroni energiaseisundid sellises potentsiaaliaugus saab tuletada minimaalse vaevaga. Nimelt ruumipiirkonnas, kus potentsiaalne energia on konstant, on elektroni liikumine vaadeldav kui harmoonilise (de Broglie) laine levimine, teatud lainepikkusega λ_e . Kui potentsiaaliauk on püstiste ja lõpmata kõrgete seintega, siis selle laiuse sisse peab mahtuma täisarv pool-laine pikkuseid, nii et $\lambda_e = 2L/n$, kus n = 1, 2, ...De Broglie seosest laineikkuse ja impulsi vahel saame nüüd elektroni impulsi kõikvõimalikud väärtused:

$$p = \frac{h}{\lambda_e} = \frac{hn}{2L}.$$

Joonis 7.1. Vasakul on kujutatud Cy3 ja Cy5 molekulide struktuurid. Paremal on kujutatud ligikaudselt potentsiaal, mida tajuvad elektronid, mis liiguvad molekuli Cy5 lineaarses süsinikuahelas.

Seega elektroni kineetilise energia võimalikud väärtused on

$$E_n = \frac{p^2}{2m_e} = \frac{h^2 n^2}{8m_e L^2}.$$

See on ühtlasi elektroni koguenergia, sest potentsiaalne energia on konstant.

Selgub, et Cy5 molekulis on selliste elektronide koguarv 10. Aga nende paigutamisel erinevatele E_n tasemetele tuleb endiselt arvestada Pauli keeluprintsiibiga, st igale energianivoole mahub maksimaalselt kaks, vastassuunalise spinniga elektroni. Seega molekuli põhiolekus madalaimad 5 energianivood on kõik elektronidega täidetud. Vähim energia molekuli ergastamiseks on selline, kus üks elektron siirub seisundist E_5 esimesse asustamata seisundisse E_6 . Vastava resonantse kiirguse lainepikkuse saame seosest $hc/\lambda = E_6 - E_5$. Pannes arvud asemele, saame $\lambda \approx 648$ nm, mis on juhtumisi päris heas kooskõlas Cy5 eksperimentaalse neeldumisspektriga (joon. 7.2).

See täpsus sõltub muidugi sellest, kui õigesti me hindame potentsiaaliaugu laiust L. Sellise lihtsa mudeli kasulikkus avaldub pigem selles, et kindla aineklassi piires on võimalik üsna täpselt prognoosida spektri maksimumi nihkumist. Näiteks kui võtta sellelt Cy5 molekulilt paar süsinikulüli vahelt välja, nii et järgi jääb Cy3 molekul, siis antud mudel annustab, et neeldumisspektri maksimum peab nihkuma umbes 128 nm sinisesse. See hinnang ei sõltu enam olulisel määral sellest, kui täpselt me L väärtust teame.

Joonis 7.2. Mõnede tsüaniinvärvainete neeldumisspektrid.

7.2 Infrapunaspektroskoopia

Molekulaarsete gaaside, vedelike ja tahkiste neeldumisspektris ilmnevad infrapunases (IP) diapasoonis karakteersed kitsad neeldumisjooned (joon. 7.3). Erinevatel ainetel on erinev joonte komplekt ja seda rikkalikum, mida keerulisema molekuliga on tegemist. Kergemate molekulide korral gaasifaasis kaasneb iga sellise neeldumisribaga veel üsna keeruline ja ulatuslik peenstruktuur (joon. 7.4).

Sellise spektri põhjuseks on molekuli võnke- ja pöörlemisseisundi muutumine.

7.2.1 Molekuli võnkumine

Kaheaatomiline molekul. Vaatleme esialgu lihtsaima, kaheaatomilise molekuli võnkeseisundeid. Sellisel molekulil on üksainus võnkumisvabadusaste — aatomituumade vahekaugus *R*. Küllalt väikese amplituudiga võnkumiste korral võib keemilist sidet aatomite vahel vaadelda kui elastset, Hooke'i seadusele alluvat vedru, seetõttu väikese amplituudiga võnkumised on alati harmoonilised:

$$R(t) = R_0 + A\cos\Omega t, \tag{7.1}$$

kus Ω on võnkesagedus, A on võnkeamplituud ja R_0 on aatomituumade tasakaaluline vahekaugus. Mehaanikakursuses vaadeldav vedrupendli teooria annab võnke-

Joonis 7.3. Kloroformi (CHCl₃) infrapunaneeldumisspekter. Siin ja edaspidi on sagedused antud lainearvudes, mille kasutamine on valdav võnkespektroskoopias.

sageduse jaoks järgmise valemi:

$$\Omega = \sqrt{\frac{k}{m}},$$

kus *k* on vedru jäikus (e. jõukonstant) ja *m* on võnkuva keha mass. Antud juhul, kus kaks aatomit võnguvad sünkroonselt oma masskeskme suhtes, tuleb *m* asemel võtta nn taandatud mass $\mu = m_1 m_2 / (m_1 + m_2)$, kus m_1 ja m_2 on üksikute aatomite massid. Keemilise sideme "jäikus" on tavaliselt 100...1000 N/m suurusjärgus, molekulide massid aga 1...100 amu suurusjärgus, seega võnkesagedused jäävad (lainearvudes väljendatuna) 100...5000 cm⁻¹ vahemikku.

Kui aatomid, millest molekul koosneb, on keemiliselt erinevad, siis side aatomite vahel on vähemalt osaliselt iooniline ja molekul on polariseeritud: ühele aatomitest koguneb positiivne laeng (q) ja teisele absoluutväärtuselt samasuur negatiivne laeng (-q). See tähendab, et sellisele molekulile langeva valguslaine elektriväli on suuteline molekuli venitama või kokku suruma, sest aatomitele mõjuvad jõud on vastassuunalised. Kui valguslaine sagedus satub resonantsi molekuli omavõnkesagedusega ($\omega = \Omega$), siis molekuli võnkeamplituud kasvab drastiliselt ja toimub

Joonis 7.4. Gaasilise ammoniaagi (NH₃) infrapunaneeldumisspekter.

intensiivne kiirguse neeldumine.23

Molekuli polarisatsiooni suurust võib kirjeldada dipoolmomendi mõiste kaudu: p = qR. Kuna võnkumise käigus aatomite vahekaugus R muutub, siis toimub ka dipoolmomendi ostsilleerimine. Seega oleme jõudnud valikureeglini: molekuli võnkumine avaldub IP spektris juhul kui võnkumine tingib molekuli dipoolmomendi muutumise.

Olukorda võib analüüsida ka kvantmehaanilise mudeliga. Klassikalisele võnkumisele vastava kvantostsillaatori energiatasemed on antud valemiga

$$E_n = \hbar \Omega(n + 1/2), \quad n = 0, 1, 2, \dots$$

Molekul võib siirduda ühelt võnketasemelt teisele, kiirates või neelates vastava energiavahe valguskvandina $\hbar \omega$:

$$E_n - E_m = \hbar \omega.$$

Kvantmehaaniline analüüs näitab, et selline üleminek võib aset leida vaid kahe naabertaseme vahel (võnkeseisund võib muutuda ainult ühe võnkekvandi võrra korraga), niisiis kehtib valikureegel $\Delta n = \pm 1$. Seega ainult kiirgus kvandi energiaga $\hbar \Omega$ (ehk sagedusega Ω) saab indutseerida võnkeseisundi muutust, nagu näitas ka klassikaline analüüs.

Kaheaatomilise molekuli realistlikum potentsiaalikõver on toodud joonisel 7.5. Nagu näha, toimub aatomituumade lähendamisel potentsiaalse energia järsk kasv tingituna aatomituumade vahelisest kuloonilisest tõukumisest, mida elektronpilv ei suuda enam ekraneerida. Seevastu aatomite vahekauguse piiramatul suurendamisel keemiline side katkeb (molekul laguneb), aatomite vahel interaktsioon lakkab ja süsteemi potentsiaalne energia läheneb konstantsele nivoole. Ainult tasakaaluasendi ümbruses on potentsiaalikõver aproksimeeritav harmoonilise ostsillaatori potentsiaaliga (parabooliga). Suuremate võnkeamplituudide korral pole võnkenivoode vahekaugus enam konstant. Lisaks muutuvad (väikese tõenäosusega) võimalikuks ka üleminekud, milles võnkeseisund muutub rohkem kui ühe võnkekvandi võrra (ülemtoonid). Need annavad täiendavaid neeldumisribasid lähedases IP diapasoonis.

Joonis 7.5. Kaheaatomilise molekuli potentsiaalikõver. Potentsiaalikõvera miinimum determineerib tuumade tasakaalulise vahekauguse R_0 , sügavus D väljendab molekuli dissotsiatsioonienergiat ja kõverus miinimumi kohal kirjeldab keemilise sideme jäikust.

ÜLESANNE 23. CO molekuli infrapunaspektris on neeldumisriba keskkoht lainepikkusel 4,6 µm. Leidke keemilise sideme jõukonstant.

Paljuaatomiline molekul. Vaatleme nüüd molekuli, mis koosneb enam kui kahest aatomist. Kui sellist molekuli meelevaldsel viisil agiteerida, siis selle tulemusena tekkiv võnkumine võib esmapilgul tunduda täiesti kaootiline. Osutub, et paljuaatomilise molekuli suvaline väikese amplituudiga võnkumine on alati taandatav lõpliku arvu statsionaarsete harmooniliste võnkumiste superpositsioonile. Selliseid konkreetsele molekulitüübile iseloomulikke spetsiaalseid võnkumisi nimetatakse süsteemi normaalvõnkumisteks e. võnkemoodideks ja nende sagedused on määratud molekuli tasakaalulise tuumakonfiguratsiooni ning keemiliste sidemete jäikusega.

²³Põhimõtteliselt võib polariseeritud võnkuv molekul ka kiirata IP kiirgust, ent vähemalt kondenseeritud keskkondades hajub energia pigemini soojusena, mistõttu IP spektreid mõõdetakse valdavalt neeldumises. Lisaks on kiirgusspektreid keerulisem mõõta ja interpreteerida.

N osakesest koosneval süsteemil on kokku 3N vabadusastet, st kõigi molekuli koosseisu kuuluvate aatomite ruumilise paiknemise (ehk molekuli tuumakonfiguratsiooni) täielikuks kirjeldamiseks on tarvis 3N koordinaati (reaalarvu). Samas võib vaadelda, et nendest 3 vabadusastet kirjeldavad süsteemi kui terviku asendit ruumis (kulgliikumist) ja veel 3 vabadusastet kirjeldavad süsteemi kui terviku orientatsiooni (pöördliikumist). Seega ülejäänud 3N - 6 vabadusastet peavad kirjeldama aatomite omavahelist paiknemist molekulis ehk molekuli võnkeliikumist. Erandiks on lineaarne molekul, millel pöörlemisvabadusastmeid on ainult kaks ja võnkumisvabadusastmeid seega 3N - 5. Mõningaid näiteid lihtsate molekulide normaalvõnkumistest on esitatud joonisel 7.6.

Niisiis üldjuhul on N aatomist koosneva molekuli mistahes võnkeseisund vaadeldav 3N-6 normaalvõnkumise superpositsioonina. Kui ergastatud on üksainus normaalvõnkumine, siis kõik aatomid molekulis võnguvad *sünkroonselt* sellele normaalvõnkumisele vastava sagedusega Ω_k (k = 1, 2, ..., 3N-6). Kirjeldamaks sellist võnkumist, võib sisse tuua normaalkoordinaadi q_k , nii et

$$q_k(t) = A_k \cos \Omega_k t$$

Normaalkoordinaatide defineerimise mõte seisneb selles, et kui kõik aatomid molekulis võnguvad kindla sagedusega Ω_k (st ainult k-s normaalvõnkumine on ergastatud), siis ainult $q_k(t) \neq 0$ ja kõik ülejäänud $q_l(t) \equiv 0$. Kaheaatomilisel molekulil on üksainus normaalvõnkumine ja normaalkoordinaadiks on tuumadevaheline kaugus. Kui molekul võnkumise käigus paindub, siis normaalkoordinaadiks võib osutuda keemiliste sidemete vaheline nurk. Keerulisemate molekulide korral ei pruugi nii lihtsaid vastavusi eksisteerida, sest konkreetsest normaalvõnkumisest võtavad mingil määral osa kõik molekuli koosseisu kuuluvad aatomid. Põhimõtteliselt saab siiski molekuli kõigi normaalvõnkumiste kuju välja arvutada teades molekuli sümmeetriaelemente (st tasakaalulist tuumakonfiguratsiooni).

Normaalkoordinaatide komplekt on täielik selles mõttes, et neid saab kasutada tavaliste Cartesiuse koordinaatide asemel, selleks et kirjeldada tuumakonfigutatsiooni. Iga tuumakonfiguratsioonist sõltuv molekuli omadus on normaalkoordinaatide funktsioon. Näiteks molekuli staatiline dipoolmoment

 $p = p(q_1, q_2, \dots, q_{3N-6}).$

Kaheaatomilise molekuli jaoks sõnastatud valikureegli võib nüüd väljendada üldisemalt: normaalvõnkumine sagedusega Ω_k on ilmutatud IP spektris tingimusel, et molekuli dipoolmoment muutub selle võnkumise käigus:

$$\frac{\partial \boldsymbol{p}}{\partial q_k} \neq 0. \tag{7.2}$$

Kuigi iga normaalvõnkumise käigus võngub põhimõtteliselt kogu molekul, on vähegi suuremate molekulide korral mõttekam võnkemoode ja võnkesagedusi seostada siiski konkreetsete funktsionaalsete rühmadega (keemiliste sidemetega), mis lihtsustab spektrite interpreteerimist. Teiselt poolt on võimalik molekulaardünaamiliste simulatsioonidega üsna täpselt molekuli võnkespekter välja arvutada ja kõrvutada eksperimendiga.

ÜLESANNE 24. Milline süsiniktetrakloriidi (CCl₄) molekuli neljast normaalvõnkumisest (joon. 7.7) kindlasti ei ole esindatud IP spektris (ja miks)?

Joonis 7.7. CCl₄ molekuli normaalvõnkumised (vt ül. 24).

7.2.2 Molekuli pöörlemine

Klassikaliselt võime sellist elektromagnetvälja ja molekuli vahelist interaktsiooni, mis tingiks molekuli pöörlemahakkamise, ette kujutada ainult tingimusel, et molekulil on olemas staatiline dipoolmoment (tuginedes analoogilisele arutluskäigule nagu esitatud kaheaatomilise molekuli võnkumise korral). Samuti ei ole raske läbi näha, et selline molekul kiirgab või neelab ainult sellist kiirgust, mille sagedus on resonantsis tema pöörlemissagedusega. Siinkohal teeb kvantmehaanika mõningad korrektiivid, sest kvantmehaanika järgi võib pöörleva keha impulsimoment omandada ainult diskreetseid väärtuseid, mis on määratud kvantarvuga *J* järgmiselt:

$$L = \hbar \sqrt{J(J+1)}, \quad J = 0, 1, 2, \dots$$

Klassikalisest mehaanikast on teada, et pöörleva keha intertsi iseloomustab inertsimoment *I*. Analoogiliselt kulgliikumise valemiga ($E = p^2/2m$) avaldub pöörleva keha kineetiline energia kujul $E = L^2/2I$ (massi rollis on inertsimoment ja impulsi rollis impulsimoment). Ümber oma masskeskme pöörleva kaheaatomilise molekuli jaoks $I = \mu R^2$, kus μ on eespool defineeritud taandatud mass. Seega kokkuvõttes on kaheaatomilise molekuli pöörlemise energiatasemed järgmised:

$$E_J = \frac{\hbar^2 J(J+1)}{2\mu R^2} = BJ(J+1), \quad B \equiv \frac{\hbar^2}{2\mu R^2}.$$
 (7.3)

Kvantmehaanikas näidatakse ka seda, et footoni neeldumise või kiirgamise käigus saab toimuda ainult üleminek kahe naabertaseme vahel (võib ette kujutada, et footon ise kannab ühe ühiku suurust impulsimomenti, mistõttu ka *J* saab muutuda ühiku võrra). Niisiis valikureegel pöörlemisüleminekute jaoks on $\Delta J = \pm 1$. See tähendab ühtlasi seda, et puhas võnkeüleminek (kus $\Delta n = \pm 1$ aga $\Delta J = 0$) on keelatud. Kuna

 $E_I - E_{I-1} = 2BJ$, siis võnkepöörlemisüleminekute võimalikud sagedused on

$$\omega = \Omega \pm \frac{2BJ}{\hbar}, \quad J = 1, 2, \dots$$

Järelikult spekter koosneb kahest ekvidistantsete joontega "kammist", mis paiknevad sümmeetriliselt sageduse Ω suhtes (joon. 7.8). Need "kammid" ei ole siiski ühetasased, sest termilise tasakaalu tingimustes on energiatasemed hõivatud vastavalt Boltzmanni jaotusele:

$$\frac{N_J}{N_0} = (2J+1)e^{-E_J/kT}$$

Siin 2J + 1 on *J*-nda taseme kõduvus (mida suurem *J*, seda rohkem on pöörlemisel erinevaid lubatavaid orientatsioone, mis on samuti kvantiseeritud). Viimasel avaldisel esineb maksimum teatava *J* väärtuse juures, mis sõltub temperatuurist.

Pöörlemisspektri arvutamisel oleme eeldanud, et keemiline side aatomite vahel on jäik. Kuid suurte *J* väärtuste korral on alust oodata keemilise sideme venimist tingituna tsentrifugaaljõust. Lisaks ei saa võnke- ja pöörlemisseisundeid vaadelda täielikult sõltumatutena, mis näiteks tähendab, et *B* valemis 7.3 võib sõltuda võnkeseisundist. Kõige selle tulemusena pöörlemisspekter ei ole päris sümmeetriline ja ühtlase sammuga, nagu võib märgata ka jooniselt 7.8. Neid efekte on võimalik arvesse võtta sobilike parandusliikmete lisamisega valemisse 7.3, kusjuures parameetrite väärtused saab leida sobitamisel eksperimentaalse spektriga.

Mittelineaarse molekuli pöörlemisspekter on mõnevõrra keerukam sõltudes kahest kvantarvust ja molekuli peainertsimomentidest. Käesolevas me sellel ei peatu.

Viimaks märgime, et pöörlemisüleminekud on lihtsasti jälgitavad kergete molekulide korral gaasifaasis. Seevastu suurte molekulide pöörlemisüleminekuid on raske spektraalselt lahutada ja vedelikus on molekulide pöörlemine takistatud.

ÜLESANNE 25. Arvutage HCl molekuli jaoks (lähtudes spektrist joonisel 7.8) tuumade vahekaugus R ning keemilise sideme "jäikus" k. Vastus: R = 1,3 Å, k = 480 N/m.

Joonis 7.8. Gaasilise HCI IP spekter. Pöörlemisüleminekuid, kus $\Delta J = +1$, tähistatakse R(J), $\Delta J = -1$ korral aga P(J), kus J tähistab kummalgi juhul algseisundile vastavat kvantarvu väärtust. Joonte lõhenemine kaheks komponendiks on tingitud sellest, et looduslik CI sisaldab valdavalt kahte erineva massiga isotoopi, ³⁵CI ja ³⁷CI.

7.3 Kombinatsioonhajumine

7.3.1 Kombinatsioonhajumise nähtuse olemus

Joonisel 7.9 on kujutatud süsiniktetrakloriidi molekulidelt hajunud monokromaatse kiirguse spekter. Peale primaarsageduse ω_0 on hajunud kiirguses täheldatavad veel paarikaupa külgribad sagedustega $\omega_0 \pm \Omega_1, \omega_0 \pm \Omega_2, \ldots$ Need on hulga nõrgemad kui tsentraalne Rayleigh joon, moodustades reeglina vähem kui ühe miljondiku kogu hajunud kiirgusest (joonisel on Rayleigh joont nõrgendatud). Selgub, et sagedusnihked $\Omega_1, \Omega_2, \ldots$ ei sõltu ergastava kiirguse sagedusest ω_0 , vaid on karakteersed antud aine jaoks. Veel võib märgata, et väiksema sagedusega komponendid ($\omega_0 - \Omega_k$) on tugevamad kui vastavad suurema sagedusega komponendid ($\omega_0 + \Omega_k$). Lumi-

nestsentsspektroskoopia eeskujul nimetatakse esimesi Stokes'i joonteks, viimaseid aga anti-Stokes'i joonteks. Sagedused Ω_k on võrreldavad (või koguni langevad kokku) IP spektrites leiduvate sagedustega, mis näitab, et nad on samuti seotud molekuli võnke- või pöörlemisseisundi muutusega.

Kirjeldatud nähtust nimetatakse selle avastaja järgi sageli Raman-hajumiseks kuigi termin "kombinatsioonhajumine" annab paremini edasi nähtuse sisu. Vastavalt ka külgribasid nimetatakse Raman-joonteks ja nende sagedusnihkeid Ω_k (primaarsageduse suhtes) Ramani niheteks.

Joonis 7.9. Süsiniktetrakloriidi hajumisspekter (ergastatud elavhõbeda joonega 435,83 nm). Ramani joonte sagedused on antud Rayleigh joone suhtes ja väljendatud lainearvu ühikutes.

ÜLESANNE 26. Millises lainepikkuste diapasoonis peaks registreerima Ramanspektrit (Stokes'i jooni), kui uuritava aine Ramani nihked jäävad vahemikku 400...900 cm⁻¹ ning hajumist ergastatakse laseriga, mille lainepikkus on 532 nm? Vastus: 544...559 nm.

7.3.2 Kombinatsioonhajumise klassikaline elementaarkäsitlus

Osutub, et hajumisspektris nähtavate külgribade olemasolu on võimalik põhjendada lihtsa klassikalise mudeliga. Kuigi kombinatsioonhajumine võib ilmneda nii molekuli elektron-, võnke- kui ka pöörlemisseisundi muutustel, vaatleme siinkohal vaid molekuli võnkumistest tingitud kombinatsioonhajumist, mis on kõige levinum ja ka kõige lihtsamini analüüsitav.

Enne detailsema analüüsi juurde asumist märgime, et intuitiivne ettekujutus kombinatsioonhajumise mehhanismist on võimalik saada praktiliselt ilma ühegi valemita nagu kujutatud joonisel 7.10. Kujutleme, et pealelangev valgusväli sagedusega ω_0 interakteerub molekuliga, mis võngub sagedusega Ω , kusjuures viimane on hulga väiksem kui ω_0 . Niisiis molekuli omadused (nt valguse hajutamise võime) muutuvad samuti perioodiliselt sagedusega Ω . Seega pole raske ette kujutada, et kiirguse ja molekuli vastasmõju tulemiks on hajunud laine, mis ostsilleerib küll sama sagedusega nagu primaarlaine, kuid mille võnkeamplituud ei ole konstantne, vaid on omakorda moduleeritud sagedusega Ω . On ilmne, et sellise täiendava tuiklemise lisamiseks ideaalsele siinuslainele peab selle kiirguse spekter sisaldama peale põhisageduse ω_0 veel täiendavaid sageduskomponente, mis on ω_0 ümbruses. Nagu järgnev analüüs näitab, need täiendavad komponendid ongi $\omega_0 + \Omega$ ja $\omega_0 - \Omega$, mis ilmnevad Raman-spektris.

Niisiis, vaatleme molekuli välises elektriväljas

$$\boldsymbol{E}(t) = \boldsymbol{E}_0 \cos \omega_0 t. \tag{7.4}$$

Selle välja mõjul deformeeritakse aatomituumi ümbritsevat elektronpilve ja molekul muutub polaarseks (elektriväli tõukab positiivseid ja negatiivseid laenguid vastassuundades).²⁴ Seega elektriväli *indutseerib* molekulis dipoolmomendi (lisaks eespool vaadeldud *staatilisele* dipoolmomendile). Mõistliku tugevusega valgusväljades on indutseeritud **p** võrdeline *E*-ga:

$$\boldsymbol{p} = \boldsymbol{\alpha} \boldsymbol{E}.\tag{7.5}$$

Võrdetegurit α nimetatakse molekuli polariseeritavuseks. Polariseeritavus iseloomustab niisiis seda, kui kergesti on molekuli ümbritsev elektronpilv deformeeritav. Kuna väli ostsilleerib, siis ka p ostsilleerib samas taktis:²⁵

$$\boldsymbol{p}(t) = \boldsymbol{p}_0 \cos \omega_0 t, \quad \boldsymbol{p}_0 = \alpha \boldsymbol{E}_0$$

Eespool me leidsime, et ostsilleeriv laeng või dipool kiirgab sama sagedusega elektromagnetlaineid. Kui molekuli tuumakonfiguratsioon ei muutu, siis polariseeritavus on konstant ja dipool ostsilleerib kindla sagedusega ω_0 . Sel juhul oleks tegemist lihtsalt Rayleigh hajumisega. Kui aga aatomituumade vastastikune asend molekulis muutub (näiteks molekuli enda võnkumise tõttu), siis see mõjutab vastavalt ka molekuli polariseeritavust.

Vaatleme esialgu kaheaatomilist molekuli, mille polariseeritavus α on mõnesugune funktsioon tuumade vahekaugusest *R*. Väikeste võnkumiste puhul võime leppida lineaarse parandusega:²⁶

$$\alpha(R) \approx \alpha(R_0) + \left(\frac{d\alpha}{dR}\right)_{R=R_0} (R - R_0), \qquad (7.6)$$

kus R_0 on tuumade tasakaaluline vahekaugus. Asendame nüüd selle valemi koos avaldistega 7.1 ja 7.4 valemisse 7.5:

$$\boldsymbol{p}(t) = \boldsymbol{p}_0 \cos \omega_0 t + \boldsymbol{p}_1 \cos \omega_0 t \cos \Omega t,$$

kus $\boldsymbol{p}_0 = \alpha(R_0) \boldsymbol{E}_0, \quad \boldsymbol{p}_1 = A \boldsymbol{E}_0 \left(\frac{d\alpha}{dR}\right)_{R=R_0}$

Niisiis saime lisaks Raylaigh hajumist kirjeldavale liikmele veel ühe liikme. Viimast teisendame trigonomeetriast tuntud seosega

$$\cos A \cos B = \frac{1}{2} \cos(A+B) + \frac{1}{2} \cos(A-B),$$

$$^{26}f(x+\Delta x) \approx f(x) + f'(x)\Delta x.$$

²⁴Rõhutagem, et siin on tegemist vaid elektronpilve deformeerimisega. Molekul ise (ehk selle tuumakonfiguratsioon) võib olla ka täiesti jäik.

²⁵Siinkohal oleme teinud tegelikult mitu lähendust. Esiteks oleme eeldanud, et p ja E on kollineaarsed, kuigi üldiselt ei pruugi see kehtida. Teiseks, aine ei suuda hetkeliselt reageerida valgusvälja kiiretele muutustele, seetõttu p ja E võnkumiste vahel võib olla faasinihe. Need detailid on aga antud kontekstis ebaolulised.

Joonis 7.10. Kombinatsioonhajumise kõige lihtsam tõlgendus.

mis annab

$$\boldsymbol{p}(t) = \boldsymbol{p}_0 \cos \omega_0 t + \frac{1}{2} \boldsymbol{p}_1 \left[\cos \left(\omega_0 + \Omega \right) t + \cos \left(\omega_0 - \Omega \right) t \right]$$

Viimased kaks liiget kirjeldavadki kombinatsioonhajumist. Niisiis selliselt molekulilt hajunud kiirguse spektris võib lisaks algsagedusele ω_0 täheldada veel kahte piiki kombineeritud sagedustel $\omega_0 - \Omega$ ja $\omega_0 + \Omega$.

Paljuaatomilise molekuli korral võib polariseeritavust vaadelda funktsioonina kõigist normaalkoordinaatidest:

$$\alpha = \alpha(q_1, q_2, \dots, q_{3N-6}).$$

Seega võime avaldist 7.6 üldistada järgmiselt:

$$\alpha(\boldsymbol{q}) \approx \alpha_0 + \sum_k \left(\frac{\partial \alpha}{\partial q_k}\right)_0 q_k$$

Siin me oleme defineerinud tasakaaluasendis kõik $q_k = 0$. Jätkates nagu ennegi, jõuame tulemuseni

$$\boldsymbol{p}(t) = \boldsymbol{p}_0 \cos \omega_0 t + \frac{1}{2} \boldsymbol{E}_0 \sum_k A_k \left(\frac{\partial \alpha}{\partial q_k}\right)_0 \left[\cos \left(\omega_0 + \Omega_k\right) t + \cos \left(\omega_0 - \Omega_k\right) t\right].$$
(7.7)

Niisiis igale normaalvõnkumisele vastab kahe Ramani-piigi, $\omega_0 \pm \Omega_k$, tekkimine hajumisspektrisse.

Elektrodünaamikast on teada (valem 2.6), et võnkuva elektrilise dipooli kiirguse intensiivsus on võrdeline sageduse neljanda astmega. Järelikult nii Rayleigh kui ka Raman-hajumise efektiivsus kasvab võrdeliselt ω_0^4 -ga (sest kuna molekulide võnkesagedused $\Omega_k \ll \omega_0$, siis $\omega_0 \pm \Omega_k \sim \omega_0$).

7.3.3 Kombinatsioonhajumise elementaarne kvantkäsitlus

Klassikaline mudel jättis vastuseta küsimuse, miks anti-Stokes'i jooned on tunduvalt nõrgemad kui Stokes'i jooned. Sellele annab vastuse lihtne kvantteoreetiline käsitlus. Olgu molekul alghetkel energiatasemel E_i . Kombinatsioonhajumise elementaarakt seisneb selles, et pealelangev footon energiaga $\hbar\omega_i$ neeldub ja praktiliselt samal hetkel (~10⁻¹⁴ s jooksul) kiirgub footon energiaga $\hbar\omega_s$, kusjuures molekul satub olekusse energiaga E_f :

$$\hbar\omega_{\rm i} + M(E_{\rm i}) \rightarrow M(E_{\rm f}) + \hbar\omega_{\rm s}$$

Energia jäävuse tõttu ilmselt $E_i - E_f = \hbar \omega_s - \hbar \omega_i$. Energiavahe $E_i - E_f$ võib olla seotud nii molekuli elektron-, võnke- kui ka pöörlemisseisundi muutusega. Formaalselt võib kujutleda, et molekul viiakse hetkeks virtuaalsesse vaheseisundisse energiaga $E_i + \hbar \omega_i$ (joon. 7.11). Kuna aga virtuaalne tase ei pruugi kokku langeda molekuli ühegi tegeliku energiatasemega, siis on hajumisakti vältel tegemist energia jäävuse rikkumisega (sellises ulatuses mida lubab määramatuse relatsioon). Selle tõttu on protsessi tõenäosus väike võrreldes Rayleigh hajumisega. Juhul kui virtuaalne tase langeb kokku mõne tegeliku energiatasemega molekulis, räägitakse resonantsest kombinatsioonhajumisest. Viimane on suurusjärke suurema tõenäosusega protsess.

Nüüd on ka arusaadav, miks Stokes'i jooned omavad suuremat intensiivsust võrreldes anti-Stokes'i joontega. Anti-Stokes'i jooned saavad tekkida vaid siis, kui molekul on alghetkel juba ergastatud seisundis. Kui ergastatud seisundi energia põhioleku suhtes on ΔE , siis selle asustamise tõenäosus põhiolekuga võrreldes on vastavalt Boltzmanni seadusele $\exp(-\Delta E/kT)$. Kui temperatuur on nii madal, et $\Delta E \gg kT$,
siis enamus molekule viibivad põhiolekus ja anti-Stokes'i hajumine on väga nõrk. Vähesel määral mõjutab Stokes'i ja anti-Stokes'i joonte suhet ka hajumise efektiivsuse sõltuvus sagedusest (jaotis 3.6). Kokkuvõttes saame järgmise avaldise Raman-joonte intensiivsuste suhte jaoks:

$$\frac{I(\omega_0 + \Omega)}{I(\omega_0 - \Omega)} = \left(\frac{\omega_0 + \Omega}{\omega_0 - \Omega}\right)^4 \exp(-\hbar\Omega/kT).$$

Joonis 7.11. Raman-hajumise elementaarakt.

ÜLESANNE 27. Molekuli Raman-hajumist ergastatakse 633 nm laseriga ning hajumisspektris nähakse piiki lainepikkusel 658 nm. *1*) Kui suur on molekuli võnkesagedus? *2*) Millisel lainepikkusel asub vastav anti-Stokes'i joon? *3*) Mitu korda on viimane nõrgem võrreldes Stokes'i joonega?

7.3.4 Valikureeglid

Avaldist 7.7 analüüsides selgub, et mitte iga normaalvõnkumine ei pruugi olla Raman-aktiivne. Nimelt mõningate normaalvõnkumiste puhul võib olla $\partial \alpha / \partial q_k = 0$, st sellise võnkumise kägus toimub molekuli selline venitamine/paindumine/väändumine, mis ei kutsu esile polariseeritavuse muutust. Niisiis valikureegel, mis määrab, kas võnkumine Ω_k on nähtav kombinatsioonhajumises, on järgmine:

$$\frac{\partial \alpha}{\partial q_k} \neq 0. \tag{7.8}$$

Osatuletised avaldistes 7.8 ja 7.2 arvutatakse tasakaaluasendi juures.

Vaatleme võrdlevalt paari lihtsa näite varal valikureeglite 7.8 ja 7.2 rakendamist. Olgu meil kõigepealt kaheaatomiline homonukleaarne molekul, nt O₂ (joon. 7.12). Sellise molekuli staatiline dipoolmoment on null sõltumata aatomitevahelisest kaugusest, seega ka $d\mathbf{p}/dq = 0$ ja järelikult neeldumises selline võnkumine ei avaldu. Küll aga võib tuumadevaheline kaugus mõjutada elektrontiheduse jaotust tuumade ümber ja sellest tulenevalt ka molekuli polariseeritavust, nii et võnkumine peaks avalduma Raman-hajumises. Võrdluseks vaatleme kaheaatomilist heteronukleaarset molekuli, kus aatomid on erinevad (nt süsinikoksiid CO). Kombinatsioonhajumise kohta jääb kehtima sama arutluskäik. Seevastu sellisel molekulil on olemas staatiline dipoolmoment (keemiline side on veidi polaarne, kuna hapnik on suurema elektronegatiivsusega kui süsinik). Ei ole ka alust arvata, et see dipoolmoment peaks jääma muutumatuks kui tuumadevahelist kaugust muudetakse. Järelikult sellise molekuli võnkumine on neeldumises aktiivne. Joonisel 7.13 on toodud sama analüüs kolmeaatomilise CO2-tüüpi molekuli kõigi kolme normaalvõnkumise jaoks. Võib täheldada tendentsi, et võnkumised, mis on Raman-aktiivsed, ei avaldu neeldumises ja vastupidi. Selline reegel kehtib vähemalt molekulide jaoks, mis sisaldavad inversioonitsentrit (sümmeetriakeskpunkti).

7.3.5 Kombinatsioonhajumine kristallil

Kristalli vabadusastmete arv on väga suur (aatomite arv on suurusjärgus ~10²³). Samapalju on ka erineva sagedusega võnkumisi. Kuid erinevalt suurest molekulist on kristallis aatomite paigutus korrapärane. Kristalli normaalvõnkumised kujutavad endast tasalaine kujul levivaid elastsuslaineid, mida võib iseloomustada sagedusega Ω ja lainevektoriga \boldsymbol{q} . Sõltuvus $\Omega(\boldsymbol{q})$ määrab ühe võnkeharu (joon. 7.14). Kui kristallvõre (primitiivses) ühikrakus on s aatomit, siis erinevaid võnkeharusid on 3s tükki. Võnkeharuga määratud sagedused Ω moodustavad kvaasipideva tsooni; normaalvõnkumiste arv tsoonis on võrdne ühikrakkude arvuga kristallis. Erinevaid tsoone võivad eraldada keeluvööndid. Osutub, et eksisteerib kahte tüüpi võnkeha-

Joonis 7.12. Kaheaatomilise molekuli polariseeritavuse ja dipoolmomendi käitumine tasakaaluasendi ümbruses sõltuvana tuumadevahelisest kaugusest *R*.

rusid, nagu näidatakse lisas G lineaarse ahela näitel. Kõige selgemalt on need võnkumised eristatavad pikalainelisel piirjuhul (so. kui $qa \ll 1$, kus a on võrekonstant). Kui ühikraku kõik aatomid võnguvad samas faasis ühesuguse amplituudiga (st. ühikrakk võngub kui tervik), nimetatakse võnkumist akustiliseks. Akustilise võnkeharu jaoks pikalainelisel piirjuhul $\Omega(q) = cq$ kus c on heli kiirus aines. Optiliste võnkumiste korral $\Omega(0) \neq 0$ ja q = 0 puhul võib kujutleda, et alamvõred ostsilleerivad üksteise suhtes kui tervikud. Akustilisi võnkumisi on kristallis 3, optilisi võnkumisi 3s - 3 tükki. Kui s = 1, siis optilised võnkumised puuduvad.

Kvantkäsitluses seotakse iga normaalmoodiga kvantostsillaator, mille võnkekvante $\hbar\Omega$ nimetatakse foononiteks ja neid võib vaadelda kui kristallis levivaid kvaasiosa-

Joonis 7.13. CO₂-tüüpi molekuli polariseeritavuse ja dipoolmomendi käitumine tasakaaluasendi ümbruses erinevate normaalvõnkumiste jaoks.

kesi. Foononile saab omistada ka impulsi $\hbar q$. Footoni Raman-hajumist kristallil võib vaadelda kui protsessi, mille käigus tekitatakse või neelatakse üks foonon. Selle protsessi käigus peab energia ja impulss säilima:

$$\hbar\omega_0 = \hbar\omega \pm \hbar\Omega,$$
$$\hbar \mathbf{k}_0 = \hbar \mathbf{k} + \hbar \mathbf{a}.$$

Optilises diapasoonis on footoni lainepikkus aga palju suurem kui kristalli võrekonstant *a*, seega Raman-hajumises saavad osaleda ainult sellised foononid, mille $q \ll \pi/a$. Jooniselt 7.14 näeme, et piiril $q \to 0$ on optiliste foononite dispersioon

Joonis 7.14. Võnkeharud kristallis.

väike ja seega Raman-hajumises osalevate foononite sagedused on selgelt defineeritud.

7.3.6 Kombinatsioonhajumise mõõtmine

Kombinatsioonhajumise mõõteskeemi geomeetria võimalikud variandid on analoogilised nendele mida saab rakendada luminestsentsi mõõtmisel (joon. 4.10). Ergastusallikana kasutatakse kaasajal laserit, sest kuna Raman-jooned on nõrgad ja nende spektraalnihked väikesed, siis on tarvis väga intensiivset kuid samas hästi monokromaatset valgusallikat. Kuna kombinatsioonhajumise intensiivsus on väga väike, siis luminestsentsi mõõtmisega võrreldes märksa olulisem on siin Rayleigh hajumisest vabanemine. Traditsiooniliselt kasutatakse Raman-hajumise spektraalmõõtmiseks mitmekordset monokromaatorit. Alternatiivselt võib spektri kiireks (ilma skaneerimata) ülesvõtmiseks kasutada tundliku rividetektoriga varustatud spektrograafi, kuid sel juhul vajatakse iga kasutatava laseri korral selle lainepikkusele timmitud üliselektiivset ribatõkkefiltrit (vt nt joon. 3.4). Tähelepanu tuleb pöörata ka muust parasiitsest kiirgusest vabanemisele. Kuigi esmapilgul tundub mõistlik kasutada Raman-hajumise ergastamiseks võimalikult väikese lainepikkusega laserit (sest hajumise efektiivsus $\propto \lambda^{-4}$), võib see paljude materjalide korral kaasa tuua luminestsentsi ergastumise, mille foonil nõrkade Raman-joonte mõõtmine ei ole võimalik. Seetõttu on mõnikord tarvilik lausa infrapunase laseri kasutamine. Tüüpiliselt kasutatakse Raman-mõõtmistel selliseid lasereid nagu Nd:YAG 532 nm või Ar⁺ 514 nm, mis on suhteliselt kvaliteetse ja intensiivse kiirgusega.

Joonis 7.15. Kombinatsioonhajumine titaanoksiidi erinevatelt kristallifaasidelt (viimased on kujutatud TiO₆ oktaeedrite võrgustikuna). Piki abstsisstelge jookseb hajunud valguse sageduse nihe ergastava laseri sageduse suhtes (Ramani nihe).

7.4 Raman- ja infrapunaspektroskoopiate võrdlus

Nii IP kui ka Raman-spektroskoopia põhiülesanne on molekuli omavõnkesageduste või kristalli foononspektri kindlakstegemine. Teiselt poolt, võnkesagedused on küllalt spetsiifilised ja võimaldavad enamasti üheselt identifitseerida konkreetse molekuli,

radikaali või kristallstruktuuri, mistõttu neid saab kasutada aine koostise analüüsimisel (joon. 7.15). Mõningal määral kajastab Raman-spekter ka kristalli kvaliteeti (nt amorfse ja kristallilise faasi vahekorda), lisandite olemasolu, sisepingeid, kristalliitide suurust nanokristallilises materjalis jms.

Kuigi nii Raman- kui ka IP spektroskoopia kombivad aine võnkeseisundeid, osutuvad praktikas sageli määravaks ka mitmed tehnilised aspektid:

Joonis 7.16. Benseeni neeldumisspektri ja Raman-spektri võrdlus.

- Nagu eelnevas selgus, realiseerub vähemalt inversioonisümmeetriaga molekulide korral olukord, kus konkreetne võnkumine ilmutab ennast ainult ühe meetodiga (joon. 7.16). Isegi kui võnkumine on ilmutatud nii neeldumises kui ka hajumises, on ta enamasti ühel juhul väga nõrk (nt ioonilised sidemed avalduvad tugevalt neeldumises, kovalentsed sidemed aga Raman-hajumises). Seetõttu kombinatsioonhajumist ja IP neeldumist tuleb vaadelda kui komplementaarseid meetodeid.
- Laserkiire tugeva fokuseerimisega mikroskoobi all on võimalik piiritleda uuritava aine ruumala ~10 μm³ suurusjärku. Teiselt poolt, intensiivse laser-ergastuse kasutamine võib lokaalselt kuumutada katseobjekti ja kutsuda esile keemilisi muutusi või faasiüleminekut.

- IP spektrite mõõtmisel on sageli probleemiks proovi ettevalmistamise keerukus, sest tuleb kasutada spetsiaalsest materjalist akendega küvette ja ei leidu solvente, mis oleksid hästi läbipaistvad kogu IP diapasoonis. Lisaks häirib akende niiskumine, sest vesi neelab tugevasti IP piirkonnas. Seevastu nii vesi kui ka klaas on nõrgad Raman-hajutajad, mis võimaldab uurida aineid vesilahuses ja klaasküvetis.
- Raman-hajumises on kogu sagedusdiapasoon 50... 4000 cm⁻¹ registreeritav ühe mõõtmisaktiga, samas kui IP-spektromeetris tuleb spekter registreerida jupphaaval kasutades erinevaid kiirgusallikaid, detektoreid jm komponente.
- Nähtava või UV diapasooni laserergastuse kasutamine võib paljude katseobjektide korral tingida niivõrd intensiivse luminestsentsi, mis välistab Raman-hajumise vaatlemise.

7.5 Vibroonsiirded: UV-Vis neeldumine ja fluorestsents

Kuigi juba selle peatüki alguses mainiti molekulide elektronseisundite olemasolu, tuleb vastavate optiliste spektrite kirjeldamisel arvestada ka molekuli võnkumisega. Karakteersed võnkeenergiad on võrdlemisi väikesed, nii et võnkenivood paiknevad energiaskaalal suhteliselt tihedalt. Sellised nn vibroonsed üleminekud (mille käigus muutub molekuli elektronseisund) tingivad intensiivset neeldumist ja fluorestsentsi nähtava piirkonna ümbruses (sageli nähtav palja silmaga).

Kujutleme lihtsuse huvides, et molekuli iseloomustab vaid üks (domineeriv) võnkumine, sagedusega Ω . Siis molekuli iga elektronseisundiga kaasneb hulk ekvidistantseid võnkeseisundeid, kus võnkekvandi suurus on $\hbar\Omega$. Kui molekul siirdub mõnda ergastatud elektronseisundisse, siis keemilise sideme pikkus (ja võib-olla ka jäikus) muutub. Järelikult nimetatud võnkumise tasakaalupunkt nihkub (ja mingil määral ka sagedus muutub). Selle illustreerimiseks joonestame molekuli potentsiaalikõverad mõlemas elektronseisundis ühe ja sama võnkekoordinaadi kaudu (joon. 7.17).

Vibroonsiirde reeglite formuleerimiseks paneme esmalt tähele, et aatomituumad on elektronidest oluliselt raskemad (isegi vesinikutuuma jaoks on see suhe 1840). Seetõttu on õigustatud ette kujutada, et elektronseisundi muutus toimub nii kiiresti, et võnkeliikumises osalevate aatomituumade asend ei jõua selle lühikese aja jooksul märgatavalt muutuda (nn adiabaatiline lähendus). Järelikult molekuli energiatasemete skeemil (joonisel 7.17) tuleks sellist optilist siiret kujutada vertikaalse noolega. Kui nüüd selles lähenduses analüüsida vibroonseid dipoolsiirdeid, siis selgub, et sellise siirde tõenäosus on seda suurem, mida paremini alg- ja lõppseisundi lainefunktsioonid kattuvad (nn Francki-Condoni printsiip).

Madalatel temperatuuridel on asustatud vaid põhielektronseisundi madalaim võnkenivoo. Selles seisundis on kvantostsillaatori lainefunktsioon Gaussi kellukese kujuline, st suurima tõenäosusega võib ostsillaatori leida viibivana tasakaaluasendi läheduses. Kuna ergastatud elektronseisundis on ostsillaatori tasakaaluasend veidi nihkes, siis vibroonsiire madalaimasse võnkeseisundisse on vähetõenäoline. Küll on aga teada, et ergastatud kvantostsillaator veedab suurema osa ajast pöördepunktide läheduses²⁷ (üks selline lainefunktsioon on kujutatud joonisel 7.17). Järelikult suurima intensiivsusega siirded toimuvad ergastatud elektronseisundi mõnele kõrgemale võnkenivoole, nii et siiret kujutav vertikaalne nool lõpeb ostsillaatori pöördepunkti lähedal.

Igatahes pärast footoni neeldumist järgneb väga kiire (~10⁻¹² s jooksul) termalisatsioon (ilma kiirguseta relaksatsioon) madalaima energiaga võnkeseisundisse. Seejärel toimub kiirgusüleminek (jällegi samade reeglite järgi) eelistatult mõnele põhielektronseisundi kõrgemale võnkenivoole ja sealt edasi termalisatsioon tagasi põhiolekusse. Nagu joonisel näha, on kiirgusele vastavad nooled keskmiselt lühemad kui neeldumisele vastavad nooled. Termalisatsioon seletab ka seda, miks molekul "unustab" ergastuse lainepikkuse ja seega kiirgusspekter on sellest sõltumatu. Suuremas molekulis on palju erinevaid võnkemoode ja sageli on kõik võnkenivood tugevasti laienenud (molekuli interaktsiooni tõttu ümbrusega), seetõttu optilised spektrid tunduvad võrdlemisi struktuuritud, kus üksikud vibroonsiirded pole eristatavad (vt näidisspektrit joonisel 7.17).

Oletagem nüüd konkreetsemalt, et molekuli elektronseisundi muutumisel tuumade tasakaaluasend küll muutub, aga võnkesagedus säilib (nn lineaarne lähendus). Teiste sõnadega, joonisel 7.17 kujutatud paraboolid on küll nihkes, aga identse kujuga. Igal vibroonsiirdel tekib teatav arv n võnkekvante, kus n võib põhimõtteliselt varieeruda nullist lõpmatuseni. Teades võnkesagedust ja nihet, saaksime arvutada sellise võnkekvantide arvu S, mis tekib (Francki-Condoni printsiibi järgi) kõige

Joonis 7.17. Vasakul on kujutatud molekuli energiaseisundid, mis tekivad elektronseisundite interakteerumisel ühe domineeriva võnkumisega, ja vastavad vibroonsiirded (horisontaalsihis kulgeb võnkekoordinaat). Paremal on näidatud ühe tuntud fluorestseeruva värvaine (Rodamiin 6G) optilised spektrid.

tõenäolisemal optilisel siirdel. Suurus *S* on seda laadi energiatasemete skeemi iseloomustav karakteristik. Vastavas lähenduses kvantteooria annab tulemuseks tõepoolest Poissoni jaotuse, st sellise vibroonsiirde intensiivsus, mille käigus tekib *n* võnkekvanti, on võrdeline suurusega $S^n e^{-S}/n!$. Kui *S* on väike, siis märkimisväärse tugevusega on nn foononvaba joon, kus n = 0. Veelgi enam, mainitud lineaarses lähenduses kõigi erinevate võnkemoodide foononvabad jooned on spektris sama koha peal. Piisavalt madalatel temperatuuridel tuleb foononvaba joon spektris esile (mõnesugusel footoni energial ϵ_0), samas kui ülejäänud vibroonsiirded (energiatel $\epsilon_0 + n\hbar\Omega$) moodustavad foonontiiva (joon. 7.18). On ka ilmne, et neeldumises ja kiirguses on spektrid üksteise peegelpildid (foononvaba joone suhtes).

8 KRISTALLILISTE AINETE OPTILISED OMADUSED

8.1 Sissejuhatus

Kristalliliste ainete teooria kuulub tahkisefüüsika valdkonda, mis omakorda moodustab osa kondensaine füüsikast. Viimane tegeleb väga suurest arvust üksteisega

²⁷Tugevasti ergastatud kvantostsillaator sarnaneb klassikalise ostsillaatoriga, mis tõepoolest viibib suurema osa ajast pöördepunktide läheduses, kus v[°]onkuva osakese kiirus on nullilähedane.

Joonis 7.18. Ülemised graafikud kujutavad vibroonsiirdeid (neeldumises ja kiirguses) mitmesuguste erinevate võnkemoodide jaoks. Alumine graafik kujutab resultatiivsete spektrite moodustumist.

võrdlemisi tugevasti interakteeruvatest osakestest (aatomid, ioonid, aatomituumad, elektronid) koosnevate süsteemide käitumise analüüsimisega. Erinevalt hõredast gaasilisest keskkonnast võib sellistes süsteemides täheldada märksa rikkalikumaid ilminguid (sh näiteks ülijuhtivus, ülivoolavus, Bose-Einsteini kondensaat jms). Käesolevas kursuses piirdume ainult kristalliliste kehade spektraalkarakteristika analüüsimisega.

8.2 Kristalli tsooniteooria

Järgnevalt püüame luua üldise ettekujutuse kristalliliste ainete energeetilisest struktuurist. Nagu eespool selgus, on kvantfüüsika seadustest tulenevalt isoleeritud aatomite energeetilised seisundid diskreetsed, mis avaldub optilistes spektrites kindla lainepikkusega teravate spektrijoontena. Kondensaines sellised diskreetsed energiatasemed üldiselt ei säili, vaid moodustuvad energiatsoonid. Seda üleminekut võib ette kujutada nõnda, et algselt isoleeritud (üksteisest väga kaugele viidud) aatomeid lähendatakse üksteisele seni kuni moodustub kristall (joon. 8.1). Selle käigus aatomite vastasmõju tõttu algsed diskreetsed energianivood peavad lõhenema, sest Pauli keelu kohaselt ei saa elektronid viibida identseis kvantolekuis. Kui aatomite arv kristallis on N (~10²³ cm²), siis iga algse diskreetse seisundi asemele moodustub N energeetiliselt väga lähestikku asetsevast energiatasemest (kvaasipidev) tsoon.

Joonis 8.1. Energiatsoonide moodustumine aatomite ühinemisel kristalliks.

Energiatsoonide tekkimise kvantmehaanilise mudeli püstitamiseks on tarvilik teha

rida füüsikalisi lähendusi (nagu ka aatomite ja molekulide korral). Ülesande esmane lihtsustumine tuleneb adiabaatilisest lähendusest: aatomituuma ja elektroni masside suur erinevus võimaldab nende liikumised üksteisest mingis mõttes eraldada (taandada ülesande kahe võrdlemisi sõltumatu alamsüsteemi uurimisele). Elektronide liikumise seisukohalt on aatomituumade reaktsioon väga aeglane mistõttu viimaseid võib lugeda oma positsioonidele fikseerituks. Seevastu aatomituumade seisukohalt reageerib elektrongaas peaaegu hetkeliselt tuumade asendi mistahes muutusele ja seega aatomituumi võib vaadelda liikuvana efektiivses potentsiaaliväljas, mis saadakse elektronide liikumise ajalisel keskmistamisel. Järgmine lähendus on sama, mis mitmeelektroniliste aatomite korral: iga üksiku elektroni liikumist vaadeldakse keskmistatud väljas, mida tekitavad ülejäänud elektronid. Viimaks, kristallide korral on lihtsustavaks faktoriks asjaolu, et aatomite paigutus aines (arvestamata tuumade võnkumisi tasakaaluasendi ümbruses) on perioodiline (translatoorse sümmeetriaga).

Niisiis kristalli energeetilise struktuuri kõige lihtsam kvantmehhaaniline mudel käsitleb elektroni liikumist ühemõõtmelises perioodilises potentsiaaliväljas (joon. 8.2). Vastav analüüs näitab, et üksiku potentsiaaliaugu diskreetsed seisundid lõhenevad tsoonideks, kusjuures elektroni iga seisundit antud tsooni piires võib karakteriseerida kvantarvuga k, mis omandab väärtuseid vahemikus $-\pi/a$ kuni $+\pi/a$, kus aon võrekonstant. Seega iga tsooni struktuuri kirjeldab sõltuvus E(k). Näiteks juhul kui potentsiaaliaugud on piisavalt sügavad (nii et elektron vaid aeg-ajalt hüppab ühest august teise), on elektroni energia sõltuvus k-st aproksimeeritav järgmiselt: $E(k) = E_0 - A\cos(ka)$, kus E_0 on algne (isoleeritud seisundi) energiatase ja 2A on tsooni laius. Erinevad tsoonid on üksteisest eraldatud nn keeluvöönditega, kus ei paikne ühtegi energiataset.

Kristalli kui kolmemõõtmelise süsteemi korral kirjeldab elektroni seisundeid tsoonis *k*-vektor. Analoogiliselt vaba osakesega võib läbi *k*-vektori omistada kristallis liikuvale osakesele samuti teatava impulsisarnase karakteristiku vastavalt tuntud seosele $p = \hbar k$. Kuigi sellise nn kvaasi-impulsi olemasolu ei pruugi tähendada, et kristalli kui terviku impulss oleks nullist erinev, saab seda siiski kasutada nt impulsi jäävuse seaduses osakestevahelise interaktsiooni kirjeldamisel. Seos energia ja impulsi vahel on sama, mida kirjeldab E(k) ja seega kristalli puhul üldiselt erinev sellest, mis kehtib vabas ruumis liikuva elektroni jaoks ($E = p^2/2m$). Jooniselt 8.2 on siiski näha, et oleku k = 0 ümbruses (st elektroni väikeste kiiruste korral) on sõltuvus E(k)

Joonis 8.2. Elektroni energia perioodilises potentsiaaliväljas. Punaste kõveratega on kujutatud E(k) sõltuvused tsoonides.

lokaalselt approksimeeritav parabooliga, mida kirjeldab $E = p^2/2m$, ent parameeter m tuleb erinev vaba elektroni massist, mistõttu seda nimetatakse efektiivseks massiks. Viimane võib olla seejuures ka negatiivne (kui elektron liigub tsooni lae lähedal, joon. 8.2), mis tähendab seda, et välisjõudude ja kristalli poolt avaldatavate jõudude resultant on vastassuunaline välisjõuga. Efektiivne mass on üsna üldine ja kasulik mõiste, mis sisuliselt koondab endas kõik tundmatud või keerukad detailid süsteemi ehituse kohta (nt perioodilise potentsiaali täpse kuju) ja seeläbi lubab kirjeldada (teatud lähenduses) osakesesarnase moodustise liikumist lihtsate valemite abil.

8.3 Elektrijuhtivus vs tsoonistruktuur

Kui temperatuur on lähedane absoluutsele nullile, hõivavad elektronid kristallis kõik madalamad energiatasemed (igale tasemele mahub kaks vastassuunalise spinniga e. paardunud elektroni) kuni teatava kõrgeima tasemeni, mida nimetatakse Fermi nivooks. Tsooni, kuhu paigutuvad aatomi valentselektronid, nimetatakse valentstsooniks. Juhul kui valentstsoon on ainult poolenisti täidetud, on ta ühtlasi ka juhtivustsooniks, sest elektronide liikumine selles tsoonis annab ainele elektrijuhtivuse. Kui valentstsoon on täielikult täidetud, nimetatakse juhtivustsooniks sellele järgnevat, energeetiliselt kõrgemal paiknevat tühja tsooni. Kuivõrd aatomite välised elektronseisundid mõjutavad üksteist kõige tugevamini (lainefunktsioonide kattumine on kõige ulatuslikum), on nimetatud tsoonid suhteliselt laiad. Aatomite sisemised elektronkihid on valentselektronide poolt ekraneeritud ja nende lõhestumine on väike (joon. 8.1). Kristalli keeluvööndi e. keelutsooni all peetakse tavaliselt silmas valents-ja juhtivustsooni vahelist ala. Selle laiust tähistatakse E_g (indeks g tuleneb i.k. sõnast *gap*).

Ainete optilised ja elektrijuhtivuslikud omadused on põhiliselt määratud elektronprotsessidega, mis toimuvad valents- ja juhtivustsoonis. Ainete jaotumuse juhtideks, pooljuhtideks ja dielektrikuteks määrab nimetatud tsoonide elektronidega täitumus ja neid tsoone eraldava keeluvööndi laius. Kristall, milles kõik tsoonid on kas täiesti täidetud või täiesti tühjad, on halb elektrijuht, kuna täielikult täidetud tsoonides laengukandjad ei saa elektrivälja toimel siirduda kõrgema energiaga olekusse, sest need on juba hõivatud. Tüüpilises metallis (nt Na, $1s^22s^22p^63s^1$) on valentstsoon ainult poolenisti täidetud, sest aatomi välises elektronkihis on ainult üks elektron. Valents- ja juhtivustsoon võivad ka osaliselt kattuda, nii et osa kõrgema energiaga seisundeid resulteerivas tsoonis jääb vabaks. Dielektrikus on keeluvöönd piisavalt lai võrreldes toatemperatuurse karakteerse võnkekvandiga ($k_{\rm B}T \approx 0.025 \, {\rm eV}$) ja juhtivustsoon seega praktiliselt täiesti tühi. Pooljuhis on keeluvöönd kitsam ja kristallvõre võnkumised suudavad ka toatemperatuuril ergastada väheses koguses elektrone valentstsoonist juhtivustsooni. Selline üleminek on seda tõenäolisem, mida kõrgem on temperatuur, nii et puhastel pooljuhtidel, vastandina metallidele, elektrijuhtivus kasvab temperatuuriga.

8.4 Kvaasiosakesed

Kristallis liikuva elektroni käitumine (nt reageerimine välisele elektriväljale) on märksa erinev vaba elektroni omast tingituna sellest, et peale välisjõudude mõjutavad tema liikumist ka muud interaktsioonid ümbritsevate osakestega. Senise käsitluse (sõltumatute elektronide mudel) raames on kõik need interaktsioonid koondatud kristalli perioodilise potentsiaali sisse. Täpsemas käsitluses tuleks arvesse võtta ka asjaolu, et elektron kui laetud osake võib polariseerida ja deformeerida enda lähiümbrust kristallis. Elektroni koos ümbritseva polarisatsiooniväljaga kutsutakse polaroniks. Nagu eepool juba mainitud, saab formaalselt säilitada analoogia vaba osakese liikumisega kui tuua sisse efektiivse massi mõiste.

Osutub, et leidub ka rida keerukamaid kondensaine ergastusi (millele vabas ruumis ei pruugi üldse vastet olla), mis käituvad nagu diskreetsed osakesed, mida iseloomustab elektrilaeng, spinn, efektiivne mass ja liikuvus ning mille liikumisele kristallis saab omistada kineetilise energia ja impulsi. Selliseid osakesetaolisi häiritusi kristallis nimetatakse kvaasiosakesteks. Mõiste vihjab ka sellele, et tegemist ei ole püsivate moodustistega. Lisaks kvaasiosakestele eksisteerivad kondensaines ka kollektiivsed ergastused, mille tüüpiliseks näiteks on kristallvõre võnkumised (sh helilained). Kvantmahaanika vaatleb igasuguseid võnkumisi koosnevana elementaarsetest energiaportsionitest e. võnkekvantidest. Mõnikord haaratakse ka viimased kvaasiosakeste mõiste alla. Kristallvõre võnkekvanti nimetatakse foononiks.

Üks lihtsamaid kvaasiosakesi, mis eksisteerib vaid kristallis, on elektroni auk ehk üksik vakantne (elektroni poolt hõivamata) tsooniseisund. Peaaegu täielikult täidetud tsoonis elektronide samm-sammulise ümberpaiknemise tulemusena on selline vakantne seisund võimeline kristallis edasi liikuma nagu positiivse laenguga (+e)osake.²⁸ Sarnaselt elektronidele moodustavad ka augud koos ümbritseva polarisatsioonipilvega polaronseisundi. Aukude efektiivne mass on reeglina hulga suurem kui elektronidel (ja liikuvus vastavalt väiksem). Augud on põhiliselt relakseerunud valentstsooni lae lähedusse (kui elektronide energiatelg on suunatud üles, siis aukudel on see suunatud alla).

Kui juhtivustsooni elektron ja valentstsooni auk juhtuvad samasse ruumipiirkonda, siis nad võivad rekombineeruda, st elektron relakseerub juhtivustsoonist valentstsooni. Samas võivad elektron ja auk moodustada ka kulooniliselt seotud elektroneutraalse seisundi, mida nimetatakse eksitoniks (varem või hiljem toimub siiski rekombinatsioon).

Aines levivat footonit tuleb samuti eristada vaakumis levivast footonist. See avaldub näiteks selles, et valguse kiirus aines (ja selle sõltuvus lainepikkusest) on erinev valguse käitumisest vaakumis. Elektromagnetväli aines kutsub esile viimase polariseerumise, nii et resultatiivse footonilaadse ergastuse (polaritoni) energia on jaotunud elektromagnetvälja ja aine sisemiste vabadusastmete vahel. Vastavalt

²⁸Aukude teatav mehaanikaline analoog on vedelikus liikuv õhumull, mis reageerib näiteks raskusjõule liikudes seejuures vastassuunas nagu negatiivse massiga osake.

aine ergastuse liigile võib polaritone täiendavalt klassifitseerida. Näiteks ioonkristallis tingib elektromagnetväli põhiliselt kristalli võnkeergastusi, seega räägitakse foonon-polaritonist. Footon võib tugevasti interakteeruda ka eksitoniga moodustades eksiton-polaritoni. Metallides, kus on palju vabu elektrone (ehk elektrongaas), eksisteerivad elektrongaasi tiheduse võnkumised, mille kvante nimetatakse plasmoniteks. Vastavalt metallis levivat footonit nimetatakse plasmon-polaritoniks.

8.5 Eksitonid

Nagu mainitud, on elektron ja auk võimelised moodustama kulooniliselt seotud seisundi, eksitoni. Sellist seotud seisundit iseloomustab seoseenergia ja teatav ruumiline ulatus. Kuna eksiton on neutraalne kvaasiosake, siis elektrijuhtivusse ta panust ei anna. Eristatakse kahte liiki eksitone. Kui eksitoni seoseenergia on väike ja elektroniaugu vahekaugus suur, on tegemist vaba ehk Wannier eksitoniga. Selline eksiton on suuteline kristallis ringi liikuma. Suure seoseenergiaga ja väikese raadiusega eksitoni nimetatakse Frenkeli eksitoniks. Viimane on tavaliselt lokaliseeritud mõne aatomi lähedusse ja on sageli vaadeldav selle aatomi ergastatud olekuna. Siiski ka Frenkeli eksitonid võivad olla suutelised migreeruma hüpates ühelt võresõlmelt teisele.

Joonis 8.3. Kulooniliselt seotud elektron-aukpaar kristallis. Vasakpoolne joonis kujutab vaba (Wannier) eksitoni, parempoolne aga seotud (Frenkeli) eksitoni.

Wannier eksitoni seoseenergiat võib kergesti hinnata, vaadeldes eksitoni kui vesinikuaatomi laadset süsteemi, kus elektroni ja augu vaheline kulooniline tõmme on osaliselt ekraneeritud keskkonna polarisatsiooni tõttu. Viimast saab arvesse võtta aine dielektrilise läbitavuse ε kaudu. Eksitoni energiatasemed avalduvad niisiis valemiga 6.3, mida on veidi modifitseeritud:

$$E_n \approx -\frac{13,6\,\mathrm{eV}}{n^2} \times \frac{\mu}{m_e} \times \frac{1}{\varepsilon^2},$$

kus μ on elektroni ja augu taandatud mass. Sama teooria annab ka eksitoni karakteerse raadiuse, mis valemi 6.4 eeskujul tuleb

$$r \approx 0,53 \text{ Å} \times \frac{m_e}{\mu} \times \varepsilon.$$

Tüüpilise pooljuhi GaAs korral $\varepsilon = 13$, $\mu/m_e = 0,058$, nii et eksitoni seoseenergiaks tuleb 4,5 meV ja raadiuseks 115 Å. Viimane on tõepoolest märksa suurem võrekonstandist (~6 Å). Laiema keelutsooniga materjalides eksitoni seoseenergia kasvab ning raadius väheneb. Frenkeli eksitonid ongi rohkem levinud isolaatorites.

Eksiton püsib stabiilne (kuni elektroni ja augu rekombineerumiseni) vaid tingimusel, et selle seoseenergia on suurem kui kristallvõre võnkumiste energia (mis püüab eksitoni lõhkuda). Toatemperatuuril on kristallvõre võnkekvantide (foononite) karakteerne energia $k_{\rm B}T \sim 25 \,{\rm meV}$, mis on märksa suurem kui tüüpiline vaba eksitoni energia. Seetõttu on viimased reeglina vaadeldavad vaid madalatel temperatuuridel. Frenkeli eksitonid, mille seoseenergia on tüüpiliselt suurem kui 100 meV, võivad olla jälgitavad ka toatemperatuuril. Vaba eksitoni moodustumist takistab ka vabade laengukandjate olemasolu. Seetõttu on Wannier eksitonid vaadeldavad vaid piisavalt puhastes materjalides.

8.6 Pooljuhtide ja dielektrikute neeldumisspektrite üldised iseärasused. Fundamentaalneeldumisserv.

Dielektriliste ja pooljuhtkristallide neeldumisspekter on optilises diapasoonis küllalt rikkaliku struktuuriga (joon. 8.4). Samas on erinevatest optilistest protsessidest tingitud neeldumised üksteisest spektraalselt eraldatavad, mistõttu selline spekter võib kajastada üsna konkreetset informatsiooni aine kohta. Kõige suurematel lainepikkustel ehk väiksematel footoni energiatel on neeldumine põhiliselt tingitud vabade laengukandjate tsoonisisestest üleminekutest. Veidi suurematel energiatel infrapunases diapasoonis ergastuvad kristallvõre võnkumised ehk foononid (foononiks nimetatakse kristalli kindla võnkemoodi energiakvanti). Pooljuhtide korral lähedases infrapunases piirkonnas ning dielektrikute korral ka nähtavas ning UV diapasoonis mahub footoni energia keeluvööndi sisse. Seetõttu ei ole selline footon suuteline põhiaines elektronergastusi tekitama. Küll aga võib see esile kutsuda neeldumist mitmesugustes lisandites, mille energiatasemed paiknevad põhiaine keeluvööndis. Kui footoni energia saab võrdseks vähemalt keelutsooni laiusega E_g , muutub võimalikuks tsoon-tsoon neeldumine, mille käigus üks valentstsooni elektron siirdub juhtivustsooni. Neeldumiskoefitsiendi järsku suurenemist E_g ümbruses nimetatakse aine fundamentaalneeldumisservaks. Tüüpilistel pooljuhtidel (Si, Ge) on keeluvööndi laius 1 eV suurusjärgus, mistõttu nad neelavad intensiivselt nähtavas diapasoonis (1,6...3 eV). Seega on pooljuhid reeglina läbipaistmatud. Dielektrikute korral (nagu kvarts SiO₂, teemant, safiir Al₂O₃ jms) on E_g suurem kui 3 eV ja sellised materjalid on hästi läbipaistvad. Dielektrike keelutsooni laiused küündivad kuni ~14 eV-ni (LiF).

 E_{g} -st mõnevõrra väiksematel energiatel võib aset leida ka eksitonide moodustumine. Kitsad vesinikusarnased vaba eksitoni tekkimisest tingitud neeldumisjooned on märgatavad vaid ülipuhastes pooljuhtmaterjalides väga madalatel temperatuuridel. Frenkeli eksitonid ilmnevad laia keelutsooniga dielektrikutes ka toatemperatuuril (joon. 8.5).

8.7 Tsoonistruktuur ja selle avaldumine neeldumisspektris

Lähtudes joonisel 8.1 kujutatud lihtsustatud tsooniskeemist, võiks järeldada, et kristalli tsoon-tsoon ergastused avalduvad neeldumisspektris suhteliselt laiade ja ilma iseärasusteta neeldumisribadena. Tegelikkuses on nimetatud neeldumisribad siiski mõnesuguse struktuuriga tingituna sellest, et energianivoode paiknemise tihedus tsooni ulatuses ei ole ühtlane ja lisaks siirde tõenäosused sõltuvad alg- ja lõppolekust.

Nagu eespool selgus, on elektroni iga olekut tsoonis võimalik iseloomustada lainevektoriga k, mis määrab elektroni kvaasi-impulsi $p = \hbar k$. Lainevektori kõikvõimalikud väärtused on määratud kristalli ühikraku suuruse ja kujuga. k kõigi väärtuste hulka nimetatakse esimeseks Brillouini tsooniks. k-vektori ruumis näeb see välja

Joonis 8.4. Kristalliliste isolaatorite ja pooljuhtide neeldumisspektri üldised iseärasused. (1) Neeldumine vabadel laengukandjatel (tsoonisisene neeldumine); (2) neeldumine foononitel (kristalli võnkeergastused); (3) multifoonon-neeldumine; (4) neeldumine lisanditel; (5) Urbachi saba (tsooniservade laialivalgumisest); (6) neeldumine eksitonidel; (7) fundamentaalneeldumisserv; (8) tsoon-tsoon neeldumine.

nagu teatava sümmeetriaga kolmemõõtmeline hulktahukas (joon. 8.6). On tavaks tähistada \boldsymbol{k} väärtusi esimese Brillouini tsooni sümmeetrilistes punktides spetsiaalsete sümbolitega. Iga \boldsymbol{k} -ga määratletud elektroni olekut iseloomustab kindel energia E. Sõltuvus $E(\boldsymbol{k})$ moodustab pideva energiatsooni. Erinevad tsoonid võivad ka kattuda. Kui esitada vaid spetsiaalseid läbilõikeid esimesest Brillouini tsoonist, on võimalik ka kolmemõõtmelise kristalli tsoonistruktuuri esitada kahemõõtmeliselt. Joonisel 8.7 on näitena toodud tsoonistruktuur GaAs ja räni jaoks.

Optilises protsessis (footoni neeldumine või kiirgus) osalevate (kvaasi)osakeste summaarne energia ja impulss peavad säilima. Üldjuhul võib protsessis osaleda peale elektroni ja footoni ka foonon (ehk kristalli võnkekvant). Kui elektron siirdub algseisundist \mathbf{k}_i , E_i lõppseisundisse \mathbf{k}_f , E_f , siis energia ja impulsi jäävuse võib kirja panna järgmiselt:

$$E_{\rm f} = E_{\rm i} \pm \hbar \omega \pm \hbar \Omega,$$

$$\hbar \boldsymbol{k}_{\rm f} = \hbar \boldsymbol{k}_{\rm i} \pm \hbar \boldsymbol{k} \pm \hbar \boldsymbol{q},$$

kus ω on valguse sagedus, \boldsymbol{k} on footoni lainevektor, Ω on foononi sagedus ja \boldsymbol{q}

Joonis 8.5. Näiteid neeldumisspektritest fundamentaalneeldumisserva lähedal, kus avaldub eksitonide tekkimine.

on foononi lainevektor (pluss- või miinusmärk valitakse vastavalt sellele, kas osake tekib või kaob). Nii elektroni kui ka foononi lainevektorid on mooduli poolest π/a suurusjärgus, kus a on võrekonstant. Footoni lainevektori moodul $2\pi/\lambda$ on neist märksa väiksem, kuna optilises diapasoonis $\lambda \gg a$. Järelikult impulsi jäävuse tingimus lihtsustub:

$$\boldsymbol{k}_{\mathrm{f}} \approx \boldsymbol{k}_{\mathrm{i}} \pm \boldsymbol{q}.$$

Niisiis ilma foononite osaluseta võivad toimuda vaid sellised optilised üleminekud, mille käigus elektroni lainevektor ei muutu. Selliseid siirdeid nimetatakse otsesteks. Foononi osalust nõudvaid siirdeid nimetatakse kaudseiks ja need on märksa väiksema intensiivsusega kui otsesed siirded.

Joonisel 8.8 on näitena toodud räni neeldumisspekter, mida tuleb seostada räni tsoonistruktuuriga joonisel 8.7. Nagu näha, on räni kaudse siirdega materjal, mis tähendab seda, et elektroni lainevektorid valentstsooni lae ja juhtivustsooni põhja juures on erinevad. Seega neeldumine fundamentaalneeldumisserva E_g juures on suhteliselt nõrk. Nooltega E_1 ja E_2 märgistatud suurema energiaga siirded vastavad aga otsestele üleminekutele ja avalduvad spektris tugevate neeldumisribadena tingituna sellest, et valents- ja juhtivustsiooni dispersioonikõverad nimetatud energiate ümbruses on ligilähedaselt paralleelsed, mis vastab suure hulga erinevate (kuid praktiliselt sama energiaga) siirete võimalikkusele.

Joonis 8.6. Tahktsentreeritud kuubilise kristallstruktuuri (nt GaAs) esimene Brillouini tsoon.

8.8 Fundamentaalneeldumisserva kuju

Kõige lihtsam on modelleerida (ja sageli ka mõõta) neeldumiskoefitsiendi käiku fundamentaalneeldumisserva juures. Nagu jooniselt 8.7 nähtub, on tsooni serva juures sõltuvus $E(\mathbf{k})$ approksimeeritav parabooliga, mis võimaldab lihtsasti arvutada energiatasemete paiknemise tihedust. Fundamentaalneeldumisserva iseloom sõltub ka sellest, kas tegemist on otsese või kaudse üleminekuga ja kas üleminek on dipoollähenduses lubatud või mitte. Viimane on määratud eelkõige sellega, millistest aatomiorbitaalidest valentstsoon ja juhtivustsoon pärinevad. Siinkohal me süüvi vastavatesse arvutustesse vaid esitame ainult tulemused:

Joonis 8.7. GaAs ja räni tsoonistruktuur. Horisontaalteljel kujutatud sümbolid tähistavad lainevektori spetsiaalseid väärtusi Brillouini tsoonis.

 $(\Omega \ t\ddot{a}histab \ kaudsel \ siirdel \ osaleva \ foononi \ sagedust.)$ Keelutsooni laiuse määra-

misel on tüüpiliseks võtteks eksperimentaalse neeldumisspektri lähendamine ühele nendest sõltuvustest (joon. 8.9).

Joonis 8.9. InAs neeldumisspekter fundamentaalneeldumisserva lähedal. Parempoolsel joonisel on andmed esitatud sellises skaalas, mis näitab, et energiatel, mis ületavad keelutsooni laiust, on $\alpha(h\omega) \propto (\hbar\omega - E_g)^{1/2}$.

Katsed näitavad siiski, et enamuse materjalide korral ja eriti kõrgematel temperatuuridel keelutsooni laius ei avaldu neeldumisspektris teravalt nagu joonisel 8.9. Selle asemel registreeritakse $\hbar \omega < E_g$ korral sageli neeldumiskoefitsiendi eksponentsiaalset vähenemist vastavalt seadusele

$$\alpha(\hbar\omega) = \alpha_0 e^{-\sigma \frac{E_{\mathsf{g}}-\hbar\omega}{kT}},$$

kus σ on temperatuurist sõltuv parameeter. Sellist neeldumist nimetatakse Urbachi sabaks. Urbachi saba on tingitud staatilistest või dünaamilistest häiritustest kristallis, mis viivad tsooniservade "laialivalgumisele". Teisisõnu, tsooni elektronseisundite tihedus ei muutu järsult nulliks tsooni serva juures vaid ulatub ka keeluvööndi sisse. Madalatel temperatuuridel on põhjuseks mitmesugused defektid kristallvõres, kõrgematel temperatuuridel annab põhipanuse termiliselt indutseeritud korratus (aatomite võnkumine).

SPEKTROSKOOPIA APARATUUR

Läbivaks teemaks spektroskoopilises eksperimendis on optilise kiirgusega manipuleerimine. Selleks vajatakse mitmesuguseid komponente (üles loetletud valguse leviku järjekorras):

- Kiirguse tekitamiseks on tarvis mõnesugust kiirgusallikat. Nendeks on valdavalt mitmesugused lambid ja laserid. Lisaks spektroskoopiliste nähtuste (neeldumise, hajumise, luminestsentsi) vaatlemisele vajatakse kindlate omadustega kiirgust ka aparatuuri kalibreerimiseks.
- Kiirguse juhtimiseks ühest ruumipunktist teise vajatakse mitmesuguseid optilisi elemente nagu peeglid, läätsed, prismad, kiirejagajad, fiibrid ja lainejuhid. Neid käsitletakse optika kursuses.
- Spektraalriista ülesandeks on kiirguse spektraalanalüüsi või spektraalse selektsiooni teostamine. Lihtsamal juhul võib spektraalriista ülesannet täita ka valgust dispergeeriv element (prisma, difraktsioonvõre) üksinda. Samuti võib spektraalriistade alla liigitada optilised filtrid.
- Kiirguse intensiivsuse kvantitatiivseks registreerimiseks on tarvis fotodetektorit. Fotodetektor on sensor, mis konverteerib neeldunud valgusenergia mõneks otsesemalt mõõdetavaks (eelistatult elektriliseks) signaaliks.

Nende komponentide valik sõltub spektraaldiapasoonist (tabel 4).

9 KIIRGUSALLIKAD

9.1 Kiirgusallikate liigitus ja spektroskoopiline otstarve

Kiirgusallikaid võib liigitada kahte kategooriasse vastavalt sellele, kas nad genereerivad pideva või joonspektriga kiirgust. Tüüpilised pideva spektriga kiirguse allikad on hõõgkehad, samuti kõrgel rõhul ja temperatuuril töötavad gaaslahenduslambid. Seevastu joonspektriga on spektraallambid ja laserid. Ligilähedaselt monokromaatset kiirgust saab ka pideva spektriga kiirguse monokromatiseerimisel, kuid sel juhul on raske saavutada piisavalt kitsast spektraallaiust ning suurt spektraalset kiiritustihedust. Kitsaid spektrijooni vajatakse samuti spektraalriistade kalibreerimisel (st skaala näidule lainepikkuse vastavusseseadmisel) ja lahutusvõime (aparaatfunktsiooni) määramisel. Pideva spektriga kiirgusallikaid vajatakse juhul kui on tarvis timmida kiirguse lainepikkust ulatuslikus spektraalvahemikus (nt läbilaskvus-, peegeldus- ja luminestsentsi ergastusspektrite mõõtmisel) või määrata süsteemi spektraalkostet. Väiksemate spektrivahemike katmiseks võib kasutada ka timmitava lainepikkusega lasereid.

Hõõgkehad ja mõningad gaaslahenduslambid (nt ksenoonlamp) kiirgavad ligilähedaselt tasakaalulist kiirgust, mille spekter on üldjoontes kirjeldatav Plancki seadusega. Muudel juhtudel (spektraallambid, valgusdioodid, laserid) on tegu oluliselt mittetasakaalulise kiirgusega.

Kiirgusallikad võivad opereerida pidevas või impulssrežiimis. Näiteks mõningat tüüpi laserid ei ole võimelised toimima pidevalt. Impulssallikatel on oluline roll aeglahutusega spektroskoopias (nt luminestsentsi kustumiskineetika mõõtmisel), mittelineaarsete protsesside esilekutsumisel, laserablatsioonis jne. Sageli opereerivad mõningad impulssallikad detektori reaktsioonikiirust arvestades nii suure sagedusega, et neid võib lugeda kvaasipidevaiks. Ja vastupidi, normaalselt pidevas režiimis töötavaid kiirgusallikaid on mõnikord otstarbekas kasutada impulss- või moduleeritud režiimis lülitades neid perioodiliselt sisse-välja.

Peatume viimaks ka kiirgusallikast saadava valgusvihu geomeetrial. Argistes valgustusseadmetes on valgusallika kvaliteedi põhilisteks kriteeriumiteks valgusviljakus ja spekter (värvus), samas kiirgava ala kuju ja suurus on võrdlemisi ebaolulised (näiteks luminestsentstoru puhul kiirgab kogu lambi pind). Spektroskoopilises eksperimendis on viimane asjaolu aktsepteeritav vaid kalibreerimiseks kasutatavate (väikese intensiivsusega) kiirgusallikate puhul. Seevastu suure intensiivsusega kiirgust on reeglina tarvis ruumiliselt kontsentreerida (nt uuritava aine pinnale) või juhtida võrdlemisi pikkade vahemaade taha, mistõttu vastav kiirgusallikas peaks ideaaljuhul olema kas punktallikas või tekitama kollimeeritud valgusvihu. Sellised kiirtekimbud on läätse või nõguspeegli abil üksteiseks üle viidavad. Punktallika sarnasena võib vaadelda mõningaid gaaslahenduslampe (kus gaaslahenduse kuju on

Tabel 4. Optilises diapasoonis kasutatav aparatuur (FEK=fotoelektronkordisti).

Spektraalpiirkond	Valgusallikas	Akna, prisma või läätse materjal	Dispergeeriv element	Detektor
Infrapunane	hõõglamp, Nernst'i varras, globar	NaCl, KBr	difraktsioonvõre, interferomeeter	termopaar, bolomeeter, fototakisti, püroelektriline detektor
Nähtav Lähiultraviolett	hõõglamp, Xe-lamp D ₂ -lamp, Xe-lamp	klaas kvarts, safiir	difraktsioonvõre, prisma, interferomeeter	FEK, CCD-sensor, fotodiood
Vaakumultraviolett	sünkrotron	LiF, MgF ₂	difraktsioonvõre	-

sobivalt formeeritud). Ideaalilähedaselt kollimeeritud kiirguse allikad on aga laserid.

9.2 Hõõgkehad

9.2.1 Tasakaaluline kiirgus

Nagu jaotises 4.1 mainitud, nimetatakse soojuskiirguseks sellist kiirgust, mida objekt emiteerib ainuüksi soojusenergia arvel. Soojuskiirgus on üks soojusülekande vormidest. Seejuures soojuskiirgus on ainus kiirgus, mis saab olla ainega tasakaalus. See on võimalik tänu sellele, et keha soojuskiirguse intensiivsus kasvab temperatuuri tõustes.

Kujutleme näiteks, et mitmesugused erinevad kehad on asetatud vaakumisse suletud õõnsuses, mille seinu hoitakse kindlal temperatuuril T. Seega kehad vahetavad omavahel ja õõnsuse seintega energiat vaid soojuskiirguse vahendusel. Selgub, et mõne aja pärast kõik kehad õõnsuses omandavad sama temperatuuri T. Kuna kõik kehad on erinevate omadustega (kiirgamise ja neelamise mõttes), siis ainus võimalus on, et kiirgus õõnsuses on kõikjal ühetaoliste, universaalsete omadustega, mis on määratud vaid temperatuuriga T. Sel juhul öeldakse, et *kiirgus on ainega tasakaalus* ja seega kiirgust ennast võib iseloomustada samuti temperatuuriga T.

Konkreetse aine/pinna spektraalseid omadusi temperatuuril T võib iseloomustada tema spektraalse kiirgamisvõime ehk kiirgavusega $M(\lambda)$ ja spektraalse neelamisvõi-

me ehk neelavusega $a(\lambda)$. Korrutis $M(\lambda) d\lambda$ annab kiirgusvõimsuse pindalaühiku kohta lainepikkuste vahemikus $\lambda \dots \lambda + d\lambda$. Neelavus $a(\lambda)$ näitab aga seda, kui suure osa pinnale langevast monokromaatsest kiirgusest (lainepikkusega λ) antud pind neelab. Seega $0 \le a(\lambda) \le 1$. Kui $a(\lambda) \equiv 1$, on tegu absoluutselt musta kehaga (midagi ei peegeldu tagasi). Kui $a(\lambda) \equiv \text{Const} < 1$, nimetatakse keha halliks (igal lainepikkusel peegeldub valgus ühtemoodi, seega mingit spetsiifilist värvitooni objektil ei ole).

Aine ja kiirgus saavad tasakaalus olla vaid siis, kui iga pind neelab igal lainepikkusel täpselt samapalju kui ta kiirgab (vastasel korral ei saaks ilmselt tekkida sellist soojuskiirguse kaudu vahendatavat tasakaalu, kus iga keha saavutaks sama temperatuuri). Niisiis suhe $M(\lambda)/a(\lambda)$ peab olema kõikide kehade jaoks ühesugune, universaalne funktsioon (Kirchoffi seadus). Tähistame selle funktsiooni $f(\lambda)$. Seega siis $M(\lambda) = f(\lambda)a(\lambda)$. Kui $a(\lambda) \equiv 1$, siis $M(\lambda) = f(\lambda)$, järelikult $f(\lambda)$ pole midagi muud kui absoluutselt musta keha kiirgavus, $a(\lambda)$ väljendab aga ühtlasi ka keha suhtelist kiirgamisvõimet (võrrelduna absoluutselt musta kehaga). Niisiis intensiivseima kiirgusega antud temperatuuril on must (nt tahmatud) pind, millel $a(\lambda) \approx 1$; seevastu hästipeegeldav (nt poleeritud metall-) pind kiirgab väga nõrgalt, sest $a(\lambda) \approx 0$.

Klassikaline füüsika võimaldab funktsiooni $f(\lambda)$ kuju leida ainult pikalainelisel piirjuhul. Funktsiooni $f(\lambda)$ täielikuks määramiseks on tarvis Plancki hüpoteesi kiirguskvantide olemasolust. Vastava analüüsi tulemusena (vt lisa H) saadakse Plancki

Joonis 9.1. Absoluutselt musta keha kiirgusspekter ja selle sõltuvus temperatuurist (valem 9.1). Punktiirjoon, mis ühendab spektrite maksimume, kirjeldab Wieni nihke-seadust.

kiirgusseadus:

$$f(\lambda) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}.$$
(9.1)

Selle funktsiooni graafik mitmesugustel temperatuuridel on kujutatud joonisel 9.1.

Plancki kiirgusseadusest järeldub kaks spetsiifilisemat seaduspärasust. Graafikult 9.1 on näha, et summaarne kiirgusvõimsus (st integreeritud üle spektri, aga endiselt pindalaühiku kohta) kasvab väga kiiresti temperatuuri tõustes. Vastav arvutus annab

$$\int_0^\infty f(\lambda) \, d\lambda = \sigma \, T^4, \quad \sigma \equiv \frac{2\pi^5 k^4}{15c^2 h^3} = 5,67 \times 10^{-8} \, \mathrm{W \, m^{-2} \, K^{-4}}.$$

Seda nimetatakse Stefan-Boltzmanni seaduseks. Samuti näeme graafikult, et tem-

peratuuri tõustes spektri maksimum nihkub lühemate lainepikkuste poole:

$$\lambda_{\max} T = \text{Const} \approx 0,2014 \frac{hc}{k} \approx 2898 \,\mu\text{m K}$$

Seda seost nimetatakse Wieni nihkeseaduseks. Niisiis madalatel temperatuuridel (mõnisada kraadi) on hõõgumine vaevumärgatav ja on punaka tooniga. Temperatuuri tõstmisel soojuskiirguse intensiivsus kasvab ja kiirgav keha omandab alguses kollaka (hõõglamp), seejärel valge (Päike) ja lõpuks sinaka tooni (üle 7000 °C).²⁹ Toatemperatuurile vastav soojuskiirguse foon on valdavalt infrapunane ja väga nõrk.

9.2.2 Hõõglamp

Nähtavas ja lähedases infrapunases diapasoonis on parimaks soojuskiirguse allikaks osutunud volfram-sulamist hõõgniidiga lamp. Seda võib vaadelda ligikaudu hallkeha kiirgurina; volframi suhteline kiirgamisvõime (võrreldes absoluutselt musta kehaga) on ~0,45. Volfram on oma kõrge sulamistemperatuuri ja madala aururõhu tõttu osutunud ka praktiliselt ainsaks sobilikuks hõõgniidimaterjaliks.

Hõõgniiti kuumutatakse elektrivooluga (Joule'i efekt) temperatuurini ~3000 K. Sellele temperatuurile vastab $\lambda_{max} \sim 1 \,\mu$ m, seetõttu hõõglambi spekter katab nähtava ja lähedase infrapunase piirkonna. Ultravioletses spektriosas on hõõglambi kiirgus võrdlemisi nõrk. Spektroskoopia seisukohalt on hõõglambi eelisteks võrreldes muude samas diapasoonis toimivate pideva spektriga valgusallikatega (nagu gaaslahenduslambid) odavus, ekspluatatsiooni lihtsus ja sile spekter, mis ei sisalda spektrijooni ega muid iseärasusi. Samas on vähegi võimsama lambi hõõgniit suhteliselt suur ja seda ei saa vaadelda punktvalgusallikana.

Tavalises hõõglambis ei ole hõõgniidi temperatuuri tõstmine otstarbekas, sest hõõgniidi intensiivistunud aurustumise tõttu väheneks oluliselt lambi tööiga. Hõõgniidi tööea pikendamiseks täidetakse hõõglamp mõnesuguse inertgaasiga (näiteks krüptoon), mis takistab volframi aatomite lendumist hõõgniidi pinnalt (nn krüptoonlamp).

²⁹Wieni seadusest ei maksa teha ekslikku järeldust nagu peaks hõõgkeha värvus vastama täpselt lainepikkusele λ_{max} , sest viimane viitab vaid spektri maksimumi asukohale samas kui spekter tervikuna võib olla väga lai. Seega temperatuuril 5500 K ($\lambda_{max} \sim 530$ nm) ei ole soojuskiirgus mitte roheline, vaid valge, sest spekter katab üsna ühtlaselt kogu nähtava diapasooni.

Veelgi suuremat edu on võimaldanud saavutada väheses koguses halogeeni (I, Br) lisamine täitegaasi (nn halogeenlamp). Halogeeni molekulid reageerivad aurustunud volframi aatomitega ja transpordivad need tagasi hõõgniidini, kus tekkinud ühend kõrge temperatuuri käes laguneb. Sellisel viisil saavutatakse värvustemperatuuriks kuni 3300 K nii et lambi tööiga jääb aktsepteeritavaks. Halogeenitsükkel väldib ka kolvi sisepinna tuhmumist volframi ladestumise tõttu.

ÜLESANNE 28. Hinnake, kui suur on hõõglambi (T = 3000 K) kasutegur nähtava valguse produtseerimise suhtes lugedes nähtavaks spektraalpiirkonnaks 400...750 nm.

ÜLESANNE 29. Kui suure intensiivsusega (vattides ja footonite arvus) monokromaatset (spektraallaiusega 1 nm) kiirgust 600 nm ümbruses annab 100 W-ne hõõglamp, mille töötemperatuur on 3000 K? See oleks siis intensiivsus, mille saaksime, kui õnnestuks selle lambi kogu kiirgus suunata läbi ideaalse monokromaatori, mille spektraalpilu on 1 nm. *Vastus:* ~35 mW, ~10¹⁷ footonit/s.

9.2.3 Nernsti varras ja globar

Infrapunases diapasoonis kasutatakse mitmesuguseid vardakujulisi hõõgkehi, mida kuumutatakse elektrivooluga temperatuurideni kuni 2200 K. Nernsti varras koosneb mitmesuguste oksiidide segust (ZrO₂+Y₂O₃+Er₂O₃+ThO₂). Seevastu globar (nimetus tuleneb terminist *glow bar*) on valmistatud ränikarbiidist. Materjalide valiku määravad kiirgusomadused infrapunases piirkonnas, vastupidavus kõrgetel temperatuuridel ja elektrijuhtivus (kuumutamine toimub endiselt elektrivooluga). Ränikarbiidil on erakordne vastupidavus oksüdeerumisele, seevastu Nernsti varda materjal juba koosnebki oksiidist ja ei saa õhu käes kaugemale oksüdeeruda. Selle tõttu erinevalt tavalisest hõõglambist mõlemad nimetatud hõõgkehad saavad opereerida otse õhukeskkonnas.

Kaasajal kasutatakse valdavalt globari, mis juhib elektrit juba toatemperatuuril ja seetõttu ei vaja eelkuumutamist. Joonistel 9.2 ja 9.3 on toodud näited mõlema kiirgusallika spektritest.

Joonis 9.2. Võimsuse spektraalne jaotus Nernsti varda (2200 K) kiirguses.

9.3 Gaaslahenduslambid

Gaaslahenduslampides on kiirguse allikaks gaas (plasma), millest juhitakse läbi elektrivoolu. Selle kiirguse omadused sõltuvad gaasist ja eriti gaaslahenduse iseloomust, seetõttu eksisteerib rida erinevate omadustega gaaslahenduslampe.

9.3.1 Spektraallambid

Spektraallampides on gaasi rõhk madal (mõned mm Hg) ja elektroni vaba tee suhteliselt pikk. Küllalt kõrge pinge (~10²...10³ V) rakendamisel saavutab elektron kahe põrke vahel elektriväljas kiirendades piisava kineetilise energia aatomi ioniseerimiseks viimasega kokku põrkudes. Sellise mehhanismi toimel elektronide ja ioonide arv kasvab laviinina ja gaasis tekib läbilöök. Positiivsed ioonid löövad katoodist välja elektrone ja tagavad sel viisil püsiva voolu läbi gaasi. Samas väline vooluahel hoiab voolutugevuse võrdlemisi madala (~10 mA), nii et gaas muutub ainult nõrgalt ioniseeritud plasmaks. Sellist gaaslahenduse vormi nimetatakse huumlahenduseks. Huumlahenduse iseärasuseks on see, et aatomid ja elektrongaas ei ole üksteisega termilises tasakaalus. Elektronide keskmine kineetiline energia on 1 eV suurusjärgus

Joonis 9.3. Võimsuse spektraalne jaotus globari kiirguses ja selle võrdlus absoluutselt musta keha kiirgusega.

ja temperatuur seega 10⁴ K suurusjärgus. Aatomid ja ioonid püsivad aga praktiliselt ümbruskeskkonna temperatuuril (300 K).

Põrgete käigus toimub ühtlasi aatomite ergastamine kõrgematele energiatasemetele. Siirdudes tagasi põhiolekusse, kiirgavad nad iseloomulike lainepikkustega spektrijooni. Tänu madalale rõhule ja temperatuurile on nii Doppleri kui ka põrkelaienemine väikesed (vt ptk 5) ja spektrijooned on kitsad. Selliseid jooni võib kasutada lainepikkuste absoluutse etalonina spektraalriistade kalibreerimisel. Spektraallampides kasutatakse põhiliselt metalliaure (Hg, Na, Cd, ...) ning väärisgaase (Ne, Ar, He).

Laialdaselt kasutatav lihtne kiirgusallikas spektrijoonte saamiseks punases spektriosas on neoonlamp (joon. 9.4). Sarnast valgusallikat kasutatakse muuseas ka reklaamtuledes, pingeindikaatorites jm.

9.3.2 Kõrgrõhulambid

Kõrgrõhulampides on gaas reeglina kõrgel rõhul (vahemikus 10...100 at) ja temperatuuril (~6000 K) tugevalt ioniseeritud plasmana, millest juhitakse läbi üsna tuge-

Joonis 9.4. Neoonlambi spekter (spektrijoonte intensiivsuste vahekord võib sõltuda konkreetse lambi töörežiimist).

vat voolu (>10 A). Seejuures elektroodidele rakendatud pinge on suhteliselt väike (~10 V). Erinevalt huumlahendusest on ioonid ja elektrongaas termilises tasakaalus. Elektronide emissioon katoodist on valdavalt termiline. Sellist gaaslahenduse vormi nimetatakse kaarlahenduseks.

Kõrgrõhulambi spekter koosneb pidevast foonist, mille peal paiknevad tugevalt laienenud spektrijooned (joon. 9.5). Pideval foonil on kaks põhjust, mõlemad seotud vabade elektronide olemasoluga plasmas. Esiteks leiab aset ioonide ja vabade elektronide rekombinatsioon. Energiatasemete skeemil (joon. 9.6) väljendab seda protsessi elektroni siire vabast olekust seotud seisundisse. Erinevalt seotud elektronidest võib aga vaba elektron omada mistahes energiat ja rekombinatsioonkiirguse spekter on seega pidev. Teiseks, ioonidega kokkupõrgates muudavad elektronid oma liikumisolekut. Kineetilise energia muutus kiiratakse footoni näol. Klassikalise füüsika terminoloogias liiguvad elektronid põrke hetkel hästi suure kiirendusega ja kiirgavad selle käigus intensiivselt elektromagnetlaineid. Kui gaasi tihedust veelgi suurendada, valguvad ka diskreetsed spektrijooned laiali ja hakkavad kattuma ning spekter hakkab sarnanema mustkeha kiirguri spektrile. Tüüpiline kõrgrõhulamp koosneb kvartskolbi suletud kahest volfram-elektroodist, mis asuvad teineteisest kuni mõne mm kaugusel. Katood on suhteliselt terava tipuga, mis soodustab elektronide emissiooni ja vormib elektrilahenduse kuju. Anood seevastu on suhteliselt suure pinnaga, et paremini hajutada elektronide põrgetel tekkivat soojust. Suurem osa valgust genereeritakse tillukeses plasmatombus katoodi lähedal, seetõttu selline lamp toimib peaaegu kui punktvalgusallikas (kiirgus on hästi suunatav, fokuseeritav jne). Kvartskolvi kasutamine on ühelt poolt vajalik mehaanilise ja termilise stabiilsuse huvides, teiselt poolt võimaldab ka sügava UV kiirguse väljapääsu. Nn osoonivabades lampides kasutatakse sellist kvartsklaasi, mis neelab sügavamat UV kiirgust (<220 nm) vähendamaks osooni tekkimist (ja ruumi ventileerimise vajadust).

Kõrgrõhulampides kasutatakse valdavalt ksenooni ja elavhõbedat. Ksenoonlambi spekter on valdavalt sile ja seetõttu sobiv rakendusteks, kus vajatakse pidevalt timmitava lainepikkusega kiirgust, mida saadakse valge kiirguse monokromatiseerimisel. Elavhõbedat sisaldava lambi spektris on aga rida intensiivseid spektrijooni, mida kasutatakse mõnikord intensiivse monokromaatse kiirguse allikaina (eriti UV piirkonnas, kus laserid on haruldased) Selleks suunatakse lambi kiirgus läbi kitsa ribapääsfiltri, mis valib välja sobiva spektrijoone ja summutab ülejäänud kiirguse.

Kõrgrõhulampe hoitakse alati kaitsvas ümbrises ja nendega opereerides kantakse kaitseprille juhuks kui lamp peaks purunema.

ÜLESANNE 30. Heledaim piirkond ksenoonlambi elektrilahenduses on läbimõõduga suurusjärgus 1 mm ja temperatuur selles on ~6000 K. Hinnake sellise lambi summaarse kiirgusvõimsuse spektraalset tihedust spektri maksimumi ümbruses. *Vastus:* ~0,3 W nm⁻¹.

9.3.3 Vesinik- ja deuteeriumlamp

Kasulik kiirgusallikas UV piirkonnas on vesiniklamp. Selles lambis leiab aset kaarlahendus vesinikus (H₂) madalal rõhul. Deuteerium (D₂) annab mõnevõrra intensiivsemat kiirgust, mistõttu seda kasutatakse sagedamini. Spektraalselt lai kiirgusspekter (joon. 9.5) tuleneb vibratsioonüleminekutest vesinikumolekulis (joon. 9.7).

Deuteeriumlambi kiirguse olulisim piirkond on 180...400 nm, kus spekter on võrdlemisi sile ja kasvab lühemate lainepikkuste poole. Seetõttu kasutatakse deutee-

Joonis 9.5. Näiteid kõrgrõhulampide spektritest [16]. Võrdluseks on toodud ka hõõglambi spekter.

riumlampi sageli spektrofotomeetrites UV-kiirguse allikana, mis kombinatsioonis halogeenlambiga võimaldab katta kogu optilise diapasooni pideva spektriga (joon. 9.5). Kalibreeritud deuteeriumlamp on kasulik ka spektraalseadmete tundlikkuse määramiseks UV-piirkonnas.

Töötamise ajal hoitakse ka deuteeriumlampi valgustpidavas kestas, kuna intensiivne UV kiirgus on silmadele kahjulik.

9.4 Valgusdioodid

Valgusdiood on pooljuhtseadis, kus kiirgus tekib elektriliselt ergastatud laengukandjate rekombineerumisel pooljuhis. Pooljuhid on teatavasti sellised ained, kus keelutsooni laius on mõne eV suurusjärgus. Pooljuhtide eripära ja rakendused tulenevad sellest, et nende elektrilised ja optilised omadused on väga tugevasti mõjutatavad hästi vähese koguse lisanditega, mille aatomeis on kas veidi vähem või veidi rohkem

Joonis 9.6. Joon- ja pidevspektri tekkimise mehhanism gaaslahenduslampides.

valentselektrone kui põhiaine aatomites. Puhta pooljuhi elektrijuhtivus on suhteliselt väike ja määratud sellega, kuipalju ergastatakse elektrone termiliste fluktuatsioonide poolt valentstsoonist juhtivustsooni (toatemperatuuril on võnkekvandi karakteerne energia $kT \approx 25 \text{ meV}$, seevastu pooljuhi keelutsooni laius on suurusjärgus 1 eV). Elementaarsed pooljuhid on neljavalentsed elemendid (Si, Ge, ...), kus iga aatom loovutab oma neli valentselektroni nelja sideme moodustamiseks naaberaatomitega (joon. 9.8). Kui sellises kristallis üks põhiaine aatom asendada 5-valentse elemendiga (nt fosfor), siis selle lisandiaatomi viies elektron muutub "üleliigseks" ja jääb oma aatomiga suhteliselt nõrgalt seotuks. Soojusvõnkumiste toimel muutub see elektron kergesti vabaks ehk juhtivuselektroniks (protsess 2 joonisel 9.8). 5-valentne lisand on seega elektronide doonor. Sellisel viisil legeeritud pooljuhti nimetatakse n-tüüpi pooljuhiks, selle juhtivusomadused on määratud elektronidega, mis on enamuslaengukandjateks. Kui aga viia pooljuhi kristalli 3-valentne lisand (nt boor), jääb nelja sideme moodustamisel üks elektron puudu. See võidakse haarata naaberaatomilt (protsess 3), mis omakorda võib haarata vakantsele kohale elektroni enda naabrilt ine. Seega elektroni vakants hakkab mööda kristalli liikuma, käitudes nagu positiivse laenguga osake. Nagu jaotises 8.4 selgus, nimetatakse sellist kvaasiosakest auguks. Lisandit, mis seob endaga täiendava elektroni, nimetatakse aktseptoriks. Aktseptoritega legeeritud pooljuhti nimetatakse p-tüüpi pooljuhiks, enamuslaengukandjateks on seal augud.

Enamus pooljuhtseadiseid (dioodid, transistorid jms) põhinevad nn. p-n siirdel, mis

Joonis 9.7. Kiirguse tekkimine deuteeriumlambis.

moodustub p- ja n-tüüpi pooljuhi kontaktpiirkonnas (joon. 9.9). Alguses toimub enamuslaengukandjate massiline difusioon läbi p-n siirde ja teisel pool p-n siiret rekombineerumine vastasmärgiliste laengukandjatega. Laengu selline ümberpaiknemine tingib ruumlaenguga kihi moodustumise, mis tekitab omakorda potentsiaalibarjääri, mis lõpuks tasakaalustab enamuslaengukandjate ümberpaiknemise.³⁰ Välise pinge rakendamisega saab selle potentsiaalibarjääri kõrgust kontrollida. p-n siirde päripingestamisel barjäär alaneb ning tekib püsiv vool läbi siirde. Üksteisele vastu suunduvad elektronid ja augud rekombineeruvad. Otsese siirdega pooljuhtides tekib rekombinatsiooni tulemusena suure tõenäosusega valguskvant. Valgusdioodi kiirgus kujutab seega endast elektroluminestsentsi. Valguskvandi energia on ligikaudu

³⁰Olgu märgitud, et dioodi (metallist) väljundklemmidel see sisemine siirdepinge ei avaldu, kuna on kompenseeritud metalli-pooljuhi kontaktidel moodustuvate siirdepingete poolt.

Joonis 9.8. Pooljuhi legeerimise tõlgendus keemiliste sidemete kaudu ja tsooniskeemis. Fosfor on ränis elektroni doonoriks, boor aga aktseptoriks.

võrdne keelutsooni laiusega $E_{\rm g}$, sest elektronid on relakseerunud juhtivustsooni põhja juurde, augud aga valentstsooni lae juurde. Kuna aga laengukandjad võivad termiliselt asustada ka kõrgemaid energiatasemeid, siis dioodi spektri laius on vähemalt mõne kT suurusjärgus. Kaudse siirdega pooljuhtides on kiirgusliku rekombinatsiooni tõenäosus väike, kuid sageli on võimalik sellise pooljuhi kiirguslikku kvantsaagist suurendada legeerides teda sobiliku lisandiga.

Näiteid valgusdioodide spektritest on toodud joonisel 9.10. Nagu näha, on kiirguse spektraallaius tüüpiliselt 20... 30 nm, mis võib olla piisav valgusdioodi kasutamiseks lihtsamates spektroskoopilistes mõõtmistes ligilähedaselt monokromaatse kiirguse allikana. Samas võib siiski tarvilik olla valgusdioodi (ja ka laserdioodi) kiirguse "puhastamine" sobiva ribapääsfiltri abil.

Erinevate pooljuhtühendite (nt GaAs ja GaP) segamisel on võimalik tekitada tahkeid lahuseid, mille keelutsooni laius on koostisega timmitav. See lubab valgusdioodidega pidevalt katta kogu nähtava ja infrapunase piirkonna (joon. 9.11).

9.5 Sünkrotron

Sünkrotroniks nimetatakse teatavat tüüpi osakestekiirendit, kus laetud osakesi (elektronid, prootonid või ioonid) hoitakse sobivalt valitud magnetväljaga püsival trajektooril. Sünkroonselt osakeste energia kasvuga suurendatakse ka magnetvälja

Joonis 9.9. (a) Elektronide ja aukude jaotus p- ja n-tüüpi pooljuhis enne kontakti viimist. (b) p-n siire pingestamata ja (c) päripingestatud olekus.

tugevust ja kiirendava elektrivälja sagedust (sellest ka seadme nimetus). Kuivõrd ringorbiidil liikuvad laetud osakesed liiguvad paratamatult kiirendusega (tsentripetaalkiirendusega), siis nad emiteerivad teatava hulga elektromagnetkiirgust. Algselt ehitati sünkrotrone osakestefüüsika eesmärke silmas pidades, kus kõnealune kiirgus on lihtsalt tarbetu energiakadu. Hiljem leidis sünkrotronkiirgus rakendusi mitmetes valdkondades (nagu tahkisefüüsika). On ehitatud hulk kiirendeid, mille puhul

sünkrotronkiirguse saamine ongi omaette eesmärk. Selleks kiirendatakse peamiselt kergeid elektrone/positrone, kuna nende kiirendamine suurte kiirusteni on kõige lihtsam.

Mitterelativistlike kiiruste puhul kiirgab elektron kaunis hajutatult kõigis suundades. Vaatleja tajub siinuseliselt ostsilleerivat elektrivälja, järelikult kiirguse spektris on täheldatav üksainus sagedus. Seevastu ultrarelativistlike kiiruste ($v \sim c$) korral on osakese kiirgus suunatud üpris teravalt piki trajektoori puutujat (risti kiirendusega)

koonusesse tipunurgaga $\alpha \sim 1/\gamma$, kus $\gamma = (1 - v^2/c^2)^{-1/2}$. Sellise kiirguse spekter on küllaltki avar ulatudes infrapunasest kuni kauge röntgenkiirguseni (kuni mõnekümnetuhande eV-ni). Valdavalt kasutatakse sünkrotroni siiski just ultraviolett- ja röntgendiapasoonides kuna seal puuduvad konkureerivad (võrreldava heledusega) valgusallikad.

Sünkrotronkiirguse spektri kirjeldamisel on mugav defineerida karakteerne footoni energia

$$\epsilon_{\rm c} = \frac{3\hbar\gamma^3 c}{2R},$$

kus *R* on elektroni trajektoori raadius. Pool kiirgusvõimsusest emiteeritakse ϵ_c -st väiksema energiaga footonite näol, ülejäänu aga suurema energiaga footonitena. Spektri kuju on toodud joonisel 9.12. Spektri maksimum asub ligikaudu 0,29 ϵ_c juures.

Joonis 9.12. Sünkrotronkiirguse suunadiagramm ja spekter.

Tüüpilise sünkrotronkiirgusallika skeem on kujutatud joonisel 9.13. Elektronkahurist pärinev elektronide kimp suunatakse lineaarkiirendisse, kus elektron saavutab energia suurusjärgus 10² MeV. Lineaarkiirendile järgneb kiirendusring, kus elektronid kiirendatakse lõppenergiani (suurusjärgus 1 GeV) ja suunatakse seejärel kogujaringi, kus toimub elektronide paketi pikemaajalisem tsirkuleerimine (mitmeid tunde). Kogujaring (mille diameeter võib suurtel sünkrotronkiirgusallikatel ulatuda üle

100 m) koosneb tükati sirgetest lõikudest, mis on ühendatud kallutusmagnetitega. Elektroni trajektoori kõverdumine kallutusmagnetites kutsubki esile kiirguse. Kiirguse tekitajaiks võivad olla ka sirgetele lõikudele paigutatud rivimagnetseadmed, kus kiirgust tingib elektronide liikumine ostsilleerival trajektooril. Seda laadi seadmete abil saab kogujaringi lühikestel lõikudel esile kutsuda võrdlemisi intensiivse, suunatud kiirguse, mida saab juba kasutada eksperimendis. Kiirgusena kaotatud energia kompenseeritakse raadiosagedusliku elektriväljaga. Kogujaringiga on ühendatud rida kiirekanaleid, mis funktsioneerivad sõltumatute laboritena, milles on vajalik aparatuur siseneva sünkrotronkiirguse monokromatiseerimiseks ja saadud kiirgusega spetsiifiliste eksperimentide teostamiseks.

Kuna osakesed liiguvad sünkrotronis pakettidena, siis kiirgus saabub kiirekanalisse impulssidena. Nende kestus on tüüpiliselt 100 ps suurusjärgus, kordusintervall võib aga jääda vahemikku 1 ns...1 µs sõltuvana pakettide arvust ja kogujaringi pikkusest. Vastavates ajamastaapides saab teostada aeglahutusega spektraaluuringuid.

Joonis 9.13. Sünkrotronkiirgusrajatise üldine skeem: (1) elektronkahur, (2) lineaarkiirendi, (3) kiirendusring, (4) kogujaring, (5) kallutusmagnet, (6) rivimagnetseade, (7) kiirekanal.

10 LASERID

10.1 Stimuleeritud kiirgus, pöördhõive ja valguse võimendamine

Laseri toimimise seisukohalt võtmetähtsusega on stimuleeritud kiirgus (jaotis 6.3.1), mis võimaldab valgust võimendada. Selle protsessi matemaatiliseks kirjeldamiseks lähtume neeldumisristlõike mõistest (jaotis 3.3). Kuna stimuleeritud kiirgamine ja neeldumine on võrdtõenäosed, siis stimuleeritud kiirgamise ristlõige on võrdne neeldumisristlõikega. Seega neeldumiskoefitsiendi avaldist (Beeri seadust 3.2) tuleb veidi üldistada:

$$\alpha = \sigma(N_1 - N_2), \tag{10.1}$$

kus N_1 on põhiseisundis viibivate aatomite arv ning N_2 on ergastatud seisundisse viidud aatomite arv. Tavaolukorras (sh termilise tasakaalu tingimustes) enamus aatomeid viibivad põhiolekus ($N_2 \ll N_1$), järelikult stimuleeritud kiirguse osakaal on tühine ja ülekaalus on valguse sumbumine neeldumise tõttu. Kui õnnestub mingi mehhanismiga saavutada pöördhõive ehk $N_2 > N_1$, siis stimuleeritud kiirgus ületab neeldumist ja $\alpha < 0$. Sel juhul suurust $\gamma = -\alpha$ on sobilik nimetada võimendusteguriks:

 $I(x) = I_0 e^{\gamma t}.$

Valem 10.1 ei võta tegelikult arvesse asjaolu, et alumise ja ülemise nivoo kõduvused e statistilised kaalud (g_1, g_2) võivad erineda. Üldisemalt tuleks kirjutada

$$\alpha = \sigma \left(N_1 - \frac{g_2}{g_1} N_2 \right).$$

10.2 Laseri tööpõhimõte

Laser on seade, kus toimub valguse võimendumine stimuleeritud kiirguse kaudu.³¹ Laserprotsessi algatavad need spontaanse kiirguse footonid, mis juhtuvad kiirguma

³¹LASER=Light Amplification by the Stimulated Emission of Radiation.

Joonis 10.1. Töötsükkel neljanivoolises laserisüsteemis.

"õiges suunas" ja "õige sagedusega". Laserit võib vaadelda kui valgusvõimendit, mis läheb genereerima tänu positiivsele tagasisidele (vt lisa J).

Laser koosneb kolmest komponendist: aktiivainest, ergastist ja resonaatorist.

Aktiivaine on keskkond, kus toimub valguse võimendumine pöördhõive tekitamise tulemusena. Ideaaljuhul võiks aktiivaine realiseerida joonisel 10.1 kujutatud neljanivoolise süsteemi. Siin energiatase 0 vastab põhiolekule, nivoode 1 ja 2 vahel hakkab toimuma laseri generatsioon, ning aktiivaine ergastamine toimub nivoole 3. Selleks, et nimetatud skeem töötaks efektiivselt (st saavutatakse kergesti pöördhõive tasemete 1 ja 2 vahel), peavad olema rahuldatud järgmised nõuded:

- I Ainet on võimalik efektiivselt ergastada seisundisse 3 (valgusega kiiritamisega, gaaslahendusega vms). Seisund 3 võiks näiteks tähistada mitmete lähestikku asetsevate nivoode kompleksi, mis neelab ergastavat kiirgust efektiivselt.
- II Seisundilt 3 toimub kiire relaksatsioon tasemele 2.
- III Seisund 2 on metastabiilne, st elektronid jäävad suhteliselt pikemaks ajaks püsima sellesse seisundisse, mistõttu on suurem tõenäosus, et nad ei relakseeru tasemele 1 spontaanselt vaid stimuleeritud kiirgusakti tulemusena.
- IV Seisund 1 relakseerub kiiresti põhiolekusse 0, nii et elimineeritakse neeldumisakti 1→2 võimalus.

Ergasti e. pump on seade, mis mõnesuguse protsessi abil (elektrivool, kiirgus, gaaslahendus, keemiline reaktsioon) tekitab ja hoiab aktiivaines ülal pöördhõivet.

Resonaator on mõnesuguse kuju ja suurusega peegeldav õõnsus, mille ülesandeks on suurendada võimendustee efektiivset pikkust ning tekitada vähestel diskreetsetel resonantsisagedustel positiivne tagasiside. Lihtsaima resonaatori moodustavad kaks tasaparalleelset peeglit. Nagu näidatakse lisas J, on sellisel juhul resonantsitingimuseks, et peeglite vahele mahuks täisarv poollaine pikkusi

$$m\frac{\lambda}{2} = nL,$$

kus *L* on peeglitevaheline kaugus ja *n* on keskkonna murdumisnäitaja. Üldiselt võib laserisiirde võimendusribasse mahtuda mitu resonantsi. Sel juhul, ilma täiendavaid meetmeid tarvitusele võtmata, läheb laser genereerima korraga mitmel lähestikusel sagedusel. Mitmed laserikiirguse unikaalsed omadused avalduvad aga alles siis kui laser töötab üksikus moodis.

10.3 Laserkiirguse omadused

Üksikus moodis ostsilleeriva laseri kiire ruumilise struktuuri leidmiseks tuleb lahendada lainevõrrand, rakendades resonaatori kujuga fikseeritud ääretingimusi. Kõige lihtsam ja kasulikum on nn Gaussi kiir, mis vastab laseri ostsillatsioonile üksikus pikimoodis kahest sfäärilisest (piirjuhul tasapinnalisest) peeglist koosnevas resonaatoris (joon. 10.2). Gaussi kiire mistahes ristlõikes kiiritustihedus läheneb teljest eemaldumisel sujuvalt nullile vastavalt Gaussi funktsioonile $I(r) = (2P/\pi w^2)e^{-2r^2/w^2}$, kus P on laserkiire koguvõimsus ja w on kiire karakteerne raadius. Eemaldumisel kiire teljest kaugusele w ilmselt kiiritustihedus kahaneb e^2 korda, seetõttu suurust wnimetatakse kiire $1/e^2$ raadiuseks. Teatavas ruumipunktis (kiire vöökohas) omab wvähimat väärtust w_0 . Gaussi kiire geomeetria on täielikult määratud parameetritega λ ja w_0 .

Asümptootiliselt w kasvab lineaarselt kaugusega vöökohast, nii et laserkiirt võib iseloomustada lahknevusnurgaga θ . Laserikiirt võib pidada hästi suunatuks e. kol-limeerituks, sest kiire lahknevusnurk on reeglina väga väike. Valguse laineolemus ei võimalda siiski realiseerida rangelt kollimeeritud kiirt, difraktsioonist tingituna on kiire lahknevusnurk seda suurem, mida peenem on kiir: $\theta = 2\lambda/(\pi w_0)$. Gaas- ja tahkislaserite puhul tüüpiliselt $w_0 \sim 1 \text{ mm}$ ja $\theta \sim 10^{-4} \dots 10^{-3} \text{ rad}$.

Asjaolu, et laine faas Gaussi kiire ristlõike ulatuses on täpselt fikseeritud, on näide heast ruumilisest koherentsusest. Viimane tingib muuhulgas ka hea fokuseeritavuse, mis on piiratud ainult difraktsiooniga. Laserikiire lahknevusnurgaga θ saab läätse

Joonis 10.2. Gaussi kiir.

(fookuskaugus f) abil fokuseerida täpiks diameetriga θf .³²

Järgmine laserkiirgust iseloomustav aspekt on kõrge monokromaatsus. Fundamentaalse piiri laserkiirguse spektraallaiusele seab spontaanne kiirgus, mis konkureerib stimuleeritud kiirgusega. Praktilise piiri seavad aga resonaatori ning laserkeskkonna akustilised jm fluktuatsioonid. Gaaslaseri kiirguse spektraallaius on tüüpiliselt 10⁻³ nm suurusjärgus.

Monokromaatsus on omakorda seotud ajalise koherentsusega. Nagu spektrijoonte laienemist käsitledes selgus, on tasalaine koherentsiaeg τ_c (st karakteerne ajavahemik, mille vältel valgusvälja võnkumist võib lugeda siinuseliseks) ja spektraallaius $\Delta \omega$ pöördvõrdelises seoses: $\tau_c \sim 1/\Delta \omega$. Vastavalt koherentsipikkus (so ruumiline ulatus piki kiirt, mille jooksul laine kuju võib lugeda siinuseliseks) $L_c = c\tau_c$.

Juhime tähelepanu, et koherentsipikkus on seotud ajalise, mitte ruumilise koherentsusega. Ajaline ja ruumiline koherentsus on kiirguse sõltumatud omadused. Kui näiteks valge valguse teele asetada hästi väike apertuur, siis apertuurist väljub (tugeva difraktsiooni tõttu) praktiliselt keralaine — on tekkinud kõrge ruumiline koherentsus, kuigi ajaline koherentsus puudub peaaegu täielikult.

Laserikiir on enamasti lineaarselt polariseeritud. Polarisatsioonitasand on sageli resonaatoriga määratud (nt kui resonaator sisaldab Brewsteri nurga all olevat akent).

Impulsslaserite puhul on saavutatavad kõrged hetkvõimsused lühikeste impulsside näol. Võttes tüüpilise laseri jaoks energia impulsis 1 mJ, impulsi kestuse 10 ns, saame hetkvõimsuse 100 kW. Sellise võimsusega kiirt fokuseerides võib kergesti näiteks aine pinnalt välja lüüa aatomeid, mida ei oleks võimalik teostada samasugust keskmist võimsust omava pideva laseriga (100 Hz kordussageduse juures oleks keskmine võimsus kõigest 0,1 W).

ÜLESANNE 31. Laseri lainepikkus on 532 nm, kiirguse võimsus 500 mW ja kiire $1/e^2$ raadius 1 mm. Kui suur on kiiritustiheduse maksimaalne väärtus 100 m kaugusel?

ÜLESANNE 32. Kui suur on hetkeline kiiritustihedus, mis saavutatakse impulsslaseri kiirguse (lainepikkus 355 nm, kiire diameeter 0.8 nm, impulsi energia 50 mJ, impulsi kestus 5 ns) fokuseerimisel läätsega, mille fookuskaugus on 100 nm? Kas sellest piisaks läbilöögi tekitamiseks õhus, arvestades et optilistel sagedustel on selleks tarvilik elektrivälja tugevus suurusjärgus 10^7 V/cm ?

10.4 Laserite tüübid

Lasereid võib liigitada mitmeti.

Töörežiimi järgi. Alalislaserites on generatsioon pidev. Seevastu impulsslaserites genereeritakse kiirgust lühikeste impulsside kaupa. Tüüpiliselt on impulsi pikkus 10 ns suurusjärgus, aga eksisteerib ka lasereid, mis annavad femtosekundilisi välkeid.

Ergasti järgi. Aktiivaine ergastamine võib toimuda optiliselt (välklamp, valgusdiood, teine laser), gaaslahenduse kaudu, elektrivooluga pooljuhis, keemilise reaktsiooniga.

Aktiivkeskkonna järgi. Gaaslaseris on aktiivaineks mõnesugune atomaarne, ioniseeritud või molekulaarne gaas või metalliaurud (näiteks He-Ne, Ar⁺, CO₂, Cu) ja pumpamine toimub gaaslahenduse näol (optiline pumpamine pole gaasikeskkonna puhul efektiivne). Aktiivkeskkond võib sisaldada mitme gaasi segu, mille koostise valikuga saab laseri tööd optimeerida. Näiteks He-Ne laseris ergastatakse gaaslahendusega He aatomeid, viimased annavad aga põrke käigus oma energia Ne

 $^{^{32}}$ Siit ei maksa järeldada, et laserkiirt saab fokuseerida kuitahes väikeseks täpiks, kui $f \rightarrow 0$. Toodud valem kehtib paraksiaalses lähenduses ideaalse optika korral. Kuitahes tugeva läätsega ei saa kiirgust koondada oluliselt väiksemasse ruumipiirkonda kui on kiirguse lainepikkus. Näiteks mikroskoobi objektiiviga õnnestub kiir koondada täpiks diameetriga $\sim \lambda/NA$, kus NA on objektiivi apertuurarv.

Joonis 10.3. Eksimeerlaseri töötsükkel.

aatomitele, kus toimub laserisiire. Kui laserisiire toimub erinevate elektronseisundite vahel, siis kiirguse lainepikkus on enamasti nähtavas diapasoonis. Eksisteerib ka lasereid, kus laserisiire toimub molekuli sama elektronseisundi erinevate võnketasemete vahel. Sel juhul on kiirguse lainepikkus infrapunases piirkonnas. Tüüpiline näide on CO₂ laser, mis paistab silma suure efektiivsusega (~ 30%). Paljud gaaslaserid (nagu Ar⁺ ja He-Ne) on võimelised genereerima mitmel lainepikkusel (konkreetse lainepikkuse selekteerimiseks pannakse resonaatorisse prisma vms). Gaaslaserid töötavad põhiliselt alalisrežiimis. Nähtavas diapasoonis on kõige intensiivsema kiirgusega gaaslaser reeglina Ar⁺ laser (mõned W), millele järgneb He-Cd laser (100 mW) ja He-Ne laser (mõned mW).

Eksimeerlaserid on sarnased gaaslaseritele, ent pöördhõive saavutatakse tänu eksimeermolekulidele (nt ArF*), mis püsivad koos ainult ergastatud seisundis, pärast laserisiiret põhiseisundisse nad lagunevad kiiresti (joon. 10.3). Seega formaalselt toimib siin neljaniovooline skeem. Eksimeerlaserid töötavad ainult impulssrežiimis (eksimeermolekulid moodustuvadki gaaslahenduse kestel) ja kiirgavad põhiliselt UV piirkonnas.

Pooljuhtlaser e. laserdiood on valgusdioodi lähedane sugulane. Tugeva legeerimise ja tugeva pärivoolu juures võib p-n siirde piirkonnas saavutada pöördhõive, st. juhtivustsooni põhja lähedal on kõik seisundid elektronide poolt hõivatud ja samal ajal valentstsooni lae lähedal on kõik seisundid vakantsed. Lainepikkus on määratud, nagu valgusdioodi korralgi, keelutsooni laiusega. Resonaatoriks on lihtsamal juhul pooljuhtkristalli poleeritud otspinnad. Pooljuhtlaserite kiirguse lainepikkus on väikeses ulatuses (mõned nm) timmitav. Selleks tuleb varieerida mingit parameetrit, millest sõltub keelutsooni laius (nt. siirde temperatuuri).

Tahkislaseris on aktiivkeskkonnaks mõnesugune läbipaistev dielektriline materjal (kristall või klaas), kus suhteliselt väike osa põhiaine aatomeid on asendatud teatava optiliselt aktiivse lisandiga. Viimasteks on peamiselt mitmesugused haruldaste muldmetallide ioonid (nt Nd³⁺), siirdemetallide ioonid (nt Cr³⁺) või nn värvitsentrid (teatavad kristallvõre defektid). Haruldaste muldmetallide ioonides toimuvad lasersiirded sisemises elektronkihis, mis on kristallivälja eest varjestatud. Seetõttu on siirded sellistes ioonides spektraalselt teravad ja leiavad aset kindlatel lainepikkustel sõltumata põhiaine valikust. Siirdemetallide ioonides toimuvad siirded aga välises elektronkihis, mis on vahetus kontaktis ümbritseva kristalliga. Siirded sellistes ioonides on võnkeüleminekute tõttu tugevalt laienenud. See asjaolu võimaldab realiseerida timmitava lainepikkusega tahkislasereid.

Tahkislaserit pumbatakse optiliselt (välklambi, valgusdioodi või pooljuhtlaseriga, vt. joon. 10.4). Laserkristalli põhiaine rolliks ongi kindlustada lisandi efektiivne ergastumine pumpava kiirgusega. Selle tingivad kas lisandiaatomi spektraalselt laienenud üleminekud või ergastumine läbi põhiaine neeldumise. Tahkislasereid ei maksa segi ajada laserdioodidega, mida pumbatakse alati elektriliselt.

Mitmete tahkislaserite puhul on osutunud tulusaks sageduse kordistamine mittelineaarse kristalli abil. Sellisel viisil saadakse nt Nd:YAG laseri kõrgemad harmoonikud 532 nm, 355 nm ja 266 nm.

Tahkislaserite tüüpiliste esindajatena võib ära märkida Nd:YAG (samuti ka Nd:YVO₄ jt) ja Ti:safiir lasereid. Neodüümi-põhised süsteemid on saanud väga populaarseks; neid suudetakse konstrueerida väga suure võimsusega kui ka väga suure efektiivsusega. Saadava 1064 nm või 946 nm laserkiirguse sagedust osatakse mittelineaarsete kristallidega ka üsna efektiivselt kahe-, kolme- ja isegi neljakordistada. Igapäevakasutusse on jõudnud juba patareitoitel rohelised (532 nm) ja sinised (473 nm) laserviibad.

Ti:safiir laser on spektroskoopia seisukohalt tähelepanuväärne selle tõttu, et selle kiirguse lainepikkus on timmitav üsna laias spektrivahemikus, mida annab omakorda laiendada sageduse kordistamise teel. See võimaldab realiseerida nn laserspekt-

Joonis 10.4. Välklambiga pumbatava tahkislaseri tüüpiline ehitus.

romeetri, kus ülikõrge lahutusega spekter saadakse ergastava laseri lainepikkuse skaneerimise teel.

Värvilaserites on aktiivkeskkonnaks orgaanilise värvaine molekule sisaldav lahus. Sellise molekuli fluorestsentsomadusi kirjeldab joonis **??**, kus toodud üleminekute skeem realiseerib põhimõtteliselt neljanivoolise lasersüsteemi. Värvaine fluorestsentsspekter on üldiselt väga lai; ligilähedaselt sama ulatusega on ka võimendusprofiil, mille piires on võimalik laseri lainepikkust timmida. Erinevate värvainete kasutamisega saab katta valdava osa optilisest diapasoonist.

Loetelu mõningatest tuntumatest laseritest on toodud tabelis 5.

10.5 Impulsslaserid

Kaks kõige lihtsamat ja levinumat laserimpulsside genereerimise viisi on impulssergastuse kasutamine ja resonaatori hüveteguri moduleerimine (i.k. *Q-switching*). Impulssergastus tähendab konkreetselt seda, et näiteks tahkislaserit pumbatakse välklambiga, laseridoodi pumbatakse vooluimpulssidega, gaaslaserit pumbatakse Tabel 5. Mõningad optilises spektroskoopias kasutatavad laserid.

Laser	Lainepikkused (nm)			
Gaaslaserid				
He-Ne	3391, 1152, 633, 612, 594, 543,5			
Ar ⁺	514, 488, 476, 458			
Kr ⁺	647			
He-Cd	442, 325			
Cu	511, 578			
N_2	337			
Eksimeerlaserid				
XeF*	350			
XeCI*	308			
KrF*	248			
ArF*	193			
Tahkislaserid				
Nd^{3+} :YAG, Nd^{3+} :YVO ₄	1064, 532, 473, 355, 266			
Ti ³⁺ :safiir	6601180 (timmitav)			
Rubiinlaser	694			
Värvilaserid				
Rodamiin 6G	560640 (timmitav)			
Kumariin 102	460515 (timmitav)			
Pooljuhtlaserid				
GaN	400			
$AI_xGa_{1-x}As$	630900			

sädelahendusega (läbilöök gaasis) jne. Ainult impulssergastusele tuginedes ei õnnestu aga alati genereerida piisavalt lühikesi ja intensiivseid impulsse.

Hüveteguri moduleerimise all peetakse silmas resonaatori kadude moduleerimist. Alguses hoitakse kaod resonaatoris kõrged, mistõttu laserprotsess ei toimu. Samal ajal toimub aga aktiivkeskkonna pumpamine, mistõttu viimases saavutatakse märksa suurem pöördhõive kui normaalse režiimi korral (valgusväli on suhteliselt nõrk ja indutseeritud üleminekuid vähe). Ühel hetkel viiakse resonaator järsult normaalsesse, väikeste kadudega režiimi. Sel hetkel vabaneb eelnevalt pöördhõivesse salvestunud energia lühikese võimsa impulsina.

Hüveteguri moduleerimiseks on mitmeid võimalusi. Sageli viiakse selleks resonaatorisse optiline element, mis neelab efektiivselt nõrga valguse kuid mis piisavalt tugeva valguse jaoks muutub läbipaistvaks (neeldumine küllastub). Sagedamini kasutatakse aga elektrooptilisi elemente, mille kaksikmurdvaid (valguse polarisatsioonitasandit pööravaid) omadusi on võimalik välise elektriväljaga kontrollida. Kombineerituna polarisaatori ja analüsaatoriga loob see võimaluse läbilaskvuse elektriliseks tüürimiseks.

11 SPEKTRAALRIISTAD

11.1 Spektraalseadmete otstarve, tööpõhimõte ja liigitus

Spektraalriist on seade, mis võimaldab analüüsida kiirguse spektraalkoostist. Kitsamas tähenduses võib spektraalriista ülesandeks olla ka (intensiivse valge valgusallika) kiirgusest piisavalt konkreetse lainepikkusega komponendi väljaeraldamine, ehk kiirguse monokromatiseerimine.

Niisiis spektraalriista realiseerimiseks on tarvis kokku panna selline optiline skeem, mis oleks mingis mõttes spektraalselt selektiivne. Klassikaline idee on erinevate lainepikkustega komponentide *ruumiline eraldamine* üksteisest ehk dispergeerimine. Vastavat optilist komponenti nimetame dispergeerivaks elemendiks. Seejärel saaks monokromaatsed komponendid üksteisest mehaaniliselt isoleerida (näiteks kitsa pilu abil) ja nende intensiivsused registreerida. On olemas mitmeid füüsikalisi printsiipe ruumilise dispersiooni tekitamiseks, millest kaks põhilist on järgmised (joon. 11.1):

 Valguse faasikiirus läbipaistvas optilises materjalis sõltub valguse sagedusest (vähemalt mingis spektraalvahemikus). Nähtavas piirkonnas harilikult läbipaistvate materjalide murdumisnäitaja kasvab kui liikuda suuremate sageduste ehk väiksemate lainepikkuste poole. Seega sinine valgus murdub tugevamini kui punane. Järelikult dispergeeriva elemendina toimib prisma (või prismade kombinatsioon), mida läbides valgus langeb vähemalt ühele optilisele pinnale nurga all, nii et tekib murdumine.

2. Kui valguse tee osaliselt tõkestada või mingil muul moel deformeerida lainefronti, siis valgus kaldub kõrvale sirgjooneliselt teelt, st tekib valguse difraktsioon. Kõige drastilisem efekt saavutatakse siis, kui valguse teele asetada perioodiline struktuur, mille ruumiline periood on valguse lainepikkuse suurusjärgus. Sel juhul valgus koondub ainult üksikutesse kindlatesse suundadesse, ja need suunad omakorda hakkavad sõltuma lainepikkusest, viies ruumilise dispersiooni tekkimisele. Sellise efekti realiseerib difraktsioonvõre.

Optilises diapasoonis toimivad üldotstarbelised spektraalriistad (st sellised spektraalseadmed, mille lahutusvõime on keskpärane, kuid mis katavad see-eest avara spektraaldiapasooni) kasutavadki dispergeeriva elemendina valdavalt kas prismat või difraktsioonvõre. Suure spektraallahutusega mõõtmistes (spektri peenstruktuuri uurimine, laserkiirguse spektri lahutamine, jms) leiavad rakendust interferomeetrilised seadmed (Fabry-Pérot etalon, Lummer-Gehrcke plaat).

On võimalik realiseerida ka teisel põhimõttel töötavaid spektraalriistu, kus mõõdetakse korraga kiirguse intensiivsust kogu spektri ulatuses, kuid kiirguses sisalduvaid spektraalkomponente moduleeritakse lainepikkusest sõltuva sagedusega. Saadud mõõtmistulemusest spektraalkoostise taastamine toimub seejärel matemaatiliselt. Tuntuimaks sellisel põhimõttel töötavaks seadmeks on Fourier' spektromeeter, mis on levinud töövahend infrapunases diapasoonis.

Ühegi tavalise valgusallikaga (mis kiirgab valgust igasse suunda või pole isegi mitte punktvalgusallikas) joonisel 11.1 kujutatud valguse spektraalse dispergeerumise efekti ei teki. Spektraalseadme realiseerimiseks läheb lisaks tarvis vähemalt ühte kitsast pilu või apertuuri. Kui viimane asetada valguse teele ja viia valgusallikas pilust piisavalt kaugele, siis pilust väljub peaaegu kollimeeritud kitsas valguskiir. Varasemalt ongi optilistes skeemides kujutatud sellist lihtsustatud olukorda (joonised 2.15 ja 3.7). Selline lahendus on mõistagi ääretult ebaefektiivne, sest enamus valgusenergiast läheb kaotsi (ei sisene spektraalriista). See oleks sisuliselt sama mis *camera obscura* kasutamine fotografeerimisel.

Probleemi lahendamiseks tuleb süsteemi koosseisu lisada valgustkoondavaid optilisi elemente (kumerläätsed või nõguspeeglid). Kõige lihtsamini mõistetavad optilised

Joonis 11.1. Prisma ja difraktsioonvõre kui dispergeerivad elemendid.

skeemid on toodud joonisel 11.2. Võimalikult suur osa valgusallika kiirgusest püütakse teravalt fokuseerida spektraalseadme sisendpilule, nii et viimasest väljub mitte enam üksik kitsas valguskiir, vaid intensiivne hajuv valgusvihk. Seega pilu ise muutub punkt- või joonvalgusallikaks. Pilu asetseb kollimeeriva optilise elemendi (sisendobjektiivi) eesmises fookuses, nii et pärast sisendobjektiivi tekib paralleelne kiirtekimp. Viimane suunatakse edasi dispergeerivale elemendile, mis murrab/peegeldab erineva lainepikkusega komponente erinevalt, kuid säilitab nende kollimeerituse. Edasi langeb kiirgus fokuseerivale elemendile (väljundobjektiivile), mis koondab kiirguse enda fokaaltasandisse nii, et erineva lainepikkusega komponendid (mis peale

Joonis 11.2. Dispergeerivat elementi kasutavate spektraalseadmete kõige lihtsamad optilised skeemid.

prismat/võre levisid erinevas suunas) fokuseeritakse erinevatesse ruumipunktidesse. Saadava spektraalkujutise heledus (ja tavaliselt ka teravus) on nüüd märksa suurem kui see oleks ainuüksi pilu ja dispergeeriva elemendi kombineerimisel.

Saadud spektraalkujutist võib vaadelda palja silmaga läbi okulaari. Sel juhul nimetatakse seadet spektroskoobiks. Spektroskoopi saab mõistagi kasutada ainult nähtavas diapasoonis. Spektraalkujutise kõrvale saab formeerida lainepikkuste skaala spektrijoonte lainepikkuste määramiseks.

Spektromeeter on üldnimetus spektraalriistade kohta, kus kiirguse intensiivsust mõõ-

detakse mõnesuguse detektoriga (mitte silmaga). Kõige ilmsem lahendus spektromeetri realiseerimiseks on spektraalkujutist fotografeerida. Tänapäevases mõistes tähendab see fotokaamera digitaalse maatrikssensori paigutamist väljundobjektiivi fokaaltasandisse (vanasti kasutati selleks fotoplaati). Sellist seadeldist nimetatakse spektrograafiks. Teine, mõnevõrra üldisem lahendus on asetada väljundobjektiivi fokaaltasandisse väljundpilu, mis laseb läbi vaid kitsast piirkonda spektraalkujutisest (ühe lainepikkuse ümbruses). Saadud kiirguskomponendi intensiivsust saab mõõta juba mõne lihtsama detektoriga (fotodiood või fotoelektronkordisti), mis tuleb asetada väljundpilu taha. Spektraaljaotuse saamiseks tuleb seadet skaneerida, st samm-haaval pöörata dispergeerivat elementi, nii et kõik vajalikud lainepikkused jooksevad väljundpilu eest läbi.

Mainitud kahe piluga spektraalseade moodustab ühtlasi monokromaatori, st lubab uuritavast kiirgusest välja võtta kitsa spektraalvahamiku. Tavaliselt kollimeeriv ja fokuseeriv element on identsete fookuskaugustega, järelikult sisendpilu valgustatud osast tekib üks-ühele suurendusega spektraalkujutis ning spektraalse läbilaskeriba laius hakkab sarnasel viisil sõltuma nii sisend- kui ka väljundpilu laiusest. Pilu laiuseid saab reguleerida vastavalt vajadusele (spektraallahutus, valguse hulk). Dispergeeriva elemendi pööramise teel saab valida tsentraalset lainepikkust. Asetades väljundpilu taha detektori, saamegi spektromeetri, kuid monokromaatorit saab rakendada ka muude spektroskoopiliste mõõtmiste juures.

Kombineerides valgusallikaid, monokromaatoreid ja detektoreid, on võimalik realiseerida rida konkreetsema otstarbega spektraalmõõteseadmeid. Spektrofotomeeter võimaldab mõõta läbilaskvus-, neeldumis- ja peegeldusspektreid.³³ Spektrofotomeetri tööprintsiibiga sai tutvutud juba jaotises 3.7 (joon. 3.7). Tüüpilise üldotstarbelise spektrofotomeetri põhikomponentideks on ulatusliku pideva spektriga valgusallikas, monokromaator ja detektor. Kogu spektraaldiapasooni katmiseks alates sügavast ultravioletist (190 nm) kuni infrapunaseni (3000 nm) on spektrofotomeetrite korral kõige ökonoomsemaks lahenduseks osutunud halogeenlambi ja deuteeriumlambi kombinatsioon (joon. 9.5). Lambi kiirgus koondatakse peegliga monokromaatorisse, viimasest väljuv monokromaatne kiirgus suunatakse edasi proovile. Proovi läbinud (või selle pinnalt peegeldunud) kiirgus suunatakse lõpuks detektorisse. Detektorina kasutatakse fotoelektronkordistit (nähtav ning UV diapasoon) ning fotojuhtivusrakku (infrapunapiirkond). Spektri saamiseks tuleb teostada identsetes tingimustes kaks mõõtmist (skaneerimist): ühel juhul prooviga, teisel juhul sobiva võrdlusobjektiga. Sel viisil saadud kahe signaali suhe annab proovi läbilaskvus- või peegelduskoefitsiendi väärtuse sõltuvana lainepikkusest.

Võrdlusobjekti valik sõltub sellest, kas mõõdetakse läbilaskvust, neeldumist või peegeldust. Proovi kui terviku läbilaskvuse mõõtmisel on võrdlusobjektiks lihtsalt tühi objektikamber, mis on valgusele täielikult läbipaistev, st läbilaskvustegur on 100%. Peegeldusteguri määramisel on olukord põhimõtteliselt sama, ainus nüanss on selles, et rangelt 100%-lise peegeldusteguriga võrdlusobjekti ei eksisteeri. Sel juhul tuleb võrdlusena kasutada spetsiaalset kalibreeritud peeglit, või siis materjali, mille pinna peegeldusteguri saab täpselt välja arvutada valemi $R = (n-1)^2/(n+1)^2$ kaudu. Kolmas levinud olukord on väheses kontsentratsioonis lisandi või analüüdi neeldumise mõõtmine, kus võrdlusena tuleb ilmselt kasutada samalaadset objekti, kus kõnealust lisandit ei ole (nt puhast lahustit sisaldav küvett).

Joonisel 3.7a kujutatud skeem kirjeldab lihtsaimat, ühekiirelist spektrofotomeetrit, andes hästi edasi seadme füüsikalise tööprintsiibi. Korralikumad spektrofotomeetrid on enamasti kahekiirelised, st monokromatiseeritud kiirgus suunatakse mõõtmise ajal vaheldumisi kahte erinevasse trakti ja tuuakse seejärel sama detektori peale uuesti kokku, nii et viimane saab jooksvalt mõõta nimetatud kahte erinevat teed läbinud valguste intensiivsuste suhte. Selline lahendus võimaldab mõnevõrra mugavamalt ja produktiivsemalt teostada võrdlusmõõtmisi ja võtab automaatselt arvesse lambi intensiivsuse ja detektori koste muutused ja fluktuatsioonid, Muuhulgas tähendab see seda, et puudub vajadus iga kord seadme kostet uuesti kalibreerida, nii et kui seadme tööparameetreid pole vahepeal muudetud, piisab korrektse spektri saamiseks vaid ühest skaneerimisest.

Kuigi joonisel 3.7b kujutatud printsiibil (rividetektori kasutamisel) oleks võimalik realiseerida hästi kiire spektrofotomeeter (skaneerimise vajadus puudub), on üldotstarbelise (st muudetava spektraallahutuse ja avara spektraaldiapasooniga) seadme valmistamine sellisel printsiibil märksa kallim, seetõttu sellist skeemi kasutatakse vaid spetsiifilisteks vajadusteks.

³³Sõna fotomeeter tähendab üldiselt instrumenti, mis suudab mõõta valguse tugevust. Antud kontekstis see viitab valguse tugevuse *võrdlevale* mõõtmisele enne ja peale proovi. Eesliide *spektro*annab mõista, et valguse lainepikkust saab meelevaldselt muuta, et registreerida terve spektraalsõltuvus. On olemas hästi lihtsaid seadmeid, mis mõõdavadki neeldumist vaid ühel fikseeritud lainepikkusel.

Spektrofluorimeeter on komplekssne seade luminestsentsi kiirgus- ja ergastusspektrite mõõtmiseks. Selline süsteem hõlmab tavaliselt kahte spektraalseadet — ergastuse monokromaatorit ja kiirguse monokromaatorit. Esimene tegeleb ergastava valgusallika kiirguse monokromatiseerimisega ja teine katseobjektilt lähtuva sekundaarkiirguse (luminestsentsi) dispergeerimisega. Universaalse polükromaatse kiirguse allikana kasutatakse spektrofluorimeetrites enamasti võimast ksenoonlampi, kuna selle kiirguse intensiivsus (eriti sinises ja UV piirkonnas, mis on olulised luminestsentsi ergastamise seisukohalt) on märksa suurem kui halogeen- või isegi deuteeriumlambi korral (lisaks on tegemist üsna heas lähenduses punktvalgusallikaga).

Mikrospektromeeter on mõõtekompleks, kus spektromeeter on ühendatud mikroskoobiga. Selliseid seadmeid kasutatakse harilikult suure tundlikkusega spektraalselt ja ruumiliselt kõrgselektiivsete laserspektroskoopiliste mõõtmiste teostamiseks. Tüüpiline näide on Raman-hajumise spektri mõõtmine. Tänu mikroskoobi ja laseri (st ruumiliselt koherentse kiirgusallika) kasutamisele saab suurusjärgus 1 µm täpsusega valida välja ruumipunkti, kust pärineb spektroskoopiline signaal. Samas mitmed muud tavapärased mõõtmised (näiteks luminestsentsi ergastusspektri mõõtmine, ergastamine UV kiirgusega jms) on sellise süsteemi puhul raskendatud.

11.2 Spektraalriista põhikarakteristikud

Joonisel 11.2 kujutatud spektraalseadmete põhiolemus seisneb erinevate lainepikkustega kiirguskomponentide ruumilises eraldamises ehk dispergeerimises. Sobilik kvantitatiivne karakteristik selle võimekuse iseloomustamiseks on lineaarne dispersioon D_l , mis näitab seda, mitme millimeetri kaugusele üksteisest on väljundobjektiivi fokaaltasandis fokuseeritud kiired, mille lainepikkused erinevad 1 nm võrra. Matemaatiliselt: $D_l = \Delta x / \Delta \lambda$, kus Δx on ruumikoordinaadi muutus, mis vastab lainepikkuse muutusele $\Delta \lambda$. Praktikas on siiski levinud lineaarne pöörd-dispersioon $1/D_l$, mida väljendatakse ühikutes nm/mm. Niisiis monokromaator, mille lineaarne pöörd-dispersioon on $1/D_l$ ja mille pilu laiuseks on seatud *s*, laseb läbi spektraalriba laiusega $\Delta \lambda = (1/D_l)s$. Siin *s* viitab üldjuhul sisend- ja väljundpilu kombineeritud laiusele, sest sisendpilust tekib üks-ühele suurendusega kujutis väljundpilu tasandisse. Mõnikord pilu füüsilist laiust ei mainitagi, vaid antakse kohe vastav $\Delta \lambda$ väärtus, mida nimetatakse selles kontekstis spektraalpiluks. Uurime, kuidas D_l on seotud spektraalriista ehitusega. Ilmselt D_l sõltub dispergeeriva elemendi dispergeerimisvõimest ja väljundobjektiivi fookuskaugusest. Dispergeerivat elementi võib iseloomustada nurkdispersiooniga $D_{\beta} = \Delta \beta / \Delta \lambda$, kus $\Delta \beta$ on murdunud/difrageerunud kiire suunamuutus, mis vastab lainepikkuse muutusele $\Delta \lambda$. Kui väljundobjektiivi fookuskaugus on f, siis suunamuutusele $\Delta \beta$ vastab fookustäpi nihe $\Delta x = f \Delta \beta$. Kokkuvõttes $D_l = f D_{\beta}$. Seega väiksema (mobiilsema) spektraalseadme kasutamine tähendab üldiselt kaotust dispersioonis (seda annab mingil määral kompenseerida parema dispergeeriva elemendi kasutamisega). Seetõttu on sageli levinud spektraalseadme võimekuse iseloomustamine fookuskauguse mainimise kaudu. Suurtel statsionaarsetel seadmetel on f ühe meetri suurusjärgus, väikestel ülimobiilsetel seadmetel alla 5 cm.

Dispersiooniga otseselt seotud teine oluline spektraalseadme karakteristik on lahutusvõime, mis näitab seda, kuivõrd lähedaste lainepikkustega λ , $\lambda + \delta \lambda$ spektrijooned on üksteisest veel eristatavad (sageli antakse see suhtena $R = \lambda/\delta \lambda$). Selliste spektrijoonte kujutised, mille lainepikkused erinevad üksteisest vähem kui $\delta \lambda$, sulanduvad väljundobjektiivi fokaaltasandis praktiliselt ühte ja muutuvad eristamatuks. Nagu eelnevast analüüsist järeldub, võib lahutusvõime praktiliseks hinnanguks võtta pöörd-dispersiooni ja pilu laiuse (või detektori sensorelemendi suuruse) korrutise. Niisiis lahutusvõimet saab parendada spektraalseadme pilu(sid) kitsamaks muutes. Seda kuni teatava piirini, kus hakkavad prevaleerima aberratsioonid ja difraktsioon.

Spektraalriista lahutusvõime täpsemaks kirjeldamiseks kasutatakse aparaatfunktsiooni mõistet. See on defineeritud kui spektraaljaotus, mida spektraalriist registreerib, kui sisendpilu valgustatakse ideaalselt monokromaatse valgusega. Kui näiteks spektraalriista üks piludest on väga lai (suurusega *s*), siis monokromaatse kiirguse (nt laserkiirguse) spektri mõõtmise tulemuseks on kastikujuline kõver, mis on tsentreeritud tegelikul lainepikkusel λ_0 ja mille laius on $(1/D_I)s$. Kui mõlemad pilud on ühtemoodi laiad, moodustub spektri mõõtmisel sisendpilu kujutise kombinatsioon (sidum) väljundpiluga, mis annab kolmnurkse kujuga spektraalprofiili. Normaalse suurusega (kitsaste) pilude kasutamisel on aparaatfunktsioon enamasti kitsas kellukesekujuline kõver. Ideaalse spektraalriista puhul oleks aparaatfunktsioon lõpmata kitsas piik (delta-funktsioon) tegelikul lainepikkusel λ_0 .

Lisaks spektraallahutusele karakteriseerib aparaatfunktsioon põhimõtteliselt ka hajuskiirguse tugevust. Mistahes optilises seadmes peaks valgus ideaaljuhul liikuma vaid ettenähtud trajektooril, mis on defineeritud optiliste elementide (peeglid, läätsed, difraktsioovõre jne) paigutusega. Kuid osa valgust kaldub kõrvale sellest trajektoorist tänu teistele difraktsioonijärkudele, siseneva valguskimbu ülemäärasele nurklaiusele, peegeldustele murdvatel pindadel ja optilistele pindadele kogunenud tolmukübemetel. Hajunud kiirguse summutamiseks tehakse optiliste seadmete kõik sisemised mitte-optilised pinnad võimalikult tumedad. Väike osa hajunud valgust jõuab lõpuks ikkagi aparaadi väljundavani. Seetõttu spektromeetrit monokromaatse kiirgusega valgustades registreeritakse nõrka kiirgust ka kõigil neil lainepikkustel λ , mis oluliselt erinevad kiirguse tegelikust lainepikkusest λ_0 . Teisisõnu, aparaatfunktsiooni väärtus ei lähene päris nullile isegi juhul kui erinevus $\lambda - \lambda_0$ saab väga suureks. See jääkväärtus võib olla umbes tuhandik aparaatfunktsiooni maksimumväärtusest. Hajuskiirgus võib vähendada dünaamilist diapasooni spektrite registreerimisel, sest spektri selles osas, kus uuritav kiirgus on väga nõrk, hakkab prevaleerima hoopis hajunud kiirgus, mis pärineb spektri intensiivsemast osast. Selline on tüüpiline olukord nt Raman-spektri mõõtmisel. Hajuskiirgusest saab vabaneda mitmekordsete monokromaatorite abil või siis spektri intensiivseima osa eelneva väljafiltreerimise teel.

Eeldades, et aparaatfunktsiooni kuju ei sõltu λ_0 -st, tähistame selle $a(\lambda - \lambda_0)$. Niisiis $a(\lambda - \lambda_0)$ näitab seda, kui suure panuse annab kiirgus lainepikkusega λ_0 registreeritud signaali lainepikkusel λ . Valgustame nüüd sisendpilu meelevaldset spektrit $\Phi(\lambda)$ omava kiirgusega. Vahemikus $\lambda_0 \dots \lambda_0 + \Delta \lambda_0$ on kiirguse intensiivsus $\Phi(\lambda_0) \Delta \lambda_0$ ja see annab signaali lainepikkusel λ panuse $a(\lambda - \lambda_0)\Phi(\lambda_0)\Delta \lambda_0$. Summeerides üle kõikide tegelike lainepikkuste, saame:

$$\Phi'(\lambda) = \int_0^\infty a(\lambda - \lambda_0) \Phi(\lambda_0) d\lambda_0.$$
(11.1)

Seega aparaatfunktsioon määrab täpse seose mõõdetud spektri $\Phi'(\lambda)$ ja tegeliku spektri $\Phi(\lambda)$ vahel. See seos muutub aktuaalseks siis kui tekib vajadus suure spektraallahutusega mõõtmiste teostamiseks, mis jääb juba spektraalseadme võimekuse piirile. Sel juhul tuleb püüda taastada originaalspekter $\Phi(\lambda)$, korrigeerides mõõdetud spektrit $\Phi'(\lambda)$ teadaoleva (samadel tingimustel mõõdetud) aparaatfunktsiooniga $a(\lambda - \lambda_0)$. Selleks on põhimõtteliselt võimalik (Fourier' analüüsi abil) valem 11.1 inverteerida juhul kui $\Phi'(\lambda)$ ja $a(\lambda - \lambda_0)$ on väga täpselt (ilma vigadeta ja väga hea signaal-müra suhtega) registreeritud. Enamasti tuleb piirduda siiski lihtsamate paranditega, nt mõõdetud spektrijoone laiusest aparaatfunktsiooni laiuse mahaarvestamisega või tegelikku spektrit approksimeeriva mudelfunktsiooni parameetrite

lähendamisega.

Viimane oluline spektraalriista karakteristik on valgusjõud, mis iseloomustab seda, kui suure osa uurimisobjektist lähtuvast kiirgusest suudab spektraalriist koondada detektori pinnale. Kvantitatiivselt võib valgusjõudu määratleda kui võrdetegurit kiirgava objekti heleduse ja detektori pinnal tekkiva kiiritustiheduse vahel. On ilmne, et valgusjõudu mõjutab esiteks sisendpilu laius: mida laiemaks pilu teha, seda rohkem pääseb sellest valgust läbi.³⁴ Teiseks, valgusjõud on seda suurem, mida suurema nurga all võivad valguskiired aparaati siseneda. Valguse maksimaalne sisenemisnurk on määratud ilmselt kollimeeriva elemendi diameetri ja fookuskauguse suhtega. Selle pöördväärtust nimetatakse seadme apertuurarvuks. Selle väärtus on tüüpiliselt umbes 4 (tähistatakse tavaliselt F/4). Eelnevast on ka selge, et valgusjõud ja lahutusvõime on vastandlikud suurused (vähemalt nende spektraalseadmete korral, mida käsitletakse käesolevas konspektis). Kui me näiteks püüame lahutusvõimet parendada muutes spektromeetri pilusid kitsamaks, siis selle tulemusena väheneb ka valgusjõud kuna vähem valgust pääseb piludest läbi.

ÜLESANNE 33. 1) Arvutage kvartsprisma nurkdispersioon lainepikkusel 500 nm, kui prisma murdev nurk on 30° ja valgus levib prisma sees ligikaudu kaldemiinimumi lähedal (st sümmeetriliselt prisma murdva nurga suhtes). Kvartsklaasi murdumisnäitaja sõltuvana lainepikkusest on toodud joonisel 11.3. 2) Hinnake sellise prismaga saavutatavat maksimaalset teoreetilist lahutusvõimet, kui prismale langeva valgusvihu laius on 5 cm. On teada, et pilult laiusega *b* tekkival difraktsioonipildil tsentraalse peamaksimumi nurklaius (täpsemalt, nurkkaugus maksimumist esimese miinimumini) on $\lambda/2b$. Vastus: 1) $D_{\beta} \approx 3.1 \times 10^{-5}$ rad/nm. 2) $\delta\lambda \approx 0.16$ nm.

11.3 Difraktsioonvõre spektraalseadmes

Üldotstarbelistes spektraalseadmetes, mis katavad nähtava, lähi-UV ja lähiinfrapunase piirkonna, kasutatakse dispergeeriva elemendina prismat või difraktsioonvõre. Viimane on eelistatud, kuna võimaldab saavutada suuremat spektraallahutust ja ühtlast dispersiooni kõigil lainepikkustel. Samas on difraktsioonvõrel ka mitmeid puudusi võrreldes prismaga: väiksem efektiivsus (mis liiatigi tugevalt sõl-

³⁴Monokromaatori-tüüpi seadmete korral muudetakse tavaliselt ühtviisi nii sisend- kui ka väljundpilu laiust; sel juhul detektorisse jõudva kiirguse intensiivsus kasvab proportsioonis pilu laiuse ruuduga.

tub lainepikkusest), suur polarisatsioonitundlikkus ja erinevate difraktsioonijärkude kattumine. Peegeldusvastase katte abil võib prisma efektiivsuse viia 100% lähedale.

Difraktsioonvõre baasil spektraalriistades kasutatakse kõige sagedamini nn Czerny-Turneri optilist skeemi, mida sai vaadeldud juba eespool (joon. 11.2). Tegemist pole siiski ainuvõimaliku lahendusega. On võimalik sisend- ja väljundobjektiivid asendada ühe suure nõguspeegliga (nn Fastie-Eberti skeem) või kasutada ühte nõguspeeglit mõlemaks otstarbeks, suunates difrageerunud valguse esialgset teed pidi tagasi (Littrow skeem). Et ajada läbi veelgi vähesemate optiliste elementidega, saab difraktsioonvõre kanda vajadusel ka nõguspeegli pinnale.

Lihtsaim difraktsioonvõre on kujutatud joonisel 11.4. Klaasplaadile on kantud ühtlase sammu d järel hästi peegeldavast metallist paralleelsed triibud. Samm d on peamine difraktsioonvõre iseloomustav karakteristik. Praktiliselt väljendatakse seda joonte arvuga millimeetri kohta (st d asemel antakse 1/d väärtus). Tüüpiliselt kasutatakse võresid, millel on 150, 300, 600, 1200, 1800 või 2400 joont/mm.

Langegu difraktsioonvõrele monokromaatne (lainepikkus λ) paralleelsete valguskiirte kimp langemisnurgaga α . Tekkiva difraktsioonpildi (st hajunud kiirguse intensiivsuse suunasõltuvuse) määramine on üks laineoptika mudelülesanne (vastus on toodud lisas K). Joonisel 11.5 on näitena toodud difraktsioonipilt teatud parameetrite korral (töötavate triipude koguarv N on võetud väike selleks, et välja tuua difraktsioonpildi struktuuri, reaalsel võrel on see suurusjärgus 10⁴). On näha, et teatud kindlates suundades ilmnevad teravad interferentsimaksimumid. Need nn peamaksimumid tekivad suundades, kus kahe naabertriibu pealt difrageerunud kiirte käiguvahe on täpselt täisarv lainepikkusi:

$$d(\sin\alpha + \sin\beta) = m\lambda,$$

kus $m = 0, \pm 1, \pm 2, ...$ On selge, et fikseeritud langemisnurga juures hakkab peamaksimumi suund β sõltuma lainepikkusest. Seega, kui tegemist oleks polükromaatse valgusega, siis iga monokromaatse komponendi jaoks oleks peamaksimumi suund veidi erinev. Kui veel arvestada, et peamaksimumid muutuvad suure N korral hästi teravaks, saamegi valguse dispergeerumise spektriks (joon. 11.6).

Lisas K on arvutatud difraktsioonvõre kui dispergeeriva elemendi karakteristikud. Difraktsioonvõre nurkdispersioon (*m*-ndas peamaksimumis) on

$$D_{\beta} = \frac{\partial \beta}{\partial \lambda} = \frac{m}{d\cos\beta}.$$

Mida suuremat dispersiooni taotletakse, seda suurema joonte tihedusega võre on tarvis. Tavaliselt kasutatakse difraktsioonvõre esimeses järgus (m = 1), kuid töötada võib ka kõrgemas järgus, kus dispersioon on suurem.

Joonisel 11.6 kujutatud dispersiooninäites on spektrijoonte vahekaugus $\delta \lambda = 1$ nm. Kui seda vähendada, siis difraktsioonimaksimumid lähenevad üksteisele ja ühel hetkel hakkavad kokku sulanduma, nii et neid ei ole enam võimalik ruumiliselt eraldada (ükskõik kui ideaalsed on ülejäänud optilised komponendid spektromeetris). Peamaksimumide nurklaius ja seega ka difraktsioonvõre lahutusvõime sõltub põhiliselt töötavate triipude arvust *N*:

$$\delta\lambda = \frac{\lambda}{mN}$$
 ehk $\frac{\lambda}{\delta\lambda} = mN.$ (11.2)

Joonis 11.5. Difraktsioonvõrelt hajunud monokromaatse kiirguse intensiivsuse jaotus suundade järgi (N = 8; b = 0.3d; $\lambda = 0.15d$; $\alpha = 0^{\circ}$). Punktiiriga on kujutatud mähisjoont, mis ühendab peamaksimume.

N on ilmselt määratud võre joonte tihedusega ja langeva valgusvihu laiusega. Igal juhul maksimaalse lahutusvõime taotlemisel tuleb jälgida, et võrele langev valgusvihk kataks märkimisväärse osa võre apertuurist.

Avaldisega 11.2 määratud lahutusvõime saavutataks juhul kui sisendpilu oleks äärmiselt kitsas. See tähendaks, et ka spektraalriista valgusjõud oleks väga väike (valgust on raske aparaati suunata läbi nii kitsa pilu) ja tekiksid probleemid kiirguse difrageerumisega sisendpilul. Nagu eespool juba mainitud, on spektraalriista lahutusvõime määratud enamasti pilude lõpliku laiuse ja seadme pöörd-dispersiooni korrutisega.

Suunates võrespektromeetrisse küllalt ulatusliku spektriga kiirguse, võib tekkida järkude kattumise probleem (joon. 11.1). Oletagem, et võre töötab esimeses järgus. Lainepikkus λ , mis langeb spektromeetri väljundpilule, rahuldab siis tingimust

$$d(\sin\alpha + \sin\beta) = \lambda$$

Joonis 11.6. Difraktsioonvõrele, millele on kantud 500 joont iga mm kohta ($d = 2 \mu m$), langeb kollimeeritud valgusvihk, milles sisaldub kolm võrdse intensiivsusega monokromaatset komponenti lainepikkustega 499, 500 ja 501 nm. Valgusvihu laius on 10 mm (N = 5000). Graafikul on toodud kiirguse intensiivsuse jaotus suundade järgi esimeses difraktsioonijärgus, eraldi iga komponendi jaoks.

On selge, et samasse suunda difrageeritakse ka lainepikkus $\lambda/2$ teises järgus:

$$d(\sin \alpha + \sin \beta) = 2\frac{\lambda}{2} = \lambda.$$

Kui me mõõdame näiteks punases spektraalpiirkonnas luminestsentsi, mida ergastatakse laseriga lainepikkusel 300 nm, siis ilma täiendavaid meetmeid rakendamata näeme spektris lainepikkuse 600 nm ümbruses intensiivset piiki, mis on tingitud hajunud laserikiirguse sattumisest spektraalriista. Selliste efektide vältimiseks tuleb sobivate, nn järgufiltrite abil blokeerida lühilainelise kiirguse pääsemine spektraalriista.

Joonisel 11.4 kujutatud rõhtsete triipudega difraktsioonvõre on spektraalriistade seisukohalt ebaefektiivne, sest enamus kiirgust peegeldub nullindasse järku, kus dispersioon puudub (joon. 11.5). Seetõttu spektraalriistades kasutatakse valdavalt profileeritud võresid, kus peegeldavad triibud on teatud nurga δ all kaldu võre tasapinna suhtes nagu kujutatud joonisel 11.7. Nurga δ valikuga saab joonisel 11.5 kujutatud peamaksimumide mähisjoont liigutada nii, et põhiosa kiirgusest oleks suunatud mitte peegeldusse, vaid esimesse või teise difraktsioonijärku.

Üldotstarbelistes spektraalseadmetes kasutatakse koondava või kollimeeriva elemendina reeglina nõguspeegleid, kuna neil puudub kromaatiline aberratsioon ja

Joonis 11.7. Profileeritud difraktsioonvõre.

seetõttu saab spektraalseadet muutumatul kujul (v.a. võre ja detektori vahetamine) rakendada väga avaras spektraaldiapasoonis. Seevastu eriotstarbelistes seadmetes (mis töötavad piiratud spektraalvahemikus) võib olla õigustatud läätsede kasutamine, mis fokuseerivad kiirgust teravamalt.

ÜLESANNE 34. Mõningatel erijuhtudel piisab spektraalselektiivsuse saavutamiseks ka lihtsalt võre (või prisma) ja pilu kombineerimisest, ilma nõguspeegleid/läätsesid kasutamata. Näiteks laserkiirguse spektraalseks puhastamiseks võib toimida järgmiselt. Laserkiir (näiteks 500 nm) suunatakse peegeldifraktsioonvõrele (1200 joont/mm). Esimeses järgus difrageerunud laserkiire teele, võrest kaugusele 2 m, asetatakse pilu laiusega 10 mm, kusjuures viimase võib lugeda hulga suuremaks laserkiire diameetrist. Kui suur peab olema laserkiire langemisnurk võrele, et difrageerunud kiir oleks pealelangeva kiirega risti? Millise spektraallaiusega filter moodustub sellisest võre-pilu kombinatsioonist? *Vastus:* 70,1°; 3,9 nm.

ÜLESANNE 35. Monokromaatoris on difraktsioonvõre joonte tihedusega 600 joont/mm. Nii sisend- kui ka väljundobjektiivi fookuskaugus on 0,6 m. Pilude laius on 50 μm. Leidke seadme lineaarne pöörd-dispersioon (nm/mm) ja lahutusvõime (nm) esimeses järgus (selguse huvides loeme $\beta \sim 0^{\circ}$). Kui suurt lahutusvõimet võiks antud difraktsioonvõrega teoreetiliselt saavutada lainepikkuse 500 nm ümbruses kui võrele langeva valgusvihu laius on 80 mm? *Vastus:* 3 nm/mm; 0,15 nm; 0,01 nm.

11.4 Fourier' spektromeeter

Fourier' spektromeeter vastandub oma olemuselt joonisel 11.2 kujutatud traditsioonilistele seadmetele ja selle tööprintsiip on lühidalt järgmine. Uuritav kiirgus jaotatakse kahte enam-vähem võrdsesse ossa, mis hakkavad kulgema mööda erineva optilise teepikkusega trajektoore kuni saavad uuesti kokku detektori pinnal. Viimane mõõdab interferentsi tulemusena tekkinud summaarset intensiivsust *I*. Seejuures nende kahe interfereeruva laine omavahelist optilist käiguvahet *x* on võimalik varieerida mõnesuguses vahemikus 0...L (või -L...L). Seega sellise seadme puhul on mõõtmisprotsessi otseseks tulemiks mitte kiirguse spekter, vaid interferogramm I(x). Idee seisneb selles, et kui tegemist on monokromaatse kiirgusega, siis interferogramm on moduleeritud sammuga, mis sõltub kiirguse lainepikkusest. Meelevaldne kiirgus on aga erinevate monokromaatsete komponentide summa, järelikult informatsioon spektraalkoostise kohta on kodeeritult interferogrammis olemas. Selle taastamine toimub hilisema signaalitöötlusega (Fourier' teisenduse abil).

Kirjeldatud printsiip realiseeritakse enamasti Michelsoni interferomeetri baasil (joonis 11.8). Sisendpilu S₁ paikneb läätse L₁ fookuses. Lääts tekitab kollimeeritud kiirtekimbu, mis jaotatakse kiirejagajaga (poolläbilaskva peegliga) B kahte võrdsesse ossa. Pool valgusest suunatakse statsionaarsele peeglile M₁, teine osa aga peeglile M₂, mida saab suure täpsusega kontrollitavalt nihutada piki optilist telge. Peegeldunud kiired viiakse sellesama poolläbilaskva peegli abil uuesti kokku ja fokuseeritakse läätsega L₂ detektorile D. Kuna peegli nihe *a* läbitakse kahekordselt, siis tekkiv optiline käiguvahe on antud juhul x = 2a. Peegli M₂ liikumist saab omakorda interferomeetriliselt väga täpselt kontrollida kasutades kindla lainepikkusega laserit.

Joonis 11.8. Michelsoni interferomeetri skeem.

Püüame nüüd leida seose interferogrammi I(x) ja kiirguse spektraalkoostise $\Phi(k)$ vahel (kasutame esialgu spektraalmuutujana lainearvu k). Seejuures eeldame, et nii

kiirejagaja kui ka detektor on ideaalsed (reaalse olukorra arvestamine tingib lihtsalt spektri läbikorrutamise lainearvust sõltuva koefitsiendiga). Suuname interferomeetrisse esialgu ideaalselt monokromaatse kiirguse lainearvuga k ja intensiivsusega I_0 . Sõltuvalt tekitatud käiguvahest x on interferents konstruktiivne või destruktiivne ja intensiivsus detektori peal varieerub vahemikus 0 kuni I_0 .³⁵ Käiguvahele x vastab faasinihe $2\pi x/\lambda = kx$, seega interferogramm on järgmine:

$$I(x) = \frac{1}{2}I_0[1 + \cos(kx)].$$

Alaliskomponent ei paku spektromeetrilise rakenduse korral huvi (selle olemasolu on paratamatu, kuna intensiivsus on alati mittenegatiivne), seega me vaatleme interferogrammina ainult vahelduvkomponenti:

$$I(x) = \frac{1}{2}I_0\cos(kx).$$
 (11.3)

Meelevaldse spektriga $\Phi(k)$ kiirguse korral arvestame, et erineva sagedusega monokromaatsed komponendid on intensiivsuse arvutamise seisukohalt üksteisest sõltumatud, seega viimase avaldise saab kergesti üldistada, summeerides (st integreerides) üle kõikide valguse sageduste ehk lainearvude:

$$I(x) = \frac{1}{2} \int_0^\infty \Phi(k) \cos(kx) \, dk.$$
 (11.4)

Niisiis I(x) saadakse $\Phi(k)$ -st teatava integraalteisenduse abil. Selgub, et see on erijuht Fourier' teisendusest.

Fourier' teisenduse ja pöörd-teisenduse paar esitatakse harilikult kompaktsel kujul kompleksarvude kasutamise teel:

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx} dx, \quad f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)e^{ikx} dk,$$

kus f(x) on "piisavalt heade omadustega" reaalmuutuja funktsioon ja F(k) on selle Fourier' teisendus. Kuid ekvivalentselt saab funktsiooni kirjelduse sagedusruumis anda ka ilma kompleksarve kasutamata, st võttes e^{ikx} asemel reaalmuutuja funktsioonid $\cos(kx)$ ja $\sin(kx)$:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F_{\rm c}(k) \cos(kx) \, dk + \frac{1}{2\pi} \int_{-\infty}^{\infty} F_{\rm s}(k) \sin(kx) \, dk,$$

kus

$$F_{\rm c}(k) = \int_{-\infty}^{\infty} f(x) \cos(kx) \, dx, \quad F_{\rm s}(k) = \int_{-\infty}^{\infty} f(x) \sin(kx) \, dx.$$

Oletagem nüüd, et f(x) on paarisfunktsioon, st f(-x) = f(x). Sel juhul ilmselt $F_s(k) = 0$, sest korrutis $f(x) \sin(kx)$ on paaritufunktsioon. Seega jääb vaid koosinusteisendus:

$$F(k) = \int_{-\infty}^{\infty} f(x)\cos(kx) \, dx, \quad f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(k)\cos(kx) \, dk$$

Ühtlasi näeme, et F(k) on samuti paarisfunktsioon.

F

Nendes integraalteisendustes funktsioonid f(x) ja F(k) on esindatud võrdväärsel kujul. Sealhulgas pole tähtis, kumma integraali ette jätta tegur $1/2\pi$.

Ilmselt I(x) on paarisfunktsioon (interferentsi tulemus ei sõltu sellest, mis märgiga on käiguvahe x). Ka spektrit $\Phi(k)$ võime matemaatiliselt laiendada negatiivsetele sagedustele, nii et tegemist oleks paarisfunktsiooniga. Viimane tähendab seda, et valemi 11.4 võiks sama hästi esitada ka kujul

$$I(x) = \frac{1}{4} \int_{-\infty}^{\infty} \Phi(k) \cos(kx) \, dk.$$

Niisiis saame rakendada koosinusteisendust ja avaldada $\Phi(k)$:

$$\Phi(k) = \frac{2}{\pi} \int_{-\infty}^{\infty} I(x) \cos(kx) \, dx = \frac{4}{\pi} \int_{0}^{\infty} I(x) \cos(kx) \, dx.$$

Praktikas kasutatakse infrapunases piirkonnas spektroskoopilist lainearvu \bar{v} , kus $k = 2\pi \bar{v}$. Selle kaudu avaldatuna

$$\Phi(\bar{\nu}) = 8 \int_0^\infty I(x) \cos(2\pi \bar{\nu} x) \, dx.$$
(11.5)

Joonisel 11.9 on toodud mõningad näited spektraaljaotuse ja vastava interferogrammi vahekorrast. Monokromaatse kiirguse (hästi kitsa üksiku spektrijoone) interferogrammiks on praktiliselt muutumatu amplituudiga siinusvõnkumine, sest sellise kiirguse koherentsipikkus on väga suur. Seevastu pideva (valge) spektriga kiirguse interferogrammis on nullist märgatavalt erinev signaal ainult x = 0 ümbruses (kus kõikide lainepikkuste jaoks on interferents konstruktiivne), käiguvahe suurendamisel kahaneb intensiivsus kiiresti nullile.

Edasi uurime, kuidas sellise spektromeetri omadused sõltuvad kahest tehnilisest piirangust — käiguvahe lõplikust varieerimisulatusest L ja lõplikust diskreetimissammust δx . Olgu käiguvahe muutmisvahemik 0...L ja mõõdame sellise spektromeetriga monokromaatset kiirgust sagedusega \bar{v}_0 . Interferogramm on sel juhul

 $^{^{35}}$ Kui intensiivsus detektori pinnal on väiksem kui I_0 , siis see ei tähenda mitte energia kaotsiminekut, vaid, nagu interferentsi puhul ikka, kiirgusenergia ruumilist ümberjaotumist, ehk siis antud juhul osa interferomeetrisse suunatud kiirgusest peegeldub tagasi.

Joonis 11.9. Mõningate spektrite (vasakul) interferogrammid (paremal). Kõik individuaalsed spektrijooned on võetud Lorentzi kontuuriga.

antud valemiga 11.3 (kus $v = \bar{v}_0$), kuid see on teada ainult käiguvahe muutumise

vahemikus $x = 0 \dots L$. Seega arvutuslik spektraaljaotus

$$\begin{split} \Phi(\bar{v}) &= 8 \int_0^L I(x) \cos(2\pi \bar{v}x) \, dx \\ &= 4 I_0 \int_0^L \cos(2\pi \bar{v}_0 x) \cos(2\pi \bar{v}x) \, dx \\ &= 2 I_0 \int_0^L \{\cos[2\pi (\bar{v} - \bar{v}_0) x] + \cos[2\pi (\bar{v} + \bar{v}_0) x]\} \, dx \\ &= 2 I_0 \frac{\sin[2\pi (\bar{v} - \bar{v}_0) L]}{2\pi (\bar{v} - \bar{v}_0)} + 2 I_0 \frac{\sin[2\pi (\bar{v} + \bar{v}_0) L]}{2\pi (\bar{v} + \bar{v}_0)} \\ &\approx I_0 \frac{\sin[2\pi (\bar{v} - \bar{v}_0) L]}{\pi (\bar{v} - \bar{v}_0)}. \end{split}$$

 $(\bar{v} \approx \bar{v}_0 \text{ korral võib teise liikme arvestamata jätta.})$ Ideaalis oodatava deltafunktsiooni asemel saime joonisel 11.10 kujutatud kõvera (nn sinc-funktsioon). $L \rightarrow \infty$ korral läheneb see tõepoolest delta-funktsioonile. Saadud kõverat võib vaadelda Fourier' spektromeetri aparaadifunktsioonina. Keskse piigi (peamaksimumi) laius on ligikaudu $\delta \bar{v} = 0,60/L$. Seda võibki nimetada Fourier' spektromeetri lahutusvõimeks.

Kahjuks iseloomustab sinc-funktsiooni suhteliselt tugevate kõrvalmaksimumide olemasolu, mis võivad mõningail juhtudel häirida tõepärase spektraaljaotuse mõõtmist (juhtumisi võib just sellise kõrvalmaksimumi kohal paikneda mõni nõrk kitsas spektrijoon). Aparaadifunktsiooni kuju on võimalik parendada (seda küll lahutusvõime arvelt) korrutades interferogrammi mõnesuguse kaalufunktsiooniga W(x), mille tulemusena interferogrammi erinevaid osi võetakse arvesse erineva kaaluga. W(x)on enamasti sellise kujuga, et x = 0 korral W = 1 ja x = L juures saab nulliks. Üheks lihtsamaks näiteks võiks olla kolmnurkne kaalufunktsioon W(x) = 1 - |x|/L. Sel juhul eelnev analüüs annaks spektri kujuks

$$\Phi(\bar{\nu}) = I_0 L \left\{ \frac{\sin[\pi(\bar{\nu} - \bar{\nu}_0)L]}{\pi(\bar{\nu} - \bar{\nu}_0)L} \right\}^2$$

Vastav kõver on samuti kujutatud joonisel 11.10. Seekord kõrvalmaksimumid on märksa madalamad, kuid tsentraalne maksimum on mõnevõrra laiem.

Teine probleem peegli piiratud liikumisulatuse kõrval on lõplik diskreetimissagedus: interferogrammi lugemeid võetakse lõpliku sammuga δx , st x-i väärtustel $m \delta x$, kus

Joonis 11.10. Monokromaatse kiirguse mõõtmise tulemus Fourier' spektromeetriga, kui käiguvahet muudetakse vahemikus x = 0...L. Sinise kriipsjoonega kõver vastab juhule kus interferogrammile on rakendatud kaalufunktsiooni W(x) = 1 - |x|/L.

 $m = 0, 1, 2, \dots$ Järelikult valemis 11.5 integraal asendub summaga:

$$\Phi(\bar{v}) = 8\,\delta x \sum_{m} I(m\,\delta x) \cos(2\pi\bar{v}m\,\delta x) \tag{11.6}$$

Valem 11.6 võib anda ekslikke tulemusi, kui δx on liiga suur. Nimelt, valem 11.6 annab identsed tulemused sageduste $l/(2\delta x) \pm \text{Const}$ jaoks, kus l = 1, 2, ... Järelikult tulemus on üheselt määratud vaid piirkonnas $0 \le \bar{v} < 1/(2\delta x)$, mistõttu δx tuleks valida nii väike, et $1/(2\delta x)$ oleks suurem kui on kõrgeim sageduskomponent analüüsitavas kiirguses.

Viimaks tuleb arvestada ka asjaoluga, et interferomeetrisse sisenev kiirtekimp saab olla ideaalselt kollimeeritud ainult punktallika (st lõpmata kitsa sisendpilu) korral. Sel juhul oleks aga seadme valgusjõud kaduvväike. Analüüs näitab, et kiirtekimbu hajumisest tingituna väheneb seadme lahutusvõime, kusjuures $\bar{v}/\Delta\bar{v} = \alpha^2$, kus α on kiirtekimbu maksimaalne hajumisnurk. Sellest järeldub, et lahutusvõime ja valgusjõud on jällegi vastandlikud eesmärgid, kuigi Fourier' spektromeetri valgusjõud on sama lahutusvõime juures siiski märksa parem kui klassikalisel spektraalseadmel.

12 KIIRGUSE VASTUVÕTJAD

12.1 Fotodetektorite olemus ja liigitus

Kiirguse vastuvõtja ehk kiirgusdetektor ehk fotodetektor konverteerib valguse intensiivsuse mingiks lihtsasti mõõdetavaks signaaliks (enamasti elektriliseks signaaliks, nagu voolutugevus või pinge). Optilises diapasoonis kasutatavad detektorid võib tööpõhimõtte järgi liigitada järgmistesse kategooriatesse:

- Termilistes detektorites toimub materjali soojenemine neeldunud kiirgusenergia arvel ning mõõdetakse tekkinud temperatuurimuutust. Viimane on proportsionaalne neeldunud kiirguse võimsuse või energiaga. Tuntuimad termilised detektorid on bolomeeter, termopaar ja püroelektriline detektor. Termiliste detektorite kasutamine on kõige otstarbekam infrapunases piirkonnas, kus footonite energia pole piisav elektronergastuste tekitamiseks, küll aga kristallvõre võnkumiste ergastamiseks. Sageli kasutatakse neid siiski ka ülejäänud optilises diapasoonis intensiivsema kiirguse registreerimiseks (nt laserkiire võimsuse mõõtmiseks jms). Termiliste detektorite tugevaks küljeks on lai spektraalne tööpiirkond (puudub spetsiifiline sõltuvus lainepikkusest) ning konstruktsiooni lihtsus. Puuduseks on aga aeglane reageerimine kiirguse intensiivsuse muutustele (>1 ms).
- Fotoelektrilised detektorid põhinevad fotoefektil ja registreerivad seega sisuliselt juba footoneid, mitte kiirguse energiat. See ei pruugi tähendada, et footoneid ka reaalselt ühekaupa registreerida õnnestub, sest see sõltub juba sellest, kas õnnestub fotoelektroni tekkimist selektiivselt võimendada. Fotoelektrilised detektorid võib omakorda liigitada kaheks:
 - Välise fotoefekti puhul on footoni energia piisav selleks, et elektron aine pinnalt täielikult vabastada (toimub elektronide emissioon fotokatoodist). Vabanenud elektronid suunatakse elektrivälja abil anoodile ja tekitavad välisahelas mõõdetava voolu. Sellisel põhimõttel toimivateks detektoriteks on vaakumfotoelement ja fotoelektronkordisti.
 - Sisemisel fotoefektil põhinevad detektorid (fotodiood, fototakisti, CCD) on pooljuhtseadised, kus footonite neeldumise tulemusena genereeritakse *aine sees* vabu laengukandjaid (elektronid, augud). Teisisõnu, footon vabastab elektroni

vaid keemilisest sidemest, aga mitte ainest. Erinimelised laengud lahutatakse elektriväljas ja põhjustavad voolu välisahelas või kogutakse kondensaatorisse.

Fotoelektrilised detektorid on termiliste detektoritega võrreldes märksa tundlikumad ja kiirema reaktsiooniga (<100 ns), kuid see-eest nende tundlikkus sõltub tugevasti lainepikkusest ja spektraalne tööpiirkond on võrdlemisi kitsas.

 Fotokeemilistel protsessidel põhinevad detektorid: fotoplaat, silm. Need on siin ära mainitud vaid täielikkuse huvides, sest fotoplaati tänapäeval praktiliselt ei kasutata, kuigi lihtsate spektraalseadmete (nt spektroskoop) või spetsiaalse vajaduse korral võib spektri vaatamine palja silmaga olla vajalik.

Nii fotoelektrilised kui ka fotokeemilised detektorid on footondetektorid ehk kvantdetektorid selles mõttes, et nad reageerivad individuaalsetele footonitele. Enamasti peetakse footondetektorite all siiski silmas vaid fotoelektrilisi detektoreid, kus põhimõtteliselt saab signaali piisavalt võimendada saavutamaks ühe footoni registreerimise tundlikkust (fotoelektronkordisti, laviinfotodiood, paremad CCD seadmed). Selliseid detektoreid saab ja on sageli mõttekas kasutada mõõtes mitte pidevat (analoog-) signaali vaid otseselt *loendades* footonite neeldumisel tekkivaid elektriimpulsse.

Detektoreid, mis võimaldavad mingi täpsusega määrata punkti, kus kiirgus langeb detektori pinnale, nimetatakse koordinaaditundlikeks. Sellisteks detektoriteks on fotoplaat, fotodioodide rivi ja CCD või CMOS maatriks. Ka termilisi detektoreid on võimalik realiseerida maatriksi kujul, koosnevana termiliselt isoleeritud mikroelementidest. Neid kasutatakse näiteks termokaamerates.

12.2 Spektroskoopiliste detektorite tööpõhimõtted

Lihtne arutluskäik veenab, et spektroskoopilisteks mõõtmisteks piisavalt tundliku detektori loomine ei ole sugugi triviaalne. Lihtsaimad fotodetektorid — fotodiood ja vaakumfotoelement — genereerivad ideaaljuhul iga neeldunud valguskvandi kohta ühe fotoelektroni, nii et välisahelas tekib kaduvväike, vaid ühele elementaarlaengule vastav elektrivool. Keskpärane mikroampermeeter (näiteks multimeetri koosseisus) suudab registreerida vähimat voolu suurusega 0,01 µA. See vastab valguse tugevusele suurusjärgus 10¹¹ footonit/s ehk 0,01 µW. Intensiivsete valgusallikate

mõõtmiseks ette nähtud seadmete jaoks (näiteks laseri võimsusmõõtja, luksmeeter vms) on selline piirtundlikkus piisav. Seevastu spektroskoopias saavutavad signaalid harva sellise tugevuse, sest mitmed spektroskoopilised nähtused (näiteks Ramanhajumine) on juba loomu poolest ülinõrgad ja lisaks on spektroskoopilisel mõõtmisel praktiliselt alati eesmärgiks (suure) spektraallahutuse realiseerimine. Hindame näiteks suurusjärguliselt signaale luminestsentsi spektraalmõõtmistel. Langegu luminestseeruvale materialile võrdlemisi tugev ergastav laserkiir võimsusega 10 mW ja olgu luminestsentsi tekitamise energeetiline efektiivsus 10%. Üle kõikide ruumisuundade hajutatud kiirgust on praktiliselt võimatu tervikuna kokku koguda, olgu vastav efektiivsus jällegi 10%. Spektraalseadme ja detektori summaarne efektiivsus olgu samuti 10%. Viimaks, et spektri kuju adekvaatselt üles võtta, võiks spektraallahutus olla ca 100 korda väiksem kui on kiirgusriba kogu ulatus. Kokkuvõttes saame, et ühe detekteeritava lainepikkuse ümbruses jääb järgi vaid 0,1 µW valgusvõimsust. Sageli on mõõdetavad signaalid veel tuhandeid kordi nõrgemad. Detektori voolu saab muidugi oluliselt võimendada, kuid üksiku fotoelektroni signaali eristamine kogu mõõtesüsteemis valitseva elektrilise müra foonil on ikkagi praktiliselt võimatu. On siiski olemas mitmeid, tänaseks üsna levinud meetodeid suure tundlikkuse saavutamiseks.

- Esmane samm on detektori *mahajahutamine* võimalikult madala temperatuurini, et alla suruda detektori enda termiline müra. Sellega me ei suuda siiski lahti saada fotoelektrilise signaali võimendamise ja digitaliseerimisega kaasnevast mürast.
- Üks vanimaid meetodeid on võimendada üksiku fotoelektroni signaali juba *de-tektori sees*, enne detektori väljundsignaali registreerimist. Selleks tuleb leida võimalus "paljundada" igat footoni poolt tekitatud elektroni, nii et footoni neeldumise tulemusel tekiks võrdlemisi tugev, mürast selgelt eristuv vooluimpulss. Sellist elektronkordistamise põhimõtet kasutavad fotoelektronkordisti, laviinfotodiood ja tänapäeval ka paremad CCD kaamerad.
- Igat fotoelektroni ei peaks hakkama eraldi detekteerima, kui leiduks võimalus fotogenereeritud laengukandjate akumuleerimiseks detektori sees. Selliselt opereerivad CCD sensori elemendid.
- Lainepikkuse skaneerimise asemel oleks tulusam registreerida signaali korraga kõigil lainepikkustel, et jääks rohkem aega signaali kogumiseks/keskmistamiseks. Seda võimaldavad näiteks dioodrivi ja CCD.

12.3 Detektorite põhilised karakteristikud

Põhimõtteliselt piisab kui valguse tugevuse ja detektori väljundsignaali vahel eksisteerib ühene vastavus. Seda vastavust väljendab ülekandefunktsioon. Siiski, enamike detektorite korral on ülekandefunktsioon teatavas valguse intensiivsuste vahemikus *lineaarne*. Selles diapasoonis saab detektorit iseloomustada koste e. tundlikkusega, mis väljendab detektori väljundsignaali muutust, mis vastab valguse intensiivsuse ühikulisele muutusele. Näiteks fotodioodi puhul võib seda väljenda- da ühikutes A/W, termopaari puhul ühikutes V/W jne. Fotoelektriliste detektorite puhul võib kasutada ka kvantsaagise mõistet, mis väljendab tõenäosust, et detektorile langev footon tekitab fotoelektroni, mis annab panuse detektori väljundsignaali. Fotoelektrilise, ilma (sisese või välise) võimenduseta detektori maksimaalne teoreetiline tundlikkus on üks elektron valguskvandi kohta (*e/hv*) ehk nähtavas piirkonnas \sim 0,4 A/W.

Fotodetektori tundlikkus sõltub üldiselt lainepikkusest määrates spektraalse diapasooni, kus antud detektorit on mõistlik rakendada. Kui termilised detektorid on võrdlemisi tuimad kiirguse lainepikkuse suhtes, siis fotoelektrilistel detektoritel võib see sõltuvus olla väga järsk ja spetsiifiline. Näited tüüpilise fotoelektrilise detektori spektraaltundlikkusest on toodud joonisel 12.1.

Mõned fotodetektorid väljastavad nullist erinevat signaali isegi juhul kui valguse intensiivsus on null. Sellise pimesignaali mõju on võimalik osaliselt elimineerida mahalahutamise teel. Siiski, kõikide detektorite väljundsignaalis esineb juhuslik komponent ehk müra, seda isegi juhul kui pimesignaal on võrdne nulliga. Detektori väljundsignaali mürataset, mis eksisteerib valguse puudumisel, nimetame omamüraks. Ilmselt sellist valgusest tingitud signaali, mis on väiksem omamüra tasemest, ei ole võimalik enam usaldusväärselt registreerida. See määrab detektori piirtundlikkuse e. lävitundlikkuse, mis väljendab kiirguse vähimat detekteeritavat intensiivsust.

Niisiis detektor suudab valguse intensiivsust registreerida alates omamüraga määratud lävinivoost kuni teatava maksimaalse intensiivsuseni, mille juures detektori väljundsignaal küllastub või hakkab intensiivne kiirgus detektorit lausa kahjustama. Seda valguse intensiivsuste vahemikku nimetatakse detektori dünaamiliseks ulatuseks. Sageli dünaamilise ulatuse ülemine piir samastatakse maksimaalse signaaliga, kus säilib detektori lineaarsus. Samas saab seda ala laiendada ka mittelineaarse koste piirkonda, kui mittelineaarsus matemaatiliselt kõrvalda. Näiteks fotoelektronkordisti kasutamisel footonloenduse režiimis (millest tuleb juttu edaspidi) tekib mittelineaarsus sellest, et mingist valguse tugevusest alates üksikfootonid enam selgelt ei eristu, st kahe või enama footoni impulsid sulanduvad kokku ja loetakse üheks footoniks. Seda saab kirjeldada lihtsa matemaatilise mudeliga: kui tõeline footonite arv sekundis on S_0 , siis registreeritud impulsside arv on $S = S_0/(1 + S_0\tau)$, kus τ on teatav karakteerne ajavahemik kahe järjestikuse impulsi vahel, mis on veel eristatavad. Ilmselt koste on enam-vähem lineaarne tingimusel $S_0 \ll \tau^{-1}$. Olles eelnevalt kindlaks teinud τ väärtuse, saame registreeritud signaali S kaudu taastada tõelise signaali $S_0 = S/(1 - S\tau)$. Sel viisil saame veel 1...2 suurusjärku dünaamilist diapasooni juurde.

Valguse intensiivsuse muutumisel kulub teatav karakteerne ajavahemik selleks, et detektori väljundsignaal jõuaks reageerida. Seda nimetatakse detektori reaktsiooniajaks. Parimatel fotoelektrilistel detektoritel on see suurusjärgus 0,1 ns. Detektori reaktsiooniaega võib defineerida ja mõõta ka mitmel muul meetodil. Näiteks ülilühikese (st praktiliselt lõpmata lühikese) valgusimpulsi mõõtmine annab detektori väljundsignaaliks lõpliku kestusega elektriimpulsi, mille kestus karakteriseerib reaktsioonaega. Reaktsiooniaja τ_0 pöördväärtus määrab piirsageduse f_0 vastavalt seosele $2\pi f_0 = 1/\tau_0$. Muutused valguse intensiivsuses, mis leiavad aset suurema sagedusega kui f_0 , ei ole praktiliselt detekteeritavad (keskmistuvad välja), sest signaali intensiivsus on "laiali määritud" ajalise aknaga τ_0 . Detektori tundlikkus kui funktsioon valguse intensiivsuse moduleerimise sagedusest määrab detektori sageduskoste. Väikestel sagedustel kuni piirsageduseni f_0 on detektori koste praktiliselt muutumatu, sageduse f_0 ümbruses ja sellest kõrgematel sagedustel kukub väga kiiresti.

ÜLESANNE 36. Laserkiire ($\lambda = 450$ nm) võimsuse mõõtmiseks suunatakse see fotodioodile. Fotodioodiga ühendatud ampermeeter näitab voolutugevust 12 mA. Kui suur on laserkiire võimsus, kui eeldada et fotodiood on ideaalne? *Vastus:* 33 mW.

12.4 Müra

Fundamentaalne ja alati eksisteeriv müra komponent on kiirguse korpuskulaarsest loomusest tingitud müra (haavelmüra), mis avaldub eelkõige nõrkade (ühe footoni tasemel registreeritavate) signaalide korral. Nagu jaotises 2.2.3 selgus, on sellise

Joonis 12.1. Levinud fotodioodide tüüpilised tundlikkuse spektraalsõltuvused. Võrdluseks on toodud ka tüüpilise fotoelektronkordisti tundlikkus. Katkendjoonega on märgitud ideaalse fotoelektrilise detektori tundlikkus, mille kvantsaagis on ühtlaselt 100%.

müra amplituud võrdeline ruutjuurega signaali intensiivsusest. Samale statistikale allub ka teine oluline müra allikas, mis on seotud laengukandjate termilise generatsiooni ja rekombinatsiooniga pooljuhtides või siis elektronide termilise emissiooniga fotokatoodist.

Mõõtmistulemuse kvaliteeti ehk usaldatavust võib iseloomustada signaali tugevuse ja müra amplituudi suhtega ehk signaal-müra suhtega (tähis SNR, *Signal-to-Noise Ratio*). Näiteks selleks, et signaal oleks üldse tuvastatav, peab SNR $\gtrsim 1$ ehk siis signaali väärtus vähemalt võrreldav detektori omamüra tasemega.

Vaatleme näitena footondetektorit, mille kõik mürakomponendid on kirjeldatavad Poissoni statistikaga. Detektori väljundsignaali (impulssi sekundis) annab panuse nii uuritavast kiirgusest tingitud signaal *S* kui ka detektori pimesignaal *D* (joon. 12.2). Olgu signaali kogumise aeg Δt . Arvestades, et erinevad müra komponendid on üksteisest sõltumatud, saame SNR jaoks järgmise avaldise:

$$SNR = \frac{S\Delta t}{\sqrt{(S+D)\Delta t}} = \frac{S}{\sqrt{S+D}} \times \sqrt{\Delta t}$$

Signaal *S* on seotud valguse intensiivsusega *I* (footonit/sekundis) läbi detektori kvantsaagise η : *S* = η *I*, nii et kokkuvõttes

$$SNR = \frac{\eta I \sqrt{\Delta t}}{\sqrt{\eta I + D}}.$$

Saadud avaldisest võib teha järgmised järeldused:

- 1. Et vähendada müra suhtelist ulatust n korda, tuleb signaali kogumise aega suurendada n^2 korda.
- 2. Tugevate signaalide mõõtmisel (st $S \gg D$) on SNR $\approx \sqrt{\eta I \Delta t}$, seega spektri kvaliteeti mõjutab peamiselt vaid detektori kvantsaagis.
- 3. Ülinõrkade signaalide mõõtmisel (st $S \ll D$) on SNR $\approx \eta I \sqrt{\Delta t} / \sqrt{D}$, st spektri kvaliteeti mõjutab oluliselt ka detektori pimesignaali tase. Sel juhul võib tarvilik olla detektori jahutamine pimesignaali allasurumiseks.

Näiteks joonisel 12.1 on näha, et tüüpilise fotoelektronkordisti kvantsaagis on hulga väiksem võrreldes fotodioodiga. Ometigi piisavalt nõrku signaale on fotoelektronkordistiga palju lihtsam mõõta, sest sisemise võimenduse tõttu on fotovool hulga tugevam ja mürast selgemalt eristuv.

ÜLESANNE 37. Uuritava kiirguse blokeerimisel näitab footonloenduse režiimis töötav detektor signaali tugevuseks 500 impulssi sekundis. Kui nõrka valgussignaali (footonit sekundis) on võimalik detekteerida, kui signaali kogumise aeg on (a) 1 s; (b) 10 s? Detektori kvantsaagis on 30%.

12.5 Vaakumfotoelement ja fotoelektronkordisti

Vaakumfotoelement (VFE) koosneb õhust tühjaks pumbatud hermeetilisest klaaskolvist, mille sisse on paigutatud fotokatood ja anood. Fotokatoodile langev küllalt suure energiaga valguskvant võib sellest teatud tõenäosusega välja lüüa elektroni: ilmneb väline fotoefekt. Katoodile on antud anoodi suhtes negatiivne potentsiaal, nii et elektriväli suunab elektroni anoodile. Kui elektroodide potentsiaalide vahe on küllalt suur, siis kõik fotoelektronid jõuavad anoodile (küllastusrežiim) ja välisahelas

Joonis 12.2. Fotoelektronkordistiga nõrga signaali mõõtmise simulatsioon. *S*: mõõdetavast valgusest tingitud signaal, *D*: pimesignaal, *N*: müra (ruutkeskmine) amplituud.

registreeritakse pealelangeva valguse intensiivsusega (footonite arvuga) võrdelist voolu.

Nõrkade valgussignaalide poolt tekitatud fotoelektronide voolu on elektrilise müra taustal keeruline mõõta, seetõttu rakendatakse VFE-d spektroskoopias harva. VFE edasiarendus on fotoelektronkordisti (FEK), kus toimub fotoelektronide voolu võimendamine elektronide sekundaarse emissiooni kaudu. FEK-i põhimõtteskeem on toodud joonisel 12.3. Lisaks fotokatoodile ja anoodile eksisteerib FEK-is hulk täiendavaid elektroode, dünoode, mis moodustavad elektronkordisti. Fotoelektron suunatakse esimesele dünoodile. Elektroodide vahele on rakendatud kiirendav pinge suurusjärgus 100 V. Sellise potentsiaalide vahe läbimisel saab elektron piisava energia, et dünoodi pinnaga põrkudes lüüa välja mitu sekundaarset elektroni. Viimaseid kiirendatakse elektriväljas kuni nad põrkuvad järgmise dünoodiga jne. Sel viisil tekib elektronide laviinpaljunemine. Anoodil saadakse iga fotoelektroni kohta vooluimpulss, milles elektronide arv on δ^N , kus N on dünoodide arv ja δ on iga primaa-

Joonis 12.3. Fotoelektronkordisti põhimõtteskeem. Fotokatoodi, anoodi ja dünoodide kuju ja paigutus reaalses elektronkordistis on märksa keerulisem ja sõltub kordisti tüübist.

relektroni poolt tekitatav sekundaarsete elektronide arv. Tüüpiliselt $N \sim 10$, $\delta \sim 4$, seega võimendus on $\sim 10^6$. Saadava vooluimpulsi kestus on mõne ns suurusjärgus (kõik sekundaarelektronid ei pruugi jõuda anoodile võrdse aja jooksul). Seega, mõõtes signaale tugevusega $\lesssim 10^7$ footonit/s, on võimalik neid vooluimpulsse üksteisest eristada ja seeläbi detekteerida üksikuid footoneid. Selline footonloenduse režiim, kus detektori väljundisse ühendatud elektroonika loendab fotoelektronide üksikuid vooluimpulsse, ongi kõige levinum FEK-i kasutamisel nõrkade signaalide registreerimiseks.

Valguse puudumisel on siiski võimalik, et katoodil või dünoodidel genereeritakse elektronid soojuslike fluktuatsioonide mõjul. Kui elektron tekib dünoodil, siis ta läbib ainult osa võimendusteest ja tekitab väljundis suhteliselt nõrga impulsi. Fotokatoodilt alguse saanud impulsside väljaselekteerimiseks kasutatakse diskriminaatorit, mis laseb loendurisse vaid teatud lävinivoost kõrgema amplituudiga impulsid (joon. 12.4). Pimesignaali saab veelgi alandada fotokatoodi jahutamise ja selle pindala vähendamise teel (kuni paar footonit/s). Punases ning infrapunases piirkonnas tundlikel fotokatoodidel on pimemüra reeglina hulga suurem, sest elektroni väljumistöö on väiksem ja elektronide termiline emissioon vastavalt lihtsam.

Pealelangeva kiirguse suurte intensiivsuste korral võib FEK-i kasutada ka voolu-

Joonis 12.4. Footonloenduse skeem.

režiimis. Sel juhul üksikutest footonitest tingitud impulsse ei eraldata, vaid mõõdetakse lihtsalt keskmist voolutugevust anoodil. Voolurežiimis kasutatavad FEK-id on enamasti suurema fotokatoodiga ja lubavad suuremaid voolutugevusi, kuid on ka vastavalt suurema pimesignaaliga.

Nõrkade signaalide mõõtmisel on footonloenduse režiim igas mõttes eelistatud võrreldes voolurežiimiga:

- 1. Tavaline elektrilise päritoluga müra muutub täiesti ebaoluliseks, kuna registreeritakse vaid tugevaid fotoelektronide poolt initsieeritud impulsse.
- Ülisuure võimendusega seadmetel (nagu seda on FEK) kipub võimendustegur tugevasti kõikuma, andes täiendava panuse mürasse. Kuigi see tingib impulsside amplituudide varieeruvust, ei mõjuta see praktiliselt impulsside loendamist.
- 3. Paraneb detektori reaktsiooniaeg. Kui voolurežiimis on see määratud fotoelektroni vooluimpulsi kestusega (mõned ns), siis footonloenduse korral on see kümneid

Materjal	$\lambda_{\sf p}$ (nm)	η_{\max}
Ag-O-Cs (S-1)	1100	0.4
Sb-Cs	700	22
Sb-K-Cs	680	28
Sb-Na-K-Cs (S-20)	850	21
Cs-Te	350	11
GaAs	920	30
GaAsP	720	50

Tabel 6. Mõned levinumad fotokatoodi materjalid. λ_p tähistab fotoefekti punapiiri ja η_{max} on maksimaalne kvantsaagis (%).

kordi väiksem olles määratud täpsusega, millega on võimalik registreerida vooluimpulsi saabumise ajahetke.

Fotokatoodi materjali valik sõltub spektraaldiapasoonist. Heal fotokatoodi materjalil peab olema: (1) väike elektroni väljumistöö, et fotoefekt toimuks ka nähtavas ja lähedases infrapunases diapasoonis; (2) suur neeldumiskoefitsient ja väike peegelduskoefitsient, et võimalikult suur osa pealelangevast kiirgusest neelduks katoodis; (3) ergastatud elektroni suur vaba tee pikkus, et elektron jõuaks pinnani kineetilise energiaga, millest piisab pinnal eksisteeriva potentsiaalibarjääri ületamiseks. Selliseid tingimusi rahuldavad valdavalt mitmesugused pooljuhtmaterjalid (tabel 6). Metallid ja dielektrikud ei ole sobilikud, kuna esimestel on kõrge peegelduskoefitsient, teised on aga nähtavas piirkonnas väikese neelamisvõimega. Suurtel lainepikkustel on kvantsaagis piiratud fotoefekti punapiiriga: footoni energia peab ületama elektroni väljumistööd. Lühikeste lainepikkuste puhul seab piiri sisenemisakna tegemiseks kasutatava klaasi läbilaskvus. Kõrgekvaliteedilisest kvartsklaasist aknaga on võimalik seda piiri nihutada kuni 160 nm-ni, spetsiaalsete materjalidega (LiF) aga kuni 105 nm-ni. Tööpiirkonnas jääb FEK-i kvantsaagis tüüpiliselt vahemikku 10...30%.

12.6 Fotodiood ja laviinfotodiood

Fotodioodi töö põhineb pn-siirdel ja protsess toimib mõneti vastupidiselt sellele, mis toimub valgusdioodis (joon. 9.9). Kui pooljuhile langeva valguskvandi energia ületab

keeluvööndi laiust, toimub suure tõenäosusega footoni neeldumine ja üks elektron valentstsoonist siirdub juhtivustsooni (tekib elektron-auk paar). pn-siirde tugevas elektriväljas erinimelised laengukandjad eralduvad ja tekitavad täiendava voolu läbi välisahela.

Fotodioodi võib tööle lülitada kahes erinevas režiimis. Fotogalvaanilises režiimis on fotodiood eelpingestamata. Fotogenereeritud laengukandjate tõttu sisemine potentsiaalibarjäär pn-siirdel alaneb ja dioodi väljundklemmidel tekib potentsiaalide vahe, st seade muutub elektromotoorjõu allikaks. Selles režiimis käitub fotodiood sisuliselt nagu päikesepatarei. Fotojuhtivas režiimis on dioodile rakendatud vastupinge. Vastupinge korral läbib pn-siiret teatavasti ainult nõrk küllastusvool. Siirde valgustamisel lisandub sellele fotogenereeritud laengukandjate vool, mis on proportsionaalne kiirguse intensiivsusega. Selles režiimis on fotodioodi reaktsioonikiirus, tundlikkus ja dünaamiline diapasoon paremad kui fotogalvaanilises režiimis, sest kõrge vastupinge tingimustes on siirdeala laius märksa suurem (rohkem footoneid neeldub siirdealas) ja elektriväli tugevam (laengukandjate kiirused on suuremad). Seevastu eksisteerib nullist erinev pimesignaal ning sellest tulenev pimemüra.

Kuigi fotodioodi kvantsaagis ületab tunduvalt FEKi oma, ei saa temaga sisemise võimenduse puudumise tõttu siiski detekteerida väga nõrku signaale ($\leq 10^2$ footonit/s). Laviinfotodioodis rakendatakse nii tugevaid elektrivälju, et saavutatakse sekundaarsete laengukandjate teke põrkeionisatsiooni tulemusena. Need sekundaarsed laengukandjad kiirenevad omakorda elektriväljas ja ja tingivad põrgete käigus laengukandjate edasise paljunemise (laviini). Kui vähendada ka dioodi pindala, et alla suuruda elektrilist müra, on võimalik saavutada hulga parem piirtundlikkus võrreldes tavaliste fotodioodidega. Kuigi laviinfotodioodi võimendustegur on suhteliselt väike (~100) võrreldes FEK-iga, on laviinfotodioode võimalik juba rakendada footonloendusrežiimis.

Kõige levinum pooljuhtmaterjal fotodioodide valmistamisel on räni, mille keelutsooni laius on 1,12 eV, seega võimaldab selline fotodiood detekteerida kiirgust, mille lainepikkus jääb alla 1,1 µm (seda demonstreerib ka tundlikkuse sõltuvus lainepikkusest joonisel 12.1). Sama kehtib ka kõigi muude ränipõhiste sisemise fotoefektiga detektorite (nt CCD) kohta. Seevastu infrapunases diapasoonis on sobilikud pooljuhtmaterjalid Ge ja $\ln_x Ga_{1-x}As$, mis lubavad registreerida kiirgust spektraalvahemikus ligikaudu 800...1700 nm.

12.7 CCD sensor

CCD e. laengusidestusseade (*Charge-Coupled Device*) kujutab endast integraallülitusena realiseeritud mikromõõdus pooljuht-sensorelementide regulaarset rivi või maatriksit. Erinevalt tavalisest fotodioodist vms hetksignaali väljastavast kiirgusdetektorist omab iga CCD element elektrilist mahtuvust ja on suuteline eksponeerimise ajal valgusenergiat akumuleerima elektrilaengu kujul. Laengusidestuse mõiste tuleneb kujutise mahalugemise printsiibist: sobivate pingeimpulsside rakendamisega õnnestub kogunenud laengud väga väikeste kadude ja moonutustega ümber tõsta ühelt elemendilt teisele ja sel viisil kogu kujutis piksel-haaval registreerida.³⁶

CCD valgustundlikuks rakuks on põhimõtteliselt fotodioodi ja kondensaatori kombinatsioon, mis on implementeeritud nn MOS (*Metal Oxide Semiconductor*) tehnoloogial baasil. Sellise fotoraku üks lihtsamaid konstruktsioone on kujutatud joonisel 12.5. p-tüüpi räni (Si) alusele on kasvatatud õhuke (<100 nm paksune) SiO₂ isolaatorkiht ja selle peale läbipaistev polüräni elektrood (paisuelektrood). Kui rakendada paisuelektroodile positiivne potentsiaal, tõrjutakse dielektrikukihi lähedal viibivad enamuslaengukandjad (augud) eemale ja moodustub laengukandjate vaegkiht. Kui nüüd selles piirkonnas neeldub footon, siis tekkinud elektron ja auk eraldatakse üksteisest vaegkihis eksisteeriva elektrivälja toimel. Elektronid kogunevad dielektriku pinnale. Kuni teatud elektrilaengu koguseni (mille määrab süsteemi elektrimahtuvus ning rakendatud pinge) on akumuleerunud laengu suurus proportsionaalne neeldunud kiirgusdoosiga.

CCD elementidesse kogunenud laengute väljalugemine toimub ükshaaval. Kõik ühes veerus paiknevad elemendid on laenguliselt sidestatud, st on võimalik üsna väikeste kadudega tõsta akumuleerunud elektrilaeng ühelt elemendilt teisele. Sellise ülekande teostamiseks on iga MOS elemendiga ühendatud mitu elektroodi. Laenguülekanne teostatakse mitme-etapiliselt, elektroode vaheldumisi sobivalt pingestades, nii et laengupakett (mis on igal hetkel lokaliseeritud potentsiaaliaugus) valgub järk-järgult ühest MOS elemendist teise. Seda protsessi illustreerib joonis

³⁶CCD tehnoloogia arenes välja vajadusest asendada klassikalises videokaameras kasutatav elektronkiirega skaneerimisel põhinev kujutise registreerimise seade (vidikon) ainuüksi tahkisefüüsikal baseeruva kompaktsema, vähem energiat tarbiva ja väiksematel pingetel opereeriva maatriksdetektoriga. Teiseks CCD arengustiimuliks oli digitaalmälude arendamine, aga selles vallas ei osutunud CCD konkurentsivõimeliseks.

Joonis 12.5. MOS kondensaator.

12.6.

Terve CCD kujutise väljalugemine toimub nihkeregistri põhimõttel: alguses nihutatakse kõik read ühe võrra allapoole. Viimases reas olevad laengud asetatakse horisontaalsesse nihkeregistrisse ((joon. 12.7)), kust toimub laengute järjestikune väljalugemine, võimendamine ja digiteerimine. Protsessi korratakse kuni kõik read on maha loetud.

Erinevalt tavatarbijaile suunatud CCD-dest on teadusrakendusteks kasutatavais CCD-des elementide arv võrdlemisi väike (kuni mõni tuhat reas), seevastu pildielemendid on suhteliselt suured (kuni mõnikümmend mikromeetrit), sest sellega saavutatakse suurem dünaamiline diapasoon ja signaal-müra suhe. Räni fotodiood küllastub umbes 1000 elektroniga iga ruutmikroni kohta, seega näiteks $10 \times 10 \,\mu\text{m}^2$ piksli suurusega õnnestub ühe ekspositsiooniga koguda ~ 10^5 neeldunud footoni signaal.

CCD sensori signaalis on lisaks valguse kvantloomusest tulenevale paratamatule haavelmürale veel vähemalt kaks põhilist mürakomponenti. Esiteks, elektronaukpaare sünnib CCD elementides ka termilise agitatsiooni toimel (nii nagu mistahes pooljuhtseadises). Seda nimetame termiliseks müraks. Tavatemperatuuridel tingib see (vähemalt spektroskoopilisi rakendusi silmas pidades) märkimisväärse pimesignaali ja vastava mürataseme, kuid detektori jahutamisega on võimalik see probleem praktiliselt annulleerida. Teaduslikud CCD kaamerad lubavad sageli sensori jahutada –100 ℃ juurde, mis viib termilise generatsiooni tempo väiksemaks kui 0,001 elektroni sekundis (pikseli kohta), mis on juba tühine võrreldes tüüpiliste spektroskoopiliste signaalidega. Tõsisem müra allikas on väljalugemismüra. Kuigi korralikel CCD sensoritel on see viidud juba väga väikeseks (alla 5 elektroni), ta-

Joonis 12.6. Laenguülekande realiseerimine CCD elementide vahel. Joonis (a) kujutab kolmefaasilist elektroodide süsteemi, joonis (b) aga kirjeldab laengupakettide liikumist muutlikus potentsiaaliväljas, mis saavutatakse nende elektroodide järkjärgulisel sobival pingestamisel.

kistab see siiski ülinõrkade signaalide mõõtmist, sh üksikfootonite registreerimist. Tänapäevaks eksisteerib juba kaks CCD kaamera tüüpi, mis suudavad üksikuid footoneid siiski registreerida — EMCCD ja ICCD. Mõlemad kasutavad fotoelektronkordistamise ideed, kuid täiesti erineval viisil.

Joonis 12.7. CCD kujutise väljalugemine nihkeregistri põhimõttel.

EMCCD (*Electron Multiplying CCD*) puhul lisatakse vahetult peale nihkeregistrit (enne laengu väljalugemist) täiendav võimendusregister, kus toimub primaarelektronide paljundamine põrkeionisatsiooni mehhanismiga (samal põhimõttel nagu laviinfotodioodis). Summaarne võimendustegur võib küündida tuhendetesse. Järelikult iga fotoelektron annab väljundis signaali, mis on kindlalt suurem väljalugemismürast. Selline CCD lugemise režiim on otstarbekas peamiselt vaid juhul kui signaalid on tõesti ülinõrgad, st ekspositsiooni vältel koguneb igasse pikslisse kõige rohkem üks fotoelektron, nii et signaali mahalugemist on võimalik teostada footonloenduse põhimõttel, st sobiva lävitasemega võrdlemisel saab otsustada, kas piksel sisaldas fotoelektroni või mitte. Suurema signaali puhul elektronkordistus pigem lisab täiendavat müra, sest kordistusprotsess ise on teatud määral stohhastiline ja kindla suurusega võimendustegurit ei ole võimalik garanteerida. Lisaks väheneb ka sensori dünaamiline ulatus.

ICCD (*Intensified CCD*) kaameras kasutatakse harilikku CCD maatriksit, kuid selle ette asetatakse kujutist võimendav süsteem, mis koosneb fotokatoodist, mikrokanalplaadist ja luminestseeruvast ekraanist. Mikrokanalplaat (MKP) koosneb peenikeste paralleelsete kanalite (kapillaaride) kimbust (joon. 12.8), kus iga kanal funktsioneerib nagu elektronkordisti. MKP ette asetatud fotokatood emiteerib valguse toimel elektrone, mis peale elektriväljas kiirendamist kanali seintega põrkudes tekitavad sekundaarseid elektrone ja algatavad sellega elektronide laviini. Kanalist väljuv elektronide kimp suunatakse luminestseeruvale ekraanile, mis tekitab sisendsignaali võimendatud kujutise. Viimane juhitakse lõpuks fiibrite kimbuga CCD maatriksile. Sellisel viisil saavutatakse jällegi olukord, kus iga fotoelektron indutseerib CCD pikslis laengu,

Joonis 12.8. Mikrokanalplaadi põhimõtteskeem.

mis kindlalt ületab CCD väljalugemismüra. Lisaks sellele toimib MKP kui ülikiire elektrooniline katik, mida saab rakendatud pinge muutmisega avada või sulgeda. See loob väga mugava võimaluse aeglahutusega spektrite mõõtmiseks. Näiteks pärast proovi ergastamist laserimpulsiga saab määrata nanosekundite täpsusega, millisel ajavahemikul eksponeeritakse CCD-d. Ei elektrooniliselt ega mehaanilise katikuga ei ole võimalik CCD eksponeerimist nii kiiresti kontrollida.

Selle teema lõpetuseks märgime, et eksisteerib veel teinegi tahkisefüüsikaline maatrikssensori tehnoloogia, CMOS (*Complementary Metal Oxide Semiconductor*), kus laenguülekande kontseptsiooni ei rakendata, vaid iga piksel ise sisaldab elektroonikat, mis muundab fotolaengu pingeks. Kõik pikslid on individuaalselt adresseeritavad (nagu arvuti muutmälu) ja kujutis digitaliseeritakse ühe või mitme A/D-muundaja abiga. Kuigi tavafotograafias on CMOS väga populaarne, siis spektroskoopias eelistatakse CCD sensoreid, mille pikslid on ühtlasema tundlikkusega ja suurema dünaamilise ulatusega.

EESTIKEELNE KIRJANDUS

- [1] I. Saveljev, *Füüsika üldkursus*, 3. köide, Tallinn, 1979.
- [2] I. Jaek, Optilise kiirguse teke aines, Tartu, 1990.

INGLISEKEELNE KIRJANDUS

- [4] J. Garcia Solé, L. E. Bausá, D. Jaque, *An Introduction to the Optical Spectroscopy of Inorganic Solids*, Wiley, 2004.
- [5] W. Demtröder, *Laser spectroscopy: basic concepts and instrumentation*, Springer, 1996.
- [6] E. Hecht, Optics, Addison-Wesley, 1987.
- [7] E. Longhurst, *Geometrical and Physical Optics*, Longman Scientific & Technical, 1990.
- [8] C. F. Klingshirn, Semiconductor Optics, Springer, 1995.

ABIMATERJALID INTERNETIS

- [9] V. Kiisk, Maxwelli võrrandid, https://kodu.ut.ee/ ~kiisk/maxwell.pdf
- [10] J. Kikas, Materjalimaailm, http://www.physic.ut.ee/materjalimaailm/ Kirjed/Luminofoorid.htm
- [11] I. Leito, *Spektroskoopilised analüüsimeetodid*, http://tera.chem.ut.ee/ ~ivo/Spec/.
- [12] J. Krustok, *Pooljuhtmaterjalide optiline spektroskoopia*, http:// staff.ttu.ee/~krustok/teaching.htm.
- [13] S. Flyckt, C. Marmonier, *Photomultiplier tubes: principles and applications*, http://www.jhu.edu/iic/Photomultipliers.pdf.

- [14] J. Lembra, *Bohri teooria*, http://teemant.physic.ut.ee/orb.aw/class=file/ action=preview/id=3611/Bohri+teooria.pdf
- [15] Hamamatsu Photonics, Photomultiplier tubes: basics and applications, http://sales.hamamatsu.com/assets/applications/ETD/ pmt_handbook_complete.pdf
- [16] *Light sources for scientific applications*, firma LOT Quantum Design kodulehekülg, https://lot-qd.de/.
- [17] NIST Atomic Spectra Database, http://physics.nist.gov/cgi-bin/ AtData/main_asd.
- [18] E. Nõmmiste, M. Kirm, Uuringud sünkrotronkiirgusega, http:// www.fyysika.ee/doc/akad_92_sykro.pdf.

LISAD

A Kaootilise kiirguse kirjeldamine

Klassikalise ettekujutuse kohaselt moodustub kiirgava objekti (nt hõõguva või luminestseeruva keha) poolt emiteeritav elektromagnetlaine suure hulga kiirgavate aatomite individuaalsete lainejadade liitumise tulemusena. Elektrivektor, jälgituna konkreetses ruumipunktis, avaldub niisiis summana

$$\boldsymbol{E}(t) = \sum_{i} \boldsymbol{E}_{i}(t), \tag{A1}$$

kus $E_i(t)$ on *i*-nda aatomi panus väljatugevusse. Tavaliste kiirgusallikate korral on aatomite kiirgusaktid üksteisest täiesti sõltumatud. Individuaalsed lainejadad $E_i(t)$ on juhuslikult muutuvate algfaasidega (võnkefaas võib hüppeliselt muutuda näiteks pärast põrget teise aatomiga), samuti kahaneb laine amplituud aja jooksul energia kaotamise tõttu. Selle tulemusena ka summaarset lainet E(t) ei saa vaadelda kui lõputut siinuslainet. Karakteerset ajavahemikku Δt_c , mille vältel lainet E(t) võib pidada siinuseliseks, nimetatakse kiirguse *koherentsiajaks*. Karakteerset pikkust Δx_c , mille ulatuses valguslainet võib pidada siinuseliseks, nimetatakse vastavalt *koherentsipikkuseks*. Tavaliste valgusallikate korral $\tau_c \sim 10^{-8}$ s ja $l_c \sim 1$ m. Pikemate ajavahemike ulatuses tuleb elektrivektori muutumist valguslaines lugeda kaootiliseks.

Olgu meil antud lõpmatu lainejada E(t) (vaatleme lihtsuse mõttes lineaarselt polariseeritud kiirgust). Tekib küsimus, kuidas on selle laine energia jaotunud erineva sagedusega (lainepikkusega) komponentide vahel (st. millise värvigammaga spektri me saame, suunates selle kiirguse läbi prisma). Fourier' analüüsist on hästi teada, et vahemikus $(-\infty, \infty)$ tükati pidevat ja absoluutselt integreeruvat funktsiooni E(t)saab esitada harmooniliste võnkumiste $(\cos \omega t, \sin \omega t)$ superpositsioonina:

$$E(t) = \frac{1}{\pi} \int_0^\infty A(\omega) \cos \omega t \, d\omega + \frac{1}{\pi} \int_0^\infty B(\omega) \sin \omega t \, d\omega, \tag{A2}$$

kus kordajad $A(\omega)$ ja $B(\omega)$ on leitavad valemitega

$$A(\omega) = \int_{-\infty}^{\infty} E(t) \cos \omega t \, dt, \quad B(\omega) = \int_{-\infty}^{\infty} E(t) \sin \omega t \, dt.$$
(A3)

Valemi A2 võib alternatiivselt esitada kujul

$$E(t) = \frac{1}{\pi} \int_0^\infty C(\omega) \cos[\omega t + \phi(\omega)] \, d\omega,$$

kus $C(\omega)^2 = A(\omega)^2 + B(\omega)^2$ on amplituudide spektraalne tihedus ja $\phi(\omega) = \arctan[B(\omega)/A(\omega)]$ on algfaaside spekter. Kuna funktsioonid sin, cos on arvutusteks ebamugavad, väljendatakse avaldised A2 ja A3 enamasti eksponentkujul. Defineerime

$$E(\omega) = A(\omega) + iB(\omega) = \int_{-\infty}^{\infty} E(t)(\cos \omega t + i\sin \omega t) dt = \int_{-\infty}^{\infty} E(t)e^{i\omega t} dt,$$

kus *i* on imaginaarühik ja me oleme kasutanud Euleri valemit.³⁷ Funktsiooni $E(\omega)$ nimetatakse E(t) Fourier' teisenduseks. Ilmselt $C(\omega) = |E(\omega)|$ ja $\phi(\omega) = \arg E(\omega)$. Kuivõrd laine intensiivsus on võrdeline amplituudi ruuduga (valem 2.5), siis me võime tõlgendada suurust $C(\omega)^2 d\omega = |E(\omega)|^2 d\omega$ kui energiat, mida kannavad spektraalkomponendid, mille sagedused asuvad vahemikus $\omega \dots \omega + d\omega$.

Kaootilise kiirguse korral ei ole absoluutse integreeruvuse tingimus rahuldatud: integraali

$$E(\omega) = \int_{-T/2}^{T/2} E(t)e^{i\omega t} dt, \qquad (A4)$$

väärtus kasvab võrdeliselt \sqrt{T} -ga (sest kiirguse energia on võrdeline T-ga). Seega statsionaarses kaootilises kiirguses sisalduvate harmooniliste komponentide amplituudide jaotust võib kirjeldada funktsiooniga

$$E(\omega) = \lim_{T \to \infty} \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} E(t) e^{i\omega t} dt.$$
 (A5)

Harmooniliste komponentide algfaasid jäävad aga määramatuks. Tõepoolest, kui näiteks avaldises A4 pikendada integreerimisvahemikku kaks korda, siis saadava $E(\omega)$ faas ei pruugi omada enam mingit seost esialgse $E(\omega)$ faasiga (sest E(t) on kaootiliselt fluktueeruv funktsioon).

Statsionaarse kaootilise kiirguse *võimsusspekter* (võimsuse spektraaltihedus) on seega antud avaldisega

$$\Phi_{\mathsf{e}}(\omega) \propto |E(\omega)|^2 = \left| \lim_{T \to \infty} \frac{1}{\sqrt{T}} \int_{-T/2}^{T/2} E(t) e^{i\omega t} dt \right|^2.$$

 $^{37}\exp i\phi = \cos\phi + i\sin\phi.$

 $\Phi_{e}(\omega)d\omega$ on niisiis võimsus, mida kannavad kiirguses sisalduvad monokromaatsed komponendid, mille sagedused jäävad vahemikku $\omega \dots \omega + d\omega$.

Rakendame nüüd avaldist A5 valemiga A1 antud väljale. Kui summas A1 on kõik individuaalsed lainejadad $E_i(t)$ üksteisest sõltumatud, siis $|E(\omega)|^2$ avaldub kui keskväärtus:

$$|E(\omega)|^2 = \frac{1}{N} \sum_i |E_i(\omega)|^2, \quad E_i(\omega) = \int_{-\infty}^{\infty} E_i(t) e^{i\omega t} dt$$

Kui kõik kiirgavad aatomid on ühesugused ja viibivad ühesugustes tingimustes, siis kõik $|E_i(\omega)|^2$ on ilmselt võrdsed, seega

$$\Phi_{\mathsf{e}}(\omega) \propto |E(\omega)|^2 \propto |E_i(\omega)|^2$$

Seda tulemust kasutatakse lisas E mitmesuguste spektrijoone laienemismehhanismide analüüsimiseks, modelleerides üksiku aatomi lainejada.

B Poissoni jaotus

Analüüsime Poissoni protsessi, mida iseloomustab keskmine sündmuste arv ajaühikus μ . Tähistagu P(n; t) tõenäosust, et ajavahemiku t vältel leiab aset n sündmust. Meie eesmärk on leida avaldis P(n; t) jaoks, aga esialgu on lihtsam leida P(0; t).

Kuivõrd kahe või enama sündmuse samaaegne esinemine on kaduvväikese tõenäosusega, siis hästi väikese ajavahemiku δt vältel võib aset leida kõige rohkem üks sündmus, tõenäosusega $P(1;\delta t) = \mu dt$. Tõenäosus, et selle ajavahemiku jooksul ei toimu ühtegi sündmust, on vastavalt $P(0;\delta t) = 1 - P(1;\delta t) = 1 - \mu \delta t$. Viimase baasil saab nüüd avaldada $P(0; t + \delta t)$. Nimelt see, et ajavahemiku $t + \delta t$ jooksul ei leia aset ühtegi sündmust, eeldab, et esmalt aja t vältel ei toimu ühtegi sündmust ja seejärel ka aja δt vältel ei toimu ühtegi sündmust. Kuna sündmused on sõltumatud, siis $P(0; t + \delta t)$ on vastavate tõenäosuste korrutis:

$$P(0; t + \delta t) = P(0; t) \cdot (1 - \mu \delta t)$$

ehk

$$\frac{P(0;t+\delta t) - P(0;t)}{\delta t} = -\mu P(0;t)$$

Piiril $\delta t \rightarrow 0$ saame siit diferentsiaalvõrrandi P(0; t) jaoks:

$$\frac{dP(0;t)}{dt} = -\mu P(0;t).$$

Selle eralduvate muutujatega diferentsiaalvõrrandi saab kohe integreerida:

$$P(0;t) = Ce^{-\mu t}.$$

Piirjuhul t = 0 ilmselt kõik P(n > 0; 0) on nullid ja seega P(0; 0) = 1, millest järeldub, et integreerimiskonstant C = 1. Nii et $P(0; t) = e^{-\mu t}$.

Edasi vaatleme olukorda, kus n > 0. Mõnevõrra analoogselt eelnevaga võime avaldada tõenäosuse $P(n; t + \delta t)$:

$$P(n; t + \delta t) = P(n; t) \cdot (1 - \mu \delta t) + P(n - 1; t) \cdot \mu \delta t.$$

Esimene liige annab tõenäosuse, et kõik n sündmust toimuvad aja t jooksul ja seega ajavahemikus δt ei toimu ühtegi sündmust. Seevastu teine liige eeldab, et ajavahemikus t toimub n-1 sündmust ja viimane sündmus toimub ajavahemikus δt . Jällegi saame diferentsiaalvõrrandi P(n; t) jaoks:

$$\frac{dP(n;t)}{dt} + \mu P(n;t) = \mu P(n-1;t).$$

Seda võrrandit kohe integreerida ei saa, sest me ei tea funktsiooni P(n-1; t). Edasiseks on siiski kasulik võrrandi vasakut poolt teisendada. Nimelt, paneme tähele et

$$\frac{d}{dt}\left[e^{\mu t}P(n;t)\right] = e^{\mu t}\left[\frac{dP(n;t)}{dt} + \mu P(n;t)\right],$$

nii et diferentsiaalvõrrand omandab kuju

$$\frac{d}{dt}\left[e^{\mu t}P(n;t)\right] = \mu e^{\mu t}P(n-1;t).$$

Kuivõrd me juba teame, et $P(0; t) = e^{-\mu t}$, siis järgmisena saame avaldada P(1; t):

$$\frac{d}{dt} \left[e^{\mu t} P(1;t) \right] = \mu e^{\mu t} P(0;t) = \mu e^{\mu t} e^{-\mu t} = \mu,$$
$$e^{\mu t} P(1;t) = \mu t + C.$$

Jällegi P(1;0) = 0, nii et C = 0 ja $P(1;t) = \mu t e^{-\mu t}$. Niimoodi jätkates ja matemaatilist induktsiooni rakendades on kerge tõestada, et

$$P(n;t) = \frac{(\mu t)^n}{n!} e^{-\mu t}.$$

C Kvantmehaanika alused

C1 Sissejuhatus

Klassikalises füüsikas esineb kaks selgelt eristuvat mateeriavormi: aine koosneb osakestest ja valgus (väli) on lainetus. Mitmed 20. sajandi algul teostatud peenemad katsed viitasid aga sellele, et aine ja väli polegi sedavõrd erinevad. Selgus, et ka valgust tuleb vaadelda koosnevana jagamatutest energiakvantidest (fotoefekti ja Comptoni hajumise katsed) samas kui aineosakesed ilmutavad laineomadusi. Seega mikroobjektidel ilmneb ühteaegu kaks klassikalise füüsika seisukohalt vastandlikku omadust (laine-osakese dualism). Seda demonstreerib konkreetselt footonite korral joonis 2.9, kuid analoogne tulemus on võimalik saada ka näiteks elektronide korral difraktsioonieksperimentides (Davisson-Germeri katse). Esineb ka rida muid nähtusi, mida on võimatu selgitada klassikalise füüsika raames, näiteks radioaktiivsus, diskreetsed lainepikkused aatomite ja molekulide spektrites, diskreetsed energiatasemed aatomis (Francki-Hertzi katse), aatomi impulsimomendi diskreetsed väärtused (Stern-Gerlachi katse) jms. Klassikaline elektrodünaamika ei luba ka tuumast ja elektronidest koosneva stabiilse moodustise — aatomi — olemasolu: elektron peaks tuuma ümber tiireldes hakkama kiirgama ja lõpuks kukkuma tuumale. Kuigi mikroobjekt võib teatud tingimustel ilmutada makroskoopiliselt familiaarseid aspekte (laine, osake), on tegemist täiesti eripäraste omadustega objektiga, millele klassikalise füüsika raames otsest analoogi ei leidu. Selliste objektide adekvaatse kirjelduse annab kvantmehaanika. Paraku on viimane üks kõige raskemini omandatavaid kaasaegse füüsika teooriaid. Kvantobjektide iseäralikku loomust kirjeldavaid kvantteoreetilisi kontseptsioone ning selleks vajalikku abstraktset matemaatilist aparaati on raske seostada klassikalise füüsika kujutelmadega, mis lähtuvad vahetust kogemusest makroskoopilise maailmaga. Kvantmehaanikast täielikult "aru saada" polegi ilmselt võimalik kuna püüe seda saavutada viib mitmete seniajani lahendamata paradoksideni, nagu demonstreerib näiteks "Schrödingeri kassiks" nimetatav mõtteeksperiment. See aga ei takista kvantmehaanika praktilist rakendamist, sest kvantmehaanika prognoosid konkreetsete mõõdetavate olukordade jaoks on täielikus kooskõlas eksperimendiga.

Meie piirdume järgnevas lainemehaanika ideede esitamisega. Lainemehaanika on sobilik eeskätt aineosakeste (nagu elektron) ruumilise liikumise mitterelativistlikuks

kirjeldamiseks. Samas osakese spinni või ka footoni olekute kvantmehaaniline kirjeldus nõuab juba veidi üldisemat matemaatilist aparaati, millesse me siin ei süvene.

C2 Lainemehaanika põhimõisted ja -printsiibid

Soojuskiirguse spektri ning fotoefekti selgitamine viis oletuseni valguse korpuskulaarse olemuse kohta, mis avaldub selles, et energiavahetus kiirguse ja aine vahel toimub kindla suurusega energiaportsionite hv kaupa, kus v on valguse sagedus ja eksperimentaalselt määratavat suurust $h = 6,626 \times 10^{-34}$ J s nimetatakse Plancki konstandiks. See fundamentaalkonstant ilmutab ennast kõikides kvantteoreetilistes valemites ja karakteriseerib kvantefektide suurust. Hilisem Comptoni hajumise katse kinnitas, et valguskvandi impulsi suurus on h/λ , kus λ on kiirguse lainepikkus.

Mikroosakestega (nt elektron) kaasnevad teatud tingimustel jällegi laineaspektid, st on võimalik tuvastada interferentsi- ja difraktsiooninähtusi. Need viitavad sellele, et mikroosakese puhul ei ole üldiselt sobilik rääkida trajektoorist (ega Newtoni mehaanika seadustest), vaid osakese liikumisega kaasneb teatav laine. Analoogia põhjal footoni ja valguslainega seostas de Broglie vaba osakesega laine, mille lainepikkus on $\lambda = h/p = h/mv$, kus p, m, v on osakese impulss, mass, kiirus. Siit on näha, et piirjuhtudel (st suurte kiiruste või massiivsete osakeste korral) on mikroosakese trajektoori mõiste tõepoolest üsna hästi defineeritud, sest lainepikkus on väga väike. Selles mõttes üleminek kvantmehaanikalt klassikalisele mehaanikale on mingil määral analoogne sellega, kuidas laineoptika taandub piirjuhul kiirteoptikaks.

Niisiis mikroosakese liikumisoleku kirjeldamiseks tuleb asukoha ja kiiruse asemel kasutusele võtta lainefunktsioon $\Psi(x, y, z, t)$, milles sisaldub kogu informatsioon selle osakese liikumisoleku kohta. $\Psi(x, y, z, t)$ on üldjuhul kompleksarvulise väärtusega funktsioon. Põhjus on selles, et erinevalt klassikalisest (reaalarvulise väärtusega) lainest ei ole kvantmehaanilise lainefunktsiooni faas otseselt mõõdetav suurus, kuid on ometigi tarvilik selleks, et interferents jm laineefektid saaksid üldse aset leida. Kompleksmuutuja võimaldabki faasi-info sobival viisil kaasata.

Lainefunktsioon ei pruugi avaldada osakese kohta nii konkreetset informatsiooni nagu osakese trajektoor x(t), y(t), z(t) klassikalises mehaanikas. Lainefunktsioonist saab teada vaid seda, millised on mõõdetava füüsikalise suuruse võimalikud väärtused ja kui suure tõenäosusega üks või teine võimalik väärtus antud kvantoleku mõõtmisel realiseerub. Kulgliikumise korral pakub huvi eelkõige osakese asukoha ja kiiruse (ehk impulsi) kindlakstegemine. On üsna ilmne, et tõenäosust leidmaks osakese viibivana ajahetkel t ruumipunkti (x, y, z) ümbruses karakteriseerib lainefunktsiooni amplituud ehk moodul, täpsemalt selle ruut $|\Psi(x, y, z, t)|^2$. Selle tõttu lainefunktsiooni nimetatakse ka leiulaineks. Kiiruse tõenäosusjaotuse määramisega on olukord keerulisem. Nagu eelnevas selgus, kindla kiirusega liikuvale osakesele vastab tasalaine kindla lainepikkusega vastavalt de Broglie seosele. Selline tasalaine on kõikjal ruumis võrdse amplituudiga, seega osakese ruumiline asukoht sellises kvantolekus on täiesti määramatu. Osakese meelevaldset olekut $\Psi(x, y, z, t)$ võib aga vaadelda kui lainepaketti, mille ülesehitamisel on kasutatud sobiva kaaluga kõikvõimalike lainepikkustega tasalaineid.³⁸ Järelikult tõenäosuse, et osakese kiiruse mõõtmisel saadakse teatud väärtus, määrab vastava lainepikkusega tasalainelise komponendi osakaal osakese lainefunktsioonis. Kui osakese asukoht on väga täpselt määratud, siis on lainepakett ruumiliselt kitsas, järelikult selle realiseerimiseks vajalik kiiruste (lainepikkuste) jaotus on väga lai. Seega viib see arutelu kohe tuntud Heisenbergi määramatuse seoseni, mille kohaselt täpne koordinaat ja kiirus (impulss) ei olegi mikroosakese jaoks samaaegselt määratletavad:

 $\Delta x \Delta p_x \gtrsim \hbar.$

Määramatuse seos ilmestab seda kuidas osakese- ja lainemudel on läbi põimunud — osakese piirjuhul on asukoht täpselt teada ($\Delta x = 0$) aga lainepikkus on täiesti defineerimata ($\Delta p_x = \infty$), seevastu lainel on hästi defineeritud lainepikkus ($\Delta p_x = 0$) kuid asukoht on täiesti määramatu ($\Delta x = \infty$). Neid määramatusi siduv Plancki konstant \hbar on aga ise nii väike, et objektide duaalne loomus tuleb ilmsiks alles atomaarsete ja subatomaarsete osakeste ja süsteemide korral.

Mikroosakese koordinaadi ja kiiruse samaaegse determineerimine võimatust võib illustreerida järgmise näitega. Osakese asukoha määramiseks tuleks sellele suunata valguskiir ja registreerida osakeselt hajunud valgust. Seda saab teha näiteks mikroskoobi all. On hästi teada, et mikroskoobi ruumiline lahutusvõime on kasutatava lainepikkuse suurusjärgus, täpsemalt $\Delta x \sim \lambda / \sin \alpha$, kus α on maksimaalne nurk, mille all valgus siseneb objektiivi. Järelikult tuleb täpse tulemuse saamiseks

³⁸Sellist tõlgendust toetab ka fakt, et lainepaketi edasiliikumise kiirus (st laine rühmakiirus) tuleb täpselt võrdne klassikalise osakese kiirusega:

$$v_{g} = \frac{d\omega}{dk} = \frac{dE}{dp} = \frac{p}{m} = v$$

sest osakese kineetiline energia $E = p^2/2m$ ning $E = \hbar \omega$ ja $p = \hbar k$.

kasutada lühema lainepikkusega kiirgust. Kuid kiirgus koosneb kvantidest, mille impulss $p = h/\lambda$ on seda suurem mida väiksem on lainepikkus. Järelikult, mida lühema lainepikkusega kiirgust kasutada, seda suurema määramatuse omandab vaadeldava osakese kiirus peale kiirguskvandi hajutamist. Põhimõtteliselt saaks osakese impulsi muutuse välja arvutada, kui footoni pealelangemise ja hajumise suunad oleks täpselt teada. Tegelikult on teada vaid see, et hajunud footon siseneb mikroskoopi läbi objektiivi, seega footoni (ja järelikult ka uuritava mikroosakese) impulsi määramatus on $\Delta p_x \sim p \sin \alpha = h \sin \alpha / \lambda$. Kokkuvõttes saamegi $\Delta x \Delta p_x \sim h$.

Veelgi lihtsam määramatuse relatsiooni illustreeriv fenomen on difraktsiooni tekkimine valguse levikul läbi väikese ava. Enne avani jõudmist on footonil ava normaaliga risti olevas sihis kindel impulss $p_x = 0$, see-eest osakese koordinaat samas sihis on täiesti tundmatu. Peale ava läbimist omandab osakese koordinaadi määramatus Δx lõpliku, ava laiusega antud väärtuse, see-eest Δp_x muutub nullist erinevaks, st footon kaldub kõrvale esialgsest liikumissuunast, kooskõlas laineoptika seadustega.

Toodud näidetest võib jääda mulje, nagu oleks osakesel täpne asukoht ja kiirus tegelikult olemas, lihtsalt vaatlejal puudub võimalus nende teadasaamiseks. Sel juhul kirjeldaks lainefunktsioon lihtsalt vaatleja teadmiste piiratust. Põhimõtteliselt on mõeldav, et eksisteerivad mingid nn varjatud parameetrid, mis määravad osakese tõelise koordinaadi ja kiiruse, kuid mille väärtused ei ole eksperimentaalselt kontrollitavad ja jätavad mulje juhuslikkusest katsetulemustes. Sellise idee baasil elegantse teooria konstrueerimine on siiski raskendatud, sest see ei anna loomulikku selgitust interferentsnähtuste ja põimseisundite esinemisele kvantsüsteemides; sellised nähtused viitavad mingi lainefenomeni ja mittelokaalse vastasmõju olemasolule. Seetõttu kvantmehaanika ortodoksse ehk Kopenhaageni interpretatsiooni järgi on kvantsüsteemides avalduv juhuslikkus tõeline ja elektron "ise ka ei tea" oma asukohta ega kiirust kuni neid ei ole mõõdetud. Teisisõnu, enne mõõtmisakti viibib kvantsüsteem üldiselt superpositsioonilises olekus, mõõtmise hetkel toimub aga lainefunktsiooni redutseerumine ehk "kollaps" ja mõõdetav suurus (nt koordinaat) omandab täpse väärtuse. Sellest hoolimata leidub kvantmehaanika alternatiivsetel tõlgendustel kontseptuaalseid eeliseid; nad ei vaja näiteks kvantfüüsika väliseid "vaatlejaid", kes kutsuksid esile lainefunktsiooni kollapsi.

Lainefunktsioon kirjeldab vaid osakese olekut antud hetkel. Et ennustada osakese edasist käitumist, on tarvis teada liikumisseadust (lainevõrrandit), mis determineeriks lainefunktsiooni evolutsiooni etteantud tingimustes. Lainevõrrand, nii nagu kõik dünaamikat kirjeldavad seadused füüsikas, peab olema teatav diferentsiaalvõrrand. Selle avastas Schrödinger:

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2\Psi}{\partial x^2} + \frac{\partial^2\Psi}{\partial y^2} + \frac{\partial^2\Psi}{\partial z^2}\right) + U(x, y, z, t)\Psi$$

U(x, y, z, t) on osakese potentsiaalne energia sõltuvana asukohast ruumis ja ajast. See on määratud osakesele mõjuvate jõuväljadega (elektriväli, magnetväli, gravitatsiooniväli vm). Võrrandi paremal poolel olev operatsioonide kogumik (mis on rakendatud funktsioonile Ψ) tähistatakse enamasti sümboliga \hat{H} (mida nimetatakse hamiltoniaaniks), nii et võrrandi võib üles kirjutada veidi elegantsemalt:

$$i\hbar\frac{\partial\Psi}{\partial t} = \hat{H}\Psi$$

Teades lainefunktsiooni (osakese olekut) alghetkel, võimaldab Schrödingeri võrrand arvutada lainefunktsiooni (osakese oleku) suvalisel ajahetkel. Seega Schrödingeri võrrand täidab lainemehaanikas sama rolli mis Newtoni II seadus ($m\ddot{x} = F$) klassikalises mehaanikas. Schrödingeri võrrand on postulatiivne, seda ei ole võimalik millestki tuletada (vähemalt mitte kvantmehaanika enese raames), kuigi teatava heuristilise mõttekäigu varal on võimalik selle võrrandi kuju "ära mõistatada".

Schrödingeri võrrandi "tuletamine" on võrdlemisi lihtne. Osakese koguenergia koosneb potentsiaalsest ja kineetilisest energiast: $E = U + p^2/2m$. Samas E ja p on täpselt defineeritud vaid vaba osakese jaoks: kooskõlas eksperimendiga kirjeldab vaba osakest de Broglie laine $\Psi \sim \exp(ikx - i\omega t)$, kus $\hbar\omega = E$ ja $\hbar k = p$. Suurused ω ja k^2 saame leida vaba osakese lainefunktsioonist diferentseerimise teel:

$$\omega \Psi = i \frac{\partial \Psi}{\partial t}, \quad k^2 \Psi = -\frac{\partial^2 \Psi}{\partial x^2}.$$

Peale asendamist saame

$$i\hbar\frac{\partial\Psi}{\partial t} = U\Psi - \frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2},$$

mis ongi Schrödingeri võrrand ühemõõtmelisel juhul.

Mingisuguse ettekujutuse osakese ja laine vahekorrast võiks anda tunnelleerumise näide joonisel C1. Sellise osakese olekut, mille asukoht ruumis on "enam-vähem" teada, kirjeldab kvantmehaaniliselt lainefunktsioon, mis on lokaliseeritud selle osakese asukoha ümbruses. Osakese võib leida viibivana kõige tõenäolisemalt (kuid mitte tingimata) selles ruumipunktis, kus asub selle lainepaketi maksimum. Liikugu selline osake potentsiaalibarjääri suunas. Potentsiaalibarjääri all mõistame siin ruumipiirkonda (jõuvälja), kus osakese potentsiaalne energia on negatiivne, st potentsiaalibarjääri kõrgus ületab osakese koguenergia väärtust. Klassikaliselt tähendab see seda, et osake põrkub barjäärilt tagasi (nagu vastu seina visatud pall). Kvantmehaanika lubab siiski osakesel mingi tõenäosusega "tunnelleeruda" läbi barjääri. See tähendab, et peale barjäärini jõudmist algne lainepakett lahkneb kahte ossa, millest üks (mis liigub tagasi) kirjeldab osakese peegeldumist barjäärilt ja teine (mis jätkab edasiliikumist) kirjeldab barjääri läbimist. See ei tähenda, et osake ise laguneks kaheks, vaid vastavate lainepakettide amplituudid kirjeldavad barjääri läbimise või barjäärilt peegeldumise tõenäosust. Schrödingeri lainevõrrandi abil saab peegeldunud ja läbinud laine täpselt välja arvutada. Kui vastavat katset identsetel tingimustel

Joonis C1. Osakese tunnelleerumine läbi potentsiaalibarjääri. Rasvane must kõver kirjeldab potentsiaalse energia sõltuvust ruumikoordinaadist, punast värvi ostsilleerivad kõverad illustreerivad osakese lainefunktsiooni (nooled näitavad lainepaketi liikumise suunda).

palju kordi korrata, siis mõõtmistulemuste statistika koondubki lõpuks nendeks arvutatud tõenäosusteks. Konkreetse katse tulemust (et kas osake läheb seinast läbi või mitte) ei suuda aga kvantmehaanika ennustada.

Märgime eelnevale täienduseks, et lainefunktsiooni mõiste võimaldab kirjeldada vaid osakeste kulgliikumist (ruumikoordinaadid *x*, *y*, *z*). Kuid mikroosakesel võib leiduda ka muid vabadusastmeid nagu spinn või siis footonite puhul polarisatsioon. Kui lainefunktsiooni puhul saab rääkida tõenäosusest osakese leidmiseks etteantud ruumipunktis, siis näiteks polarisatsiooni puhul tuleks rääkida tõenäosusest, et footoni võib leida etteantud polarisatsiooniseisundis. Oletagem konkreetsuse mõttes, et lineaarselt polariseeritud valguslaine langeb polarisaatorile, mis laseb läbi vaid vertikaalselt polariseeritud valgust. Kui pealelangeva valguse polarisatsioonitasand moodustab vertikaaliga nurga ϕ , siis teatavasti polarisaatorit läbinud valguse suhteline intensiivsus on $\cos(\phi)^2$. Footonite tasandil tähendab see, et keskmiselt vaid $\cos(\phi)^2$ osa footonitest läbib polarisaatori, ülejäänud neelduvad selles. Nimetagem vertikaalselt polariseeritud footonit viibivana olekus V, horisontaalselt polariseeritud footonit aga olekus H. Niisiis võib väita, et polarisaatorile langeva footoni võib tõenäosusega $\cos(\phi)^2$ leida viibivana olekus V ning tõenäosusega $1 - \cos(\phi)^2 = \sin(\phi)^2$ olekus H. Polarisaatorit võib vaadelda kui polarisatsiooni mõõtmise seadet, kus mõõtmisakti võimalikud tulemused on vaid V ja H (samuti nagu osakese koordinaadi mõõtmisel leitakse osake viibivana ühes kindlas ruumipunktis mitte aga mitmes ruumipunktis korraga). Algselt nurga ϕ all polariseeritud footonit tuleb aga lugeda viibivana superpositsioonilises olekus $\cos(\phi)V + \sin(\phi)H$, mis mõõtmisakti hetkel "kollapseerub" vastava tõenäosusega kas olekusse H või olekusse V. Ringpolariseeritud valguse puhul läbiks footon polarisaatori täpselt 50%-lise tõenäosusega. Sellist footoni olekut võib esitada superpositsioonina $(1/\sqrt{2})V \pm (i/\sqrt{2})H$, kus imaginaarühik *i* tekitab 90° faasinihke ristuvate komponentide vahel nagu tarvilik ringpolariseerituse tekitamiseks. Kirjeldatud matemaatilise formuleeringu näiline erinevus lainemehaanikast on tingitud asjaolust, et ruumikoordinaadi võimalikud väärtused (mõõtmistulemused) moodustavad kontiinumi, polarisatsiooni korral on aga diskreetsed.

C3 Osake potentsiaaliaugus

Erilist huvi pakub osakese liikumine statsionaarsetes tingimustes (kus *U* ei sõltu ajast). Selle näiteks on elektroni liikumine aatomituuma mõjupiirkonnas. Sel juhul eksisteerivad Schrödingeri võrrandil statsionaarsed, ajas muutumatud lahendid. Statsionaarse oleku lainefunktsioon avaldub kujul $\Psi(x, y, z, t) = \psi(x, y, z) \exp(-iEt/\hbar)$, kus *E* on osakese koguenergia ja ψ on ainult ruumikoordinaatidest sõltuv funktsioon. $\exp(-iEt/\hbar)$ on nn faasikordaja, mis ei mõjuta osakese mõõdetavaid karakteristikuid. Näiteks osakese ruumilise paiknemise tõenäosusjaotus $|\Psi(x, y, z, t)|^2 = |\psi(x, y, z)|^2$ ei sõltu ajast. Seega on tegemist seisevlainega (st laine amplituudi jaotus ruumis on muutumatu). ψ rahuldab nn. statsionaarset Schrödingeri võrrandit

$$\hat{H}\psi = E\psi. \tag{C1}$$

Oletagem nüüd (ühemõõtmelise näite varal), et funktsioon U(x) omab miinimumi teatavas ruumipunktis x_0 , st x_0 ümbruses on "potentsiaaliauk". Sellises potentsiaaliväljas liikuv osake võib "jääda lõksu" x_0 lähedusse tingimusel, et tema koguenergia on piisavalt väike, nii et ta ei saa enam august välja (joon. C2). Mitte igasuguse energiaga seotud seisund ei anna statsionaarset olekut. Eksisteerivad vaid diskreetsed energiaväärtused E, mille puhul võrrand C1 on lahenduv. Need lubatud energiaväärtused sõltuvad potentsiaaliaugu kujust. Seejuures ühele energiale võib vastata ka mitu erinevat kvantolekut (ehk lainefunktsiooni kuju), mispuhul sellist energiataset nimetatakse kõdunuks (see realiseerub siis, kui potentsiaaliauk on piisavalt "korrapärase" kujuga ehk sümmeetriline). Diskreetsete energiatega statsionaarsete olekute moodustumist potentsiaaliaugus võib ette kujutada kui osakest kirjeldava laine konstruktiivset interferentsi iseendaga, mille tulemusena tekib seisevlaine. Muude energiate korral on interferents destruktiivne.

Võrrandi C1 lahendamise käigus kerkib tavaliselt esile teatav hulk kvantarve. Need on parameetrid, millele tuleb omistada diskreetsed arvulised väärtused selleks, et Schrödingeri võrrand oleks üldse lahenduv. Iga kvantarv viitab enamasti mingile jäävusseadusele (energia, pöördimpulss vms). Kvantarvud ilmuvad võrrandi lahendamise käigus välja seoses tingimustega, mida esitatakse lainefunktsioonile, et viimane oleks füüsikaliselt aktsepteeritav (nt lainefunktsioon peab olema üheselt määratud, ruumiliselt pidev ja normeeritav). Selline tingimus võib sisuliselt tähendada näiteks asjaolu, et seisevlaine peab sisaldama täisarvu poollaine pikkusi kindlustamaks konstruktiivset interferentsi (nagu võnkumine pinguldatud pillikeeles). Konkreetset statsionaarset kvantolekut antud potentsiaaliväljas võib määratleda nende kvantarvude täieliku komplektiga. Joonisel C3 on näitena toodud energiatasemed mõningate lihtsamate mudelsituatsioonide jaoks. Muuseas tasub tähele panna, et ühegi potentsiaaliaugu korral ei eksisteeri sellist statsionaarset seisundit, kus osake "lebaks liikumatult" potentsiaaliaugu põhjas (klassikaliselt lubatav olukord), vaid alati eksisteerib teatav minimaalne energia (nn nullenergia). See tuleneb juba eespool mainitud määramatuse relatsioonist koordinaadi ja impulsi vahel (mis sisaldub varjatult Schrödingeri võrrandis). Seda minimaalse energiaga seisundit nimetatakse süsteemi põhiseisundiks (kvantmehaanilise ostsillaatori korral ka nullvõnkumisteks). kõik kõrgema energiaga seisundid on ergastatud seisundid.

Märgime, et hoolimata olukorra näilisest ülelihtsustamisest võivad isegi äärmiselt primitiivsed mudelid, nagu osake lõpmata sügavas püstiste seintega potentsiaaliaugus (i.k. *particle-in-a-box*, joon. C3a), osutuda praktiliselt kasulikuks, võimaldades vähese vaevaga saada vähemalt kvalitatiivselt õigeid hinnanguid. Vaatleme näiteks ioonseid kristalle nagu NaCl, LiF, jne. Anioonid on sellises kristallis laenguga -1. Kui võtta anioonvõrest välja üks neutraalne aatom, tekib tühimik ehk vakants, millesse jääb lõksu üks elektron. Harilikult on kristallides teatud kontsentratsioon selliseid nn Ftsentreid. Sellisel defektil on teatud energiaseisundid ja ta neelab valgust vastavatel lainepikkustel, andes kristallile iseloomuliku värvuse. Kuigi elektroni tegelik liikumine sellises ioonidega raamistatud ümbruses on ilmselt üsna keeruline, saab esimeses lähenduses üsna mõistliku hinnangu elektroni võimalike energiate kohta kui kujutleda elektroni viibivana lihtsalt neljakandilises potentsiaaliaugus, mille mõõdud vastavad aatomite vahekaugustele kristallis. Näiteks NaCl puhul toimub F-tsentri neeldumine 2,7 eV ümbruses. Võttes "kasti" laiuseks kristalli võrekonstandi L = 5,6 Å ja oletades, et F-tsentri neeldumine on tingitud elektroni siirdumisest põhiolekust E_1 esimesele er-

Joonis C2. Osake kvantmehaaniline liikumine potentsiaaliaugu ümbruses. Rasvane must joon kujutab potentsiaalse energia sõltuvust ruumikoordinaadist, punast värvi ostsilleerivad kõverad sümboliseerivad aga osakese lainefunktsiooni.

gastatud seisundile E_2 , saame neelduva footoni energiaks $E_2 - E_1 = 3h^2/(8mL^2) = 3,6 \text{ eV}$.

Joonis C3. Osakese energiaseisundid potentsiaaliaugus. (a) Lõpmata sügav püstiste seintega potentsiaaliauk. (b) Harmoonilise ostsillaatori potentsiaal. (c) Elektron vesinikusarnases aatomis (Coulomb'i potentsiaal). Kahel esimesel juhul on tegu ühemõõtmelise, viimasel juhul aga kolmemõõtmelise potentsiaaliauguga.

Sellistel eeldustel lõksustunud elektronide arv kahaneb kiirusega

$$\frac{dn}{dt} = -sn \exp\left(-\frac{E}{kT}\right),$$

kus sageduse dimensiooniga võrdetegurit *s* võib tõlgendada kui elektroni poolt sooritatavate katsete arvu sekundis lõksust vabanemiseks. Saadud avaldist nimetatakse esimest järku kineetikaks, sest *n*-i muutumise kiirus on võrdeline *n*-iga esimeses astmes. Nagu juba mainitud jaotises 4.2, püsival temperatuuril annaks see *n* väärtuse (ja kiirguse intensiivsuse) eksponentsiaalse kahanemise ajas, karakteerse ajateguriga $\tau = s^{-1} \exp(E/kT)$. Kui aga *T* on aja funktsioon, siis eelnevat diferentsiaalvõrrandit lõpuni integreerida ei õnnestu (isegi mitte juhul kui *T* kasvab lineaarselt ajas), kuid *n*(*t*) saab siiski avaldada määratud integraali kaudu:

$$n(t) = n_0 \exp\left\{-s \int_0^t \exp\left[-\frac{E}{kT(t)}\right] dt\right\}$$

Kuivõrd eelduse kohaselt elektroni vabanemisega lõksust kaasneb peaaegu hetkeliselt footoni teke, siis footonite emissiooni tempo on praktiliselt sama mis n-i

D Termoluminestsents

Tuletame siinkohal kõige lihtsama termoluminestsentsmaterjali temperatuurikõvera. Leidugu selles materjalis ühte kindlat tüüpi defektid, mis tekitavad vabade elektronide jaoks lõksud sügavusega *E*. Oletagem, et alguses — temperatuuril $T_0 \ll E/k$ — kiiritatakse materjali teatud doosiga, nii et lõksudesse kogunenud elektronide arv saab olema n_0 . Seejärel hakatakse temperatuuri monotoonselt tõstma. Elektronide lõksudest vabanemise tõenäosus termilise agitatsiooni toimel on proportsionaalne teguriga $\exp(-E/kT)$, kus *k* on Boltzmanni konstant. Lihtsaimas mudelis eeldatakse, et lõksust vabanenud elektronid enam uuesti lõksudesse ei satu vaid haaratakse peaaegu hetkeliselt luminestsentsitsentri poolt, millele järgneb footoni emissioon.

Joonis D1. Valemi D1 põhjal arvutatud esimest järku termoluminestsentsi temperatuurikõver, kus E = 1 eV ja $s = 10^{11} \text{ s}^{-1}$.

muutumise tempo, seega kiirguse intensiivsus

$$I(t) = -\frac{dn}{dt} = n_0 s \exp\left\{-\frac{E}{kT(t)} - s \int_0^t \exp\left[-\frac{E}{kT(t)}\right] dt\right\}.$$
 (D1)

Joonisel D1 on toodud selle funktsiooni graafik aine jaoks, kus E = 1 eV ja $s = 10^{11} \text{ s}^{-1}$ ning temperatuuri lineaarse kasvu tingimustes (tempoga 1 K/s). Nagu näha, ilmub nendel tingimustel termoluminestsentsipiik temperatuuril ~410 K.

E Spektrijoone profiili arvutamine

Poolklassikalise ettekujutuse järgi kvantsüsteemi elektronergastus tähendab aatomituumasid ümbritseva elektronpilve ostsilleerimist teatava omavõnkesagedusega ω_0 (joon. 2.8). Sellise resonantsi sisulist olemust muidugi klassikalise teooria raames kirjeldada ei saa. Siiski saab selle baasil analüüsida spektrijoonte kuju ja laiust.

E1 Neeldumine

Oletagem, et mainitud elektronergastust saab vaadelda üheainsa võnkuva punktlaenguna, mille laeng olgu q ja mass m (näiteks üks elektron aatomis). Ühel või teisel põhjusel kaotab ostsillaator võnkumise käigus ka energiat, näiteks sekundaarlainete kiirgamise tõttu. Ostsillaatori liikumisvõrrandis saab seda formaalselt arvesse võtta, kaasates kiirusega võrdelise dissipatsioonijõu:

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = qE/m. \tag{E1}$$

Paremal pool võrdusmärki on sundiv jõud, mille tingib valguslaine elektriväli $E(t) = E_0 \cos(\omega t)$. Selle võrrandi lahend saab olema eeldatavasti kujul $x(t) = A \cos(\omega t + \phi)$, kus amplituud A ja faasinihe ϕ sõltuvad sundiva jõu sagedusest ω .

Vajalik matemaatiline analüüs on siiski mõistlik teostada kompleksesituses. Näiteks võnkumise x(t) esitame kujul $x = \text{Re}(\tilde{x})$, kus $\tilde{x} = \tilde{A}e^{i\omega t}$. Siin kompleksamplituud $\tilde{A} = Ae^{i\phi}$ kätkeb informatsiooni nii amplituudi kui ka algfaasi kohta, seega kaob vajadus suurustega A ja ϕ eraldi opereerida. Asendame \tilde{x} võrrandisse E1:

$$-\omega^2 \tilde{A} e^{i\omega t} + i\omega\gamma \tilde{A} e^{i\omega t} + \omega_0^2 \tilde{A} e^{i\omega t} = (qE_0/m)e^{i\omega t}.$$

Suurus $e^{i\omega t}$ taandub välja ja saame avaldada \tilde{A} :

$$\tilde{A} = \frac{qE_0/m}{\omega_0^2 - \omega^2 + i\omega\gamma}.$$

Neelduva kiirguse võimsus on ilmselt $P = \langle q E \dot{x} \rangle$ (st jõud korda kiirus, keskmistatuna üle võnkeperioodi). Osakese kiiruse \dot{x} ehk v saamiseks tuleb diferentseerida x(t) avaldist, mis kompleksesituses annab tulemuseks $\tilde{v} = i\omega \tilde{A}e^{i\omega t}$, ehk jällegi harmooniline funktsioon kompleksamplituudiga $\tilde{v}_0 = i\omega \tilde{A}$. Edasine arvutus annab³⁹

$$P = \frac{1}{2} \operatorname{Re}(qE_0 \tilde{v}_0^*) = \frac{(qE)^2}{2m} \frac{\omega^2 \gamma}{(\omega^2 - \omega_0^2)^2 + (\omega\gamma)^2}$$

³⁹On kerge tõestada (vt [9]), et kahe harmooniliselt võnkuva suuruse korrutise ajaline keskväärtus avaldub kompleksesituses kujul

$$\langle A\cos(\omega t + \phi) \cdot B\cos(\omega t + \phi) \rangle_t = \frac{1}{2} \operatorname{Re}(\tilde{A}\tilde{B}^*).$$

Eeldame, et valguse sagedus ω on süsteemi resonantsisageduse ω_0 läheduses, nii et

$$\omega^2-\omega_0^2=(\omega+\omega_0)(\omega-\omega_0)\approx 2\omega_0(\omega-\omega_0),$$

$$P \approx \frac{(qE_0)^2}{2m} \cdot \frac{\gamma}{4(\omega - \omega_0)^2 + \gamma^2}$$

Seega saime neeldumisspektriks Lorentzi profiili, ja selle laius (ringsagedusskaalas) ongi parajasti võrdne dissipatsiooniteguriga γ .

E2 Kiirgus

Vaatleme nüüd olukorda, kus ergastatud elektridipool võngub omapead. Üldisest liikumisvõrrandist E1 saame

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0.$$

See on hästituntud sumbuva võnkumise võrrand, mille lahend on

$$x(t) = A(t)\cos(\omega t), \quad A(t) = A_0 e^{-\gamma/2}, \quad \omega = \sqrt{\omega_0^2 + (\gamma/2)^2}.$$
 (E2)

Seega võnkeamplituud kahaneb ajas eksponentsiaalselt (kiirusega, mida karakteriseerib γ). Lisaks näeme, et dissipatsiooni olemasolu muudab veidi ka ostsillaatori võnkesagedust (võrreldes omavõnkesagedusega ω_0). Edaspidi eeldame siiski, et dissipatsioon on väike, nii et $\omega \approx \omega_0$.

Kuna ostsillaatori võnkeamplituud kahaneb, siis vastavalt kahaneb ka väljakiiratud valguslainete amplituud, nagu kujutatud joonisel 5.7:

$$E(t) = \begin{cases} 0 & \text{kui } t < 0 \\ E_0 e^{-\gamma t/2} \cos \omega_0 t & \text{kui } t \ge 0 \end{cases}$$

kus $\gamma \equiv 1/\tau$ ja on eeldatud, et ostsillaator pandi võnkuma hetkel t = 0. Kiirguse

sageduskoostise saame Fourier' pöörde kaudu:

$$\begin{split} E(\omega) &= \int_{-\infty}^{+\infty} E(t) e^{-i\omega t} dt \\ &= \frac{E_0}{2} \int_0^{\infty} e^{-i(\omega - \omega_0)t - \gamma t/2} dt + \frac{E_0}{2} \int_0^{\infty} e^{-i(\omega + \omega_0)t - \gamma t/2} dt \\ &= \frac{E_0/2}{i(\omega - \omega_0) + \gamma/2} + \frac{E_0/2}{i(\omega + \omega_0) + \gamma/2}, \end{split}$$

kus me koosinuse oleme lahti kirjutanud kahe eksponendi summana. Kuna $\gamma \ll \omega_0$, siis esimene liige on nullist märgatavalt erinev vaid kitsas vahemikus ω_0 ümbruses, teine liige aga kitsas vahemikus $-\omega_0$ ümbruses. ω_0 ümbruses on teise liikme panus tühine ja selle võib ära jätta. Energeetiline spekter on määratud amplituudi mooduli ruuduga:

$$|E(\omega)|^2 \propto \frac{1}{(\omega - \omega_0)^2 + (\gamma/2)^2}.$$

See on Lorentzi profiil.

E3 Põrkelaienemine

Vaatleme kestusega τ harmoonilist lainejada (τ on ajavahemik molekuli kahe järjestikuse põrke vahel). Kuna on selge, et spekter ei saa sõltuda lainejada ajalisest nihkest (algfaasist), siis valime ajaliselt sümmeetrilise laine:

$$E(t) = \begin{cases} E_0 \cos(\omega_0 t) & \text{kui } |t| \le \tau/2 \\ 0 & \text{kui } |t| > \tau/2 \end{cases}$$

Arvutame Fourier' pöörde, esitades koosinuse eksponentide summana:

$$\begin{split} E(\omega) &= \int_{-\infty}^{+\infty} E(t) e^{-i\omega t} dt \\ &= \frac{E_0}{2} \int_{-\tau/2}^{\tau/2} e^{-i(\omega-\omega_0)t} dt + \frac{E_0}{2} \int_{-\tau/2}^{\tau/2} e^{-i(\omega+\omega_0)t} dt \\ &= \frac{E_0}{2} \frac{e^{i(\omega-\omega_0)\tau/2} - e^{-i(\omega-\omega_0)\tau/2}}{i(\omega-\omega_0)} + \frac{E_0}{2} \frac{e^{i(\omega+\omega_0)\tau/2} - e^{-i(\omega+\omega_0)\tau/2}}{i(\omega+\omega_0)} \\ &= E_0 \frac{\sin(\omega-\omega_0)\tau/2}{\omega-\omega_0} + E_0 \frac{\sin(\omega+\omega_0)\tau/2}{\omega+\omega_0}. \end{split}$$

Siin esimene liige on nullist märgatavalt erinev ainult ω_0 ümbruses, teine liige aga $-\omega_0$ ümbruses. Kuna meid huvitavad vaid positiivsed sagedused, siis teise liikme panus on tühine ja selle võib ära jätta. Energeetiline spekter on

$$|E(\omega)|^{2} = E_{0}^{2} \frac{\sin^{2}(\omega - \omega_{0})\tau/2}{(\omega - \omega_{0})^{2}}.$$
 (E3)

 τ on juhuslik suurus. Tema jaotuse leidmiseks paneme tähele, et molekuli poolt sooritatavate põrgete arv ajaühikus allub Poissoni statistikale. On teada, et Poissoni statistika puhul tõenäosus, et kahe järjestikuse sündmuse (antud juhul, põrke) vaheline ajavahemik on $\tau \dots \tau + d\tau$, on antud eksponentjaotusega

$$p(\tau)\,d\tau=\frac{1}{\tau_{\rm c}}e^{-\tau/\tau_{\rm c}}\,d\tau,$$

kus $\tau_c = \langle \tau \rangle$ on keskmine põrgetevaheline ajavahemik. Avaldist E3 tuleb keskmistada üle kõikide τ väärtuste. Kasutades valemit sin² $\alpha = (1 - \cos 2\alpha)/2$ ja integraali

$$\int_0^\infty \cos(\omega\tau) e^{-\gamma\tau} d\tau = \frac{1}{2} \int_0^\infty \left(e^{i\omega\tau} + e^{-i\omega\tau} \right) e^{-\gamma\tau} d\tau$$
$$= \frac{1}{2} \left(\frac{1}{-i\omega + \gamma} + \frac{1}{i\omega + \gamma} \right)$$
$$= \frac{\gamma}{\omega^2 + \gamma^2},$$

saame

$$\begin{split} \left\langle |E(\omega)|^2 \right\rangle_{\tau} &= \int_0^\infty |E(\omega)|^2 p(\tau) \, d\tau \\ &= \frac{E_0^2 / 2}{(\omega - \omega_0)^2} \left[1 - \frac{1 / \tau_c^2}{(\omega - \omega_0)^2 + 1 / \tau_c^2} \right] \\ &= \frac{E_0^2 / 2}{(\omega - \omega_0)^2 + 1 / \tau_c^2}. \end{split}$$

See on jällegi Lorentzi profiil.

E4 Doppleri laienemine

Olgu v_x molekuli kiiruskomponent vaatesuuna sihile. Vaatleja registreerib kiirguse sageduseks $\omega = \omega_0(1 + v_x/c)$. Gaasimolekulide kiirused alluvad Maxwelli jaotusele.

Selle kohaselt tõenäosus, et molekuli kiiruskomponent asub vahemikus $v_x \dots v_x + dv_x$, on antud normaaljaotusega

$$p(v_x)dv_x = \sqrt{\frac{A}{\pi}}\exp\left(-Av_x^2\right)dv_x,$$

kus A = m/kT. Tõenäosus, et kiiratava footoni sagedus asub vahemikus $\omega \dots \omega + d\omega$, peab olema võrdne tõenäosusega, et molekuli kiiruskomponent asub vahemikus $v_x \dots v_x + dv_x$:

$$f(\omega)\,d\omega=p(v_x)\,dv_x.$$

Asendades siin $v_x = (\omega - \omega_0) c / \omega_0$, $dv_x = c / \omega_0 d\omega$, saame

$$f(\omega) \, d\omega = \frac{c}{\omega_0} \sqrt{\frac{A}{\pi}} \exp\left[-Ac^2 \frac{(\omega - \omega_0)^2}{\omega_0^2}\right] \, d\omega,$$

millest $f(\omega)$ jaoks järeldub Doppleri profiil:

$$f(\omega) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\omega-\omega_0)^2}{2\sigma^2}},$$

kus

$$\sigma = \omega_0 \sqrt{\frac{kT}{mc^2}}.$$

F Neeldumisristlõige ja ostsillaatorijõud

Jaotises E1 selgus, et klassikaline ostsillaator, asetatuna valgusvälja $E = E_0 \cos \omega t$, neelab kiirgusenergiat võimsusega

$$P \approx \frac{(qE_0)^2}{2m} \cdot \frac{\gamma}{4(\omega - \omega_0)^2 + \gamma^2}$$

Arvestades, et primaarlaines kiiritustihedus $I = \frac{1}{2}c\varepsilon_0 E_0^2$, saame ühtlasi avaldise neeldumisristlõike jaoks

$$\sigma_{\rm abs}(\omega) = \frac{P}{I} = \frac{q^2}{m\varepsilon_0 c} \cdot \frac{\gamma}{4(\omega - \omega_0)^2 + \gamma^2} \tag{F1}$$

Järgmisel kujul välja kirjutatud Lorentzi kontuuri pindala on täpselt üks:

$$\frac{1}{2\pi} \cdot \frac{\gamma}{(\omega - \omega_0)^2 + (\gamma/2)^2}$$

Selle baasil saame välja arvutada valemiga F1 antud neeldumisriba pindala, mis karakteriseerib kogu neeldumisresonantsi tugevust:

$$\int \sigma_{\rm abs}(\omega) \, d\omega = \frac{\pi q^2}{2mc\varepsilon_0}.$$

Nagu näha, tulemus sõltub ostsilleeriva osakese laengust q ja massist m. Kõige loomulikum on eeldada, et võngub üksainus elektron, nii et q = e ja $m = m_e$. Üldjuhul ei pruugi see nii olla, ja võnkumine ise ei pruugi kirjelduda elektrilise dipoolina. Seetõttu on mõistlik iga reaalset neeldumisresonantsi karakteriseerida dimensioonitu ostsillaatorijõuga f_{abs} , nii et

$$\int \sigma_{\rm abs}(\omega) \, d\omega = \frac{\pi e^2}{2m_{\rm e}c\varepsilon_0} f_{\rm abs}.$$

Vastavalt võib üldistada ka $\sigma_{abs}(\omega)$ avaldist.

Neeldumisristlõike numbrilise väärtuse hindamiseks on tarvis hinnangut dissipatsiooniteguri γ väärtusele. Oletagem, et kogu dissipatsioon on tingitud ostsilleeriva dipooli sekundaarkiirgusest. Selle kiirguse koguvõimsus (valem 2.6):

$$P = \frac{\omega_0^4 (Aq)^2}{12\pi\varepsilon_0 c^3},$$

kus *A* on võnkeamplituud. Omapead jäetud süsteemi võnkeamplituud kahaneb eksponentsiaalselt (lisa E2), nii et

$$P(t) = \frac{\omega_0^4 (qA_0)^2}{12\pi\varepsilon_0 c^3} e^{-\gamma t}.$$

Kui süsteem võngub parajasti amplituudiga A, siis selle koguenergia on $W = \frac{1}{2}m(\omega_0 A)^2$ (laengu kiiruse \dot{x} maksimaalne väärtus on $\omega_0 A$, ja sel hetkel on ostsillaatori kogu energia kineetiline). Võttes arvesse ka võnkeamplituudi muutumist, saame energia sõltuvuse ajast:

$$W(t) = \frac{1}{2}m(\omega_0 A_0)^2 e^{-\gamma t}$$

-

Võimsus P tuleb W arvelt ehk $P = \dot{W}$, millest saame avaldada dissipatsiooniteguri

$$\gamma = \frac{q^2 \omega_0^2}{6\pi\varepsilon_0 c^3 m}.$$
 (F2)

Et seda avaldist üldistada reaalsele spektroskoopilisele üleminekule, peame jällegi sisse tooma vastava ostsillaatorijõu (f_{em}), mis sedapuhku näitab, kui intensiivne on kiirgus võrreldes ühest elektronist koosneva klassikalise ostsillaatoriga:

$$\gamma = \frac{e^2 \omega_0^2}{6\pi\varepsilon_0 c^3 m_{\rm e}} f_{\rm em}.$$

Asendades γ avaldise F2 neeldumisristlõike avaldisse F1, saame arvutada neeldumisristlõike maksimaalse väärtuse (resonantsi keskel):

$$\sigma_{\rm abs}(\omega_0) = \frac{6\pi c^2}{\omega_0^2} = \frac{3}{2\pi}\lambda_0^2 \simeq \frac{1}{2}\lambda_0^2$$

G Kaheaatomilise ühikrakuga lineaarse ahela võnkumised

$$M \xrightarrow{m} \underbrace{a} \longrightarrow$$

Joonis G1. Kaheaatomilise ühikrakuga lineaarse ahela fragment. a on võrekonstant.

Vaatleme pikivõnkumisi lineaarses kaheaatomilise ühikrakuga ahelas, mis on kujutatud joonisel G1 (kõik öeldu on üle kantav ka ristvõnkumiste juhule, mille kaudu on edaspidi mugavam võnkumisi graafiliselt kujutada). Tähistame aatomite massid m ja M (m < M) ning nende nihked tasakaaluasendist vastavalt x ja y. Aatomeid ühendava sideme jäikus olgu K ning võrekonstant a. Newtoni II seadusest saame j-nda ühikraku aatomite jaoks järgmised liikumisvõrrandid:

$$\begin{split} m\ddot{x}_{j} &= K(y_{j} - x_{j}) - K(x_{j} - y_{j-1}) = K(y_{j-1} + y_{j} - 2x_{j}), \\ M\ddot{y}_{j} &= K(x_{j+1} - y_{j}) - K(y_{j} - x_{j}) = K(x_{j} + x_{j+1} - 2y_{j}). \end{split}$$

Oletame, et sellises ahelas võivad võnkumised levida harmoonilise tasalaine kujul:

$$x_{i}(t) = Ae^{i(kr_{j}-\omega t)} + \text{c.c.}, \quad y_{i}(t) = Be^{i(kr_{j}-\omega t)} + \text{c.c.},$$

kus $r_j = ja$ on *j*-nda ühikraku koordinaat. Amplituudid *A*, *B* on üldiselt komplekssed suurused, mille argument väljendab võnkumise algfaasi (aatomid samas ühikrakus ei pruugi võnkuda samas faasis). Peale asendamist liikumisvõrrandeisse saame

$$(2K - m\omega^2)A - K(1 + e^{-ika})B = 0,$$
 (G1)

$$-K(1+e^{ika})A + (2K - M\omega^2)B = 0.$$
 (G2)

See on homogeensete lineaarvõrrandite süsteem amplituudide *A*, *B* suhtes. Mittetriviaalsed lahendid leiduvad vaid juhul, kui

$$\begin{vmatrix} 2K - m\omega^2 & -K(1 + e^{-ika}) \\ -K(1 + e^{ika}) & 2K - M\omega^2 \end{vmatrix} = 0$$

ehk

$$mM\omega^4 - 2K(m+M)\omega^2 + 2K^2(1 - \cos ka) = 0$$

See on ruutvõrrand ω^2 suhtes, mille lahendeiks on

$$\omega^{2} = \frac{K}{mM} \left(m + M \pm \sqrt{m^{2} + M^{2} + 2mM\cos ka} \right)$$

ehk

$$\omega^{2} = K \left(\frac{1}{m} + \frac{1}{M} \right) \pm K \sqrt{\left(\frac{1}{m} + \frac{1}{M} \right)^{2} - \frac{4}{mM} \sin^{2}(ka/2)}.$$
 (G3)

Niisiis saavad sellises ahelas levida mitmesuguse sagedusega võnkumised, kusjuures need võnkumised moodustavad kaks võnkeharu (ruutvõrrandil on kaks lahendit). ω sõltuvust k-st nimetatakse dispersiooniseoseks. M = 1.5m korral on dispersioonikõverate kuju selline nagu kujutatud joonisel G2. Alumist kõverat nimetame akustiliseks võnkeharuks, ülemist optiliseks võnkeharuks (nende mõistete päritolu selgub järgnevas). Võnkumiste iseloomust saame aimu kui arvutame suhte A/B sõltuvana lainearvust k. Selleks asendame ω avaldise G3 ühte võrrandeist G1 või G2. Arvutuste tulemus on kujutatud joonisel G3. Sellelt nähtub, et $k \rightarrow 0$ puhul akustilises moodis ühikraku aatomid võnguvad ühesuguse amplituudiga samas faasis, st ühikrakk võngub kui tervik. Selline käitumine iseloomustab helilainete levikut. Avaldisest G3 saame piiril $k \rightarrow 0$ lineaarse seose:

$$\omega = ck, \quad c = \sqrt{\frac{Ka^2}{2(m+M)}}.$$

Siin *c* on heli kiirus aines. Hindame *c* väärtust. Keemilise sideme energia $E \sim Ka^2$ on 1 eV suurusjärgus, $m \sim M \sim 10m_n$, kus m_n on nukleoni mass. Seega $c \sim 0.1\sqrt{E/m_n} \sim 3000 \text{ m/s}.$

Optilises moodis ühikraku aatomid võnguvad $k \rightarrow 0$ puhul vastandfaasis ja |A/B| = M/m. Kui tegu on ioonidega, siis selline võnkumine väljendab polarisatsioonilainet. Pikalainelisel piiril selline polarisatsioonilaine interakteerub tugevasti optilise kiirgusega, millest on tingitud ka nimetus "optiline võnkemood".

H Plancki kiirgusseaduse tuletus

Leiame tasakaalulise kiirguse spektraalse energiatiheduse $u(\omega)$. See avaldub

$$u(\omega) = \rho(\omega) \langle E_{\omega} \rangle$$

kus $\rho(\omega)$ on elektromagnetvälja moodide arv ühikruumalas ning $\langle E_{\omega} \rangle$ on keskmine energia moodis. Elektromagnetvälja moodideks me nimetame kõikvõimalikke

Joonis G3. Võnkumised kaheaatomilise ühikrakuga lineaarses ahelas. (a) Võnkeamplituudide suhe; (b) faasinihe; (c) akustilised võnkumised piiril $k \rightarrow 0$; (d) optilised võnkumised piiril $k \rightarrow 0$.

seisevlaine kujul avalduvaid lainevõrrandi lahendeid, mis rahuldavad ääretingimusi õõnsuse pindadel. Kvantteooria seisukohalt vastab iga mood kvantostsillaatorile ja selle energia võib omandada väärtusi $E_n = n\hbar\omega$, kus $n = 0, 1, 2,^{40}$ Termilise tasakaalu puhul tõenäosus P_n , et süsteemi energia on E_n , on antud Boltzmanni jaotusega: $P_n \propto e^{-E_n/kT}$. Arvestades, et $\sum_n P_n = 1$, saame

$$P_n = \frac{e^{-E_n/kT}}{\sum_n e^{-E_n/kT}}.$$

Ostsillaatori keskmine energia on siis

$$\langle E_{\omega} \rangle = \sum_{n} P_{n} E_{n} = \hbar \omega \frac{\sum_{n} n e^{-n\hbar\omega/kT}}{\sum_{n} e^{-n\hbar\omega/kT}}.$$

Nimetajas olev summa on geomeetriline rida:

$$\sum_{n} e^{-nx} = \frac{1}{1 - e^{-x}}$$

Lugejas oleva rea summa leiame väikese nipiga:

$$\sum_{n} ne^{-nx} = -\frac{1}{dx} \sum_{n} e^{-nx} = -\frac{1}{dx} \frac{1}{1 - e^{-x}} = \frac{e^{-x}}{(1 - e^{-x})^2}.$$

Kokkuvõttes

$$\langle E_{\omega} \rangle = \frac{\hbar \omega}{e^{\hbar \omega/kT} - 1}.$$

Kõrgete temperatuuride jaoks $(kT \gg \hbar\omega)$ saame siit klassikalise füüsika resultaadi $\langle E_{\omega} \rangle = kT$. Jääb veel leida $\rho(\omega)$. Moodide loendamiseks valime võimalikult lihtsa kujuga õõnsuse, näiteks kuubi küljepikkusega *L*. Loeme, et õõnsuse seinad on heast elektrijuhist, nii et õõnsuse pindadel on elektrivälja tangentsiaalkomponent null (tulemus muidugi ei sõltu õõnsuse kuju ega seinte materjali valikust). Lainevõrrandi lahendid, mis rahuldavad viimast tingimust, on $E(\mathbf{r}, t) = (E_x(\mathbf{r}, t), E_y(\mathbf{r}, t), E_z(\mathbf{r}, t))$, kus

$$E_{x}(\mathbf{r}, t) = E_{x}(t)\cos(k_{x}x)\sin(k_{y}y)\sin(k_{z}z),$$

$$E_{y}(\mathbf{r}, t) = E_{y}(t)\sin(k_{x}x)\cos(k_{y}y)\sin(k_{z}z),$$

$$E_{z}(\mathbf{r}, t) = E_{z}(t)\sin(k_{x}x)\sin(k_{y}y)\cos(k_{z}z),$$

(H1)

ja lainevektor võib omandada diskreetseid väärtusi

$$k_x = n_x \pi / L$$
, $k_y = n_y \pi / L$, $k_z = n_z \pi / L$, $n_x, n_y, n_z = 0, 1, 2, ...$

Lainevõrrandi lubatav lahend peab ühtlasi rahuldama ka Maxwelli võrrandeid. Asendades lahendi H1 Maxwelli esimesse võrrandisse $\nabla \cdot E = 0$ (laengutihedus õõnsuses on null), saame $\mathbf{k} \cdot \mathbf{E}(t) = 0$, st. $\mathbf{k} \perp \mathbf{E}(t)$. Iga \mathbf{k} puhul on väljal kaks sõltumatut polarisatsiooni, mis on risti \mathbf{k} -ga, st. igale lubatavale \mathbf{k} väärtusele vastab kaks ostsillaatorit. \mathbf{k} -ruumis moodustavad lubatavad \mathbf{k} väärtused lihtkuubilise võre sammuga π/L , seega ühe \mathbf{k} väärtuse kohta tuleb ruumala π^3/L^3 . $\rho(\omega)$ definitsiooni kohaselt $L^3\rho(\omega)d\omega$ on nende ostsillaatorite arv õõnsuses, mille sagedus jääb vahemikku

⁴⁰Klassikaline teooria, kus ostsillaatori energiaks võetakse kT, viib nn. "ultravioleti katastroofini": $u(\omega) \rightarrow \infty$, kui $\omega \rightarrow \infty$.

 $\omega \dots \omega + d\omega$ ehk lainevektori moodul jääb vahemikku $k \dots k + dk$, kus $k = \omega/c$. Paksust dk ja raadiust k omava sfäärilise kihi ruumala on $4\pi k^2 dk$, seega

$$L^{3}\rho(\omega) \, d\omega = 2 \times \frac{1}{8} \times \frac{4\pi k^{2} \, dk}{\pi^{3}/L^{3}} = \frac{L^{3} k^{2}}{\pi^{2}} \, dk,$$

millest

$$\rho(\omega) = \frac{\omega^2}{\pi^2 c^3}.$$

2

Kiirguse energiatihedus on niisiis

$$u(\omega) = \frac{\hbar\omega^3}{\pi^2 c^3} \frac{1}{e^{\hbar\omega/kT} - 1}.$$

Funktsioon $f(\omega)$ on energiatihedusega seotud järgmiselt: $f(\omega) = cu(\omega)/4$. Siin kordaja 1/4 tuleneb tasakaalulise kiirguse isotroopsusest. Järelikult

$$f(\omega) = \frac{\hbar\omega^3}{4\pi^2 c^2} \frac{1}{e^{\hbar\omega/kT} - 1}$$

Einsteini koefitsientide teooria

Jaotuses 6.3.1 defineeriti kolm elementaarprotsessi (neeldumine, vabakiirgus ja sundkiirgus), mille käigus aatom võib vahetada elektromagnetväljaga energiat. Spontaanse e. vabakiirguse loomust kirjeldati juba jaotises 6.3.2. Kui aatomil on vaid kaks energiaseisundit ja ergastatud seisundis (E_2) viibivate aatomite arv on N_2 , siis vabakiirguse tõttu väheneb nende arv kiirusega

$$\frac{dN_2}{dt} = -A_{21}N_2$$

kus siirde tõenäosus A_{21} on antud aatomi ja valitud energiatasemete paari jaoks konstant.

Seevastu neeldumisakti tõenäosus ei ole konstant, vaid sõltub kiirgusvälja intensiivsusest resonantsisagedusel ω_0 . Selle määratlemiseks on rida võimalusi, mis viib väikestele tehnilistele erinevustele edasistes valemites. Kõige sagedamini iseloomustatakse kiirgusvälja intensiivsust energia spektraalse ruumtiheduse kaudu (tähis *u*). Einsteini käsitluses tuleb eeldada, et $u(\omega)$ on võrdlemisi aeglaselt muutuv funktsioon resonantsisageduse ω_0 ümbruses (see on tõsi näiteks soojuskiirguse puhul aga ei pruugi kehtida laserkiirguse korral). Seega siis neeldumisest tingitud üleminekute arv ajaühikus on $B_{12}N_1u(\omega_0)$, kus B_{12} on järjekordne võrdetegur. Analoogiliselt, stimuleeritud kiirgusaktide arv on $B_{21}N_2u(\omega_0)$, st samuti proportsionaalne kiirguse intensiivsusega.

Niisiis, loetletud kiirgusprotsessidest tingitud nivoode asustamise kineetikat võime summaarselt väljendada võrrandiga

$$\frac{dN_1}{dt} = -\frac{dN_2}{dt} = N_2 A_{21} + N_2 B_{21} u(\omega_0) - N_1 B_{12} u(\omega_0).$$

Võrdetegureid A_{21} , B_{12} ja B_{21} nimetatakse Einsteini koefitsientideks. Osutub, et nende suuruste vahel eksisteerivad universaalsed seosed, mis on võimalik kindlaks teha ainuüksi termodünaamilistest kaalutlustest, aatomi ehituse detailidesse laskumata. Selleks vaatleme elektromagnetväljaga termodünaamilises tasakaalus olevat aatomite ansamblit temperatuuril T. Tasakaaluline olek on statsionaarne $(dN_1/dt = dN_2/dt = 0)$, nii et⁴¹

$$N_2 A_{21} + N_2 B_{21} u(\omega_0) - N_1 B_{12} u(\omega_0) = 0, \tag{11}$$

millest saame avaldada

$$u(\omega_0) = \frac{A_{21}}{\frac{N_1}{N_2}B_{12} - B_{21}}.$$
 (12)

Tasakaaluline asustatuste suhe N_1/N_2 temperatuuril T on määratud Boltzmanni jaotusega:

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{\hbar\omega_0}{kT}\right),\tag{13}$$

kus g_1 ja g_2 on seisundite 1 ja 2 statistilised kaalud (st g_i on üht ja sama energiat E_i omavate kvantolekute arv). Valem I2 võtab nüüd kuju

$$u(\omega_0) = \frac{A_{21}/B_{21}}{\frac{g_1 B_{12}}{g_2 B_{21}} e^{\hbar\omega_0/kT} - 1}.$$
 (14)

⁴¹Märgime, et ka üldisemal juhul, kui aatomis on rohkem kui kaks energiaseisundit, jääb võrdus 11 kehtima tänu detailse tasakaalu printsiibile. Nimelt, kuna energiaseisundid on sõltumatud, siis tasakaal peab säilima iga energianivoode paari jaoks, nii et siirete $2 \rightarrow 1$ arv oleks võrdne siirete $1 \rightarrow 2$ arvuga: $N_2A_{21} + N_2B_{21}u(\omega_0) = N_1B_{12}u(\omega_0)$.

Teiselt poolt, kuna vaadeldav aatomite ansambel temperatuuril T on termilises tasakaalus ümbritseva kiirgusväljaga, siis nende aatomite kiirgamine ja neelamine sagedusel ω_0 ei tohi häirida selle kiirgusvälja tasakaalulist spektraaljaotust, mis on arvutatav Plancki kiirgusseadusega:

$$u(\omega_0) = \frac{\hbar\omega_0^3}{\pi^2 c^3} \frac{1}{e^{\hbar\omega_0/kT} - 1}.$$
 (I5)

Valemid I4 ja I5 saavad suvalise *T* puhul ühtida vaid siis, kui kehtivad järgmised seosed:

$$g_1 B_{12} = g_2 B_{21}, \quad \frac{A_{21}}{B_{21}} = \frac{\hbar \omega_0^3}{\pi^2 c^3}$$
 (16)

Paneme tähele, et ilma stimuleeritud kiirgusakti võimalikkust postuleerimata ei oleks võimalik kooskõla Plancki kiirgusseadusega saavutada.

Niisiis vähemalt energianivoode statistiliste kaalude täpsusega on neeldumine ja sundkiirgus võrdtõenäosed (protsesside ristlõiked on võrdsed). Samuti on näha, et stimuleeritud kiirgus on kõrgematel sagedustel väiksema osatähtsusega võrreldes vabakiirgusega. Viimane asjaolu seletab seda, miks nähtavas ja eriti UV piirkonnas on laseri realiseerimine keerulisem kui infrapunases ja mikrolaine diapasoonis.

 A_{21} , B_{12} ja B_{21} omavahelise seose leidmisel võib Plancki kiirgusseaduse asemel kasutada ka lihtsamaid tingimusi. Kui temperatuur läheneb lõpmatusele, peab ka $u(\omega)$ lähenema lõpmatusele. Lisaks on klassikalisest füüsikast teada, et väikestel sagedustel on tasakaalulise kiirguse spekter antud Rayleigh-Jeansi seadusega $u(\omega) = kT\omega^2/\pi^2c^3$. Sellise lähenemise korral järeldub ülaltoodud analüüsist täiendavalt ka Plancki kiirgusseaduse valem. Seega on tegemist füüsikaliselt väga sisuka, kuigi matemaatiliselt ülilihtsa teooriaga.

Viimaks uurime, kui suur on siirde $1 \rightarrow 2$ neeldumisristlõige konkreetsel sagedusel ω . Eelnevas arutelus eeldati, et kiirguse spektraalne energiatihedus $u(\omega)$ on aeglaselt muutuv funktsioon resonantsi läheduses. Kui kiiritada aatomit monokromaatse kiirgusega, on olukord hoopis vastupidine. Ilmselt neeldumisristlõige on võrdeline koefitsiendiga B_{12} , kuid sõltub samas ka sellest, kui kaugel spektraalselt resonantsist ollakse. Viimast asjaolu võtab arvesse neeldumisriba *profiil*, mida kirjeldame pindala järgi normeeritud funktsiooniga $f(\omega)$ (vt ptk 5). Seega, meelevaldse spektraalkoostisega $u(\omega)$ kiirguse puhul saadakse ruumalaühikus toimuvate siirete $1 \rightarrow 2$ arv sekundis suuruse $N_1B_{12}u(\omega)$ läbikaalumisel funktsiooniga $f(\omega)$:

$$\frac{dN_1}{dt} = -N_1 B_{12} \int f(\omega) u(\omega) \, d\omega.$$

Piisavalt monokromaatse kiirguse korral on $u(\omega)$ praktiliselt δ -funktsioon, võrreldes funktsiooniga $f(\omega)$, seega viimase saab integraalimärgi alt välja tuua:

$$\frac{dN_1}{dt} = -N_1 B_{12} f(\omega) \int u(\omega) \, d\omega = -N_1 B_{12} f(\omega) \frac{I}{c},$$

kus *I* on suunatud monokromaatse kiirguse kiiritustihedus (mis on ilmselt valguse kiiruse ja energiatiheduse korrutis). Teiselt poolt, vastavalt neeldumisristlõike σ definitsioonile on neeldunud võimsus ruumalaühikus $N_1\sigma I$. Võttes arvesse kvandi energiat $\hbar\omega$, saame sellest võrdsusest $\sigma = B_{12}f(\omega)\hbar\omega/c$. Enamasti on B_{12} asemel teada pigem spontaanse siirde 2 \rightarrow 1 tõenäosus A_{21} . Võttes arvesse seoseid l6 ja arvestades, et $\hbar\omega \approx \hbar\omega_0$, saame

$$\sigma(\omega) = \frac{g_2}{g_1} \frac{A_{21}\lambda_0^2}{4} f(\omega),$$

kus λ_0 on resonantsile vastav lainepikkus.

J Laser kui optiline generaator

Analüüsime laseri kui optilise generaatori töötamist. Lihtsaima optilise resonaatori (Fabri-Perot' resonaatori) moodustavad kaks tasaparalleelset poolläbilaskvat peeglit. Nende vahele on paigutatud valgust võimendav aktiivkeskkond (joon. J1). Peeglid tekitavad *tagasiside*, st suunavad osa võimendatud signaalist tagasi võimendi sisendisse. Meie ülesanne on leida, kuidas optiline väjundsignaal sõltub sisendsignaalist ja millistel tingimustel läheb süsteem genereerima, st annab valgust välja ilma et sisendsignaali üldse tarvis oleks.

Võimendavat keskkonda iseloomustab murdumisnäitaja n ning võimenduskoefitsient γ . Peeglite omadusi võib kirjeldada peegeldusteguriga r ja läbilaskvusteguriga t (elektrivälja amplituudi jaoks). r on üldiselt kompleksarv, sest peegeldusel võib

Joonis J1. Laser kui tagasisidega optiline võimendi.

esineda faasinihe. Sisendsignaaliks on esimesele peeglile risti suunatav monokromaatne kiirgus lainepikkusega λ (elektrivälja amplituud E_s) ja väljundsignaaliks teise peegli kaudu väljuv kiirgus (välja amplituud E_v). Peeglitevahelise tee (pikkus L) läbimisel on elektrivälja faasimuutus $\Delta \phi = 2\pi nL/\lambda$ ja amplituud kasvab $e^{\gamma L/2}$ korda (sest intensiivsus kasvab $e^{\gamma L}$ korda). Kompleksesituses oleks elektrivälja muutus järgmine:

$$E_2 = E_1 e^{i\Delta\phi} e^{\gamma L/2} = E_1 e^{i\delta},$$

kus

$$\delta = 2\pi nL/\lambda - i\gamma L/2.$$

Arvutame nüüd E_v . Selleks me peame arvesse võtma kõiki peegeldusi, mis tekib peeglite vahel. E_v on määratud esialgse kiire ja peegeldunud kiirte interferentsiga. Tulemuseks saame lõpmatu geomeetrilise rea:

$$\begin{split} E_{\mathsf{v}} &= E_{\mathsf{s}} t_1 t_2 e^{i\delta} + E_{\mathsf{s}} t_1 r_2 r_1 t_2 e^{i3\delta} + E_{\mathsf{s}} t_1 r_2 r_1 r_2 r_1 t_2 e^{5i\delta} + \dots \\ &= E_{\mathsf{s}} t_1 t_2 e^{i\delta} [1 + r_1 r_2 e^{i2\delta} + (r_1 r_2)^2 e^{i4\delta} + \dots] \\ &= E_{\mathsf{s}} \frac{t_1 t_2 e^{i\delta}}{1 - r_1 r_2 e^{i2\delta}}. \end{split}$$

Järelikult optilise võimendi võimenduskoefitsient

$$K \equiv \frac{E_{\mathsf{v}}}{E_{\mathsf{s}}} = \frac{t_1 t_2 e^{i\delta}}{1 - r_1 r_2 e^{i2\delta}}.$$
 (J1)

Generatsiooni saavutamiseks peab võimendustegur $K \rightarrow \infty$. See realiseerub valemi J1 puhul siis, kui nimetaja saab nulliks ehk kui

$$r_1 r_2 e^{i2\delta} = 1. \tag{J2}$$

Võrdsustades vasaku ja parema poole moodulid, saame

 $|r_1 r_2| e^{\gamma L} = 1$

ehk peale ruutuvõtmist

 $R_1 R_2 e^{2\gamma L} = 1,$

kus $R = |r|^2$ on peegli energeetiline peegelduskoefitsient. Viimane võrdus ütleb lihtsalt, et valguse ühe edasi-tagasi käigu puhul peab võimendus ($e^{2\gamma L}$) kompenseerima peegelduskaod (R_1R_2).

Teise tingimuse saame, kui võrdsustame avaldises J2 faasid:

$$4\pi nL/\lambda + \arg r_1 + \arg r_2 = 2\pi m_1$$

kus *m* on täisarv, $\arg r_1$ ja $\arg r_2$ väljendavad faasinihet peegeldusel. Võttes selguse mõttes $\arg r_1 = \arg r_2 = 0$, saame viimase tingimuse esitada kujul

$$m\frac{\lambda}{2} = nL.$$

Järelikult peeglite vahele peab mahtuma täisarv poollaine pikkusi, st peab moodustuma seisevlaine.

K Difraktsioonvõre dispersioon ja lahutusvõime

Kujutleme, et difraktsioonvõrele langeb ühtlane valgusvihk nurga α all pinnanormaali suhtes (lepime kokku kasutada märkide reeglit, mille kohaselt nurk, mida loetakse normaali suhtes kellaosuti liikumise suunas, on positiivne, kellaosutile vastassuunas aga negatiivne). Difrageerunud kiirguse intensiivsuse suunasõltuvuse jaoks saadakse siis valem (tuletust vaata nt. õpikust [6]):

$$I(\beta) \propto \left(\frac{\sin u}{u}\right)^2 \left(\frac{\sin Nv}{\sin v}\right)^2$$
, (K1)

kus

$$u = \frac{\pi b}{\lambda} (\sin \alpha + \sin \beta),$$

$$v = \frac{\pi d}{\lambda} (\sin \alpha + \sin \beta).$$
 (K2)

Siin *N* on nende triipude arv, mis on hõlmatud võrele langeva valgusvihu ulatusega. Avaldises K1 tegur $I_1 = (\sin u/u)^2$ annab üksiku peegeldava triibu difraktsioonpildi, tegur $I_2 = (\sin Nv/v)^2$ kirjeldab aga *N* koherentse punktallika interferentsi. Suurus $b(\sin \alpha + \sin \beta)$ annab üksiku triibu servadelt peegeldunud kiirte käiguvahe, $d(\sin \alpha + \sin \beta)$ annab kahe naabertriibu pealt peegeldunud kiirte käiguvahe.

Joonis K1. Valemi K1 komponentide graafik (b = 0.5d, N = 8, $\lambda = 0.15d$, $\alpha = 0^{\circ}$).

Funktsioonide $I_1(\beta)$ ja $I_2(\beta)$ käik on kujutatud joonisel K1. Ilmneb, et $I(\beta)$ saadakse kiiresti ostsilleeriva funktsiooni $I_2(\beta)$ läbimoduleerimisel $I_1(\beta)$ -ga. Seega viima-

ne määrab difraktsioonimaksimumide suhtelised intensiivsused. Sellega tegeleme edaspidi. Järgnevalt uurime aga funktsiooni $I_2(\beta)$, mis määrab võre dispersiooni ja lahutusvõime.

Joonisel K1 pideva joonega kujutatud kõvera piigid (difraktsiooni *peamaksimumid*) asuvad kohal, kus $v = m\pi$ ehk

$$d(\sin\alpha + \sin\beta) = m\lambda,\tag{K3}$$

kus *m* on täisarv. Peamaksimumide vahel paikneb N-1 *miinimumi*, mille puhul $Nv = k\pi$ (k – täisarv) aga $v \neq m\pi$. Miinimumide vahel paiknevad *kõrvalmaksimumid*.

Avaldisest K3 ilmneb, et difraktsiooni peamaksimumi suund β sõltub valguse lainepikkusest λ . Leiame difraktsioonvõre nurkdispersiooni D_{β} , st peamaksimumi suuna muutumise kiiruse lainepikkuse muutudes. Selleks diferentseerime võrrandit K3 lainepikkuse järgi ja loeme α = Const:

$$d\cos\beta\frac{\partial\beta}{\partial\lambda} = m_{\rm s}$$

millest

$$D_{\beta} = \frac{\partial \beta}{\partial \lambda} = \frac{m}{d \cos \beta}.$$

Tulemus on loogiline: dispersioon on seda suurem mida kõrgemas järgus võre töötab ja mida tihedamalt (väiksema sammu järel) on triibud pinnale kantud.

Defineerime difraktsioonvõre lahutusvõime järgmiselt. Lainepikkused λ ja $\lambda + \delta\lambda$ ($\delta\lambda \ll \lambda$) loeme eristatavaiks parajasti veel siis, kui lainepikkusele λ vastav peamaksimum langeb kokku lainepikkusele $\lambda + \delta\lambda$ vastava esimese miinimumiga (nn Rayleigh' kriteerium). Seega esmalt peame leidma peamaksimumi nurklaiuse $\delta\beta$. Kui peamaksimumi asukoht rahuldab tingimust $v = m\pi$ ehk $Nv = k\pi$ (k = Nm), siis selle kõrval asuva esimese miinimumi asukoht on määratud tingimusega $N(v + \delta v) = (k + 1)\pi$. Siit $\delta v = \pi/N$. Teiselt poolt, diferentseerides v definitsioonvalemit K2, saame

$$\delta v = \frac{\pi d}{\lambda} \cos \beta \, \delta \beta.$$

Seega peamaksimumi nurklaius

$$\delta\beta = \frac{\lambda}{Nd\cos\beta}.$$

Nõuame, et lainepikkuse muutus $\delta\lambda$ põhjustaks peamaksimumi suuna muutuse $\delta\beta$:

$$\delta\beta = D_{\beta}\,\delta\lambda = \frac{m}{d\cos\beta}\,\delta\lambda.$$

Võrdsustades kaks viimast avaldist, leiame

$$\delta\lambda = \frac{\lambda}{mN}.$$

Hea spektraalse lahutuse saamiseks on tarvilik, et N oleks suur, st võre oleks maksimaalselt valgusega täidetud.

Joonis K2. Profileeritud difraktsioonvõre.

Profileeritud võre (joon. K2) jaoks jääb kehtima üldvalem K1, kui modifitseerida u avaldist. Ilmselt käiguvahe triibu servadelt peegeldunud kiirte vahel on $b(\sin(\phi) - \sin(-\psi)) = b[\sin(\alpha - \delta) + \sin(\beta - \delta)]$, seega

$$u = \frac{\pi b}{\lambda} [\sin(\alpha - \delta) + \sin(\beta - \delta)].$$

 $I_1(\beta)$ sõltub δ -st ning viimase valikuga saab määrata, mitmendasse peamaksimumi difrageerub põhiosa kiirgusest.