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Abstract—We present lower bounds on the minimum pseu-
docodeword effective Euclidean distance (or minimum “pseu-
dodistance”) for coded modulation systems using linear codes
with q-ary phase-shift keying (PSK) modulation over the ad-
ditive white Gaussian noise (AWGN) channel. These bounds
apply to both binary and nonbinary coded modulation systems
which use direct modulation mapping of coded symbols. The
minimum pseudodistance may serve as a first-order measure
of error-correcting performance for both linear-programming
and message-passing based receivers. In the case of a linear-
programming based receiver, the minimum pseudodistance may
be used to form an exact bound on the codeword error rate of
the system.
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I. INTRODUCTION

A. Background

In classical coding theory, maximum-likelihood (ML) de-
coding of a signal-space code leads to a nearest-neighbour
decision rule in the signal space. For this reason, the minimum
Euclidean distance between modulated codewords (signal
points) of a signal-space code is used as a first-order measure
of its error-correcting performance under ML decoding. In the
case of binary modulation, the minimum Hamming distance of
the underlying code may be substituted, since in this case the
Hamming distance is proportional to the squared Euclidean
distance.

Recently, low-density parity check (LDPC) codes have
attracted much interest due to their practical efficiency. In
particular, it was shown that several families of LDPC codes
can attain the capacity of various channels, when decoded
by iterative message passing (MP) algorithms (for instance
see [9], [10], [11]).

The MP decoding algorithm operates locally on the Tanner
graph, a graph which represents the parity-check matrix. The
notion of computation tree pseudocodewords was introduced
in [15] in order to adequately explain the limitations of MP

decoding of binary LDPC codes. Computation tree pseu-
docodewords are closely related to graph-cover pseudocode-
words. The latter were extensively studied in [6], [7], [8]
and [14]. The graph-cover pseudocodewords lie inside a re-
gion called the fundamental cone (see [6], [7]). The set of
graph-cover pseudocodewords were shown to be equivalent
to the set of linear-programming (LP) pseudocodewords for
the cases of binary [1], [2] and nonbinary coded modulation
systems [3], [12]. In both binary and nonbinary cases, neces-
sary and sufficient conditions for codeword error under linear
programming (LP) decoding could be expressed is terms of
these LP pseudocodewords, assuming transmission of the all-
zero codeword ([2], [3]).

In [4], the pseudocodeword effective Euclidean distance,
or pseudodistance, is associated with any pseudocodeword.
This concept of pseudodistance was shown in [4] to play
an analagous role to that of the signal Euclidean distance
in ML decoding. The minimum pseudodistance is defined as
the minimum over all pseudodistances of pseudocodewords;
this may be taken as a first-order measure of decoder error-
correcting performance for LP or MP decoding. In [14], it
was shown that bounds could be obtained on the minimum
pseudoweight of a binary linear code, these bounds being
expressed in terms of parameters of the parity-check matrix
of the code.

In this work, we extend the results in [14] to the nonbinary
case. In particular, we show that bounds on the minimum
pseudodistance can be obtained for the case of nonbinary
coding and modulation, which are generalizations of the
bounds on pseudoweight in [14] for the case of binary coding
and modulation. Generally, the techniques are based on the
techniques therein, although some additional ideas are used.

B. Basic Definitions

We consider codes over finite rings (this includes codes
over finite fields, but may be more general). Denote by R
a ring with q elements, by 0 its additive identity, and let
R− = R\{0}. Let C be a linear [n, k] code with parity-check



matrix H over R (we assume that R is quasi-Frobenius, which
implies that the parity-check matrix exists). The parity check
matrix H has m ≥ n− k rows.

Denote the set of column indices and the set of row
indices of H by I = {1, 2, · · · , n} and J = {1, 2, · · · ,m},
respectively. We use notation Hj for the j-th row of H, and
Ij for the support of Hj .

Given any c ∈ Rn, we say that parity check j ∈ J is
satisfied by c if and only if∑

i∈Ij

ci · Hj,i = 0 . (1)

Also, we say that the vector c is a codeword of C, writing
c ∈ C, if and only if all parity checks j ∈ J are satisfied by
c.

Let the graph G = (V, E) be the Tanner graph of C
associated with the parity-check matrix H. This graph has
vertex set V = {u1, u2, · · · , un}∪{v1, v2, · · · , vm}, and there
is an edge between ui and vj if and only if Hj,i 6= 0.
This edge is labelled with the value Hj,i. We denote by
N (v) the set of neighbors of a vertex v ∈ V . For a word
c = (c1, c2, · · · , cn) ∈ Rn, we associate the value ci with
variable vertex ui for each i ∈ I. It may be easily seen that the
Tanner graph provides a graphical means of checking whether
each parity-check j ∈ J is satisfied, and hence whether the
vector c is a codeword of C.

Definition 1.1: ([6]) A graph G̃ = (Ṽ, Ẽ) is a finite cover
of the graph G = (V, E) if there exists a mapping Π : Ṽ → V
which is a graph homomorphism (Π takes adjacent vertices of
G̃ to adjacent vertices of G), such that for every vertex v ∈ G
and every ṽ ∈ Π−1(v), the neighborhood N (ṽ) of ṽ (including
edge labels) is mapped bijectively to N (v).

Definition 1.2: ([6]) A cover of the graph G is called an
M -cover, where M is a positive integer, if |Π−1(v)| = M for
every vertex v ∈ V .

Fix some positive integer M . Let G̃ = (Ṽ, Ẽ) be an
M -cover of the Tanner graph G = (V, E) of the code C
associated with the parity-check matrix H. Denote the vertices
in the sets Π−1(ui) and Π−1(vj) by {ui,1, ui,2, · · · , ui,M} and
{vj,1, vj,2, · · · , vj,M}, respectively, where i ∈ I and j ∈ J .

Consider the linear code C̃ of length Mn over R, defined
by the Mm×Mn parity-check matrix H̃. For 1 ≤ i∗, j∗ ≤ M
and i ∈ I, j ∈ J , we let i′ = (i−1)M+i∗, j′ = (j−1)M+j∗,
and

H̃j′,i′ =
{
Hj,i if ui,i∗ ∈ N (vj,j∗)
0 otherwise . (2)

Then, any vector p ∈ C̃ has the form

p = (p1,1, p1,2, · · · , p1,M , p2,1, p2,2,

· · · , p2,M , · · · , pn,1, pn,2, · · · , pn,M ) .

We associate the value pi,` ∈ R with the vertex ui,` in G̃
(i ∈ I, ` = 1, 2, · · · ,M ). It may be seen that G̃ is the Tanner
graph of the code C̃ associated with the parity-check matrix
H̃.

The word p ∈ C̃ as above is called a graph-cover
pseudocodeword of the code C. We also define the n × q

pseudocodeword matrix corresponding to p by

P =
(
m

(α)
i

)
i∈I; α∈R

,

where

m
(α)
i = |{` ∈ {1, 2, · · · ,M} : pi,` = α}| ≥ 0 ,

for i ∈ I, α ∈ R. We then define the normalized pseudocode-
word matrix corresponding to p by

P0 =
(
f

(α)
i

)
i∈I; α∈R

,

where f
(α)
i = m

(α)
i /M for every i ∈ I, α ∈ R.

In [3], another set of pseudocodewords, called linear-
programming pseudocodewords, was defined. These LP pseu-
docodewords, which also admit a matrix representation, were
shown to be directly linked to codeword error events in
LP decoding. It was also shown in [3] that the two pseu-
docodeword concepts are equivalent, i.e. there exists an LP
pseudocodeword with a particular pseudocodeword matrix if
and only if there exists a graph-cover pseudocodeword having
the same pseudocodeword matrix.

It was shown in [3] that for the case of q-ary PSK trans-
mission over AWGN and LP decoding, the codeword error
rate performance is independent of the transmitted codeword
under the following conditions. First, R under addition is a
cyclic group. If we let β be a generator in R then we may
write R = {0, β, 2β, · · · , (q − 1)β} where kβ = β + · · ·+ β
(k > 0 terms in sum). Second, the modulation mapping is the
‘natural’ mapping

M(kβ) = exp
(

ı · 2πk

q

)
, (3)

where ı =
√
−1. We assume in this work that these conditions

hold; hence in the sequel, we adopt the simpler notation fi(k)
for f

(kβ)
i , k = 0, 1, · · · , q − 1.

II. BOUNDS ON THE PSEUDODISTANCE OF INDIVIDUAL
PSEUDOCODEWORDS

In [2], for the case of binary coding and binary modulation,
the set of pseudocodewords was used to characterize the error
correction capability of the system under LP decoding. This
was extended to the case of nonbinary coding and modulation
in [3]. In [4], it was observed that with each pseudocodeword
p may be associated a point in the signal space; these signal
points then play a role in LP decoding analagous to that
of the modulated codewords in ML decoding. In particular,
we may associate with each pseudocodeword an effective
Euclidean distance from the modulated all-zero codeword,
or pseudodistance, deff(p). Then, assuming LP decoding, the
event E(p) = “on transmission of the all-zero codeword, there
is a codeword error due to pseudocodeword p” has probability

P (E(p)) = Q

(
deff(p)

2σ

)
(4)

(where σ2 is the noise variance per dimension, and Q(x) =
1
2π

∫∞
x

exp(−t2/2)dt denotes the Gaussian Q-function) and
thus the probability of codeword error is equal to P (

⋃
E(p))
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where the union is over the set of all pseudocodewords p
(equation (4) was stated in [4] for the case of MP decoding
and computation tree pseudocodewords). Therefore the min-
imum pseudodistance dmin = minp{deff(p)} may be taken
as a first-order measure of error-correcting performance of
the coded modulation system. For the case of MP decoding
and graph-cover pseudocodewords, (4) may be taken as an
approximation. Also, for the case of binary coding and mod-
ulation, the pseudocodeword effective Hamming weight (or
“pseudoweight”) may be defined by weff(p) = d2

eff(p)/4 by
analogy with the case of classical ML decoding [4].

It was shown in [5] that for the case of q-ary PSK modu-
lation over AWGN, the squared pseudodistance between the
all-zero codeword and the pseudocodeword p is given by

d2
q(p) =

M2

V
, (5)

where

M = 2
∑
i∈I

(
1−

q−1∑
k=0

fi(k) · cos
(

2πk

q

))
, (6)

and

V =
∑
i∈I

(
q−1∑
k=0

f2
i (k)

+ 2
∑
k<`

k,`∈{0,...,q−1}

fi(k)fi(`) · cos
(

2π(k − `)
q

)

− 2
q−1∑
k=0

fi(k) · cos
(

2πk

q

)
+ 1

)
. (7)

By rearrangement of the expression in (6), we have

M = 2
∑
i∈I

(
1−

q−1∑
k=0

fi(k) · cos
(

2πk

q

))

= 2
∑
i∈I

(
q−1∑
k=1

fi(k) ·
(

1− cos
(

2πk

q

)))

≥ 2
(

1− cos
(

2π

q

))
·
∑
i∈I

(
q−1∑
k=1

fi(k)

)
. (8)

Similarly, for (7) we have

V =
∑
i∈I

(
q−1∑
k=1

f2
i (k) + f2

i (0)

+ 2
∑
k<`

k,`∈{1,...,q−1}

fi(k)fi(`) · cos
(

2π(k − `)
q

)

+ 2
q−1∑
`=1

fi(0)fi(`) · cos
(

2π`

q

)

−2
q−1∑
k=1

fi(k) · cos
(

2πk

q

)
− 2fi(0) + 1

)
.

We obtain, therefore, that

V ≤
∑
i∈I

(
q−1∑
k=1

f2
i (k) + 2

∑
k<`

k,`∈{1,...,q−1}

fi(k)fi(`)

+ 2
q−1∑
k=1

fi(k)fi(0) · cos
(

2πk

q

)

−2
q−1∑
k=1

fi(k) · cos
(

2πk

q

)
+ f2

i (0)− 2fi(0) + 1

)

=
∑
i∈I

((
q−1∑
k=1

fi(k)

)2

+ (1− fi(0))2

+ 2
q−1∑
k=1

fi(k) cos
(

2πk

q

)
· (fi(0)− 1)

)
.

It follows that

V ≤
∑
i∈I

((
q−1∑
k=1

fi(k)

)2

+

(
q−1∑
k=1

fi(k)

)2

+ 2
q−1∑
k=1

fi(k)

(
q−1∑
`=1

fi(`)

))

= 4
∑
i∈I

(
q−1∑
k=1

fi(k)

)2

. (9)

We substitute the expressions in (8) and (9) into (5), and obtain
that

d2
q(p) ≥ (1− cos(2π/q))2 ·

(∑
i∈I xi

)2∑
i∈I x2

i

, (10)

where

∀i ∈ I : xi =
q−1∑
k=1

fi(k) .

Example 2.1: Take R = {0, 1} with binary signaling
over AWGN. In this case, q = 2, and (10) can be re-written
as

d2
2(p) ≥ 4

(∑
i∈I xi

)2∑
i∈I x2

i

,

which accords with the well-known pseudoweight expression
for the case of binary code and modulation [6].

Example 2.2: Take R = Z3 = {0, 1, 2} with ternary
PSK modulation over AWGN. We show that in this case the
inequality (10) can be slightly improved. Observe that in this
case, (6) and (7) can be re-written as

M = 2
∑
i∈I

(
1
2fi(1) + 1

2fi(2) + (1− fi(0))
)

= 3
∑
i∈I

(fi(1) + fi(2)) , (11)
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and

V =
∑
i∈I

(
(fi(0))2 + (fi(1))2 + (fi(2))2

− fi(0)fi(1)− fi(0)fi(2)− fi(1)fi(2)

− 2fi(0) + fi(1) + fi(2) + 1
)

=
∑
i∈I

(
3(fi(1))2 + 3(fi(2))2 + 3fi(1)fi(2)

)
≤ 3

∑
i∈I

(
(fi(1)) + (fi(2))

)2

, (12)

where the last equality in (11) and the second equality in (12)
are due to the fact that

∑q−1
k=0 fi(k) = 1 for all i ∈ I.

Finally, we substitute the expressions in (11) and (12)
into (5) to obtain that

d2
3(p) ≥ 3 ·

(∑
i∈I xi

)2∑
i∈I x2

i

. (13)

Example 2.3: Take R = Z4 = {0, 1, 2, 3} with quater-
nary PSK (QPSK) modulation over AWGN channel. In this
case, using (10), we obtain that

d2
4(p) ≥

(∑
i∈I xi

)2∑
i∈I x2

i

, (14)

where

x = (xi)n
i=1 = (fi(1) + fi(2) + fi(3))n

i=1 .

III. INEQUALITIES FOR PSEUDOCODEWORDS

A complete characterization of the fundamental cone, in
which the pseudocodewords lie, was given for the case of
binary coding and modulation in [6]. For the present more
general framework, a complete characterization of the corre-
sponding fundamental region appears to be a difficult task.
In this section we derive a set of inequalities which must be
satisfied by the entries of any pseudocodeword matrix; these
inequalities must necessarily be satisfied by any pseudocode-
word lying in the fundamental cone. These inequalities will be
helpful in deriving the bounds on minimum pseudodistance in
the sequel.

Theorem 3.1: Let C be a linear [n, k] code over R with
an m×n parity-check matrix H. Let I, J and Ij be defined
as in Section I-B. Assume that Hj,i is not a zero-divisor in R
for any j ∈ J , i ∈ Ij . Let

P =
(
m

(α)
i

)
i∈I;α∈R

be the pseudocodeword matrix of a graph-cover pseudocode-
word p of the code C with parity-check matrix H. Then, for
any j ∈ J , ` ∈ Ij),∑

i∈Ij\{`}

∑
b∈R−

m
(b)
i ≥

∑
b∈R−

m
(b)
` . (15)

Proof: Suppose the graph-cover pseudocodeword p cor-
responds to the M -cover G̃ = (Ṽ, Ẽ), and let C̃ be the linear
code of length Mn over R defined by the parity-check matrix

H̃ described by (2). Then, G̃ is the Tanner graph of the code
C̃ associated with the parity-check matrix H̃.

Take some j ∈ J and ` ∈ Ij . Fix some 1 ≤ j∗ ≤ M ,
and take the j∗-th copy vj,j∗ ∈ Ṽ of the parity-check vertex
vj ∈ V . Let {

ui,σ(i,j∗)

}
i∈Ij

= N (vj,j∗) ⊆ Ṽ ,

where 1 ≤ σ(i, j∗) ≤ M for every i ∈ Ij .
Denote j′ = (j − 1)M + j∗. Since p ∈ C̃,∑

i∈Ij

Hj′,(i−1)M+σ(i,j∗) · pi,σ(i,j∗) = 0 .

This can be rewritten as∑
i∈Ij

Hj,i · pi,σ(i,j∗) = 0 . (16)

Assume that p`,σ(`,j∗) 6= 0. Then,∑
i∈Ij\{`}

Hj,i · pi,σ(i,j∗) = −Hj,` · p`,σ(`,j∗) , (17)

and, since Hj,` is not a zero divisor in R, the expression
in (17) is non-zero. Therefore, there exists at least one ij∗ ∈
Ij , ij∗ 6= `, such that

pij∗ ,σ(ij∗ ,j∗) 6= 0 .

The number of indices j∗ (1 ≤ j∗ ≤ M ) such that
p`,σ(`,j∗) 6= 0 is given by

∑
b∈R− m

(b)
` . This number is

equal to the number of indices j∗ (1 ≤ j∗ ≤ M ) such that
pij∗ ,σ(ij∗ ,j∗) 6= 0, which, in turn, is less than or equal to∑

i∈Ij\{`}

∑
b∈R−

m
(b)
i .

On division of both sides of (15) by M , we obtain the
following result.

Corollary 3.2: Let C, H and P be defined as in Theo-
rem 3.1. Then, for any j ∈ J , ` ∈ Ij ,∑

i∈Ij\{`}

q−1∑
k=1

fi(k) ≥
q−1∑
k=1

f`(k) . (18)

IV. EIGENVALUE BOUND

In this section, we consider (c, d)-regular codes, i.e. the
parity check matrix H of C has c nonzero elements per column
and d nonzero elements per row. Throughout this section, let
C be a (c, d)-regular linear [n, k] code over R with an m× n
parity-check matrix H, and assume that Hj,i is not a zero-
divisor in R for any j ∈ J , i ∈ Ij . Let

P0 = (fi(k))i∈I;k∈{1,2,··· ,q−1}

be the normalized pseudocodeword matrix of a graph-cover
pseudocodeword p corresponding to some M -cover of the
Tanner graph of H. Denote

∀i ∈ I : xi =
q−1∑
k=1

fi(k) and x = (xi)i∈I .
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We define a real matrix L = HT
s · Hs, where Hs is

the support of H. We assume that the Tanner graph of C
corresponding to H consists of a single connected component,
and denote by λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of
L. Let v1,v2, · · · ,vn be the set of orthonormal eigenvectors
corresponding to eigenvalues λ1, λ2, · · · , λn of the matrix L,
respectively. Then, λ1 = c · d > λ2, and v1 = 1√

n
· 1. Also,

assume that q-ary PSK modulation is used for transmission
over the AWGN channel.

Our analysis follows the lines of [14].
Lemma 4.1: Let P0 and x be defined as above. Then, for

any j ∈ J , we have∑
i∈Ij

xi

2

≥ 2 ·
∑
i∈Ij

x2
i .

Proof: For any j ∈ J write∑
i∈Ij

xi

2

=

∑
i∈Ij

xi

 ·

∑
`∈Ij

x`


=

∑
i∈Ij

xi

∑
`∈Ij

x`


≥

∑
i∈Ij

2 · x2
i ,

where the inequality is due to Corollary 3.2.
The following lemma is the counterpart of Lemma 8 in [14].

Lemma 4.2: Let x be a vector defined as in Lemma 4.1,
and let y = x · HT

s . Then,

||y||22 ≥ 2c · ||x||22 .

Proof: We write

||y||22 =
∑
j∈J

y2
j =

∑
j∈J

∑
i∈Ij

xi

2

.

We apply Lemma 4.1 to obtain that

||y||22 ≥
∑
j∈J

2 ·
∑
i∈Ij

x2
i = 2c · ||x||22 ,

where the last transition is due to the fact that each column
in H contains exactly c nonzero symbols.

The following lemma is based on Theorem 10 in [14].
Lemma 4.3: Let x and y be vectors defined as in

Lemma 4.2, and let λ1 and λ2 be defined as in Section IV.
Then,

||y||22 ≤
λ1 − λ2

n

(∑
i∈I

xi

)2

+ λ2||x||22 .

Proof: Write x as

x =
n∑

i=1

σivi ,

where vi (i ∈ I) are defined in Section IV, and σi (i ∈ I)
are real numbers. In particular,

σ1 =
1√
n
〈x,1〉 =

1√
n

(
n∑

i=1

xi

)
.

Then,

||y||22 = ||x · HT
s ||22 = x · L · xT

=
n∑

i=1

σivi · L ·
n∑

i′=1

σi′vi′

=
n∑

i=1

σivi ·
n∑

i′=1

λi′σi′vi′

=
n∑

i=1

λiσ
2
i =

λ1

n

(
n∑

i=1

xi

)2

+
n∑

i=2

λiσ
2
i

≤ λ1

n

(
n∑

i=1

xi

)2

+ λ2

n∑
i=2

σ2
i

=
λ1

n

(
n∑

i=1

xi

)2

+ λ2

(
n∑

i=1

σ2
i − σ2

1

)

=
λ1

n

(
n∑

i=1

xi

)2

+ λ2

(
n∑

i=1

σ2
i ||vi||22

)
− λ2σ

2
1

=
λ1

n

(
n∑

i=1

xi

)2

+ λ2||x||22 −
λ2

n

(
n∑

i=1

xi

)2

,

as claimed.
The following theorem summarizes the main result in this

section.
Theorem 4.4: Let C, H, Hs and L be defined as above.

Then the minimum pseudodistance with q-ary PSK modulation
over the AWGN channel is bounded from below by

d2
min,q ≥ (1− cos(2π/q))2 · n · 2c− λ2

λ1 − λ2
.

Proof: The combination of the results in Lemmas 4.2
and 4.3 immediately leads to

λ1 − λ2

n

(∑
i∈I

xi

)2

+ λ2||x||22 ≥ 2c · ||x||22 ,

and by rearrangement of the coefficients we obtain(∑
i∈I xi

)2
||x||22

≥ n · 2c− λ2

λ1 − λ2
. (19)

By re-writing (10), we get

d2
min,q ≥ (1− cos(2π/q))2 ·

(∑
i∈I xi

)2
||x||22

≥ (1− cos(2π/q))2 · n 2c− λ2

λ1 − λ2
, (20)

where the last transition is due to (19).
Example 4.1: Consider R = {0, 1} with binary signaling

over AWGN. In that case, q = 2, and so (20) can be re-written
as

d2
min,2 ≥ 4n · 2c− λ2

λ1 − λ2
,
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which coincides with the corresponding bound in [14], since in
this case d2

eff,2(p)/4 = weff(p), the effective Hamming weight
of the pseudocodeword p.

Example 4.2: Take R = Z3 with ternary PSK over
AWGN, as in Example 2.2. In this case, we can combine (13)
with (19), thus obtaining

d2
min,3 ≥ 3 ·

(∑
i∈I xi

)2∑
i∈I x2

i

≥ 3n · 2c− λ2

λ1 − λ2
.

Note that this bound is better then the respective bound which
follows directly from (20).

Example 4.3: Take R = Z4 with QPSK over AWGN, as
in Example 2.2. In this case, we can combine (14) with (19),
thus obtaining

d2
min,4 ≥

(∑
i∈I xi

)2∑
i∈I x2

i

≥ n · 2c− λ2

λ1 − λ2
.

V. LINEAR-PROGRAMMING BOUND

In this section, we present the linear-programming lower
bound on the minimum pseudodistance, similar to its coun-
terpart in [14, Section 4]. Throughout this section, let C be a
linear [n, k] code over R with an m× n parity-check matrix
H, and assume that Hj,i is not a zero-divisor in R for any
j ∈ J , i ∈ Ij . Let

P0 = (fi(k))i∈I;k∈{1,2,··· ,q−1}

be the normalized pseudocodeword matrix of a graph-cover
pseudocodeword p corresponding to some M -cover of the
Tanner graph of H. Denote

∀i ∈ I : xi =
q−1∑
k=1

fi(k) .

It follows from Corollary 3.2, that∑
i∈Ij\{`}

xi ≥ x` (21)

for all j ∈ J , ` ∈ Ij . The inequalities (21) (for all j ∈ J ,
` ∈ Ij) can be expressed as

KxT ≥ 0 , (22)

for some K.
Let the entries of a vector y ∈ R(I2) be indexed by (i, i′) ∈

I2. For i ∈ I we denote by y(i,:) and y(:,i) the sub-vectors
of length n of y consisting of all entries y(i,i′) for all i′ ∈ I
and of all entries y(i′,i) for all i′ ∈ I, respectively.

The following theorem is the main result of this section. It
is a generalization of Theorem 15 in [14].

Theorem 5.1: For q-ary PSK modulation over AWGN,
the minimum pseudodistance dmin,q is bounded from below
by

d2
min,q ≥ (1− cos(2π/q))2 · 1

maxy∈K1{f ′(y)}
,

where
f ′(y) =

∑
i∈I

y(i,i) ,

and

K1 =

y ∈ R(I2)

∣∣∣∣∣∣
y ≥ 0, y · 1T = 1 ,
KyT

(i,:) ≥ 0T for all i ∈ I ,

KyT
(:,i) ≥ 0T for all i ∈ I

 .

Sketch of the proof: We start with the expression in (10).
The expression (∑

i∈I xi

)2∑
i∈I x2

i

can be bounded from below using the same techniques as in
the proof of Theorem 15 in [14], with respect to x defined as
above. We omit the details.
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