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Abstract

We develop a framework for linear-programming (LP) decgdifinon-binary linear codes over rings. We prove that
the resulting LP decoder has the ‘maximum likelihood cedif’ property, and we show that the decoder output is
the lowest cost pseudocodeword. Equivalence between psedewords of the linear program and pseudocodewords
of graph covers is proved. LP decoding performance is ithtstl for the(11, 6,5) ternary Golay code with ternary
PSK modulation over AWGN, and in this case it is shown that tfe decoder performance is comparable to
codeword-error-rate-optimum hard-decision based degodi

1 Introduction i.e. if the LP outputs a codeword, then it must be
the ML codeword. Moreover, we show that if the LP
For high-data-rate communication systems, bandwidth-output is integral, then it must correspond to the ML
efficient signalling schemes are required which neces-codeword. We define thgraph-cover pseudocodewords
sitate the use of higher-order modulation. This may of the code, and theP pseudocodewordsf the code,
be achieved in conjunction with coding by the use and prove the equivalence of these two concepts. This
of non-binary codes whose symbols map directly to shows that the links between LP decoding on the
modulation signals. A study of such codes over rings, relaxed polytope and message-passing decoding on the
particularly over the integers moduly for use with Tanner graph generalize to the non-binary case.
PSK modulation was performed in [7]. To demonstrate performance, LP decoding of the
Of course, within such a framework it is desirable to ternary Golay code is simulated, and the LP de-
use state-of-the-art error-correcting codesw-density ~ coder is seen to perform approximately as well as
parity-check(LDPC) codes have become very popular codeword-error-rate optimum hard-decision decoding,
in recent years due to their practical effectiveness underand approximatelyl.5 dB from the union bound for
message-passing decoding. However, the analysis ofodeword-error-rate optimum soft-decision decoding.
LDPC codes is a difficult task. One approach was
proposed in [8], and it is based on the consideration :
of so-calledpseudocodewordsnd theirpseudoweights 2 General Settlngs
The approach was further explored in [3], [6]. In [1] We consider codes over finite rings (this includes codes
and [2], the decoding obinary LDPC codes using over finite fields, but may be more general). Denote by
linear-programming decoding was proposed, and thesr a ring with ¢ elements, by) its additive identity, and
connections between linear-programming decoding andiet R~ = R\{0}. Let C be a linear[n, k] code with
classical belief propagation decoding were established parity-check matrix+ overfR. The parity check matrix
Recently, pseudocodewords of non-binary codes were hasm > n — k rows.
defined and some bounds on the pseudoweights were Denote the set of column indices and the set of
derived in [4]. row indices of H by Z = {1,2,---,n} and J =
In this work, we extend the approach in [2] towards {1,2,---,m}, respectively. We use notatiok; for
coded modulation, in particular to codes over rings the j-th row of H. Let the graphg = (V, &) be the
mapped to non-binary modulation signals. As was done Tanner graph of associated with the matri%, namely
in [2], we show that the problem of decoding may be V = {uj,us, -+ ,u,} U{v1,va, - , v}, and there is
formulated as a linear-programming (LP) problem for an edge between; andv; if and only if 7{; ; # 0. We
the non-binary case. We also show that an appropriatedenote by (v;) the set of neighbors of the vertex
relaxation of the LP leads to a solution which has v;, and by supfc) the support of a vectoe. Let
the ‘maximum likelihood (ML) certificate’ property, d = max;cy{|SUpg#;)|}.



For a worde = (c1, ¢, , ) € R™, We associate
the valuec; with variable vertexu; for each: € Z.
Parity-checkj € J is said to besatisfiedif and only
if > ,crMji-ci = 0. We say that the vectoe is a
codeword of the single parity-check codgif and only
if parity checkj € 7 is satisfied. Also, we say that the
vector ¢ is a codeword ofC if and only if all parity
checksj € J are satisfied.

Definition 2.1: ([5]) A graphG = (V, €) is afinite
coverof the graphg = (V, ) if there exists a mapping
II:V — V which is a graph homomorphisnil(takes
adjacent vertices of to adjacent vertices of), such
that for every vertexo € G and everys € 117! (v),
the neighborhoodV'(v) of v is mapped bijectively to
N (v).

Definition 2.2: ([5]) A cover of the graphg is
called anM-cover, whereM is a positive integer, if
|II-%(v)| = M for every vertexv € V.

Fix some positive integed/. Let G = (V, &) be an
M-cover of the graplyy = (V, £) representing the code
C with parity-check matri¢+{. Denote the vertices in the
sets H_l(ui) and H_l(vj) by {ui,hui,g, <o ,ui,M}
and {v;1,v,2, -+ ,v; M}, respectively, where € 7
andj € J.

Consider the linear codé of length Mn over R,
defined by thel/m x Mn parity-check matrix. For
1 <4< Mandi € Z, j € J, we leti =
(i—1)M+i*,5 =G —-1)M+j* and

,}:[‘/ L Hj,i if Ug 5+ € ./\/(vm*)
7 0 otherwise
Then, any vectop € C has the form

(101,1,101,2,"' yP1,M,P2,1,D2,25
P2, My

p

yPn,15,Pn,25 " 7pn,1\/1) .

We associate the valyg , € 91 with the vertexu, ; in
GGeT, t=1,2,---, M).

The wordp € C as above is called graph-cover
pseudocodewordf the codeC. Sometimes, we consider
the following n x ¢ matrix representation, denotéd,
of the pseudocodeworg:

(mi(a))iez;aem’
where
mi(a) ={€e{1,2,--- M} : po=a} >0,
forieZ, a e R.
3 Decoding as a Linear-
Programming Problem

Assume throughout that the codeword
(¢1,¢2, - ,¢,) € C has been transmitted over a
g-ary input memoryless channel, and a corrupted word
y = (y1,¥2, - ,yn) € X" has been received. Hepe

denotes the set of channel output symbols; we assume

that this set either has finite cardinality, or is equal
to R! or C! for some integefl > 1. In practice, this
channel may represent the combination of modulator
and physical channel. We assume hereafter that all
information words are equally probable, and so all
codewords are transmitted with equal probability.

It was suggested in [1] to represent each symbol as
a binary vector of lengtffR~|, where the entries in the
vector are indicators of a symbol taking on a particular
value. Below, we elaborate on this approach. It should
be mentioned that by using such a representation,
the non-binary code is converted into a binary code.
However, this binary code is not linear, and therefore
the analysis in [1], [2] is not directly applicable.

For use in the following derivation, we shall define
the mapping

£: M — {01} cRTT,
defined by

§b) = = (') pem-
such that, for allb € B,

x<a>:{ 1

if b=a

0 otherwise

We note that the mapping(-) is one-to-one, and its
image is the set of binary vectors of length- 1 with
Hamming weight 0 or 1.

We also define a functioi : ¥ — R U {+c0} by

A=A Y)pen-
where, for eachy € ¥, o € R,

(@) (N _ P(y|0)>
N =g (F255)
andp(y|c) denotes the channel output probability (den-
sity) conditioned on the channel input. ExteAdto a
map on" by A(y) = (A1) [ A@w2) | ... | Alyn)-

The codeword-error-rate-optimum receiver operates
according to thenaximum a posteriofiMAP) decision
rule:

argglggp( cly)

p(yle)p(c)

ply)
Herep (-) denotes probability i has finite cardinality,
and probability density it has infinite cardinality.

By assumption, thea priori probability p(c) is
uniform over codewords, ang(y) is independent of
c. Therefore, the decision rule reduces to maximum
likelihood (ML) decoding:

arg max
ceC

C

argmaxp(y | c)
n

arg max Hlp(yi )
1=

n
arg max Z} log(p(yilci))
P



n
10 . :
= arg minZlog (p(yz ) ) with respect to some ordering on the elementdupf
ceC |

p(yilci) The solution we seek for these variables is
" ) 1 if §=X,(e)
= argrglelgzk(yi)é(ci)T7 VieJ : “’JFS:{ 0 otherwise
i=1

where we have made use of the memoryless property!© this end, we impose the constraints

of the channel, and of the fact thatdf = o € R™, Vice 7. VS € B 0<w: <1 2
then(y;)€(c;)T = A (y,). This is then equivalent to 7€, o DRSS @)

and
&(¢r) | €(é | E(en )
€@ l€@) | ) Ger S wst -
= arg fg/lci?c) )\(yl)fZT L ScE;
o=t . Finally, we note that the solution we seek satisfies
=arg min A(y)f" , the further constraints
FeK(C)
where Vj e J, Vi e supdH;), Ya € R,
f:(.f1|f2| |fn) fi(a):ZSEEj,iESawj1S‘ (4)
and (@) Constraints (2)-(4) form a polytope which we denote
Fi=(fi")aen-forallieT, Q. The minimization of the objective function (1) over

Q forms the relaxed LP decoding problem. This LP is
defined byO(gn + ¢%m) variables and)(gn + ¢%m)
constraints. We note that the further constraints

and wherelC(C) represents the convex hull of all points
f € Rle=1m which correspond to codewords, i.e.

’C(C> = Hconv{(f(cl) | 5(02) | . |£(Cn)) . ccE C} .

VieI Vae®R, 0<f¥<1, (5)
Therefore it is seen that the ML decoding problem
reduces to the minimization of a linear objective func- 3"
tion (or cost function) over a polytope ifR(z=1m. VieZ, ). ;< (6)
The number of variables and constraints for this linear aER™

program is exponential im, and it is therefore t00  f5)10w from the constraints (2)-(4), for artyf, w) € Q.
complex for practical implementation. To circumvent  now we may define the decoding algorithm, which
this problem, we formulate a relaxed LP problem, as yqrks as follows. The decoder solves the LP problem

shown next.' ) ] of minimizing the objective function (1) subject to the
The splu'uon we seek forf (i.e. the desired LP  gnstraints (2)-(4). Iff € {0,1}=D7 the output is the
output) is codeword(& 1 (£1), 67 (f2), -+ & 1(f,.) (we shall
F= (@) [ €@) ] ... | €@) prove in the next section that this output is indeed a

codeword). Otherwise, the decoder outputs an ‘error’.
We introduce auxiliary variables whose constraints,
along with those of the elements ¢f will form the .
relaxed LP problem. First, for eaghe 7, we define 4  Polytope Properties
the mappingX ;(c) of the wordsc € R", X (c) =

(X;.0(€))acn-, Where The analysis in this section is a direct generalization of

the results in [2].
Xjalc)={iesupgH;) : ¢; =a}, Definition 4.1: An integral pointin a polytope is
a point with allinteger coordinates.

for « € |~. For each worde € R", X ,(c) is the Proposition 4.1:

set of word indices where symbal appears in parity (@ .
checkj, for j € J, a € R~. We define the seE; as 1) Let(f,w) € Q, and f;"" € {0,1} for everyi €
Z,a € R™. Then,
Ej = {S ES (S(X)(XGER* = Xj(c) . ce C]} .
, . (€M (f1) € (F2) T (F)) €C
In other words,X (c) € E; if and only if parity check

j is satisfied by the word e R". 2) Conversely, for every codeworde =
We now introduce the auxiliary variables (c1,¢2,---,cn) € C, there existsw such
. that (f,w) is an integral point inQ with
w;s for je€J,S5€Ej, fi=¢&(e) forall i e T
and denote the vector containing these variables as Proof.
1) Supposéf,w) € Q, andfi(a) € {0, 1} for every
w:(wﬂls )jej7SeEj’ 1€, a€eR.



2)

Definec by ¢; = ¢71(f;) for all i € Z. By (6),
this is well defined. Definél’ = (T,)qen- =
Xj(c), i.e.

T, ={iesuppHy) : [ =1}, (7)

for « € R~. Now, fix somej € J and letP =
(Pa)aem- € Ej, P # T. There must existe €
R~ andiy € T such that eitheiy, € P,\T, or
io € T\ Pa.

If i9 € P,\Ty, then by (4) and (7)

fi(a) =0= Z

SEE;, ig€Sq

wj s -

Thereforew; s = 0 for all § € E; with i5 € S,,
and in particulan; p = 0.
If ig € T\ Pa, then by (3), (4), and (7)

Symmetry Condition.
For eacha € R, there exists a bijection

Ta @ 20— 2,

such that the channel output probability (density) con-
ditioned on the channel input satisfies

p(lB) = p(1a(y)|8 — ) ,

For ally € ¥, € )_. WhenX is equal toR! or C! for

[ > 1, the mappingr, is assumed to be isometric with

respect to Euclidean distance i for everya € fR.
Theorem 5.1:Under the stated symmetry condi-

tion, the probability of decoder failure is independent

of the transmitted codeword.

The proof of this theorem is omitted due to space

limitations. Examples of modulator-channel combina-

0 = 1- @ tions for which this assumption holds amgary PSK
o P modulation over AWGN (where the additive group of
= Y wis— Y,  ws R is cyclic); orthogonal modulation over AWGN; and

ScE; SEE;, i0E€Sa the discrete memorylessary symmetric channel.
= Z wj s -
SEB;, iofSa 6 Linear-Programming  Pseudo-

Thereforew; ¢ = 0 for all S € E; with iy ¢ S,,
and in particularw; p = 0.

It follows thatw; ¢ =0 forall S € E;, S #T.
But by (3) this implies thatl’ ¢ E; (and that
w;,r = 1). Applying this argument for every
J impliesc € C.

Forc e C, we let f, = £(¢;) for i € Z. For each
parity checkj € J, we letT = (Ty)aen- =

X (e) € E; and then set
‘ 1 ifS=T
VieJ: wj,8 = { 0 otherwise.

It is easily checked that the resulting poiift, w)
is integral and satisfies constraints (2)-(4). [J

codewords

Definition 6.1: A linear-programming pseudo-
codeword (LP pseudocodeword) of the code is a
vector (h, z) where

h=(hi|hy| - |hy),
VieZ, hy = (hi(®))aen-

z = (Zj,S )jEJ,SEEJ ) ] .
where the elements of are nonnegative integers, and
the following two conditions hold for alj € 7:

Vi € supfH;), Va € R,

hi(@) =Y ser, ics. 3.8 » (8)
The following proposition assures the so-caliddl €8y, 165
certificate property. ) B
Proposition 4.2: Suppose that the decoder outputs Vi € supfH;), hi(0) = Z %58 - ©)

ScE;

a codeworde € C. Then,c is the maximum-likelihood s
Va€R™ : i¢Sa

codeword. )
The proof of this proposition is straightforward. The From (8) and (9) it follows that the elements bfare

reader can refer to a similar proof for the binary case Nonnegative integers, and that for each sup(#;) N
in [2]. supfH;/), we have

Z hi(()é) = Z Z5,8 = Z zZj!.8 -

aER SeE; SeE;

(10)
5 Transmission-Independent
Decoder Performance

In this section, we state a theorem on decoder perfor-
mance, namely, that under a certain symmetry condi-
tion, the probability of decoder failure is independent
of the transmitted codeword. Decoder failure is defined for some fixed nonnegative integéy.

as the event where the decoder output is not equal We note that the LP pseudocodewdrd z) defined
to the transmitted codeword (this could correspond to above can be represented by thex ¢ matrix

a non-integral value off, or to an erroneous output

codeword). H = (hi(a))iez;aem :

We assume that the Tanner graphtofis connected,; it
then follows from (10) that

VieZ: > hia)=M,



In the following, we say that the decodkiils if the Theorem 7.1:There exists an LP pseudocodeword
decoder output is not equal to the transmitted codeword.(h, z) for the codeC with matrix representatiot if
Theorem 6.1:Assume that the all-zero codeword and only if there exists a graph-cover pseudocodeword

was transmitted. p with the same matrix representation.
1) If the LP decoder fails, then there exists some LP  Proof.
pseudocodeworgh, z), h # 0, such that 1) Let(h, z) be an LP pseudocodeword, anddet
n (V, &) be the Tanner grap8 associated with the
> ( DA (yi)hi(a)) <0. (12) parity-check matrixH. We define
i=1 \a€R~
2) If there exists some LP pseudocodewdtd z), M= Z hi(a) .
h 0, such that aeR
n (Recall that under our assumption that the Tanner
Z ( Z @) (yi)hi(a)> <0, (12) graph is connected, the valuef is independent
i=1 \aeR- of i.) Below, we construct a correspondirid -
then the LP decoder fails. cover graphg = (V,€).
Proof. The proof follows the lines of its counterpart o For everyi € Z, and for everya € ‘R,
in [2]. the graphG will contain h;(a) copies of the
1) Let (f, w) be the point inQ which minimizes vertexu; associated with the value.
Xy)fT. Suppose the decoder fails; th¢n 0, « Foreveryj € 7, S € Ej, the graphg will
and we must havé\(y)fT <0. contain z; g copies of the check vertey;,
Next, we construct the LP pseudocodeword associated with thég — 1)-tuple S.
(h,z) as follows. Since the LP has rational « The edges in the graph are connected accord-
coefficients, all elements of the vectofs and ing to the membership in the set,, for
w must be rational. Lef\/ denote their lowest a € |R~. Namely, each copy of check vertex
common denominator; singé # 0 we may have v; will be connected to one copy of; for
M > 0. Now seth;(a) = M - £ for all i € Z, everyu; € N'(v;). A copy of a check vertex
a € 9{—, set zZjs = M - wj.8 for all ] cJ Vj associated with th@*l)'tuples will be
and S € Ej;, and then defingy;(0) as in (9) connected to a copy of; associated with the
for all i € Z. By (2) and (4),(h,z) is an LP valuea € R~ if and only if i € S,. A copy
pseudocodeword ant # 0 since f # 0. Also of v; associated with thég—1)-tuple S will
A(y)f" <0 implies (11). be connected to a copy af associated with
2) Now, suppose that an LP pseudocodew@rdz) the value0 if and only if i ¢ Uyemn-Sa-
with h # 0 satisfies (12). Let By using (8), we see that for every € 7,
i € supaH,;), a € R, there are exactlyr;(«
M= Z hi(a) . edges cgnnje)cting the copies of the ventgxlx(/itr)l
aen the copies ofu; associated with the value.
Sinceh # 0 we have)M > 0. Now: Therefore, the graply is well-defined, and the
. Setfi(a) =hi(a)/M forall i € Z, a € R~; neighborhood of a copy of; contains exactly
o Setw; s = z;s/M forall j € 7 andS§ ¢ one copy ofu; for everyu; € N(v;). Further-
E;. more, it can be seen that the neighborhood of a
It is straightforward to check thdif, w) satisfies copy of u; contains exactly one copy af; for
all the constraints of the polytop@. Also, h # 0 everyv; € N(u;). In addition, all copies of all
implies f # 0. Finally, (12) implies)\(y)fT < check vertices); represent satisfied checks, and
0. Therefore, the LP decoder will produce an thereforep, induced by the graply, is a graph
output other than the all-zero codeword, resulting cover pseudocodeword ¢f, as claimed.
in decoder failure. 2) Now let p be a graph-cover pseudocodeword
0 corresponding to som@/-cover of the Tanner

graph ofC. Then,
« for everyi € Z, and for everya € R, we

7 Equival ence Between Pseudo- defineh,;(«) to be the number of copies of
codeword Sets the vertexu; associated with value.
« for everyj € 7, and for everyS € E;, we
In this section, we show the equivalence between the definez; s to be the number of copies of the
set of LP pseudocodewords and the set of graph-cover check vertexv; connected to copies ai;,
pseudocodewords. The result is summarized in the associated withw € SR~ for ¢ € S,, and
following theorem. associated withd) for i ¢ U ecx- Sa.



Then,z; s are all nonnegative integers for gl
J andS € E;. Moreover, (8) and (9) hold for all
j € J by construction of the graph. Therefore,
(h, z) is an LP pseudocodeword of the co@e

L]

8 Simulation Study

In this section we compare performance of the linear-
programming decoder with hard-decision and soft-
decision based ML decoding. For such a comparison, a
code and modulation scheme are needed which posses
sufficient symmetry properties to enable derivation of
analytical ML performance results. We consider en-
coding of 6-symbol blocks according to thel1,6,5)
ternary Golay code, and modulation of the resulting
ternary symbols witl8-PSK modulation prior to trans-
mission over the AWGN channel. The symbol error
rate (SER) and codeword error rate (WER) are shown
in Figure 1. To quantify performance, we define the

Codeword/Symbol Error Rate

Hard-Decision-Based ML Decoding — Exact WER

Soft-Decision-Based ML Decoding - Union Bound WER

10°k —+— LP Decoding - WER J

LP Decoding - SER

4 5 6
Es/No (dB)

Fig. 1. Codeword error rate (WER) and symbol error rate (SER)

signal-to-noise ratio (SNR) per information symbol for .the(11,6,5) ternary Golay code undeér-PSK modulation. The
~vs = Es/Ny as the ratio of receive signal energy per figure shows performance under LP decoding, as well as thet exac

information symbol to the noise power spectral density.
Also shown in the figure are two other performance
curves for WER. The first is the exact result for ML

result for hard-decision decoding and the union bound fdt- so
decision decoding.

hard-decision decoding of the ternary Golay code; sinceaythors would like to thank J. Feldman and R. Koetter

the Golay code is perfect, this is obtained from
11

for helpful discussions.

11 11—¢
WER(7) = ( )p% “(1—plrs :
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