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Abstract—Minimum Pearson Distance (MPD) detection of-
fers resilience against unknown channel gain and varying
offset. MPD detection is used in conjunction with a set, S, of
2-ary codewords having specific properties. In this work, we
study the properties of the codewords of S, compute the size of
S, and derive its redundancy for asymptotically large values of
the codeword length n. The redundancy of S is approximately
3
2
log2 n + α, where α = log2

√
π/24 = −1.467.. for n odd

and α = −0.467.. for n even.
Index terms—Constant composition code, permutation code,
flash memory, optical recording, minimum Pearson distance
detection

I. INTRODUCTION

In solid-state memories, such as flash storage, the signals
are stored as charges in memory cells. Over time, the charge
may partially erode, and, as a result, the retrieved data signal
is superimposed on an unknown-time varying drift [1]. In
digital optical recording, fingerprints on the surface of a disc
result in rapidly offset and gain variations of the retrieved
signal. Memory cells closer to hotter areas on the chip may
lose their charge faster than cells closer to colder areas.

Various methods have been proposed to combat the detri-
mental effects of unknown channel parameters. A popular
approach is the insertion of training sequences, where a
known pattern of symbols is embedded in the data stream.
Since the channel is time-varying and corrupted by noise
or drop-outs, the parameter estimation will, by necessity,
be based on an average over a given time-interval, and the
estimated values will thus lag behind the actual values of the
varying parameters. As a result, the error performance of the
detection circuitry will degrade. A more frequent insertion
of training sequences may improve the parameter estimation
which, however, comes at the cost of decreased payload. It
is therefore needed to find alternative methods.

Prior art Minimum Pearson Distance (MPD) detection has
been advocated since it has innate resistance, or is said to
be immune, to unknown signal amplitude and offset of the
received signal [2], [3]. It is assumed in this prior art that the
offset is constant (uniform) for all symbols in the codeword.
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The main idea is generalized and it is assumed that the
offset varies linearly over the codeword symbols. We show
that MPD detection in conjunction with a dedicated coding
step will result in a detection performance that is immune
to slowly varying offsets. We start with some terminology.

We consider a communication codebook, S, of chosen
codewords x = (x1, x2, . . . , xn) over the alphabet Q =
{0, 1}, where n, the length of x, is a positive integer. We
assume that the sent codeword, x, is received as

r = a(x+ ν) + b1+ cs, (1)

where r = (r1, . . . , rn), ri ∈ R, 1 = (1, . . . , 1), and
s = (1, 2, . . . , n). The basic premises are that x is received
with an unknown (positive) attenuation (gain) a, a > 0, is
offsetted by an unknown varying offset, b1 + cs, where
a, b, and c ∈ R, and corrupted by additive Gaussian
noise ν = (ν1, . . . , νn), νi ∈ R are noise samples with
distribution N(0, σ2), where σ2 ∈ R denotes the variance
of the additive noise. The difference between the above and
the prior art model in [2] is the term cs, which denotes
an additional linearly increasing or decreasing offset, whose
slope magnitude c is unknown to the receiver. The term, cs,
makes the problem under consideration significantly more
difficult than its prior art counterpart in [2].

We start in Section II with a brief description of the prior
art. Section III presents the backbone of the paper, where it
is shown how an MPD detector can be used in conjunction
with codewords taken from a dedicated codebook, S, in such
a way that the detector is immune to gain mismatch and
varying offset. Properties of S are collected in Section IV.
In Sections V and VI, we count the number of constrained
codewords, and show that for asymptotically large n, the
redundancy of S is approximately 3

2 log2 n+α, where α =

log2
√

π/24 = −1.467.. for n odd and α = −0.467.. for n
even. The Conclusions section concludes this paper.

II. PRIOR ART

The well-known (squared) Euclidean distance between
the received signal vector r and the codeword x̂ is defined
by

δe(r, x̂) =
n∑

i=1

(ri − x̂i)
2. (2)



A minimum Euclidean distance detector outputs the code-
word

xo = argmin
x̂∈S

δe(r, x̂). (3)

Working out (2) gives

δe(r, x̂) =
n∑

i=1

(x′
i − x̂i + b+ ci)2

=

n∑
i=1

(x′
i − x̂i)

2 + (b+ ci)2

+ 2b

n∑
i=1

x′
i + 2c

n∑
i=1

ix′
i

− 2b
n∑

i=1

x̂i − 2c
n∑

i=1

ix̂i, (4)

where x′
i = a(xi + νi). The dependence of (4) on the

unknown terms has a significant bearing on the error
performance. In the prior art, constrained coding methods
have been presented that offer a cure for the reported error
performance degradation. For example, in [4], constrained
codes are advocated, where the codebook S is chosen such
that each codeword x ∈ S satisfies two conditions, namely

n∑
i=1

xi =
n

2
(5)

and
n∑

i=1

ixi =
n(n+ 1)

4
. (6)

After substituting the above conditions into (4), it can
be verified that the outcome of (3) is independent of the
parameters a, b and c. In that case, the detector is said to
be (a, b, c)-immune. Note that in case the offset is uniform,
c = 0, it suffices to impose only the first condition (5) to
render the performance (a, b)-immune. A code that satisfies
the first condition (5) is called a balanced code, while a
code that satisfies both conditions (5) and (6) is called a
dc2-balanced or second-order spectral-null code.

Let Ndc(n) denote the number of dc-balanced codewords.
For n even, we simply obtain

Ndc(n) =

(
n
n
2

)
,

and the redundancy, rdc(n), of balanced codes is approxi-
mately [5]

rdc(n) = n−log2 Ndc(n) ≃
1

2
log2 n+0.326, n ≫ 1. (7)

Properties and constructions of dc2-balanced codes were
first presented by Immink [4]. Efficient code constructions
were presented by, for example, Yang [6], Tallini and
Bose [7].

Let the number of dc2-balanced codewords of length n be
denoted by Ndc2(n). It has been found in [4] that Ndc2(n) =
0 if n mod 4 ̸= 0. The number of dc2-balanced codewords
equals for asymptotically large n [8] (see also Section VI)

Ndc2(n) ≃
4
√
3

π

2n

n2
, n mod 4 = 0. (8)

The redundancy of dc2-balanced codes, denoted by rdc2(n),
is approximated by

rdc2(n) = n− log2 Ndc2(n) ≃ 2 log2 n− 1.141, n ≫ 1.
(9)

The redundancy of dc2-balanced codes is usually considered
to be too high for practical applications. In the next section,
we investigate a less redundant option that also guarantees
(a, b, c)-immunity.

III. DETECTION USING THE PEARSON DISTANCE

Immink and Weber [2] presented a coding and detection
technique that is immune to unknown gain and (uniform)
offset, that is (a, b) immunity, which is based on the Pearson
distance. The Pearson distance, δ(r, x̂), between the vectors
r and x̂ is defined by

δ(r, x̂) = 1− ρr,x̂, (10)

where

ρr,x̂ =

∑n
i=1(ri − r)(x̂i − x̂)

σrσx̂
(11)

is the well-known (Pearson) correlation coefficient, and we
define two quantities, namely the average symbol value of
x̂

x̂ =
1

n

n∑
i=1

x̂i, (12)

and the (unnormalized) symbol value variance of x̂

σ2
x̂ =

n∑
i=1

(x̂i − x̂)2. (13)

It is assumed that both codewords x and x̂ are taken
from a judiciously chosen codebook S, whose properties
are explained later. A Minimum Pearson Distance (MPD)
detector outputs the codeword

xo = argmin
x̂∈S

δ(r, x̂). (14)

Working out (10) yields

δ(r, x̂) = 1− 1

σrσx̂

n∑
i=1

(x′
i + b′ + ci)(x̂i − x̂)

= 1− 1

σrσx̂

n∑
i=1

x′
i(x̂i − x̂)

− 1

σrσx̂

n∑
i=1

(b′ + ci)(x̂i − x̂), (15)



where x′
i = a(xi + νi) and b′ = b − r. In the process of

minimization (14) the terms independent of x̂ are irrelevant.
The relevant (b, c, x̂)-dependent term of δ(r, x̂) equals

n∑
i=1

(b′+ci)(x̂i−x̂) = b′
n∑

i=1

(x̂i−x̂)+c

n∑
i=1

i(x̂i−x̂). (16)

Clearly, the b′-dependent term of (16) is nil since by
definition (12) we have

n∑
i=1

(x̂i − x̂) =
n∑

i=1

x̂i − nx̂ = 0.

The c-dependent term of (16) can be neutralized if all
codewords, x̂ ∈ S, satisfy

n∑
i=1

i(x̂i − x̂) = 0,

or
n∑

i=1

ix̂i = x̂

n∑
i=1

i =
1

2
n(n+ 1)x̂.

After substituting (12), we obtain the principal condition

2

n∑
i=1

ix̂i = (n+ 1)

n∑
i=1

x̂i. (17)

If all codewords x̂ ∈ S satisfy (17) then the remaining term
of (15) is

1− 1

σrσx̂

n∑
i=1

x′
i(x̂i − x̂) .

is independent of a, b, and c. The gain term, a, in both σr

and x′
i, is merely a scaling factor not affecting the outcome

of (14) (note the assumption is a > 0). We conclude that if
all codewords x ∈ S satisfy condition (17) that a minimum
Pearson distance detector using (14) is (a, b, c)-immune.

By rearranging the terms of (17), we obtain
n∑

i=1

(
i− n+ 1

2

)
x̂i = 0. (18)

We infer from the above, borrowing terminology from
mechanics, that the codewords in S have their center of
mass at (n + 1)/2. Note that for odd n, the value of the
center bit, x(n+1)/2, does not affect the outcome of (17).

The cardinality of S is denoted by N(n) = |S|. It is
easily verified that both the all-‘1’ and the all-‘0’ words
satisfy (17). From the teachings of [2], we infer that for un-
ambiguous MPD detection, we must bar the all-‘0’ and all-
‘1’ codewords, so that the number of available codewords
is N(n)− 2.

IV. PROPERTIES OF S

Below we have listed properties of the set S and its
codewords.

1) Property 1: Let the inverse of the symbol xi be
denoted by x̃i = 1 − xi. The vector x̃ is the inverse
of x if all symbols are inverted. We simply find that
x ∈ S =⇒ x̃ ∈ S. So that we infer that N(n)
mod 2 = 0.

2) Property 2: Let x = (x1, x2, . . . , xn) and let xr =
(xn, xn−1, . . . , x1) denote the reverse of x. We simply find
using (18) that x ∈ S =⇒ xr ∈ S.

3) Property 3: Let n be odd, and x ∈ S. Assume that
x̃ agrees with x on all x̃i, i ̸= (n+ 1)/2, and x̃(n+1)/2 =
1− x̂(n+1)/2. Then, x̃ ∈ S. This follows from the fact that
(18) does not depend on x̂(n+1)/2. Since |S| ≥ 2 for all
n ≥ 1, we conclude that for odd n, the minimum distance of
S equals unity. For even n, however, from (18) we infer that
if xi = xn−i for all i ∈ {1, 2, . . . , n/2} =⇒ x ∈ S. There
are 2n/2 such codewords, where the first n/2 bits are taken
arbitrarily, and the last n/2 bits are fixed as xi = xn−i. It is
also easy to see that the minimum distance of S is exactly
two, since (100 · · · 001) and (000 · · · 000) are in S. On the
other hand, the minimum distance of S is not unity, since
x satisfies (18).

4) Property 4: Assume that n is even. The left-hand side
of (17) is even, but since (n+ 1) is odd,

∑n
i=1 x̂i must be

even, and therefore any x ∈ S contains an even number of
ones.

V. COUNTING USING GENERATING FUNCTIONS

We use generating functions for enumerating the number,
N(n) = |S|, of codewords x that satisfy (17). To that end,
let the generating function g(y) be defined by the formal
power series

g(y) =
∞∑
i=0

giy
i.

Let [yn]g(y) denote the extraction of the coefficient of yn

in the formal power series g(y) =
∑

giy
i, that is, define

[yn]

( ∞∑
i=0

giy
i

)
= gn.

In a similar fashion, we define a bi-variate generating
function

ĝ(x, y) =
∑
i,j

ĝi,jx
iyj .

Define [4], [9]

hn(x, y) = (1 + xy)(1 + xy2) . . . (1 + xyn). (19)

Then [xi0yj0 ]hn(x, y) equals the number of n-sequences
that satisfy the conditions

n∑
i=1

xi = i0 and
n∑

i=1

ixi = j0.

The number of n-sequences that satisfy (17) is given by

N(n) =
n∑

i=0

[
xiy

i(n+1)
2

]
hn(x, y).



TABLE I
SIZE OF CODEBOOK, N(n), AND NDC2 (n).

n N(n) Ndc2 (n)
4 4 2
5 8 0
6 8 0
7 20 0
8 18 8
9 52 0

10 48 0
11 152 0
12 138 58

We also have

Ndc2(n) = [x
n
2 y

n(n+1)
4 ]hn(x, y), n mod 4 = 0.

As
hn(x, y) = hn−1(x, y)(1 + xyn),

we can write down a recursive relation for the coefficients
of hn(x, y) [4], [9], where for clerical convenience we use
the notation

Cm(i, j) = [xiyj ]hm(x, y).

For m = 1, . . . , n, i = 0, . . . ,m and j = 0, . . . ,m(m+1)/2

Cm(i, j) = Cm−1(i, j) + Cm−1(i− 1, j −m)

with initial conditions C0(0, 0) = 1 and C0(i, j) = 0 for
any (i, j) ̸= (0, 0). Table I shows results of computations
of N(n) and Ndc2(n) versus n.

VI. ASYMPTOTIC BEHAVIOR

Using statistical arguments, we compute an approxima-
tion to the redundancy of the new codes for asymptotically
large values of n. To that end, we define the stochastic
variables

s = x1 + x2 + . . .+ xn,

and
p = x1 + 2x2 + . . .+ nxn,

where xi, 1 ≤ i ≤ n, are seen as i.i.d. two-valued random
variables whose numerical outcomes ‘0’ or ‘1’ are equally
likely. The expectations are E[x2

i ] = E[xi] = 1/2, and
E[xixj ] = 1/4, where E[.] denotes the expected value
operator. In case n is large, the central limit theorem
states that the stochastic variables s and p, which are
obtained by summing a large number, n, of independent
stochastic variables, will show a two-dimensional Gaussian
distribution. Then, for asymptotically large n, the number
of n-sequences, denoted by φ(s, p), is given by [10]

φ(s, p) ≈ 2n

2πσsσp

√
1− ρ2

e
− f(s,p)

2(1−ρ2) , (20)

where

f(s, p) =

(
s− µs

σs

)2

+

(
p− µp

σp

)2

−2ρ(s− µs)(p− µp)

σsσp
.

(21)
The parameters µs and µp denote the average of s and p, σ2

s

and σ2
p denote the variance of s and p, while ρ denotes the

(linear) correlation between s and p. The five parameters
are computed below.
We simply find

µs = E[s] = E[x1 + . . .+ xn] = nE[xi] =
n

2
. (22)

Since

E[s2] = E[(x1 + . . .+ xn)
2]

=
n∑

i=1

E[x2
i ] + 2

n−1∑
i=1

n∑
j=i+1

E[xixj ]

=
n

2
+

n(n− 1)

4
,

we have

σ2
s = E[(s− µs)

2] = E[s2]− µ2
s =

n

4
. (23)

Similarly

µp = E[p] = (1 + 2 + . . .+ n)E[xi] =
n(n+ 1)

4
. (24)

Since

E[p2] =

n∑
i=1

i2E[x2
i ] + 2

n−1∑
i=1

n∑
j=i+1

ijE[xixj ]

= n

(
n3

16
+

5n2

24
+

3n

16
+

1

24

)
,

we have

σ2
p = E[(p− µp)

2] =
n(n+ 1)(2n+ 1)

24
. (25)

We have

E[s.p] = E[(x1 + . . .+ xn)(x1 + 2x2 . . .+ nxn)]

=
n+ 1

4

n∑
i=1

i =
n(n+ 1)2

8
,

so that

ρ2 =
(E[s.p]− µsµp)

2

σ2
sσ

2
p

=
3

2

n+ 1

2n+ 1
. (26)

The number of dc2-balanced codewords, Ndc2(n), for
asymptotically large n, n mod 4 = 0, can be found by
substituting

s =
n

2
= µs

and
p =

n(n+ 1)

4
= µp,



into (20). Then

Ndc2(n) ≈ φ(µs, µp) ≈
2n

2πσsσp

√
1− ρ2

,

so that

rdc2(n) = n− log2 Ndc2(n)

≈ log2 2πσsσp

√
1− ρ2

≈ 2 log2 n− log2
4
√
3

π
, n ≫ 1.

The above result was earlier obtained in [8], [11].
The computation of N(n) for asymptotically large n is

slightly more involved. We find, using (20),

N(n) ≈
n∑

s=0

φ

(
s,

(n+ 1)s

2

)
(27)

≈ 2n

2πσsσp

√
1− ρ2

n∑
s=0

s(n+1) mod 2=0

e
−

f(s, (n+1)s
2 )

2(1−ρ2)

≈ Ndc2(n)
n∑

s=0
s(n+1) mod 2=0

e
−

f(s, (n+1)s
2 )

2(1−ρ2) .

We obtain after substituting p = s(n+ 1)/2(
p− µp

σp

)2

=
3(n+ 1)

2(2n+ 1)

(s− n
2 )

2

n
4

= ρ2
(
s− µs

σs

)2

.

After working out (21) and (26), we have

f
(
s, n+1

2 s
)

2(1− ρ2)
=

(s− n
2 )

2

n
2

.

Then, since for asymptotically large n,

lim
n→∞

n∑
s=0

e
−

(s−n
2

)2

n
2 ≈

∫ ∞

0

e
−

(s−n
2

)2

n
2 ds =

√
πn

2
,

we find for n odd, as in (27) we add the terms for all s ≥ 0,

N(n) ≈ Ndc2(n)

√
πn

2

=
2n

n3/2

√
24

π
, n ≫ 1. (28)

For n even, as in (27), we add the terms for even s ≥ 0,

N(n) ≈ Ndc2(n)

√
πn

8

=
2n

n3/2

√
6

π
, n ≫ 1. (29)

For asymptotically large n, we obtain for the redundancy
r(n) of S

r(n) = n− log2 N(n) ≈ 3

2
log2 n+ α, (30)

where α = log2
√
π/24 = −1.467.. for n odd and α =

−0.467.. for n even. We conclude that the redundancy of
the new codes is smaller than that of dc2-balanced codes,
but larger than that of dc-balanced codes.

VII. CONCLUSIONS

We have presented a minimum Pearson distance (MPD)
detector that is immune to unknown slowly varying off-
set. We have formulated a constraint and enumerated the
number of codewords that can be used in conjunction with
MPD detection. For asymptotically large n, the redundancy
r(n) ≈ 3

2 log2 n + α, where α = log2
√
π/24 = −1.467..

for n odd and α = −0.467.. for n even. The redundancy of
the new codes is smaller than that of dc2-balanced codes,
but larger than that of dc-balanced codes. The minimum
Hamming distance of the new codes for even n is equal to
two and for odd n equal to unity. The redundancy of the
new codes for n odd is around one bit less than that for n
even.
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