Asymptotic Goodness of Expander Codes with Weak Constituent Codes

Vitaly Skachek

This work is a part of the speaker's Ph.D. Thesis. It was done at the Technion – Israel Institute of Technology under the supervision of Ron M. Roth.

Vitaly Skachek Asymptotic Goodness of Expander Codes

(日) (四) (日) (日) (日)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

LDPC Codes

Low-density parity-check codes.

▶ [Gallager '62] Presented for the first time. Seemed to be unpractical then.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

LDPC Codes

Low-density parity-check codes.

- ▶ [Gallager '62] Presented for the first time. Seemed to be unpractical then.
- ▶ [Berrou, Glavieux, Thitimajshima '93] Turbo codes, which are extremely efficient in practice, stimulated a new wave of research on LDPC codes.

(日) (종) (종) (종) (종)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

LDPC Codes

Low-density parity-check codes.

- ▶ [Gallager '62] Presented for the first time. Seemed to be unpractical then.
- ▶ [Berrou, Glavieux, Thitimajshima '93] Turbo codes, which are extremely efficient in practice, stimulated a new wave of research on LDPC codes.
- ▶ [Richardson Urbanke '01] Good *average* behavior over binary memoryless channels.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

LDPC Codes

Low-density parity-check codes.

- ▶ [Gallager '62] Presented for the first time. Seemed to be unpractical then.
- ▶ [Berrou, Glavieux, Thitimajshima '93] Turbo codes, which are extremely efficient in practice, stimulated a new wave of research on LDPC codes.
- ▶ [Richardson Urbanke '01] Good *average* behavior over binary memoryless channels.
- ▶ [Richardson Shokrollahi Urbanke '01] Codes, which are extremely close to the capacity, found by the exhaustive search.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Explicit Constructions

▶ [Sipser Spielman '96] Correct constant fraction of errors, linear time encoding and decoding.

Vitaly Skachek Asymptotic Goodness of Expander Codes

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Explicit Constructions

- ▶ [Sipser Spielman '96] Correct constant fraction of errors, linear time encoding and decoding.
- ▶ [Barg Zémor '01-'04] Capacity-achieving codes for BSC with linear-time decoding, exponentially small decoding error. Binary codes that surpass the Zyablov bound.

(日) (四) (日) (日) (日)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Basic Definitions

Vitaly Skachek Asymptotic Goodness of Expander Codes

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Vitaly Skachek Asymptotic Goodness of Expander Codes

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Definition

• The Hamming distance between $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ in Σ^n , $\mathsf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols $(x_i, y_i), 1 \leq i \leq n$, such that $x_i \neq y_i$.

(日) (四) (日) (日) (日)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Definition

- ► The Hamming distance between $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ in Σ^n , $\mathsf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols $(x_i, y_i), 1 \leq i \leq n$, such that $x_i \neq y_i$.
- The minimum distance of a code C is

$$d = \min_{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}} \mathsf{d}(\boldsymbol{x}, \boldsymbol{y}).$$

(日) (四) (日) (日) (日)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Definition

- ► The Hamming distance between $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ in Σ^n , $\mathsf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols $(x_i, y_i), 1 \leq i \leq n$, such that $x_i \neq y_i$.
- The minimum distance of a code C is

$$d = \min_{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}} \mathsf{d}(\boldsymbol{x}, \boldsymbol{y}).$$

• The relative minimum distance of C is defined as $\delta = d/n$.

(日) (四) (日) (日) (日)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Linear Code

Definition

• A code C over field Φ is said to be a *linear* [n, k, d] code if there exists a matrix H with n columns and rank n - k such that

$$H \boldsymbol{x}^t = \bar{\boldsymbol{0}} \iff \boldsymbol{x} \in \mathcal{C}.$$

- ▶ The matrix *H* is called a *parity-check matrix*.
- The value k is called the *dimension* of the code C.
- The ratio r = k/n is called the *rate* of the code C.
- ▶ The words of C can be obtained as linear combinations of rows of a generating $k \times n$ matrix G.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

LDPC and Low-Complexity Codes

[Gallager '62]

 Matrix H: the number of non-zero entries in each column (row) of H is typically bounded by a small constant.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

LDPC and Low-Complexity Codes

[Gallager '62]

- Matrix H: the number of non-zero entries in each column (row) of H is typically bounded by a small constant.
 [Tanner '81]
 - ► A Δ -regular undirected graph $\mathcal{G} = (V, E)$ with |E| = N.

LDPC and Low-Complexity Codes

[Gallager '62]

- Matrix H: the number of non-zero entries in each column (row) of H is typically bounded by a small constant.
 [Tanner '81]
 - ► A Δ -regular undirected graph $\mathcal{G} = (V, E)$ with |E| = N.
 - ► Linear $[\Delta, k=r\Delta, d=\delta\Delta]$ code C over GF(q).

 $\mathbb{C} = (\mathcal{G}, \mathcal{C})$ is the following linear [N, K, D] code over $\mathrm{GF}(q) {:}$

$$\mathbb{C} = \left\{ \boldsymbol{c} \in (\mathrm{GF}(q))^N : (\boldsymbol{c})_{E(v)} \in \mathcal{C} \text{ for every } v \in V \right\} \ ,$$

 $(c)_{E(v)}$ = the sub-word of c that is indexed by the set of edges incident with v.

LDPC and Low-Complexity Codes

[Gallager '62]

- Matrix H: the number of non-zero entries in each column (row) of H is typically bounded by a small constant.
 [Tanner '81]
 - ► A Δ -regular undirected graph $\mathcal{G} = (V, E)$ with |E| = N.
 - ► Linear $[\Delta, k=r\Delta, d=\delta\Delta]$ code C over GF(q).

 $\mathbb{C} = (\mathcal{G}, \mathcal{C})$ is the following linear [N, K, D] code over $\mathrm{GF}(q) {:}$

$$\mathbb{C} = \left\{ \boldsymbol{c} \in (\mathrm{GF}(q))^N : (\boldsymbol{c})_{E(v)} \in \mathcal{C} \text{ for every } v \in V \right\} \ ,$$

 $(c)_{E(v)}$ = the sub-word of c that is indexed by the set of edges incident with v.

• The code $\mathbb{C} = (\mathcal{G}, \mathcal{C})$ is a *low-complexity* code.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Low-Complexity Codes – Example

Take $\Delta = 3$, k = 2, |V| = 4. Let G be a generating matrix of C over $F = GF(2^2) = \{0, 1, \alpha, \alpha^2\}$:

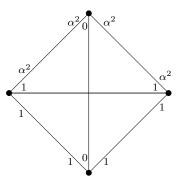
$$G = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & \alpha \end{array}\right)$$

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Low-Complexity Codes – Example

Take $\Delta = 3$, k = 2, |V| = 4. Let G be a generating matrix of C over $F = GF(2^2) = \{0, 1, \alpha, \alpha^2\}$:

$$G = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & \alpha \end{array}\right)$$



Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

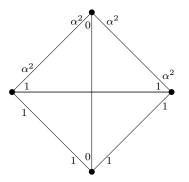
Low-Complexity Codes – Example

Take
$$\Delta = 3$$
, $k = 2$, $|V| = 4$.
Let G be a generating matrix of C
over $F = GF(2^2) = \{0, 1, \alpha, \alpha^2\}$:

$$G = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & \alpha \end{array}\right)$$

The resulting code \mathbb{C} is of length N = 6. For instance,

$$(1\ 1\ \alpha^2\ 0\ \alpha^2\ 1) \in \mathbb{C}.$$



《曰》 《圖》 《圖》 《圖》

э

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Expander Graph

• Consider a Δ -regular graph $\mathcal{G} = (V, E)$.

Vitaly Skachek Asymptotic Goodness of Expander Codes

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Expander Graph

- Consider a Δ -regular graph $\mathcal{G} = (V, E)$.
- ▶ A subset $S \subseteq V$ expands by a factor of ζ , $0 < \zeta \leq 1$, if

 $|\{v \in V : \exists \tilde{v} \in S \text{ such that } \{v, \tilde{v}\} \in E\}| \ge \zeta \Delta \cdot |S|.$

Vitaly Skachek Asymptotic Goodness of Expander Codes

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Expander Graph

- Consider a Δ -regular graph $\mathcal{G} = (V, E)$.
- A subset $S \subseteq V$ expands by a factor of ζ , $0 < \zeta \leq 1$, if

 $|\{v \in V : \exists \tilde{v} \in S \text{ such that } \{v, \tilde{v}\} \in E\}| \ge \zeta \Delta \cdot |S|.$

► The graph G is an (α, ζ)-expander if every subset of at most α|V| vertices expands by a factor of ζ.

《曰》 《圖》 《臣》 《臣》 三百

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Eigenvalues of Expander Graph

► Consider a graph \mathcal{G} where each vertex has degree Δ . The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} is Δ .

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Eigenvalues of Expander Graph

- ► Consider a graph \mathcal{G} where each vertex has degree Δ . The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} is Δ .
- Let $\lambda_{\mathcal{G}}$ be the second largest eigenvalue of $A_{\mathcal{G}}$.

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Eigenvalues of Expander Graph

- ► Consider a graph \mathcal{G} where each vertex has degree Δ . The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} is Δ .
- Let $\lambda_{\mathcal{G}}$ be the second largest eigenvalue of $A_{\mathcal{G}}$.
- ► Lower ratios of $\gamma_{\mathcal{G}} = \frac{\lambda_{\mathcal{G}}}{\Delta}$ correspond to greater values ζ of expansion. [Alon '86]

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Eigenvalues of Expander Graph (cont.)

• Expander graph with

$$\lambda_{\mathcal{G}} \le 2\sqrt{\Delta - 1}$$

is called a Ramanujan graph.

(日) (部) (E) (E) (E)

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Eigenvalues of Expander Graph (cont.)

• Expander graph with

$$\lambda_{\mathcal{G}} \le 2\sqrt{\Delta - 1}$$

is called a Ramanujan graph.

 Constructions are due to [Lubotsky Philips Sarnak '88], [Margulis '88].

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Eigenvalues of Expander Graph (cont.)

• Expander graph with

$$\lambda_{\mathcal{G}} \le 2\sqrt{\Delta - 1}$$

is called a Ramanujan graph.

- Constructions are due to [Lubotsky Philips Sarnak '88], [Margulis '88].
- ► For Ramanujan graphs, $\zeta \approx \frac{1}{2}$. Eigenvalue approach cannot provide better bounds on ζ [Kahale '95].

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Expansion of Expander Graph

• Expander graph with $\zeta = 1 - \epsilon$ is called a *lossless expander*.

Vitaly Skachek Asymptotic Goodness of Expander Codes

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Expansion of Expander Graph

- Expander graph with $\zeta = 1 \epsilon$ is called a *lossless expander*.
- Constructions of *left-regular* bipartite expanders are due to [Reingold Vadhan Wigderson '00], [Capalbo *et al.* '02].

Background Basic Definitions LDPC and Low-Complexity Codes Expander Graphs

Expansion of Expander Graph

- Expander graph with $\zeta = 1 \epsilon$ is called a *lossless expander*.
- Constructions of *left-regular* bipartite expanders are due to [Reingold Vadhan Wigderson '00], [Capalbo *et al.* '02].

• For these graphs,
$$\gamma_{\mathcal{G}} = O(1/\Delta^{1/3})$$
.

Construction Example Parameters

Expander Code Construction

[Sipser Spielman '96], [Barg Zémor '01 - '04].

• Graph $\mathcal{G} = (V, E)$ is a Δ -regular bipartite undirected graph.

Construction Example Parameters

Expander Code Construction

[Sipser Spielman '96], [Barg Zémor '01 - '04].

- ► Graph $\mathcal{G} = (V, E)$ is a Δ -regular bipartite undirected graph.
 - ▶ Vertex set $V = A \cup B$ such that $A \cap B = \emptyset$ and |A| = |B| = n.
 - Edge set E of size $n\Delta$ such that every edge in E has one endpoint in A and one endpoint in B.

Construction Example Parameters

Expander Code Construction

[Sipser Spielman '96], [Barg Zémor '01 - '04].

- ► Graph $\mathcal{G} = (V, E)$ is a Δ -regular bipartite undirected graph.
 - ▶ Vertex set $V = A \cup B$ such that $A \cap B = \emptyset$ and |A| = |B| = n.
 - Edge set E of size $n\Delta$ such that every edge in E has one endpoint in A and one endpoint in B.
- ► Linear $[\Delta, k=r_A\Delta, \delta_A\Delta]$ and $[\Delta, r_B\Delta, \delta_B\Delta]$ codes C_A and C_B , respectively, over F = GF(q).

Construction Example Parameters

Expander Code Construction (cont.)

 \mathbb{C} is a linear code of length |E| over F:

$$\mathbb{C} = \left\{ \boldsymbol{c} \in F^{|E|} : \begin{array}{c} (\boldsymbol{c})_{E(u)} \in \mathcal{C}_A \text{ for every } u \in A \text{ and} \\ (\boldsymbol{c})_{E(u)} \in \mathcal{C}_B \text{ for every } u \in B \end{array} \right\} ,$$

where $(c)_{E(u)}$ = the sub-word of c that is indexed by the set of edges incident with u.

Construction Example Parameters

Example

Take k = 2, $\Delta = 3$, n = 4. Let G_A and G_B be generating matrices of \mathcal{C}_A and \mathcal{C}_B (respectively) over $F = \operatorname{GF}(2^2) = \{0, 1, \alpha, \alpha^2\}$:

$$G_A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & \alpha & 0 \end{array}\right) \ ,$$
$$G_B = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & \alpha \end{array}\right) \ .$$

Vitaly Skachek

Asymptotic Goodness of Expander Codes

(日) (四) (日) (日) (日)

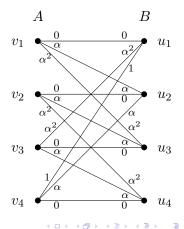
Construction Example Parameters

Example

Take
$$k = 2$$
, $\Delta = 3$, $n = 4$.
Let G_A and G_B be generating
matrices of \mathcal{C}_A and \mathcal{C}_B
(respectively) over
 $F = \operatorname{GF}(2^2) = \{0, 1, \alpha, \alpha^2\}$:

$$G_A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & \alpha & 0 \end{array}\right) \;,$$
$$G_B = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & \alpha \end{array}\right) \;.$$

Vitaly Skachek



Asymptotic Goodness of Expander Codes

Construction Example Parameters

Parameters of Expander Codes

The Code Rate

 $\mathcal{R} \ge r_A + r_B - 1.$

Vitaly Skachek Asymptotic Goodness of Expander Codes

Construction Example Parameters

Parameters of Expander Codes

The Code Rate

$$\mathcal{R} \ge r_A + r_B - 1.$$

Relative Minimum Distance [Roth Skachek '04]

$$D \ge N \cdot \frac{\delta_A \delta_B - \gamma_{\mathcal{G}} \sqrt{\delta_A \delta_B}}{1 - \gamma_{\mathcal{G}}} \, .$$

(日) (종) (종) (종) (종)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness

Definition

A family of codes $\{C_i\}_{i=0}^{\infty}$, where each C_i is a $[n_i, k_i, d_i]$ linear code, is said to be *asymptotically good* if it satisfies the following conditions:

▶ The length n_i of C_i approaches infinity as $i \to \infty$.

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness

Definition

A family of codes $\{C_i\}_{i=0}^{\infty}$, where each C_i is a $[n_i, k_i, d_i]$ linear code, is said to be *asymptotically good* if it satisfies the following conditions:

▶ The length n_i of C_i approaches infinity as $i \to \infty$.

$$\blacktriangleright \lim_{i \to \infty} \frac{d_i}{n_i} = \delta > 0$$

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness

Definition

A family of codes $\{C_i\}_{i=0}^{\infty}$, where each C_i is a $[n_i, k_i, d_i]$ linear code, is said to be *asymptotically good* if it satisfies the following conditions:

▶ The length n_i of C_i approaches infinity as $i \to \infty$.

$$\blacktriangleright \lim_{i \to \infty} \frac{d_i}{n_i} = \delta > 0$$

$$\blacktriangleright \lim_{i\to\infty} \frac{k_i}{n_i} = \mathcal{R} > 0$$

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness

Definition

A family of codes $\{C_i\}_{i=0}^{\infty}$, where each C_i is a $[n_i, k_i, d_i]$ linear code, is said to be *asymptotically good* if it satisfies the following conditions:

• The length n_i of C_i approaches infinity as $i \to \infty$.

$$\blacktriangleright \lim_{i \to \infty} \frac{d_i}{n_i} = \delta > 0$$

$$\blacktriangleright \lim_{i\to\infty} \frac{k_i}{n_i} = \mathcal{R} > 0$$

Problem Statement

How weak the constituent codes C_A and C_B could be such that the overall expander code will be asymptotically good?

(日) (四) (日) (日) (日)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers

The bound on the minimum distance:

$$\delta \geq \frac{\delta_A \delta_B - \gamma_{\mathcal{G}} \sqrt{\delta_A \delta_B}}{1 - \gamma_{\mathcal{G}}}$$

Vitaly Skachek Asymptotic Goodness of Expander Codes

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers

The bound on the minimum distance:

$$\delta \geq \frac{\delta_A \delta_B - \gamma_{\mathcal{G}} \sqrt{\delta_A \delta_B}}{1 - \gamma_{\mathcal{G}}}$$

yields the sufficient condition

$$\sqrt{d_A d_B} > \gamma_{\mathcal{G}} \Delta = \lambda_{\mathcal{G}}$$

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers

The bound on the minimum distance:

$$\delta \geq \frac{\delta_A \delta_B - \gamma_{\mathcal{G}} \sqrt{\delta_A \delta_B}}{1 - \gamma_{\mathcal{G}}}$$

yields the sufficient condition

$$\sqrt{d_A d_B} > \gamma_{\mathcal{G}} \Delta = \lambda_{\mathcal{G}} \ge 2\sqrt{\Delta - 1}$$
.

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers (cont.)

[Sipser Spielman '96]

• Codes C_A with $d_A = \Delta$ and C_B with $d_B = 2$.

Vitaly Skachek Asymptotic Goodness of Expander Codes

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers (cont.)

[Sipser Spielman '96]

- Codes C_A with $d_A = \Delta$ and C_B with $d_B = 2$.
- Bipartite (α, ζ) -expander graph with $\zeta \geq 3/4$.

(日) (四) (日) (日) (日)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers (cont.)

[Sipser Spielman '96]

- Codes C_A with $d_A = \Delta$ and C_B with $d_B = 2$.
- Bipartite (α, ζ) -expander graph with $\zeta \geq 3/4$.
- $\blacktriangleright \qquad \Rightarrow \qquad \text{Relative minimum distance is at least } \alpha.$

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers (cont.)

[Sipser Spielman '96]

- Codes C_A with $d_A = \Delta$ and C_B with $d_B = 2$.
- Bipartite (α, ζ) -expander graph with $\zeta \geq 3/4$.
- $\blacktriangleright \qquad \Rightarrow \qquad \text{Relative minimum distance is at least } \alpha.$

[Barg Zémor '04]

• Codes C_A with $d_A \ge 3$ and C_B with $d_B \ge 3$.

(日) (四) (日) (日) (日)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers (cont.)

[Sipser Spielman '96]

- Codes C_A with $d_A = \Delta$ and C_B with $d_B = 2$.
- Bipartite (α, ζ) -expander graph with $\zeta \geq 3/4$.
- $\Rightarrow \qquad \text{Relative minimum distance is at least } \alpha.$

[Barg Zémor '04]

- Codes C_A with $d_A \ge 3$ and C_B with $d_B \ge 3$.
- ▶ Random bipartite graph.

(日) (四) (日) (日) (日)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Asymptotic Goodness – Some Answers (cont.)

[Sipser Spielman '96]

- Codes C_A with $d_A = \Delta$ and C_B with $d_B = 2$.
- Bipartite (α, ζ) -expander graph with $\zeta \geq 3/4$.
- $\Rightarrow \qquad \text{Relative minimum distance is at least } \alpha.$

[Barg Zémor '04]

- Codes C_A with $d_A \ge 3$ and C_B with $d_B \ge 3$.
- ▶ Random bipartite graph.
- $\blacktriangleright \Rightarrow \qquad \text{Relative minimum distance is bounded away} \\ \text{from zero with probability close to 1.} \\$

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Constituent Codes of Minimum Distance 2

Example

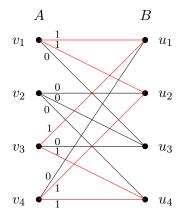
Take k = 2, $\Delta = 3$, n = 4. Let C_A and C_B be binary parity codes.

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Constituent Codes of Minimum Distance 2

Example

Take k = 2, $\Delta = 3$, n = 4. Let C_A and C_B be binary parity codes.



<ロト <問ト < 国ト < 国ト

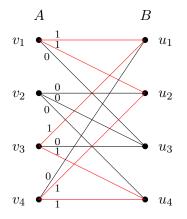
Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Constituent Codes of Minimum Distance 2

Example

Take k = 2, $\Delta = 3$, n = 4. Let C_A and C_B be binary parity codes.

• Every non-zero pattern contains a cycle.



<ロト <問ト < 国ト < 国ト

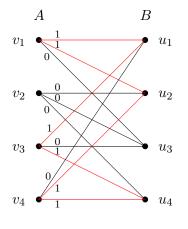
Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Constituent Codes of Minimum Distance 2

Example

Take k = 2, $\Delta = 3$, n = 4. Let C_A and C_B be binary parity codes.

- Every non-zero pattern contains a cycle.
- Every cycle can be converted into a legal non-zero pattern.



< ロト < 同ト < ヨト < ヨト

Constituent Codes of Minimum Distance 2 (cont.)

Theorem

Let C_A and C_B be codes of minimum distance 2, and let \mathcal{G} be any Δ -regular bipartite graph. Then, the minimum distance of such code \mathbb{C} is bounded from above by

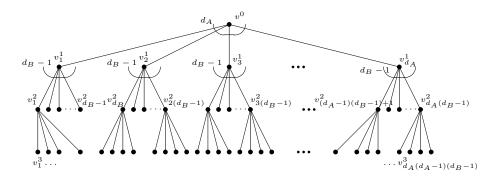
$$D \le O\left(\log_{\Delta - 1}(n)\right)$$
.

Moreover, if the underlying graph \mathcal{G} is a Ramanujan graph as in [Lubotsky Philips Sarnak '88] or [Margulis '88], then the minimum distance of \mathbb{C} is bounded from below by

$$D \ge \frac{4}{3} \log_{\Delta - 1}(2n) \; .$$

Definition and Known Results Codes of Minimum Distance 2 **Tree-Based Lower Bound** Sufficient Condition

Tree-Based Lower Bound



Vitaly Skachek Asymptotic Goodness of Expander Codes

<ロト <問ト < 国ト < 国ト

Tree-Based Lower Bound (cont.)

Theorem

Consider the code \mathbb{C} with the constituent codes C_A and C_B of minimum distance $d_A \geq 2$ and $d_B \geq 2$, respectively, with the underlying graph \mathcal{G} as in [Lubotsky Philips Sarnak '88] or [Margulis '88]. Then, its relative minimum distance is bounded from below by

$$D \ge (2n)^{1/3 \cdot \log_{\Delta - 1}(d_A - 1)(d_B - 1)} - 1$$
.

(日) (四) (日) (日) (日)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Sufficient Condition

Theorem

Let C_A and $C_B(u)$ (for every $u \in B$) be linear codes with the minimum distance $d_A = \delta_A \Delta$ and d_B , respectively. Let \mathcal{G} be a bipartite (α, ζ) -expander such that the degree of every $u \in A$ is Δ . If

$$\frac{\delta_A}{\zeta + \delta_A - 1} < d_B \; ,$$

then the relative minimum distance of \mathbb{C} is $\geq \alpha \delta_A$.

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Improvement over the Known Results

Example

• Ramanujan graph with $\zeta \approx \frac{1}{2}$.

(日) (종) (종) (종) (종)

Definition and Known Results Codes of Minimum Distance 2 Tree-Based Lower Bound Sufficient Condition

Improvement over the Known Results

Example

- Ramanujan graph with $\zeta \approx \frac{1}{2}$.
- Code C_A with $\delta_A = 1$ and code $C_B(u)$ with $d_B = 3$.

(日) (四) (日) (日) (日)

Improvement over the Known Results

Example

- Ramanujan graph with $\zeta \approx \frac{1}{2}$.
- Code C_A with $\delta_A = 1$ and code $C_B(u)$ with $d_B = 3$.
- ► Then,

$$\frac{\delta_A}{\zeta + \delta_A - 1} < d_B \; .$$

《曰》 《聞》 《臣》 《臣》

Improvement over the Known Results

Example

- Ramanujan graph with $\zeta \approx \frac{1}{2}$.
- Code C_A with $\delta_A = 1$ and code $C_B(u)$ with $d_B = 3$.

► Then,

$$\frac{\delta_A}{\zeta + \delta_A - 1} < d_B \; .$$

 $\blacktriangleright \qquad \Rightarrow \qquad \text{Relative minimum distance of } \mathbb{C} \text{ is } \geq \alpha \delta_A.$

(日) (四) (日) (日) (日)

Improvement over the Known Results

Example

- Ramanujan graph with $\zeta \approx \frac{1}{2}$.
- Code C_A with $\delta_A = 1$ and code $C_B(u)$ with $d_B = 3$.

► Then,

$$\frac{\delta_A}{\zeta + \delta_A - 1} < d_B \; .$$

⇒ Relative minimum distance of C is ≥ αδ_A.
The previously-known bound does not lead to any interesting result.

(日) (四) (日) (日) (日)

Conclusions

Further Research

 We showed necessary and sufficient condition for asymptotic goodness of expander codes.

Further Research

- ▶ We showed necessary and sufficient condition for asymptotic goodness of expander codes.
- ▶ We presented new bounds on the minimum distance of expander codes.

Further Research

- ▶ We showed necessary and sufficient condition for asymptotic goodness of expander codes.
- ▶ We presented new bounds on the minimum distance of expander codes.
- ▶ The new condition improves on the known results for a range of parameters.

(日) (종) (종) (종) (종)

Further Research

- ▶ We showed necessary and sufficient condition for asymptotic goodness of expander codes.
- ▶ We presented new bounds on the minimum distance of expander codes.
- ▶ The new condition improves on the known results for a range of parameters.
- ▶ Tight (necessary and sufficient) conditions are still remain an open problem...