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Distributed storage systems

Enormous amounts of data are stored in a huge number of
servers.

Occasionally servers fail.

Failed server is replaced and the data has to be copied to the
new server.
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Locally repairable codes

Consideration: minimize amount of transferred data.

Proposed in [Dimakis, Godfrey, Wu, Wainwright,
Ramchandran 2008].

Error-correcting codes.

Additional property: symbols can be corrected by using a
small number of other symbols (locality).
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Locally repairable codes

Consideration: minimize amount of transferred data.

Proposed in [Dimakis, Godfrey, Wu, Wainwright,
Ramchandran 2008].

Error-correcting codes.

Additional property: symbols can be corrected by using a
small number of other symbols (locality).
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Locally repairable codes

Consideration: minimize amount of transferred data.

Proposed in [Dimakis, Godfrey, Wu, Wainwright,
Ramchandran 2008].

Error-correcting codes.

Additional property: symbols can be corrected by using a
small number of other symbols (locality).
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Batch codes

Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].

Can be used in:

Load balancing.
Private information retrieval.
Distributed storage systems.
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Batch codes

Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].

Can be used in:

Load balancing.
Private information retrieval.
Distributed storage systems.

Constructions:

[Ishai et al. 2004]: algebraic, expander graphs, subsets, RM
codes, locally-decodable codes
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Prior art

Design-based constructions and bounds:

[Stinson, Wei, Paterson 2009]

[Brualdi, Kiernan, Meyer, Schroeder 2010]

[Bujtas, Tuza 2011]

[Bhattacharya, Ruj, Roy 2012]

[Silberstein, Gal 2013]
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Application to distributed storage:

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

[Silberstein 2014]
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Batch codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.
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Batch codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.

Definition

If t = 1, then we use notation (n,N,m,M)Σ for it. Only one
symbol is read from each bucket.

H. Lipmaa and V. Skachek Linear batch codes



Batch codes

Definition [Ishai et al. 2004]

C is an (n,N,m,M, t)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xn) ∈ Σn into M strings (buckets) of total length
N over Σ, namely y1, y2, · · · , yM , such that for each m-tuple
(batch) of (not neccessarily distinct) indices i1, i2, · · · , im ∈ [n], the
symbols xi1 , xi2 , · · · , xim can be retrieved by m users, respectively,
by reading ≤ t symbols from each bucket, such that xiℓ is
recovered from the symbols read by the ℓ-th user alone.

Definition

If t = 1, then we use notation (n,N,m,M)Σ for it. Only one
symbol is read from each bucket.

Definition

An (n,N,m,M, t)q batch code is linear, if every symbol in every
bucket is a linear combination of original symbols.
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Small buckets

In what follows, consider linear codes with t = 1 and N = M: each
encoded bucket contains just one symbol in Fq.

H. Lipmaa and V. Skachek Linear batch codes



Small buckets

In what follows, consider linear codes with t = 1 and N = M: each
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Linear batch codes

For simplicity we refer to a linear (n,N = M,m,M)q batch code as
[M, n,m]q batch code.
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Linear batch codes

For simplicity we refer to a linear (n,N = M,m,M)q batch code as
[M, n,m]q batch code.

Let x = (x1, x2, · · · , xn) be an information string.

Let y = (y1, y2, · · · , yM) be an encoding of x.

Each encoded symbol yi , i ∈ [M], is written as
yi =

∑n
j=1 gj ,ixj .

Form the matrix G:

G =
(

gj ,i

)

j∈[n],i∈[M]
;

the encoding is y = xG.
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Retrieval

Theorem

Let C be an [M, n,m]q batch code. It is possible to retrieve
xi1 , xi2 , · · · , xim simultaneously if and only if there exist m
non-intersecting sets T1,T2, · · · ,Tm of indices of columns in G,
and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eTir , for all
r ∈ [m].
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Retrieval

Theorem

Let C be an [M, n,m]q batch code. It is possible to retrieve
xi1 , xi2 , · · · , xim simultaneously if and only if there exist m
non-intersecting sets T1,T2, · · · ,Tm of indices of columns in G,
and for Tr there exists a linear combination of columns of G
indexed by that set, which equals to the column vector eTir , for all
r ∈ [m].

Example

[Ishai et al. 2004] Consider the following linear binary batch code C
whose 4× 9 generator matrix is given by

G =







1 0 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 0 1 1







.
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Retrieval (cont.)

Example

Let x = (x1, x2, x3, x4), y = xG.
Assume that we want to retrieve the values of (x1, x1, x2, x2). We
can retrieve (x1, x1, x2, x2) from the following set of equations:







x1 = y1
x1 = y2 + y3
x2 = y5 + y8
x2 = y4 + y6 + y7 + y9

.

It is straightforward to verify that any 4-tuple (xi1 , xi2 , xi3 , xi4),
where i1, i2, i3, i4 ∈ [4], can be retrieved by using columns indexed
by some four non-intersecting sets of indices in [9]. Therefore, the
code C is a [9, 4, 4]2 batch code.
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Properties of linear batch codes

Lemma

Let C be an [M, n,m]q batch code. Then, the matrix G is full

rank.
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Properties of linear batch codes

Lemma

Let C be an [M, n,m]q batch code. Then, the matrix G is full

rank.

Theorem

Let C be an [M, n,m]2 batch code C over F2. Then, G is a

generator matrix of the classical error-correcting [M, n,≥ m]2
code.
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Properties of linear batch codes (cont.)

Example

The converse is not true. For example, take G to be a generator
matrix of the classical [4, 3, 2]2 ECC as follows:

G =





1 1 1 1
0 1 0 1
0 0 1 1



 .

Let x = (x1, x2, x3), y = (y1, y2, y3, y4) = xG.
It is impossible to retrieve (x2, x3). This can be verified by the fact
that

x2 = y1 + y2 = y3 + y4 and x3 = y1 + y3 = y2 + y4 ,

and so one of the yi ’s is always needed to compute each of x2 and
x3.
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Bounds on the parameters

Various well-studied properties of linear ECCs, such as
MacWilliams identities, apply also to linear batch codes (for
t = 1, M = N and q = 2).
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Bounds on the parameters

Various well-studied properties of linear ECCs, such as
MacWilliams identities, apply also to linear batch codes (for
t = 1, M = N and q = 2).

A variety of bounds on the parameters of ECCs, such as
sphere-packing bound, Plotkin bound, Griesmer bound,
Elias-Bassalygo bound, McEliece-Rodemich-Rumsey-Welch
bound apply to the parameters of [M, n,m]2 batch codes.
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Construction 1

Theorem

Let C1 be an [M1, n,m1]q batch code and C2 be an [M2, n,m2]q
batch code. Then, there exists an [M1 +M2, n,m1 +m2]q batch
code.
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Construction 1

Theorem

Let C1 be an [M1, n,m1]q batch code and C2 be an [M2, n,m2]q
batch code. Then, there exists an [M1 +M2, n,m1 +m2]q batch
code.

Let G1 and G2 be n ×M1 and n ×M2 generator matrices of C1
and C2, respectively. Take n × (M1 +M2) matrix

Ĝ = [ G1 | G2 ] .
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Construction 2

Theorem

Let C1 be an [M1, n1,m1]q batch code and C2 be an [M2, n2,m2]q
batch code. Then, there exists an
[M1 +M2, n1 + n2,min{m1,m2}]q batch code.

H. Lipmaa and V. Skachek Linear batch codes



Construction 2

Theorem

Let C1 be an [M1, n1,m1]q batch code and C2 be an [M2, n2,m2]q
batch code. Then, there exists an
[M1 +M2, n1 + n2,min{m1,m2}]q batch code.

Denote by G1 and G2 the n1 ×M1 and n2 ×M2 generator matrices
corresponding to C1 and C2, respectively. Take the following
(n1 + n2)× (M1 +M2) matrix

Ĝ =

[
G1 0

0 G2

]

.
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Construction 3

Theorem

Let C be an [M, n,m]q batch code, and let G be the corresponding
n ×M matrix. Then, the code Ĉ, defined by the
(n + 1)× (M +m) matrix

Ĝ =








0 0 · · · 0

G
...

...
. . .

...
0 0 · · · 0

• • • · · · • 1 1 · · · 1








︸ ︷︷ ︸

M

︸ ︷︷ ︸

m

is an [M +m, n+ 1,m] batch code, where • stands for an arbitrary
symbol in Fq.
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Thank you!

Questions?
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