Bounds for Batch Codes with Restricted Query Size

Hui Zhang and Vitaly Skachek

ISIT 2016, Barcelona, Spain

12 July 2016

Supported by the research grants PUT405 and IUT2-1 from the Estonian Research Council, and by the COST Action IC1104 on random network coding and designs over \mathbb{F}_{q}.

Definition of Batch Codes

- Proposed in the crypto community for:
- Load balancing.

Definition of Batch Codes

- Proposed in the crypto community for:
- Load balancing.
- Private information retrieval.

Definition of Batch Codes

- Proposed in the crypto community for:
- Load balancing.
- Private information retrieval.

Definition [Ishai et al. 2004]

\mathcal{C} is an $(k, N, t, n, \nu)_{\Sigma}$ batch code over Σ if it encodes any string $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in \Sigma^{k}$ into n strings (buckets) of total length N over Σ, namely $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{n}$, such that for each t-tuple (batch) of (not neccessarily distinct) indices $i_{1}, i_{2}, \cdots, i_{t} \in[k]$, the symbols $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{t}}$ can be retrieved by t users, respectively, by reading $\leq \nu$ symbols from each bucket, such that $x_{i_{\ell}}$ is recovered from the symbols read by the ℓ-th user alone.

Definition of Batch Codes

- Proposed in the crypto community for:
- Load balancing.
- Private information retrieval.

Definition [lshai et al. 2004]

\mathcal{C} is an $(k, N, t, n, \nu)_{\Sigma}$ batch code over Σ if it encodes any string $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right) \in \Sigma^{k}$ into n strings (buckets) of total length N over Σ, namely $\mathbf{y}_{1}, \mathbf{y}_{2}, \cdots, \mathbf{y}_{n}$, such that for each t-tuple (batch) of (not neccessarily distinct) indices $i_{1}, i_{2}, \cdots, i_{t} \in[k]$, the symbols $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{t}}$ can be retrieved by t users, respectively, by reading $\leq \nu$ symbols from each bucket, such that $x_{i_{\ell}}$ is recovered from the symbols read by the ℓ-th user alone.

- Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, "Batch codes and their applications," Proc. 36th ACM Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.

- Combinatorial Batch Codes

- M. Paterson, D. Stinson, and R. Wei, "Combinatorial batch codes," Advances in Mathematics of Communications, vol. 3, no. 1, pp. 13-27, 2009.
- R.A. Brualdi, K. Kiernan, S.A. Meyer, and M.W. Schroeder, "Combinatorial batch codes and transversal matroids," Advances in Mathematics of Communications, vol. 4, no. 3, pp. 419-431, 2010.
- C. Bujtás and Z. Tuza, "Combinatorial batch codes: extremal problems under Hall-type conditions,"

Electronic Notes in Discrete Mathematics, vol. 38, pp. 201-206, 2011.

- S. Bhattacharya, S. Ruj, and B. Roy, "Combinatorial batch codes: a lower bound and optimal constructions," Advances in Mathematics of Communications, vol. 6, no. 2, pp. 165-174, 2012.
- N. Silberstein and A. Gál, "Optimal combinatorial batch codes based on block designs," Designs, Codes and Cryptography, vol. 78, no. 2, pp 409-424, Feb. 2016.

Linear Batch Codes

- $\nu=1$: only one symbol is read from each bucket.

Linear Batch Codes

- $\nu=1$: only one symbol is read from each bucket.
- A batch code is linear, if every symbol in every bucket is a linear combination of the information symbols.

Linear Batch Codes

- $\nu=1$: only one symbol is read from each bucket.
- A batch code is linear, if every symbol in every bucket is a linear combination of the information symbols.
- We consider linear codes with $\nu=1$ and $N=n$: each bucket contains just one symbol in \mathbb{F}_{q}.

Linear Batch Codes

- $\nu=1$: only one symbol is read from each bucket.
- A batch code is linear, if every symbol in every bucket is a linear combination of the information symbols.
- We consider linear codes with $\nu=1$ and $N=n$: each bucket contains just one symbol in \mathbb{F}_{q}.
- Let $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ be an information string.
- Let $\mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ be an encoding of \mathbf{x}.
- Each encoded symbol $y_{i}, i \in[n]$, is written as $y_{i}=\sum_{j=1}^{k} g_{j, i} x_{j}$.
- Generator matrix: $\mathbf{G}=\left(g_{j, i}\right)_{j \in[k], i \in[n]}$; the encoding is $y=x G$.

Linear Batch Codes

- $\nu=1$: only one symbol is read from each bucket.
- A batch code is linear, if every symbol in every bucket is a linear combination of the information symbols.
- We consider linear codes with $\nu=1$ and $N=n$: each bucket contains just one symbol in \mathbb{F}_{q}.
- Let $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ be an information string.
- Let $\mathbf{y}=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ be an encoding of \mathbf{x}.
- Each encoded symbol $y_{i}, i \in[n]$, is written as $y_{i}=\sum_{j=1}^{k} g_{j, i} x_{j}$.
- Generator matrix: $\mathbf{G}=\left(g_{j, i}\right)_{j \in[k], i \in[n]}$; the encoding is $\mathbf{y}=\mathbf{x G}$.
- H. Lipmaa and V. Skachek, "Linear batch codes," Proc. 4th International Castle Meeting on Coding Theory and Applications, Palmela, Portugal, September 2014. http://arxiv.org/abs/1404. 2796

Example: Linear Batch Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Linear Batch Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}	Y_{9}	Y_{10}	Y_{11}	Y_{12}

Example: Linear Batch Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	r_{7}	Y_{8}	Y_{9}	Y_{10}	Y_{11}	Y_{12}

Example: Linear Batch Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Linear Batch Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Linear Batch Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Related Work

- Switch Codes

- Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, "Codes for network switches," Proc. IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, July 2013.
- Z. Wang, H.M. Kiah, and Y. Cassuto, "Optimal binary switch codes with small query size," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 636-640, June 2015.
- Y.M. Chee, F. Gao, S.T.H. Teo, and H. Zhang, "Combinatorial systematic switch codes," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 241-245, June 2015.

Related Work

- Switch Codes
- Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, "Codes for network switches," Proc. IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, July 2013.
- Z. Wang, H.M. Kiah, and Y. Cassuto, "Optimal binary switch codes with small query size," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 636-640, June 2015.
- Y.M. Chee, F. Gao, S.T.H. Teo, and H. Zhang, "Combinatorial systematic switch codes," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 241-245, June 2015.

- Connection to Distributed Data Storage

- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pp. 681-685, June-July 2014.
- N. Silberstein, "Fractional repetition and erasure batch codes", Proc. 4th International Castle Meeting on Coding Theory and Applications, Palmela, Portugal, September 2014.

Related Work

- Switch Codes
- Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, "Codes for network switches," Proc. IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, July 2013.
- Z. Wang, H.M. Kiah, and Y. Cassuto, "Optimal binary switch codes with small query size," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 636-640, June 2015.
- Y.M. Chee, F. Gao, S.T.H. Teo, and H. Zhang, "Combinatorial systematic switch codes," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 241-245, June 2015.

- Connection to Distributed Data Storage

- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pp. 681-685, June-July 2014.
- N. Silberstein, "Fractional repetition and erasure batch codes", Proc. 4th International Castle Meeting on Coding Theory and Applications, Palmela, Portugal, September 2014.
- Graph-based Constructions
- A.G. Dimakis, A. Gál, A.S. Rawat, and Z. Song, "Batch codes through dense graphs without short cycles", IEEE Trans. on Inform. Theory, vol. 62, no. 4, pp. 1592-1604, Apr. 2016.

Related Work

- Switch Codes
- Z. Wang, O. Shaked, Y. Cassuto, and J. Bruck, "Codes for network switches," Proc. IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey, July 2013.
- Z. Wang, H.M. Kiah, and Y. Cassuto, "Optimal binary switch codes with small query size," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 636-640, June 2015.
- Y.M. Chee, F. Gao, S.T.H. Teo, and H. Zhang, "Combinatorial systematic switch codes," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 241-245, June 2015.

- Connection to Distributed Data Storage

- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pp. 681-685, June-July 2014.
- N. Silberstein, "Fractional repetition and erasure batch codes", Proc. 4th International Castle Meeting on Coding Theory and Applications, Palmela, Portugal, September 2014.
- Graph-based Constructions
- A.G. Dimakis, A. Gál, A.S. Rawat, and Z. Song, "Batch codes through dense graphs without short cycles", IEEE Trans. on Inform. Theory, vol. 62, no. 4, pp. 1592-1604, Apr. 2016.
- Codes for Private Information Retrieval
- A. Fazeli, A. Vardy, and E. Yaakobi, "PIR with low storage overhead: coding instead of replication," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pp. 2852-2856, June 2015. http://arxiv.org/abs/1505.06241

Distributed Storage Systems

- Locally Repairable Codes
- A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," IEEE Trans. on Inform. Theory, vol. 56, no. 9, pp. 4539-4551, Sept. 2010.

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}	Y_{9}	Y_{10}	Y_{11}	Y_{12}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Y_{1}	Y_{2}	$?$	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}	Y_{9}	Y_{10}	Y_{11}	Y_{12}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Y_{1}	Y_{2}	$?$	Y_{4}	Y_{5}	Y_{6}	Y_{7}	Y_{8}	Y_{9}	Y_{10}	Y_{11}	Y_{12}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Example: Locally Repairable Codes

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}

Batch Codes vs. Locally Repairable Codes

- Support different types of requests.

Batch Codes vs. Locally Repairable Codes

- Support different types of requests.
- There are examples of batch codes with small locality, which have large locality as LRCs. There are examples of LRCs with small locality, which have large locality as batch codes.

Batch Codes vs. Locally Repairable Codes

- Support different types of requests.
- There are examples of batch codes with small locality, which have large locality as LRCs. There are examples of LRCs with small locality, which have large locality as batch codes.
- Systematic LRCs for recovery of information part with availability are equivalent to systematic linear batch codes.

Batch Codes vs. Locally Repairable Codes

- Support different types of requests.
- There are examples of batch codes with small locality, which have large locality as LRCs. There are examples of LRCs with small locality, which have large locality as batch codes.
- Systematic LRCs for recovery of information part with availability are equivalent to systematic linear batch codes.
- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pages 681-685, June-July 2014.

Batch Codes vs. Locally Repairable Codes

- Support different types of requests.
- There are examples of batch codes with small locality, which have large locality as LRCs. There are examples of LRCs with small locality, which have large locality as batch codes.
- Systematic LRCs for recovery of information part with availability are equivalent to systematic linear batch codes.
- The new results hold for non-systematic batch codes too.
- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pages 681-685, June-July 2014.

Batch Codes vs. Locally Repairable Codes

- Support different types of requests.
- There are examples of batch codes with small locality, which have large locality as LRCs. There are examples of LRCs with small locality, which have large locality as batch codes.
- Systematic LRCs for recovery of information part with availability are equivalent to systematic linear batch codes.
- The new results hold for non-systematic batch codes too.
- Different choices of encoding mapping define different batch codes.
- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pages 681-685, June-July 2014.

Distributed Storage Systems

- Locally Repairable Codes
- A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," IEEE Trans. on Inform. Theory, vol. 56, no. 9, pp. 4539-4551, Sept. 2010.

Distributed Storage Systems

- Locally Repairable Codes

- A.G. Dimakis, P.B. Godfrey, Y. Wu, M.J. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," IEEE Trans. on Inform. Theory, vol. 56, no. 9, pp. 4539-4551, Sept. 2010.

- Bounds on the Parameters of LRC Codes

- P. Gopalan, C. Huang, H. Simitchi, and S. Yekhanin, "On the locality of codeword symbols," IEEE Trans. on Inform. Theory, vol. 58, no. 11, pp. 6925-6934, Nov. 2012.
- M. Forbes and S. Yekhanin, "On the locality of codeword sysmbols in non-linear codes," Discrete Math, vol. 324, pp. 78-84, 2014.
- A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, "Locality and availability in distributed storage," Proc. IEEE International Symposium on Information Theory (ISIT), pages 681-685, June-July 2014.
- A. Wang and Z. Zhang, "Repair locality with multiple erasure tolerance," IEEE Trans. on Inform. Theory, vol. 60, no. 11, pp. 6979-6987, Nov. 2014.
- A. S. Rawat, A. Mazumdar, and S. Vishwanath, "Cooperative local repair in distributed storage," EURASIP Journal on Adv. in Signal Processing, Dec. 2015.
- I. Tamo and A. Barg, "Bounds on locally recoverable codes with multiple recovering sets," Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 691-695, June-July 2014.

Restricted Query Size

Definition

A primitive (k, n, r, t) batch code \mathcal{C} with restricted query size over an alphabet Σ encodes a string $x \in \Sigma^{k}$ into a string $\mathbf{y}=\mathcal{C}(\mathbf{x}) \in \Sigma^{n}$, such that for all multisets of indices $\left\{i_{1}, i_{2}, \ldots, i_{t}\right\}$, where all $i_{j} \in[k]$, each of the entries $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{t}}$ can be retrieved independently of each other by reading at most r symbols of \mathbf{y}.

Main Theorem

Lemma

Let \mathcal{C} be a linear (k, n, r, t) batch code over $\mathbb{F}, \mathbf{x} \in \mathbb{F}^{k}, \mathbf{y}=\mathcal{C}(\mathbf{x})$. Let $S_{1}, S_{2}, \cdots, S_{t} \subseteq[n]$ be t disjoint recovery sets for the coordinate x_{i}. Then, there exist indices $\ell_{2} \in S_{2}, \ell_{3} \in S_{3}, \cdots$, $\ell_{t} \in S_{t}$, such that if we fix the values of all coordinates of \mathbf{y} indexed by the sets $S_{1}, S_{2} \backslash\left\{\ell_{2}\right\}, S_{3} \backslash\left\{\ell_{3}\right\}, \cdots, S_{t} \backslash\left\{\ell_{t}\right\}$, then the values of the coordinates of \mathbf{y} indexed by $\left\{\ell_{2}, \ell_{3}, \cdots, \ell_{t}\right\}$ are uniquely determined.

Main Theorem

Lemma

Let \mathcal{C} be a linear (k, n, r, t) batch code over $\mathbb{F}, \mathbf{x} \in \mathbb{F}^{k}, \mathbf{y}=\mathcal{C}(\mathbf{x})$. Let $S_{1}, S_{2}, \cdots, S_{t} \subseteq[n]$ be t disjoint recovery sets for the coordinate x_{i}. Then, there exist indices $\ell_{2} \in S_{2}, \ell_{3} \in S_{3}, \cdots$, $\ell_{t} \in S_{t}$, such that if we fix the values of all coordinates of \mathbf{y} indexed by the sets $S_{1}, S_{2} \backslash\left\{\ell_{2}\right\}, S_{3} \backslash\left\{\ell_{3}\right\}, \cdots, S_{t} \backslash\left\{\ell_{t}\right\}$, then the values of the coordinates of \mathbf{y} indexed by $\left\{\ell_{2}, \ell_{3}, \cdots, \ell_{t}\right\}$ are uniquely determined.

Theorem

Let \mathcal{C} be a linear (k, n, r, t) batch code over \mathbb{F} with the minimum distance d. Then,

$$
d \leq n-k-(t-1)\left(\left\lceil\frac{k}{r t-t+1}\right\rceil-1\right)+1
$$

Algorithm

Input: linear (k, n, r, t) batch code \mathcal{C}
1: $\mathcal{C}_{0}=\mathcal{C}$
2: $j=0$
3: while $\left|\mathcal{C}_{j}\right|>1$ do
4: $j=j+1$
5: Choose the multiset $\left\{i_{j}^{1}, i_{j}^{2}, \ldots, i_{j}^{t}\right\} \subseteq[k]$ and disjoint subsets $S_{j}^{1}, \ldots, S_{j}^{t} \in[n]$, where S_{j}^{ℓ} is a recovery set for the information bit i_{j}^{ℓ}, such that there exist at least two codewords in \mathcal{C}_{j-1} that differ in (at least) one coordinate
6: Let $\sigma_{j} \in \Sigma^{\left|S_{j}\right|}$ be the most frequent element in the multiset $\left\{\mathbf{x} \mid s_{j}: \mathbf{x} \in \mathcal{C}_{j-1}\right\}$, where $S_{j}=S_{j}^{1} \cup \cdots \cup S_{j}^{t}$
7: Define $\mathcal{C}_{j} \triangleq\left\{\mathbf{x}: \mathbf{x} \in \mathcal{C}_{j-1},\left.\mathbf{x}\right|_{S_{j}}=\boldsymbol{\sigma}_{j}\right\}$
8: end while
Output: \mathcal{C}_{j-1}

Extensions of the Main Theorem

Corollary

Let \mathcal{C} be a linear (k, n, r, t) batch code over \mathbb{F} with the minimum distance d. Then,

$$
n \geq \max _{1 \leq \beta \leq t, \beta \in \mathbb{N}}\left\{(\beta-1)\left(\left\lceil\frac{k}{r \beta-\beta+1}\right\rceil-1\right)+k+d-1\right\}
$$

Extensions of the Main Theorem

Corollary

Let \mathcal{C} be a linear (k, n, r, t) batch code over \mathbb{F} with the minimum distance d. Then,

$$
n \geq \max _{1 \leq \beta \leq t, \beta \in \mathbb{N}}\left\{(\beta-1)\left(\left\lceil\frac{k}{r \beta-\beta+1}\right\rceil-1\right)+k+d-1\right\} .
$$

Corollary

Let \mathcal{C} be a linear systematic (k, n, r, t) batch code over \mathbb{F} with the minimum distance d. Then,

$$
n \geq \max _{2 \leq \beta \leq t, \beta \in \mathbb{N}}\left\{(\beta-1)\left(\left\lceil\frac{k}{r \beta-\beta-r+2}\right\rceil-1\right)+k+d-1\right\}
$$

Example

Consider a batch code, which is the $[7,3,4]_{2}$ simplex code. The code, formed by the generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

is a $(3,7,2,4)$ batch code with $d=4$. Here $r=2$ and $t=4$.

Example

Consider a batch code, which is the $[7,3,4]_{2}$ simplex code. The code, formed by the generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

is a $(3,7,2,4)$ batch code with $d=4$. Here $r=2$ and $t=4$. Pick $\beta=2$. The RHS in the Main Theorem is

$$
(2-1)\left(\left\lceil\frac{3}{2 \cdot 2-2-2+2}\right\rceil-1\right)+3+4-1=7
$$

and therefore the bound is attained with equality.

Example

Consider a batch code, which is the $[7,3,4]_{2}$ simplex code. The code, formed by the generator matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

is a $(3,7,2,4)$ batch code with $d=4$. Here $r=2$ and $t=4$. Pick $\beta=2$. The RHS in the Main Theorem is

$$
(2-1)\left(\left\lceil\frac{3}{2 \cdot 2-2-2+2}\right\rceil-1\right)+3+4-1=7
$$

and therefore the bound is attained with equality.

- Z. Wang, H. M. Kiah, and Y. Cassuto, "Optimal binary switch codes with small query size," Proc. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, pages 636-640, June 2015.

Further Improvements

- Assume that $\mu_{j}=1$ for all $1 \leq j \leq \tau$ (i.e. in each step i of the algorithm, the set S_{i} recovers multiple copies of one symbol).
- Additionally, assume that

$$
k \geq 2(r t-t+1)+1
$$

- Let ϵ and λ be some positive integers,

Further Improvements (cont.)

$$
\begin{aligned}
\mathbb{A}= & \mathbb{A}(k, r, d, \beta, \epsilon) \\
& \triangleq(\beta-1)\left(\left\lceil\frac{k+\epsilon}{r \beta-\beta+1}\right\rceil-1\right)+k+d-1 \\
\mathbb{B}= & \mathbb{B}(k, r, d, \beta, \lambda) \\
& \triangleq(\beta-1)\left(\left\lceil\frac{k+\lambda}{r \beta-\beta+1}\right\rceil-1\right)+k+d-1 \\
\mathbb{C}= & \mathbb{C}(k, r, \beta, \lambda, \epsilon) \\
& \triangleq(r \beta-\lambda+1) k-\binom{k}{2}(\epsilon-1) .
\end{aligned}
$$

Improved Bound

Theorem

Let \mathcal{C} be a linear (k, n, r, t) batch code with the minimum distance d. Then,

$$
n \geq \max _{\beta \in \mathbb{N} \cap\left[1, \min \left\{t,\left\lfloor\frac{k-3}{2(r-1)}\right\rfloor\right\}\right]}\left\{\max _{\epsilon, \lambda \in \mathbb{N} \cap[1, r \beta-\beta]}\{\min \{\mathbb{A}, \mathbb{B}, \mathbb{C}\}\}\right\}
$$

Example

Take $k=12, r=2$ and $t=3$. The maximum of the right-hand side is obtained when $\beta=3$. For that selection of parameters, we have

$$
n \geq 15+d \geq 18
$$

At the same time, by taking $\beta=3, \lambda=1$ and $\epsilon=1$, we obtain that

$$
\mathbb{A}=\mathbb{B}=17+d \text { and } \mathbb{C}=6 \cdot 12-0=72
$$

and so

$$
n \geq \min \{17+d, 72\} \geq 20
$$

Thank you!

Questions?

