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Definition of Batch Codes

Proposed in the crypto community for:

Load balancing.

Private information retrieval.

Definition [Ishai et al. 2004]

C is an (k ,N, t, n, ν)Σ batch code over Σ if it encodes any string
x = (x1, x2, · · · , xk) ∈ Σk into n strings (buckets) of total length N
over Σ, namely y1, y2, · · · , yn, such that for each t-tuple (batch)
of (not neccessarily distinct) indices i1, i2, · · · , it ∈ [k], the symbols
xi1 , xi2 , · · · , xit can be retrieved by t users, respectively, by reading
≤ ν symbols from each bucket, such that xi` is recovered from the
symbols read by the `-th user alone.

• Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Batch codes and their applications,” Proc. 36th ACM
Symposium on Theory of Computing (STOC), June 2004, Chicago, IL.
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Linear Batch Codes

ν = 1: only one symbol is read from each bucket.

A batch code is linear, if every symbol in every bucket is a
linear combination of the information symbols.

We consider linear codes with ν = 1 and N = n: each bucket
contains just one symbol in Fq.

Let x = (x1, x2, · · · , xk) be an information string.

Let y = (y1, y2, · · · , yn) be an encoding of x.

Each encoded symbol yi , i ∈ [n], is written as
yi =

∑k
j=1 gj ,ixj .

Generator matrix: G =
(

gj ,i

)
j∈[k],i∈[n]

; the encoding is

y = xG.
• H. Lipmaa and V. Skachek, “Linear batch codes,” Proc. 4th International Castle Meeting on Coding Theory and
Applications, Palmela, Portugal, September 2014. http://arxiv.org/abs/1404.2796
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Distributed Storage Systems

Locally Repairable Codes
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Batch Codes vs. Locally Repairable Codes

Support different types of requests.

There are examples of batch codes with small locality , which
have large locality as LRCs. There are examples of LRCs
with small locality, which have large locality as batch codes.

Systematic LRCs for recovery of information part with
availability are equivalent to systematic linear batch codes.

The new results hold for non-systematic batch codes too.

Different choices of encoding mapping define different batch
codes.

• A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, “Locality and availability in distributed
storage,” Proc. IEEE International Symposium on Information Theory (ISIT), pages 681–685, June-July 2014.
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Distributed Storage Systems
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Restricted Query Size

Definition

A primitive (k , n, r , t) batch code C with restricted query size over
an alphabet Σ encodes a string x ∈ Σk into a string
y = C(x) ∈ Σn, such that for all multisets of indices {i1, i2, . . . , it},
where all ij ∈ [k], each of the entries xi1 , xi2 , . . . , xit can be retrieved
independently of each other by reading at most r symbols of y.
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Main Theorem

Lemma

Let C be a linear (k , n, r , t) batch code over F, x ∈ Fk , y = C(x).
Let S1,S2, · · · ,St ⊆ [n] be t disjoint recovery sets for the
coordinate xi . Then, there exist indices `2 ∈ S2, `3 ∈ S3, · · · ,
`t ∈ St , such that if we fix the values of all coordinates of y
indexed by the sets S1,S2\{`2}, S3\{`3}, · · · , St\{`t}, then the
values of the coordinates of y indexed by {`2, `3, · · · , `t} are
uniquely determined.

Theorem

Let C be a linear (k , n, r , t) batch code over F with the minimum
distance d . Then,

d ≤ n − k − (t − 1)

(⌈
k

rt − t + 1

⌉
− 1

)
+ 1 .
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Algorithm

Input: linear (k, n, r , t) batch code C
1: C0 = C
2: j = 0
3: while |Cj | > 1 do
4: j = j + 1
5: Choose the multiset {i1

j , i
2
j , . . . , i

t
j } ⊆ [k] and disjoint subsets

S1
j , . . . , S

t
j ∈ [n], where S`

j is a recovery set for the information
bit i`j , such that there exist at least two codewords in Cj−1

that differ in (at least) one coordinate

6: Let σj ∈ Σ|Sj | be the most frequent element in the multiset
{x|Sj : x ∈ Cj−1}, where Sj = S1

j ∪ · · · ∪ S t
j

7: Define Cj , {x : x ∈ Cj−1, x|Sj = σj}
8: end while
Output: Cj−1

H. Zhang and V. Skachek Bounds for batch codes



Extensions of the Main Theorem

Corollary

Let C be a linear (k , n, r , t) batch code over F with the minimum
distance d. Then,

n ≥ max
1≤β≤t,β∈N

{
(β − 1)

(⌈
k

rβ − β + 1

⌉
− 1

)
+ k + d − 1

}
.

Corollary

Let C be a linear systematic (k , n, r , t) batch code over F with the
minimum distance d. Then,

n ≥ max
2≤β≤t,β∈N

{
(β−1)

(⌈
k

rβ − β − r + 2

⌉
− 1

)
+k+d−1

}
.
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Example

Consider a batch code, which is the [7, 3, 4]2 simplex code. The
code, formed by the generator matrix1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1

 ,

is a (3, 7, 2, 4) batch code with d = 4. Here r = 2 and t = 4.

Pick β = 2. The RHS in the Main Theorem is

(2 − 1)

(⌈
3

2 · 2− 2− 2 + 2

⌉
− 1

)
+ 3 + 4 − 1 = 7 ,

and therefore the bound is attained with equality.

• Z. Wang, H. M. Kiah, and Y. Cassuto, “Optimal binary switch codes with small query size,” Proc. IEEE
International Symposium on Information Theory (ISIT), Hong Kong, China, pages 636–640, June 2015.
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Further Improvements

Assume that µj = 1 for all 1 ≤ j ≤ τ (i.e. in each step i of the
algorithm, the set Si recovers multiple copies of one symbol).

Additionally, assume that

k ≥ 2(rt − t + 1) + 1 .

Let ε and λ be some positive integers,
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Further Improvements (cont.)

A = A(k , r , d , β, ε)

, (β − 1)

(⌈
k + ε

rβ − β + 1

⌉
− 1

)
+ k + d − 1 ,

B = B(k , r , d , β, λ)

, (β − 1)

(⌈
k + λ

rβ − β + 1

⌉
− 1

)
+ k + d − 1 ,

C = C(k , r , β, λ, ε)

, (rβ − λ+ 1)k −
(

k

2

)
(ε− 1) .
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Improved Bound

Theorem

Let C be a linear (k , n, r , t) batch code with the minimum distance
d. Then,

n ≥ max
β∈N∩

[
1,min

{
t,
⌊

k−3
2(r−1)

⌋}]{ max
ε,λ∈N∩[1,rβ−β]

{min {A,B,C}}
}

.
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Example

Take k = 12, r = 2 and t = 3. The maximum of the right-hand
side is obtained when β = 3. For that selection of parameters, we
have

n ≥ 15 + d ≥ 18 .

At the same time, by taking β = 3, λ = 1 and ε = 1, we obtain
that

A = B = 17 + d and C = 6 · 12− 0 = 72 ,

and so
n ≥ min{17 + d , 72} ≥ 20 .
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Thank you!

Questions?
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