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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.
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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The Hamming distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Σn, d(x, y), is the number of pairs of
symbols (xi, yi), 1 ≤ i ≤ n, such that xi 6= yi.
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Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The Hamming distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Σn, d(x, y), is the number of pairs of
symbols (xi, yi), 1 ≤ i ≤ n, such that xi 6= yi.

The minimum distance of a code C is

d = min
x,y∈C,x 6=y

d(x, y).
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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The Hamming distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Σn, d(x, y), is the number of pairs of
symbols (xi, yi), 1 ≤ i ≤ n, such that xi 6= yi.

The minimum distance of a code C is

d = min
x,y∈C,x 6=y

d(x, y).

The relative minimum distance of C is defined as δ = d/n.
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Linear Code

Definition

A code C over field F = GF(q) is said to be a linear [n, k, d]
code if there exists a matrix H with n columns and rank
n − k such that

Hx
t = 0̄ ⇔ x ∈ C.

The matrix H is a parity-check matrix.

The value k is the dimension of the code C.

The ratio r = k/n is the rate of the code C.
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Linear Code

Definition

A code C over field F = GF(q) is said to be a linear [n, k, d]
code if there exists a matrix H with n columns and rank
n − k such that

Hx
t = 0̄ ⇔ x ∈ C.

The matrix H is a parity-check matrix.

The value k is the dimension of the code C.

The ratio r = k/n is the rate of the code C.

Definition

Let C be a code of minimum distance d over Σ.
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Linear Code

Definition

A code C over field F = GF(q) is said to be a linear [n, k, d]
code if there exists a matrix H with n columns and rank
n − k such that

Hx
t = 0̄ ⇔ x ∈ C.

The matrix H is a parity-check matrix.

The value k is the dimension of the code C.

The ratio r = k/n is the rate of the code C.

Definition

Let C be a code of minimum distance d over Σ.

The unique decoding problem:
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Linear Code

Definition

A code C over field F = GF(q) is said to be a linear [n, k, d]
code if there exists a matrix H with n columns and rank
n − k such that

Hx
t = 0̄ ⇔ x ∈ C.

The matrix H is a parity-check matrix.

The value k is the dimension of the code C.

The ratio r = k/n is the rate of the code C.

Definition

Let C be a code of minimum distance d over Σ.

The unique decoding problem:

Input: y ∈ Σn.
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Linear Code

Definition

A code C over field F = GF(q) is said to be a linear [n, k, d]
code if there exists a matrix H with n columns and rank
n − k such that

Hx
t = 0̄ ⇔ x ∈ C.

The matrix H is a parity-check matrix.

The value k is the dimension of the code C.

The ratio r = k/n is the rate of the code C.

Definition

Let C be a code of minimum distance d over Σ.

The unique decoding problem:

Input: y ∈ Σn.
Find: c ∈ C, such that d(c, y) < d/2.

Vitaly Skachek Minimum Distance Bounds



Gilbert-Varshamov Bound

Let Hq : [0, 1] → [0, 1] be the q-ary entropy function:

Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x) .
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Gilbert-Varshamov Bound

Let Hq : [0, 1] → [0, 1] be the q-ary entropy function:

Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x) .

Theorem

Let F = GF(q), and let δ ∈ (0, 1− 1/q] and R ∈ (0, 1), such that

R ≤ 1 − Hq(δ) .

Then, for large enough values of n, there exists a linear

[n,Rn,≥ δn] code over F.
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Gilbert-Varshamov Bound

Let Hq : [0, 1] → [0, 1] be the q-ary entropy function:

Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x) .

Theorem

Let F = GF(q), and let δ ∈ (0, 1− 1/q] and R ∈ (0, 1), such that

R ≤ 1 − Hq(δ) .

Then, for large enough values of n, there exists a linear

[n,Rn,≥ δn] code over F.

The above expression is called the Gilbert-Varshamov

bound.
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Gilbert-Varshamov Bound

Let Hq : [0, 1] → [0, 1] be the q-ary entropy function:

Hq(x) = x logq(q − 1) − x logq x − (1 − x) logq(1 − x) .

Theorem

Let F = GF(q), and let δ ∈ (0, 1− 1/q] and R ∈ (0, 1), such that

R ≤ 1 − Hq(δ) .

Then, for large enough values of n, there exists a linear

[n,Rn,≥ δn] code over F.

The above expression is called the Gilbert-Varshamov

bound.

Denote δGV (R) = H−1
2 (1 −R).
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [∆, k=r∆, θ∆] code C over F = GF(q) (inner code).
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[Forney ’66] Ingredients:

A linear [∆, k=r∆, θ∆] code C over F = GF(q) (inner code).

A linear [N, RΦN, δΦN ] code CΦ over Φ = Fk (outer code).
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [∆, k=r∆, θ∆] code C over F = GF(q) (inner code).

A linear [N, RΦN, δΦN ] code CΦ over Φ = Fk (outer code).

A linear one-to-one mapping E : Φ → C.
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [∆, k=r∆, θ∆] code C over F = GF(q) (inner code).

A linear [N, RΦN, δΦN ] code CΦ over Φ = Fk (outer code).

A linear one-to-one mapping E : Φ → C.

Concatenated code C of length N = ∆n over F is defined as

C =
{

(c1|c2| · · · |cn) ∈ F
∆n : ci = E(ai) ,

for i ∈ 1, 2, · · · , n, and (a1a2 · · · an) ∈ CΦ

}

.
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [∆, k=r∆, θ∆] code C over F = GF(q) (inner code).

A linear [N, RΦN, δΦN ] code CΦ over Φ = Fk (outer code).

A linear one-to-one mapping E : Φ → C.

Concatenated code C of length N = ∆n over F is defined as

C =
{

(c1|c2| · · · |cn) ∈ F
∆n : ci = E(ai) ,

for i ∈ 1, 2, · · · , n, and (a1a2 · · · an) ∈ CΦ

}

.

The rate of C: R = rRΦ.
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [∆, k=r∆, θ∆] code C over F = GF(q) (inner code).

A linear [N, RΦN, δΦN ] code CΦ over Φ = Fk (outer code).

A linear one-to-one mapping E : Φ → C.

Concatenated code C of length N = ∆n over F is defined as

C =
{

(c1|c2| · · · |cn) ∈ F
∆n : ci = E(ai) ,

for i ∈ 1, 2, · · · , n, and (a1a2 · · · an) ∈ CΦ

}

.

The rate of C: R = rRΦ.

The relative minimum distance of C: δ ≥ θδΦ.
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Concatenated Codes (Cont.)

Generalized minimum distance (GMD) decoder corrects
any fraction of errors up to 1

2δ.
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Concatenated Codes (Cont.)

Generalized minimum distance (GMD) decoder corrects
any fraction of errors up to 1

2δ.

[Justesen ’72] For a wide range of rates, concatenated codes
attain the Zyablov bound:

δ ≥ max
R≤r≤1

(

1 − R
r

)

H−1
q (1 − r).
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Concatenated Codes (Cont.)

Generalized minimum distance (GMD) decoder corrects
any fraction of errors up to 1

2δ.

[Justesen ’72] For a wide range of rates, concatenated codes
attain the Zyablov bound:

δ ≥ max
R≤r≤1

(

1 − R
r

)

H−1
q (1 − r).

[Blokh-Zyablov ’82] Multilevel concatenations of codes
(almost) attain the Blokh-Zyablov bound:

R = 1 − H2(δ) − δ

∫ 1−H2(δ)

0

dx

H−1
2 (1 − x)

.
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Graphs and Eigenvalues

Consider a ∆-regular graph G = (V, E).
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Graphs and Eigenvalues

Consider a ∆-regular graph G = (V, E).

The largest eigenvalue of the adjacency matrix AG of G
equals ∆.
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Graphs and Eigenvalues

Consider a ∆-regular graph G = (V, E).

The largest eigenvalue of the adjacency matrix AG of G
equals ∆.

Let λ∗
G be the second largest absolute value of eigenvalues

of AG .
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Graphs and Eigenvalues

Consider a ∆-regular graph G = (V, E).

The largest eigenvalue of the adjacency matrix AG of G
equals ∆.

Let λ∗
G be the second largest absolute value of eigenvalues

of AG .

Lower ratios of λ∗
G/∆ imply greater values of expansion

[Alon ’86].
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Graphs and Eigenvalues

Consider a ∆-regular graph G = (V, E).

The largest eigenvalue of the adjacency matrix AG of G
equals ∆.

Let λ∗
G be the second largest absolute value of eigenvalues

of AG .

Lower ratios of λ∗
G/∆ imply greater values of expansion

[Alon ’86].

Expander graphs with

λ∗
G ≤ 2

√
∆ − 1

are called a Ramanujan graphs. Constructions are due to
[Lubotsky Philips Sarnak ’88], [Margulis ’88].
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Graphs and Eigenvalues

Consider a ∆-regular graph G = (V, E).

The largest eigenvalue of the adjacency matrix AG of G
equals ∆.

Let λ∗
G be the second largest absolute value of eigenvalues

of AG .

Lower ratios of λ∗
G/∆ imply greater values of expansion

[Alon ’86].

Expander graphs with

λ∗
G ≤ 2

√
∆ − 1

are called a Ramanujan graphs. Constructions are due to
[Lubotsky Philips Sarnak ’88], [Margulis ’88].

Let λG be the second largest eigenvalues of AG and
γG = λG/∆.
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Barg-Zémor’s Expander Codes ’02

G is bipartite: V = A ∪ B,
A ∩ B = ∅, |A| = |B| = n.

Ordering on the vertices and the
edges.

Denote by (z)E(u) the sub-block of
z that is indexed by E(u).

Let CA and CB be two linear
codes of length ∆ over F.

Denote N = |E| = ∆n.
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Barg-Zémor’s Expander Codes ’02

G is bipartite: V = A ∪ B,
A ∩ B = ∅, |A| = |B| = n.

Ordering on the vertices and the
edges.

Denote by (z)E(u) the sub-block of
z that is indexed by E(u).

Let CA and CB be two linear
codes of length ∆ over F.

Denote N = |E| = ∆n.

The code C = (G, CA : CB):

C =
{

c ∈ F
N : (c)E(u) ∈ CA for v ∈ A

and (c)E(v) ∈ CB for u ∈ B
}

.
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Barg-Zémor’s Expander Codes ’02

G is bipartite: V = A ∪ B,
A ∩ B = ∅, |A| = |B| = n.

Ordering on the vertices and the
edges.

Denote by (z)E(u) the sub-block of
z that is indexed by E(u).

Let CA and CB be two linear
codes of length ∆ over F.

Denote N = |E| = ∆n.

The code C = (G, CA : CB):

C =
{

c ∈ F
N : (c)E(u) ∈ CA for v ∈ A

and (c)E(v) ∈ CB for u ∈ B
}

.
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∆
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Barg-Zémor Expander Codes ’03

‘Dangling edges’ are introduced
[Barg Zémor ’03].
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Barg-Zémor Expander Codes ’03

‘Dangling edges’ are introduced
[Barg Zémor ’03].

Mimics behavior of concatenated
codes.
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Barg-Zémor Expander Codes ’03

‘Dangling edges’ are introduced
[Barg Zémor ’03].

Mimics behavior of concatenated
codes.

Can be viewed as a concatenation
of two codes [Roth Skachek ’04].
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Barg-Zémor Expander Codes ’03

‘Dangling edges’ are introduced
[Barg Zémor ’03].

Mimics behavior of concatenated
codes.

Can be viewed as a concatenation
of two codes [Roth Skachek ’04].

Another construction with similar
properties [Guruswami Indyk ’02].
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∆

Cǫ
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∆1
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Analysis in [Barg Zémor ’04]

Analysis of the codes in [Barg Zémor ’02] and [Barg Zémor ’03].
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Analysis in [Barg Zémor ’04]

Analysis of the codes in [Barg Zémor ’02] and [Barg Zémor ’03].

Lower bounds on the relative minimum distance

(i)

δ(R) ≥ 1

4
(1 −R)2 · min

δGV ((1+R)/2)<B<
1
2

g(B)

H2(B)
,

where the function g(B) is defined in the next slides.

(ii)

δ(R) ≥ max
R≤r≤1







min
δGV (r)<B<

1
2

(

δ0(B, r) · 1 −R/r

H2(B)

)







,

where the function δ0(B, r) is defined in the next slides.
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Definition of the Function g(B)

These two families of codes surpass the Zyablov bound.
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Definition of the Function g(B)

These two families of codes surpass the Zyablov bound.

Let δGV (R) = H−1
2 (1 −R), and let B1 be the largest root of the

equation

H2(B) = H2(B)

(

B − H2(B) · δGV (R)

1 −R

)

= − (B − δGV (R))·log2(1−B) .

Moreover, let

a1 =
B1

H2(B1)
− δGV (R)

H2(δGV (R))
,

and

b1 =
δGV (R)

H2(δGV (R))
· B1 −

B1

H2(B1)
· δGV (R)) .
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Definition of the Function g(B) (Cont.)

The function g(B) is defined as

g(B) =























































δGV (R)

1 −R if B ≤ δGV (R)

B

H2(B)
if δGV (R) ≤ B and R ≤ 0.284

a1B + b1

B1 − δGV (R)
if δGV (R) ≤ B ≤ B1 and 0.284 < R ≤ 1

B

H2(B)
if B1 < B1 ≤ 1 and 0.284 < R ≤ 1

.
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Definition of the Function δ0(B, r)

The function δ0(B, r) is defined to be ω⋆⋆(B) for δGV (r) ≤ B ≤ B1,
where

ω⋆⋆(B) = rB + (1 − r)H−1
2

(

1 − r

1 − r
H2(B)

)

,

and B1 is the only root of the equation

δGV (r) = w⋆(B) ,

where

w⋆(B) = (1−r)

(

(2H2(B)/B + 1)−1 +
B

H2(B)

(

1 − H2

(

(2H2(B)/B + 1)−1
))

)

.

For B1 ≤ B ≤ 1
2 , the function δ0(B, r) is defined to be a tangent to the

function ω⋆⋆(B) drawn from the point
(

1
2 , ω⋆( 1

2 )
)

.
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Minimum Distance Bounds
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Generalized Expander Codes

G = (V = A ∪ B, E) be a bipartite
∆-regular, as before
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Generalized Expander Codes

G = (V = A ∪ B, E) be a bipartite
∆-regular, as before

B = B1 ∪ B2, B1 ∩ B2 = ∅. Let
|B2| = ηn, |B1| = (1 − η)n,
η ∈ [0, 1].
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Generalized Expander Codes

G = (V = A ∪ B, E) be a bipartite
∆-regular, as before

B = B1 ∪ B2, B1 ∩ B2 = ∅. Let
|B2| = ηn, |B1| = (1 − η)n,
η ∈ [0, 1].

CA, C1 and C2 are linear
[∆, rA∆, δA∆], [∆, r1∆, δ1∆] and
[∆, r2∆, δ2∆] codes over F,
respectively.
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Generalized Expander Codes

G = (V = A ∪ B, E) be a bipartite
∆-regular, as before

B = B1 ∪ B2, B1 ∩ B2 = ∅. Let
|B2| = ηn, |B1| = (1 − η)n,
η ∈ [0, 1].

CA, C1 and C2 are linear
[∆, rA∆, δA∆], [∆, r1∆, δ1∆] and
[∆, r2∆, δ2∆] codes over F,
respectively.

The code code C = (G, CA, C1, C2):

C =
{

c ∈ F
N : (c)E(u) ∈ CA for u ∈ A,

(c)E(u) ∈ C1 for u ∈ B1

and (c)E(u) ∈ C2 for u ∈ B2
}
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Generalized Expander Codes

G = (V = A ∪ B, E) be a bipartite
∆-regular, as before

B = B1 ∪ B2, B1 ∩ B2 = ∅. Let
|B2| = ηn, |B1| = (1 − η)n,
η ∈ [0, 1].

CA, C1 and C2 are linear
[∆, rA∆, δA∆], [∆, r1∆, δ1∆] and
[∆, r2∆, δ2∆] codes over F,
respectively.

The code code C = (G, CA, C1, C2):

C =
{

c ∈ F
N : (c)E(u) ∈ CA for u ∈ A,

(c)E(u) ∈ C1 for u ∈ B1

and (c)E(u) ∈ C2 for u ∈ B2
}

0
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∆
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Properties of Generalized Expander Codes

The rate: R ≥ rA + (1 − η)r1 + ηr2 − 1.
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Properties of Generalized Expander Codes

The rate: R ≥ rA + (1 − η)r1 + ηr2 − 1.

Assume

η <
δA − γG

√

δA/δ2

1 − γG
− γ

2/3
G .

Then, the relative minimum distance:

δ > δA(δ1 − 1
2γ

2/3
G ) .

⇒ The code C attains the Zyablov bound.
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Properties of Generalized Expander Codes

The rate: R ≥ rA + (1 − η)r1 + ηr2 − 1.

Assume

η <
δA − γG

√

δA/δ2

1 − γG
− γ

2/3
G .

Then, the relative minimum distance:

δ > δA(δ1 − 1
2γ

2/3
G ) .

⇒ The code C attains the Zyablov bound.

A linear-time decoding algorithm: if δ1 > 2γ
2/3
G and η as

above, the decoder corrects any error pattern of size JC,

JC

△
=

1
2δ1 − γ

2/3
G

(

1 +

√

2
(

δ1 − 2γ
2/3
G

)

)

1 − γG
· δA∆n .

The number of correctable errors is (almost) half of the
Zyablov bound.
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Properties of Generalized Expander Codes (cont.)

Theorem

Let |F| be a power of 2. There exists a polynomial-time

constructible family of binary linear codes C of length N = n∆,

n → ∞, and sufficiently large but constant ∆ = ∆(ε), whose

relative minimum distance satisfies

δ(R) ≥ max
R≤rA≤1

{

min
δGV (rA)≤β≤1/2

(

δ0(β, rA)
1 −R/rA

H2(β)

)}

− ε .
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Properties of Generalized Expander Codes (cont.)

Theorem

Let |F| be a power of 2. There exists a polynomial-time

constructible family of binary linear codes C of length N = n∆,

n → ∞, and sufficiently large but constant ∆ = ∆(ε), whose

relative minimum distance satisfies

δ(R) ≥ max
R≤rA≤1

{

min
δGV (rA)≤β≤1/2

(

δ0(β, rA)
1 −R/rA

H2(β)

)}

− ε .

Consider a code C with parameter η = 0. Then, |B2| = 0, and
the code C coincides with the code in [Barg Zémor’02].
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Properties of Generalized Expander Codes (cont.)

Theorem

Let |F| be a power of 2. There exists a polynomial-time

constructible family of binary linear codes C of length N = n∆,

n → ∞, and sufficiently large but constant ∆ = ∆(ε), whose

relative minimum distance satisfies

δ(R) ≥ max
R≤rA≤1

{

min
δGV (rA)≤β≤1/2

(

δ0(β, rA)
1 −R/rA

H2(β)

)}

− ε .

Consider a code C with parameter η = 0. Then, |B2| = 0, and
the code C coincides with the code in [Barg Zémor’02]. The
minimum distance:

δ(R) ≥ 1

4
(1 −R)2 · min

δGV ((1+R)/2)<B<
1
2

g(B)

H2(B)
.
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Open Problems

Further improvements on the minimum distance

bounds.

Bounds on the error-correcting capabilities of the
decoders.

Could other types of expander graphs yield better
properties?

Do the generalized expander codes have any

advantage over the known expander codes?
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