Minimum Distance Bounds for Expander Codes

Vitaly Skachek
Claude Shannon Institute
University College Dublin

Open Problems Session
Information Theory and Applications Workshop UCSD

January 28, 2008

Basic Definitions

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ.

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ.

Definition

- The Hamming distance between $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in $\Sigma^{n}, \mathbf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, such that $x_{i} \neq y_{i}$.

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ.

Definition

- The Hamming distance between $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in $\Sigma^{n}, \mathbf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, such that $x_{i} \neq y_{i}$.
- The minimum distance of a code \mathcal{C} is

$$
d=\min _{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}} \mathrm{d}(\boldsymbol{x}, \boldsymbol{y}) .
$$

Basic Definitions

Definition

Code \mathcal{C} is a set of words of length n over an alphabet Σ.

Definition

- The Hamming distance between $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$ in $\Sigma^{n}, \mathbf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$, such that $x_{i} \neq y_{i}$.
- The minimum distance of a code \mathcal{C} is

$$
d=\min _{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}} \mathrm{d}(\boldsymbol{x}, \boldsymbol{y}) .
$$

- The relative minimum distance of \mathcal{C} is defined as $\delta=d / n$.

Linear Code

Definition

- A code \mathcal{C} over field $\mathbb{F}=\operatorname{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n-k$ such that

$$
\mathcal{H} \boldsymbol{x}^{t}=\overline{\mathbf{0}} \Leftrightarrow \boldsymbol{x} \in \mathcal{C} .
$$

- The matrix \mathcal{H} is a parity-check matrix.
- The value k is the dimension of the code \mathcal{C}.
- The ratio $r=k / n$ is the rate of the code \mathcal{C}.

Linear Code

Definition

- A code \mathcal{C} over field $\mathbb{F}=\operatorname{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n-k$ such that

$$
\mathcal{H} \boldsymbol{x}^{t}=\overline{\mathbf{0}} \Leftrightarrow \boldsymbol{x} \in \mathcal{C} .
$$

- The matrix \mathcal{H} is a parity-check matrix.
- The value k is the dimension of the code \mathcal{C}.
- The ratio $r=k / n$ is the rate of the code \mathcal{C}.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ.

Linear Code

Definition

- A code \mathcal{C} over field $\mathbb{F}=\operatorname{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n-k$ such that

$$
\mathcal{H} \boldsymbol{x}^{t}=\overline{\mathbf{0}} \Leftrightarrow \boldsymbol{x} \in \mathcal{C} .
$$

- The matrix \mathcal{H} is a parity-check matrix.
- The value k is the dimension of the code \mathcal{C}.
- The ratio $r=k / n$ is the rate of the code \mathcal{C}.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ.
- The unique decoding problem:

Definition

- A code \mathcal{C} over field $\mathbb{F}=\operatorname{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n-k$ such that

$$
\mathcal{H} \boldsymbol{x}^{t}=\overline{\mathbf{0}} \Leftrightarrow \boldsymbol{x} \in \mathcal{C} .
$$

- The matrix \mathcal{H} is a parity-check matrix.
- The value k is the dimension of the code \mathcal{C}.
- The ratio $r=k / n$ is the rate of the code \mathcal{C}.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ.
- The unique decoding problem:

Input: $\boldsymbol{y} \in \Sigma^{n}$.

Definition

- A code \mathcal{C} over field $\mathbb{F}=\operatorname{GF}(q)$ is said to be a linear $[n, k, d]$ code if there exists a matrix \mathcal{H} with n columns and rank $n-k$ such that

$$
\mathcal{H} \boldsymbol{x}^{t}=\overline{\mathbf{0}} \Leftrightarrow \boldsymbol{x} \in \mathcal{C} .
$$

- The matrix \mathcal{H} is a parity-check matrix.
- The value k is the dimension of the code \mathcal{C}.
- The ratio $r=k / n$ is the rate of the code \mathcal{C}.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ.
- The unique decoding problem:

Input: $\boldsymbol{y} \in \Sigma^{n}$.
Find: $\boldsymbol{c} \in \mathcal{C}$, such that $\mathrm{d}(\boldsymbol{c}, \boldsymbol{y})<d / 2$.

Gilbert-Varshamov Bound

Let $\mathrm{H}_{q}:[0,1] \rightarrow[0,1]$ be the q-ary entropy function:

$$
\mathrm{H}_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) .
$$

Gilbert-Varshamov Bound

Let $\mathrm{H}_{q}:[0,1] \rightarrow[0,1]$ be the q-ary entropy function:

$$
\mathrm{H}_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) .
$$

Theorem

Let $\mathbb{F}=\mathrm{GF}(q)$, and let $\delta \in(0,1-1 / q]$ and $\mathcal{R} \in(0,1)$, such that

$$
\mathcal{R} \leq 1-\mathrm{H}_{q}(\delta)
$$

Then, for large enough values of n, there exists a linear $[n, \mathcal{R} n, \geq \delta n]$ code over \mathbb{F}.

Gilbert-Varshamov Bound

Let $\mathrm{H}_{q}:[0,1] \rightarrow[0,1]$ be the q-ary entropy function:

$$
\mathrm{H}_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) .
$$

Theorem

Let $\mathbb{F}=\mathrm{GF}(q)$, and let $\delta \in(0,1-1 / q]$ and $\mathcal{R} \in(0,1)$, such that

$$
\mathcal{R} \leq 1-\mathrm{H}_{q}(\delta)
$$

Then, for large enough values of n, there exists a linear $[n, \mathcal{R} n, \geq \delta n]$ code over \mathbb{F}.

- The above expression is called the Gilbert-Varshamov bound.

Gilbert-Varshamov Bound

Let $\mathrm{H}_{q}:[0,1] \rightarrow[0,1]$ be the q-ary entropy function:

$$
\mathrm{H}_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) .
$$

Theorem

Let $\mathbb{F}=\operatorname{GF}(q)$, and let $\delta \in(0,1-1 / q]$ and $\mathcal{R} \in(0,1)$, such that

$$
\mathcal{R} \leq 1-\mathrm{H}_{q}(\delta)
$$

Then, for large enough values of n, there exists a linear $[n, \mathcal{R} n, \geq \delta n]$ code over \mathbb{F}.

- The above expression is called the Gilbert-Varshamov bound.
- Denote $\delta_{G V}(\mathcal{R})=\mathrm{H}_{2}^{-1}(1-\mathcal{R})$.

Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r \Delta, \theta \Delta]$ code \mathcal{C} over $\mathbb{F}=\mathrm{GF}(q)$ (inner code).

Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r \Delta, \theta \Delta]$ code \mathcal{C} over $\mathbb{F}=\mathrm{GF}(q)$ (inner code).
- A linear $\left[N, R_{\Phi} N, \delta_{\Phi} N\right]$ code \mathbb{C}_{Φ} over $\Phi=\mathbb{F}^{k}$ (outer code).

Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r \Delta, \theta \Delta]$ code \mathcal{C} over $\mathbb{F}=\operatorname{GF}(q)$ (inner code).
- A linear $\left[N, R_{\Phi} N, \delta_{\Phi} N\right]$ code \mathbb{C}_{Φ} over $\Phi=\mathbb{F}^{k}$ (outer code).
- A linear one-to-one mapping $\mathcal{E}: \Phi \rightarrow \mathcal{C}$.

Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r \Delta, \theta \Delta]$ code \mathcal{C} over $\mathbb{F}=\mathrm{GF}(q)$ (inner code).
- A linear $\left[N, R_{\Phi} N, \delta_{\Phi} N\right]$ code \mathbb{C}_{Φ} over $\Phi=\mathbb{F}^{k}$ (outer code).
- A linear one-to-one mapping $\mathcal{E}: \Phi \rightarrow \mathcal{C}$.

Concatenated code \mathbb{C} of length $N=\Delta n$ over \mathbb{F} is defined as

$$
\begin{array}{r}
\mathbb{C}=\left\{\left(\boldsymbol{c}_{1}\left|\boldsymbol{c}_{2}\right| \cdots \mid \boldsymbol{c}_{n}\right) \in \mathbb{F}^{\Delta n}: \boldsymbol{c}_{i}=\mathcal{E}\left(a_{i}\right),\right. \\
\text { for } \left.i \in 1,2, \cdots, n, \text { and }\left(a_{1} a_{2} \cdots a_{n}\right) \in \mathbb{C}_{\Phi}\right\} .
\end{array}
$$

Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r \Delta, \theta \Delta]$ code \mathcal{C} over $\mathbb{F}=\mathrm{GF}(q)$ (inner code).
- A linear $\left[N, R_{\Phi} N, \delta_{\Phi} N\right]$ code \mathbb{C}_{Φ} over $\Phi=\mathbb{F}^{k}$ (outer code).
- A linear one-to-one mapping $\mathcal{E}: \Phi \rightarrow \mathcal{C}$.

Concatenated code \mathbb{C} of length $N=\Delta n$ over \mathbb{F} is defined as

$$
\begin{array}{r}
\mathbb{C}=\left\{\left(\boldsymbol{c}_{1}\left|\boldsymbol{c}_{2}\right| \cdots \mid \boldsymbol{c}_{n}\right) \in \mathbb{F}^{\Delta n}: \boldsymbol{c}_{i}=\mathcal{E}\left(a_{i}\right),\right. \\
\text { for } \left.i \in 1,2, \cdots, n, \text { and }\left(a_{1} a_{2} \cdots a_{n}\right) \in \mathbb{C}_{\Phi}\right\} .
\end{array}
$$

- The rate of $\mathbb{C}: \mathcal{R}=r R_{\Phi}$.

Concatenated Codes

[Forney '66] Ingredients:

- A linear $[\Delta, k=r \Delta, \theta \Delta]$ code \mathcal{C} over $\mathbb{F}=\mathrm{GF}(q)$ (inner code).
- A linear $\left[N, R_{\Phi} N, \delta_{\Phi} N\right]$ code \mathbb{C}_{Φ} over $\Phi=\mathbb{F}^{k}$ (outer code).
- A linear one-to-one mapping $\mathcal{E}: \Phi \rightarrow \mathcal{C}$.

Concatenated code \mathbb{C} of length $N=\Delta n$ over \mathbb{F} is defined as

$$
\begin{array}{r}
\mathbb{C}=\left\{\left(\boldsymbol{c}_{1}\left|\boldsymbol{c}_{2}\right| \cdots \mid \boldsymbol{c}_{n}\right) \in \mathbb{F}^{\Delta n}: \boldsymbol{c}_{i}=\mathcal{E}\left(a_{i}\right)\right. \\
\text { for } \left.i \in 1,2, \cdots, n, \text { and }\left(a_{1} a_{2} \cdots a_{n}\right) \in \mathbb{C}_{\Phi}\right\} .
\end{array}
$$

- The rate of $\mathbb{C}: \mathcal{R}=r R_{\Phi}$.
- The relative minimum distance of $\mathbb{C}: \delta \geq \theta \delta_{\Phi}$.

Concatenated Codes (Cont.)

- Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2} \delta$.

Concatenated Codes (Cont.)

- Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2} \delta$.
- [Justesen '72] For a wide range of rates, concatenated codes attain the Zyablov bound:

$$
\delta \geq \max _{\mathcal{R} \leq r \leq 1}\left(1-\frac{\mathcal{R}}{r}\right) \mathrm{H}_{q}^{-1}(1-r) .
$$

Concatenated Codes (Cont.)

- Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2} \delta$.
- [Justesen '72] For a wide range of rates, concatenated codes attain the Zyablov bound:

$$
\delta \geq \max _{\mathcal{R} \leq r \leq 1}\left(1-\frac{\mathcal{R}}{r}\right) \mathrm{H}_{q}^{-1}(1-r) .
$$

- [Blokh-Zyablov '82] Multilevel concatenations of codes (almost) attain the Blokh-Zyablov bound:

$$
\mathcal{R}=1-\mathrm{H}_{2}(\delta)-\delta \int_{0}^{1-\mathrm{H}_{2}(\delta)} \frac{d x}{\mathrm{H}_{2}^{-1}(1-x)} .
$$

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.
- Let $\lambda_{\mathcal{G}}^{*}$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.
- Let $\lambda_{\mathcal{G}}^{*}$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
- Lower ratios of $\lambda_{\mathcal{G}}^{*} / \Delta$ imply greater values of expansion [Alon '86].

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.
- Let $\lambda_{\mathcal{G}}^{*}$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
- Lower ratios of $\lambda_{\mathcal{G}}^{*} / \Delta$ imply greater values of expansion [Alon '86].
- Expander graphs with

$$
\lambda_{\mathcal{G}}^{*} \leq 2 \sqrt{\Delta-1}
$$

are called a Ramanujan graphs. Constructions are due to [Lubotsky Philips Sarnak '88], [Margulis '88].

Graphs and Eigenvalues

- Consider a Δ-regular graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ.
- Let $\lambda_{\mathcal{G}}^{*}$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
- Lower ratios of $\lambda_{\mathcal{G}}^{*} / \Delta$ imply greater values of expansion [Alon '86].
- Expander graphs with

$$
\lambda_{\mathcal{G}}^{*} \leq 2 \sqrt{\Delta-1}
$$

are called a Ramanujan graphs. Constructions are due to [Lubotsky Philips Sarnak '88], [Margulis '88].

- Let $\lambda_{\mathcal{G}}$ be the second largest eigenvalues of $A_{\mathcal{G}}$ and $\gamma_{\mathcal{G}}=\lambda_{\mathcal{G}} / \Delta$.

Barg-Zémor's Expander Codes '02

- \mathcal{G} is bipartite: $\mathcal{V}=A \cup B$, $A \cap B=\emptyset,|A|=|B|=n$.
- Ordering on the vertices and the edges.
- Denote by $(\boldsymbol{z})_{\mathcal{E}(u)}$ the sub-block of z that is indexed by $\mathcal{E}(u)$.
- Let \mathcal{C}_{A} and \mathcal{C}_{B} be two linear codes of length Δ over \mathbb{F}.
- Denote $N=|\mathcal{E}|=\Delta n$.

Barg-Zémor's Expander Codes '02

- \mathcal{G} is bipartite: $\mathcal{V}=A \cup B$, $A \cap B=\emptyset,|A|=|B|=n$.
- Ordering on the vertices and the edges.
- Denote by $(\boldsymbol{z})_{\mathcal{E}(u)}$ the sub-block of z that is indexed by $\mathcal{E}(u)$.
- Let \mathcal{C}_{A} and \mathcal{C}_{B} be two linear codes of length Δ over \mathbb{F}.
- Denote $N=|\mathcal{E}|=\Delta n$.

The code $\mathbb{C}=\left(\mathcal{G}, \mathcal{C}_{A}: \mathcal{C}_{B}\right)$:
$\mathbb{C}=\left\{c \in \mathbb{F}^{N}:(c)_{\mathcal{E}(u)} \in \mathcal{C}_{A}\right.$ for $v \in A$

$$
\text { and } \left.(\boldsymbol{c})_{\mathcal{E}(v)} \in \mathcal{C}_{B} \text { for } u \in B\right\} .
$$

Barg-Zémor's Expander Codes '02

- \mathcal{G} is bipartite: $\mathcal{V}=A \cup B$, $A \cap B=\emptyset,|A|=|B|=n$.
- Ordering on the vertices and the edges.
- Denote by $(\boldsymbol{z})_{\mathcal{E}(u)}$ the sub-block of z that is indexed by $\mathcal{E}(u)$.
- Let \mathcal{C}_{A} and \mathcal{C}_{B} be two linear codes of length Δ over \mathbb{F}.
- Denote $N=|\mathcal{E}|=\Delta n$.

The code $\mathbb{C}=\left(\mathcal{G}, \mathcal{C}_{A}: \mathcal{C}_{B}\right)$:
$\mathbb{C}=\left\{c \in \mathbb{F}^{N}:(c)_{\mathcal{E}(u)} \in \mathcal{C}_{A}\right.$ for $v \in A$ and $(\boldsymbol{c})_{\mathcal{E}(v)} \in \mathcal{C}_{B}$ for $\left.u \in B\right\}$.

Barg-Zémor Expander Codes ’03

- 'Dangling edges' are introduced [Barg Zémor '03].

Barg-Zémor Expander Codes '03

- 'Dangling edges' are introduced [Barg Zémor '03].
- Mimics behavior of concatenated codes.

Barg-Zémor Expander Codes '03

- 'Dangling edges' are introduced [Barg Zémor '03].
- Mimics behavior of concatenated codes.
- Can be viewed as a concatenation of two codes [Roth Skachek '04].

Barg-Zémor Expander Codes ’03

- 'Dangling edges' are introduced [Barg Zémor '03].
- Mimics behavior of concatenated codes.
- Can be viewed as a concatenation of two codes [Roth Skachek '04].
- Another construction with similar properties [Guruswami Indyk '02].

Analysis in [Barg Zémor '04]

Analysis of the codes in [Barg Zémor '02] and [Barg Zémor '03].

Analysis in [Barg Zémor '04]

Analysis of the codes in [Barg Zémor '02] and [Barg Zémor '03].

Lower bounds on the relative minimum distance

$$
\begin{equation*}
\delta(\mathcal{R}) \geq \frac{1}{4}(1-\mathcal{R})^{2} \cdot \min _{\delta_{G V}((1+\mathcal{R}) / 2)<\mathrm{B}<\frac{1}{2}} \frac{g(\mathrm{~B})}{\mathrm{H}_{2}(\mathrm{~B})} \tag{i}
\end{equation*}
$$

where the function $g(\mathrm{~B})$ is defined in the next slides.

$$
\begin{equation*}
\delta(\mathcal{R}) \geq \max _{\mathcal{R} \leq r \leq 1}\left\{\min _{\delta_{G V}(r)<\mathrm{B}<\frac{1}{2}}\left(\delta_{0}(\mathrm{~B}, r) \cdot \frac{1-\mathcal{R} / r}{\mathrm{H}_{2}(\mathrm{~B})}\right)\right\} \tag{ii}
\end{equation*}
$$

where the function $\delta_{0}(\mathrm{~B}, r)$ is defined in the next slides.

Definition of the Function $g(\mathrm{~B})$

These two families of codes surpass the Zyablov bound.

Definition of the Function $g(\mathrm{~B})$

These two families of codes surpass the Zyablov bound.

Let $\delta_{G V}(\mathcal{R})=\mathrm{H}_{2}^{-1}(1-\mathcal{R})$, and let B_{1} be the largest root of the equation
$\mathrm{H}_{2}(\mathrm{~B})=\mathrm{H}_{2}(\mathrm{~B})\left(\mathrm{B}-\mathrm{H}_{2}(\mathrm{~B}) \cdot \frac{\delta_{G V}(\mathcal{R})}{1-\mathcal{R}}\right)=-\left(\mathrm{B}-\delta_{G V}(\mathcal{R})\right) \cdot \log _{2}(1-\mathrm{B})$.
Moreover, let

$$
a_{1}=\frac{\mathrm{B}_{1}}{\mathrm{H}_{2}\left(\mathrm{~B}_{1}\right)}-\frac{\delta_{G V}(\mathcal{R})}{\mathrm{H}_{2}\left(\delta_{G V}(\mathcal{R})\right)},
$$

and

$$
\left.b_{1}=\frac{\delta_{G V}(\mathcal{R})}{\mathrm{H}_{2}\left(\delta_{G V}(\mathcal{R})\right)} \cdot \mathrm{B}_{1}-\frac{\mathrm{B}_{1}}{\mathrm{H}_{2}\left(\mathrm{~B}_{1}\right)} \cdot \delta_{G V}(\mathcal{R})\right) .
$$

Definition of the Function $g(\mathrm{~B})$ (Cont.)

The function $g(\mathrm{~B})$ is defined as

$$
g(\mathrm{~B})=\left\{\begin{array}{cl}
\frac{\delta_{G V}(\mathcal{R})}{1-\mathcal{R}} & \text { if } \mathrm{B} \leq \delta_{G V}(\mathcal{R}) \\
\frac{\mathrm{B}}{\mathrm{H}_{2}(\mathrm{~B})} & \text { if } \delta_{G V}(\mathcal{R}) \leq \mathrm{B} \text { and } \mathcal{R} \leq 0.284 \\
\frac{a_{1} \mathrm{~B}+b_{1}}{\mathrm{~B}_{1}-\delta_{G V}(\mathcal{R})} & \text { if } \delta_{G V}(\mathcal{R}) \leq \mathrm{B} \leq \mathrm{B}_{1} \text { and } 0.284<\mathcal{R} \leq 1 \\
\frac{\mathrm{~B}}{\mathrm{H}_{2}(\mathrm{~B})} & \text { if } \mathrm{B}_{1}<\mathrm{B}_{1} \leq 1 \text { and } 0.284<\mathcal{R} \leq 1
\end{array}\right.
$$

Definition of the Function $\delta_{0}(\mathrm{~B}, r)$

The function $\delta_{0}(\mathrm{~B}, r)$ is defined to be $\omega^{\star \star}(\mathrm{B})$ for $\delta_{G V}(r) \leq \mathrm{B} \leq \mathrm{B}_{1}$, where

$$
\omega^{\star \star}(\mathrm{B})=r \mathrm{~B}+(1-r) \mathrm{H}_{2}^{-1}\left(1-\frac{r}{1-r} \mathrm{H}_{2}(\mathrm{~B})\right),
$$

and B_{1} is the only root of the equation

$$
\delta_{G V}(r)=w^{\star}(\mathrm{B}),
$$

where
$w^{\star}(\mathrm{B})=(1-r)\left(\left(2^{\mathrm{H}_{2}(\mathrm{~B}) / \mathrm{B}}+1\right)^{-1}+\frac{\mathrm{B}}{\mathrm{H}_{2}(\mathrm{~B})}\left(1-\mathrm{H}_{2}\left(\left(2^{\mathrm{H}_{2}(\mathrm{~B}) / \mathrm{B}}+1\right)^{-1}\right)\right)\right)$.
For $\mathrm{B}_{1} \leq \mathrm{B} \leq \frac{1}{2}$, the function $\delta_{0}(\mathrm{~B}, r)$ is defined to be a tangent to the function $\omega^{\star \star}(\mathrm{B})$ drawn from the point $\left(\frac{1}{2}, \omega^{\star}\left(\frac{1}{2}\right)\right)$.

Minimum Distance Bounds

Comparison of Bounds

Generalized Expander Codes

- $\mathcal{G}=(\mathcal{V}=A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before

Generalized Expander Codes

- $\mathcal{G}=(\mathcal{V}=A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before
- $B=B^{1} \cup B^{2}, B^{1} \cap B^{2}=\emptyset$. Let
$\left|B^{2}\right|=\eta n,\left|B^{1}\right|=(1-\eta) n$, $\eta \in[0,1]$.

Generalized Expander Codes

- $\mathcal{G}=(\mathcal{V}=A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before
- $B=B^{1} \cup B^{2}, B^{1} \cap B^{2}=\emptyset$. Let
$\left|B^{2}\right|=\eta n,\left|B^{1}\right|=(1-\eta) n$, $\eta \in[0,1]$.
- $\mathcal{C}_{A}, \mathcal{C}_{1}$ and \mathcal{C}_{2} are linear $\left[\Delta, r_{A} \Delta, \delta_{A} \Delta\right],\left[\Delta, r_{1} \Delta, \delta_{1} \Delta\right]$ and $\left[\Delta, r_{2} \Delta, \delta_{2} \Delta\right]$ codes over \mathbb{F}, respectively.

Generalized Expander Codes

- $\mathcal{G}=(\mathcal{V}=A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before
- $B=B^{1} \cup B^{2}, B^{1} \cap B^{2}=\emptyset$. Let
$\left|B^{2}\right|=\eta n,\left|B^{1}\right|=(1-\eta) n$, $\eta \in[0,1]$.
- $\mathcal{C}_{A}, \mathcal{C}_{1}$ and \mathcal{C}_{2} are linear $\left[\Delta, r_{A} \Delta, \delta_{A} \Delta\right],\left[\Delta, r_{1} \Delta, \delta_{1} \Delta\right]$ and $\left[\Delta, r_{2} \Delta, \delta_{2} \Delta\right]$ codes over \mathbb{F}, respectively.

The code code $\mathbb{C}=\left(\mathcal{G}, \mathcal{C}_{A}, \mathcal{C}_{1}, \mathcal{C}_{2}\right)$:

$$
\begin{aligned}
\mathbb{C}=\left\{\boldsymbol{c} \in \mathbb{F}^{N}\right. & :(\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_{A} \text { for } u \in A \\
& (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_{1} \text { for } u \in B^{1} \\
\text { and } & \left.(\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_{2} \text { for } u \in B^{2}\right\}
\end{aligned}
$$

Generalized Expander Codes

- $\mathcal{G}=(\mathcal{V}=A \cup B, \mathcal{E})$ be a bipartite Δ-regular, as before
- $B=B^{1} \cup B^{2}, B^{1} \cap B^{2}=\emptyset$. Let $\left|B^{2}\right|=\eta n,\left|B^{1}\right|=(1-\eta) n$, $\eta \in[0,1]$.
- $\mathcal{C}_{A}, \mathcal{C}_{1}$ and \mathcal{C}_{2} are linear $\left[\Delta, r_{A} \Delta, \delta_{A} \Delta\right],\left[\Delta, r_{1} \Delta, \delta_{1} \Delta\right]$ and $\left[\Delta, r_{2} \Delta, \delta_{2} \Delta\right]$ codes over \mathbb{F}, respectively.

The code code $\mathbb{C}=\left(\mathcal{G}, \mathcal{C}_{A}, \mathcal{C}_{1}, \mathcal{C}_{2}\right)$:
$\mathbb{C}=\left\{\boldsymbol{c} \in \mathbb{F}^{N} \quad:(c)_{\mathcal{E}(u)} \in \mathcal{C}_{A}\right.$ for $u \in A$,
$(c)_{\mathcal{E}(u)} \in \mathcal{C}_{1}$ for $u \in B^{1}$
and $\quad(\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_{2}$ for $\left.u \in B^{2}\right\}$

Properties of Generalized Expander Codes

- The rate: $\mathcal{R} \geq r_{A}+(1-\eta) r_{1}+\eta r_{2}-1$.

Properties of Generalized Expander Codes

- The rate: $\mathcal{R} \geq r_{A}+(1-\eta) r_{1}+\eta r_{2}-1$.
- Assume

$$
\eta<\frac{\delta_{A}-\gamma_{\mathcal{G}} \sqrt{\delta_{A} / \delta_{2}}}{1-\gamma_{\mathcal{G}}}-\gamma_{\mathcal{G}}^{2 / 3}
$$

Then, the relative minimum distance:

$$
\delta>\delta_{A}\left(\delta_{1}-\frac{1}{2} \gamma_{\mathcal{G}}^{2 / 3}\right)
$$

\Rightarrow The code \mathbb{C} attains the Zyablov bound.

Properties of Generalized Expander Codes

- The rate: $\mathcal{R} \geq r_{A}+(1-\eta) r_{1}+\eta r_{2}-1$.
- Assume

$$
\eta<\frac{\delta_{A}-\gamma_{\mathcal{G}} \sqrt{\delta_{A} / \delta_{2}}}{1-\gamma_{\mathcal{G}}}-\gamma_{\mathcal{G}}^{2 / 3}
$$

Then, the relative minimum distance:

$$
\delta>\delta_{A}\left(\delta_{1}-\frac{1}{2} \gamma_{\mathcal{G}}^{2 / 3}\right)
$$

\Rightarrow The code \mathbb{C} attains the Zyablov bound.

- A linear-time decoding algorithm: if $\delta_{1}>2 \gamma_{\mathcal{G}}^{2 / 3}$ and η as above, the decoder corrects any error pattern of size $\mathbb{J}_{\mathbb{C}}$,

$$
\mathbb{J}_{\mathbb{C}} \triangleq \frac{\frac{1}{2} \delta_{1}-\gamma_{\mathcal{G}}^{2 / 3}\left(1+\sqrt{2\left(\delta_{1}-2 \gamma_{\mathcal{G}}^{2 / 3}\right)}\right)}{1-\gamma_{\mathcal{G}}} \cdot \delta_{A} \Delta n
$$

The number of correctable errors is (almost) half of the Zyablov bound.

Properties of Generalized Expander Codes (cont.)

Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N=n \Delta$, $n \rightarrow \infty$, and sufficiently large but constant $\Delta=\Delta(\varepsilon)$, whose relative minimum distance satisfies

$$
\delta(\mathcal{R}) \geq \max _{\mathcal{R} \leq r_{A} \leq 1}\left\{\min _{\delta_{G V}\left(r_{A}\right) \leq \beta \leq 1 / 2}\left(\delta_{0}\left(\beta, r_{A}\right) \frac{1-\mathcal{R} / r_{A}}{\mathrm{H}_{2}(\beta)}\right)\right\}-\varepsilon
$$

Properties of Generalized Expander Codes (cont.)

Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N=n \Delta$, $n \rightarrow \infty$, and sufficiently large but constant $\Delta=\Delta(\varepsilon)$, whose relative minimum distance satisfies

$$
\delta(\mathcal{R}) \geq \max _{\mathcal{R} \leq r_{A} \leq 1}\left\{\min _{\delta_{G V}\left(r_{A}\right) \leq \beta \leq 1 / 2}\left(\delta_{0}\left(\beta, r_{A}\right) \frac{1-\mathcal{R} / r_{A}}{\mathrm{H}_{2}(\beta)}\right)\right\}-\varepsilon
$$

Consider a code \mathbb{C} with parameter $\eta=0$. Then, $\left|B^{2}\right|=0$, and the code \mathbb{C} coincides with the code in [Barg Zémor'02].

Properties of Generalized Expander Codes (cont.)

Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N=n \Delta$, $n \rightarrow \infty$, and sufficiently large but constant $\Delta=\Delta(\varepsilon)$, whose relative minimum distance satisfies

$$
\delta(\mathcal{R}) \geq \max _{\mathcal{R} \leq r_{A} \leq 1}\left\{\min _{\delta_{G V}\left(r_{A}\right) \leq \beta \leq 1 / 2}\left(\delta_{0}\left(\beta, r_{A}\right) \frac{1-\mathcal{R} / r_{A}}{\mathrm{H}_{2}(\beta)}\right)\right\}-\varepsilon
$$

Consider a code \mathbb{C} with parameter $\eta=0$. Then, $\left|B^{2}\right|=0$, and the code \mathbb{C} coincides with the code in [Barg Zémor'02]. The minimum distance:

$$
\delta(\mathcal{R}) \geq \frac{1}{4}(1-\mathcal{R})^{2} . \min _{\delta_{G V}((1+\mathcal{R}) / 2)<\mathrm{B}<\frac{1}{2}} \frac{g(\mathrm{~B})}{\mathrm{H}_{2}(\mathrm{~B})} .
$$

Minimum Distance Bounds

Comparison of Bounds

Open Problems

- Further improvements on the minimum distance bounds.

Open Problems

- Further improvements on the minimum distance bounds.
- Bounds on the error-correcting capabilities of the decoders.

Open Problems

- Further improvements on the minimum distance bounds.
- Bounds on the error-correcting capabilities of the decoders.
- Could other types of expander graphs yield better properties?

Open Problems

- Further improvements on the minimum distance bounds.
- Bounds on the error-correcting capabilities of the decoders.
- Could other types of expander graphs yield better properties?
- Do the generalized expander codes have any advantage over the known expander codes?

