Minimum Distance Bounds for Expander Codes

Vitaly Skachek

Claude Shannon Institute University College Dublin

Open Problems Session

Information Theory and Applications Workshop UCSD

January 28, 2008

Vitaly Skachek Minimum Distance Bounds

《曰》 《聞》 《臣》 《臣》

Basic Definitions

Vitaly Skachek Minimum Distance Bounds

▲□→ ▲圖→ ▲圖→ ▲圖→ □ 圖

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

《曰》 《聞》 《臣》 《臣》

臣

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Definition

• The *Hamming distance* between $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ in Σ^n , $\mathsf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols (x_i, y_i) , $1 \le i \le n$, such that $x_i \ne y_i$.

《曰》 《聞》 《臣》 《臣》

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Definition

- The *Hamming distance* between $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ in Σ^n , $\mathsf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols (x_i, y_i) , $1 \le i \le n$, such that $x_i \ne y_i$.
- The *minimum distance* of a code C is

$$d = \min_{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}} d(\boldsymbol{x}, \boldsymbol{y}).$$

《曰》 《聞》 《臣》 《臣》

Code \mathcal{C} is a set of words of length n over an alphabet Σ .

Definition

- The *Hamming distance* between $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ in Σ^n , $\mathsf{d}(\boldsymbol{x}, \boldsymbol{y})$, is the number of pairs of symbols (x_i, y_i) , $1 \le i \le n$, such that $x_i \ne y_i$.
- The *minimum distance* of a code C is

$$d = \min_{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}} \mathsf{d}(\boldsymbol{x}, \boldsymbol{y}).$$

• The *relative minimum distance* of C is defined as $\delta = d/n$.

・ロト ・雪ト ・ヨト ・ヨト

Definition

A code C over field F = GF(q) is said to be a *linear* [n, k, d] code if there exists a matrix H with n columns and rank n − k such that

$$\mathcal{H} oldsymbol{x}^t = ar{f 0} \ \Leftrightarrow \ oldsymbol{x} \in \mathcal{C}.$$

- The matrix \mathcal{H} is a *parity-check matrix*.
- The value k is the *dimension* of the code C.
- The ratio r = k/n is the *rate* of the code C.

(本部) (本語) (本語)

Definition

A code C over field F = GF(q) is said to be a *linear* [n, k, d] code if there exists a matrix H with n columns and rank n − k such that

$$\mathcal{H} oldsymbol{x}^t = ar{f 0} \ \Leftrightarrow \ oldsymbol{x} \in \mathcal{C}.$$

- The matrix \mathcal{H} is a *parity-check matrix*.
- The value k is the *dimension* of the code C.
- The ratio r = k/n is the *rate* of the code C.

Definition

• Let \mathcal{C} be a code of minimum distance d over Σ .

Definition

A code C over field F = GF(q) is said to be a *linear* [n, k, d] code if there exists a matrix H with n columns and rank n − k such that

$$\mathcal{H} oldsymbol{x}^t = ar{f 0} \ \Leftrightarrow \ oldsymbol{x} \in \mathcal{C}.$$

- The matrix \mathcal{H} is a *parity-check matrix*.
- The value k is the *dimension* of the code C.
- The ratio r = k/n is the *rate* of the code C.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ .
- The unique decoding problem:

Definition

A code C over field F = GF(q) is said to be a *linear* [n, k, d] code if there exists a matrix H with n columns and rank n − k such that

$$\mathcal{H} oldsymbol{x}^t = ar{f 0} \ \Leftrightarrow \ oldsymbol{x} \in \mathcal{C}.$$

- The matrix \mathcal{H} is a *parity-check matrix*.
- The value k is the *dimension* of the code C.
- The ratio r = k/n is the *rate* of the code C.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ .
- The unique decoding problem: Input: y ∈ Σⁿ.

Definition

A code C over field F = GF(q) is said to be a *linear* [n, k, d] code if there exists a matrix H with n columns and rank n − k such that

$$\mathcal{H} oldsymbol{x}^t = ar{f 0} \ \Leftrightarrow \ oldsymbol{x} \in \mathcal{C}.$$

- The matrix \mathcal{H} is a *parity-check matrix*.
- The value k is the *dimension* of the code C.
- The ratio r = k/n is the *rate* of the code C.

Definition

- Let \mathcal{C} be a code of minimum distance d over Σ .
- The unique decoding problem: Input: y ∈ Σⁿ. Find: c ∈ C, such that d(c, y) < d/2.

Let $H_q: [0,1] \to [0,1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x)$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 • ��や

Let $H_q: [0,1] \to [0,1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x)$$
.

Theorem

Let $\mathbb{F} = GF(q)$, and let $\delta \in (0, 1 - 1/q]$ and $\mathcal{R} \in (0, 1)$, such that

 $\mathcal{R} \leq 1 - \mathsf{H}_q(\delta)$.

Then, for large enough values of n, there exists a linear $[n, \mathcal{R}n, \geq \delta n]$ code over \mathbb{F} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $H_q: [0,1] \to [0,1]$ be the q-ary entropy function:

$$H_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x)$$
.

Theorem

Let $\mathbb{F} = GF(q)$, and let $\delta \in (0, 1 - 1/q]$ and $\mathcal{R} \in (0, 1)$, such that

 $\mathcal{R} \leq 1 - \mathsf{H}_q(\delta)$.

Then, for large enough values of n, there exists a linear $[n, \mathcal{R}n, \geq \delta n]$ code over \mathbb{F} .

• The above expression is called the *Gilbert-Varshamov* bound.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $H_q: [0,1] \to [0,1]$ be the q-ary entropy function:

$$\mathsf{H}_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x) \; .$$

Theorem

Let $\mathbb{F} = GF(q)$, and let $\delta \in (0, 1 - 1/q]$ and $\mathcal{R} \in (0, 1)$, such that

 $\mathcal{R} \leq 1 - \mathsf{H}_q(\delta)$.

Then, for large enough values of n, there exists a linear $[n, \mathcal{R}n, \geq \delta n]$ code over \mathbb{F} .

• The above expression is called the *Gilbert-Varshamov* bound.

• Denote
$$\delta_{GV}(\mathcal{R}) = \mathsf{H}_2^{-1}(1-\mathcal{R}).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

[Forney '66] Ingredients: • A linear $[\Delta, k=r\Delta, \theta\Delta]$ code C over $\mathbb{F} = GF(q)$ (*inner code*).

(日) (圖) (필) (필) (필)

[Forney '66] Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code \mathcal{C} over $\mathbb{F} = GF(q)$ (*inner code*).
- A linear $[N, R_{\Phi}N, \delta_{\Phi}N]$ code \mathbb{C}_{Φ} over $\Phi = \mathbb{F}^k$ (*outer code*).

イロト 不聞 と 不良 と 不良 とう ほ

[Forney '66] Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code \mathcal{C} over $\mathbb{F} = GF(q)$ (*inner code*).
- A linear $[N, R_{\Phi}N, \delta_{\Phi}N]$ code \mathbb{C}_{Φ} over $\Phi = \mathbb{F}^k$ (*outer code*).
- A linear one-to-one mapping $\mathcal{E} : \Phi \to \mathcal{C}$.

(日) (四) (종) (종) (종)

[Forney '66] Ingredients:

- A linear $[\Delta, k = r\Delta, \theta\Delta]$ code C over $\mathbb{F} = GF(q)$ (*inner code*).
- A linear $[N, R_{\Phi}N, \delta_{\Phi}N]$ code \mathbb{C}_{Φ} over $\Phi = \mathbb{F}^k$ (*outer code*).
- A linear one-to-one mapping $\mathcal{E} : \Phi \to \mathcal{C}$.

Concatenated code $\mathbb C$ of length $N=\Delta n$ over $\mathbb F$ is defined as

$$\mathbb{C} = \left\{ (\boldsymbol{c}_1 | \boldsymbol{c}_2 | \cdots | \boldsymbol{c}_n) \in \mathbb{F}^{\Delta n} : \boldsymbol{c}_i = \mathcal{E}(a_i) , \\ \text{or } i \in 1, 2, \cdots, n, \text{ and } (a_1 a_2 \cdots a_n) \in \mathbb{C}_{\Phi} \right\}.$$

(日) (四) (종) (종) (종)

f

[Forney '66] Ingredients:

- A linear $[\Delta, k = r\Delta, \theta\Delta]$ code \mathcal{C} over $\mathbb{F} = GF(q)$ (*inner code*).
- A linear $[N, R_{\Phi}N, \delta_{\Phi}N]$ code \mathbb{C}_{Φ} over $\Phi = \mathbb{F}^k$ (*outer code*).
- A linear one-to-one mapping $\mathcal{E} : \Phi \to \mathcal{C}$.

Concatenated code $\mathbb C$ of length $N=\Delta n$ over $\mathbb F$ is defined as

$$\mathbb{C} = \left\{ (\boldsymbol{c}_1 | \boldsymbol{c}_2 | \cdots | \boldsymbol{c}_n) \in \mathbb{F}^{\Delta n} : \boldsymbol{c}_i = \mathcal{E}(a_i) , \\ \text{or } i \in 1, 2, \cdots, n, \text{ and } (a_1 a_2 \cdots a_n) \in \mathbb{C}_{\Phi} \right\}.$$

• The rate of \mathbb{C} : $\mathcal{R} = rR_{\Phi}$.

・ロト ・四ト ・ヨト ・ヨ

fc

[Forney '66] Ingredients:

- A linear $[\Delta, k=r\Delta, \theta\Delta]$ code \mathcal{C} over $\mathbb{F} = GF(q)$ (*inner code*).
- A linear $[N, R_{\Phi}N, \delta_{\Phi}N]$ code \mathbb{C}_{Φ} over $\Phi = \mathbb{F}^k$ (*outer code*).
- A linear one-to-one mapping $\mathcal{E} : \Phi \to \mathcal{C}$.

Concatenated code $\mathbb C$ of length $N=\Delta n$ over $\mathbb F$ is defined as

$$\mathbb{C} = \left\{ (\boldsymbol{c}_1 | \boldsymbol{c}_2 | \cdots | \boldsymbol{c}_n) \in \mathbb{F}^{\Delta n} : \boldsymbol{c}_i = \mathcal{E}(a_i) , \\ \text{or } i \in 1, 2, \cdots, n, \text{ and } (a_1 a_2 \cdots a_n) \in \mathbb{C}_{\Phi} \right\}.$$

• The rate of \mathbb{C} : $\mathcal{R} = rR_{\Phi}$.

• The relative minimum distance of \mathbb{C} : $\delta \geq \theta \delta_{\Phi}$.

・ロト ・四ト ・ヨト ・ヨ

• Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2}\delta$.

イロト イロト イヨト イヨト 三国

Concatenated Codes (Cont.)

- Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2}\delta$.
- [Justesen '72] For a wide range of rates, concatenated codes attain the *Zyablov bound*:

$$\delta \ge \max_{\mathcal{R} \le r \le 1} \left(1 - \frac{\mathcal{R}}{r} \right) \mathsf{H}_q^{-1} (1 - r).$$

- Generalized minimum distance (GMD) decoder corrects any fraction of errors up to $\frac{1}{2}\delta$.
- [Justesen '72] For a wide range of rates, concatenated codes attain the *Zyablov bound*:

$$\delta \geq \max_{\mathcal{R} \leq r \leq 1} \left(1 - \frac{\mathcal{R}}{r} \right) \mathsf{H}_q^{-1}(1 - r).$$

• [Blokh-Zyablov '82] Multilevel concatenations of codes (almost) attain the *Blokh-Zyablov bound*:

$$\mathcal{R} = 1 - \mathsf{H}_2(\delta) - \delta \int_0^{1 - \mathsf{H}_2(\delta)} \frac{dx}{\mathsf{H}_2^{-1}(1 - x)}$$

• Consider a Δ -regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

イロト イロト イヨト イヨト 三日

- Consider a Δ -regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ .

- Consider a Δ -regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ .
- Let $\lambda_{\mathcal{G}}^*$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.

イロト イロト イヨト イヨト 三日

- Consider a Δ -regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ .
- Let $\lambda_{\mathcal{G}}^*$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
- Lower ratios of $\lambda_{\mathcal{G}}^*/\Delta$ imply greater values of *expansion* [Alon '86].

· 白 > · (四 > · (표 > · (표 > ·) 표

- Consider a Δ -regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ .
- Let $\lambda_{\mathcal{G}}^*$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
- Lower ratios of $\lambda_{\mathcal{G}}^*/\Delta$ imply greater values of *expansion* [Alon '86].
- Expander graphs with

$$\lambda_{\mathcal{G}}^* \le 2\sqrt{\Delta - 1}$$

are called a *Ramanujan graphs*. Constructions are due to [Lubotsky Philips Sarnak '88], [Margulis '88].

- Consider a Δ -regular graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- The largest eigenvalue of the adjacency matrix $A_{\mathcal{G}}$ of \mathcal{G} equals Δ .
- Let $\lambda_{\mathcal{G}}^*$ be the second largest absolute value of eigenvalues of $A_{\mathcal{G}}$.
- Lower ratios of $\lambda_{\mathcal{G}}^*/\Delta$ imply greater values of *expansion* [Alon '86].
- Expander graphs with

$$\lambda_{\mathcal{G}}^* \le 2\sqrt{\Delta - 1}$$

are called a *Ramanujan graphs*. Constructions are due to [Lubotsky Philips Sarnak '88], [Margulis '88].

• Let $\lambda_{\mathcal{G}}$ be the second largest eigenvalues of $A_{\mathcal{G}}$ and $\gamma_{\mathcal{G}} = \lambda_{\mathcal{G}}/\Delta$.

Barg-Zémor's Expander Codes '02

- \mathcal{G} is bipartite: $\mathcal{V} = A \cup B$, $A \cap B = \emptyset$, |A| = |B| = n.
- Ordering on the vertices and the edges.
- Denote by (z)_{\varepsilon(u)} the sub-block of z that is indexed by \varepsilon(u).
- Let C_A and C_B be two linear codes of length Δ over \mathbb{F} .

• Denote $N = |\mathcal{E}| = \Delta n$.

Barg-Zémor's Expander Codes '02

- \mathcal{G} is bipartite: $\mathcal{V} = A \cup B$, $A \cap B = \emptyset$, |A| = |B| = n.
- Ordering on the vertices and the edges.
- Denote by (z)_{\varepsilon(u)} the sub-block of z that is indexed by \varepsilon(u).
- Let C_A and C_B be two linear codes of length Δ over \mathbb{F} .

• Denote $N = |\mathcal{E}| = \Delta n$.

The code $\mathbb{C} = (\mathcal{G}, \mathcal{C}_A : \mathcal{C}_B)$:

$$\mathbb{C} = \left\{ oldsymbol{c} \in \mathbb{F}^N \ : \ (oldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_A \ ext{for} \ v \in A \ ext{and} \ (oldsymbol{c})_{\mathcal{E}(v)} \in \mathcal{C}_B \ ext{for} \ u \in B
ight\}$$

・ロト ・四ト ・ヨト ・ヨト

Barg-Zémor's Expander Codes '02

- \mathcal{G} is bipartite: $\mathcal{V} = A \cup B$, $A \cap B = \emptyset$, |A| = |B| = n.
- Ordering on the vertices and the edges.
- Denote by (z)_{\varepsilon(u)} the sub-block of z that is indexed by \varepsilon(u).
- Let C_A and C_B be two linear codes of length Δ over \mathbb{F} .

• Denote
$$N = |\mathcal{E}| = \Delta n$$
.

The code $\mathbb{C} = (\mathcal{G}, \mathcal{C}_A : \mathcal{C}_B)$:

$$\mathbb{C} = \left\{ \boldsymbol{c} \in \mathbb{F}^{N} : (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_{A} \text{ for } v \in A \\ \text{and } (\boldsymbol{c})_{\mathcal{E}(v)} \in \mathcal{C}_{B} \text{ for } u \in B \right\}.$$

A

 $v_0 \bullet$

 $v_1 \bullet$

 $v_2 \bullet$

 C_A

B

 $\bullet u_0$

• u_1 - C_B

- - I I - I

• 'Dangling edges' are introduced [Barg Zémor '03].

イロト イロト イヨト イヨト 三国

- 'Dangling edges' are introduced [Barg Zémor '03].
- Mimics behavior of concatenated codes.

イロト イロト イヨト イヨト 三日

- 'Dangling edges' are introduced [Barg Zémor '03].
- Mimics behavior of concatenated codes.
- Can be viewed as a concatenation of two codes [Roth Skachek '04].

Barg-Zémor Expander Codes '03

- 'Dangling edges' are introduced [Barg Zémor '03].
- Mimics behavior of concatenated codes.
- Can be viewed as a concatenation of two codes [Roth Skachek '04].
- Another construction with similar properties [Guruswami Indyk '02].

<<p>(日)

Analysis of the codes in [Barg Zémor '02] and [Barg Zémor '03].

Analysis of the codes in [Barg Zémor '02] and [Barg Zémor '03].

Lower bounds on the relative minimum distance

$$\delta(\mathcal{R}) \geq \frac{1}{4} (1-\mathcal{R})^2 \cdot \min_{\delta_{GV}((1+\mathcal{R})/2) < \mathsf{B} < \frac{1}{2}} \frac{g(\mathsf{B})}{\mathsf{H}_2(\mathsf{B})} ,$$

where the function $g(\mathsf{B})$ is defined in the next slides.

(ii)

$$\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r \leq 1} \left\{ \min_{\delta_{GV}(r) < \mathsf{B} < \frac{1}{2}} \left(\delta_0(\mathsf{B}, r) \cdot \frac{1 - \mathcal{R}/r}{\mathsf{H}_2(\mathsf{B})} \right) \right\}$$

where the function $\delta_0(\mathsf{B}, r)$ is defined in the next slides.

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

These two families of codes surpass the Zyablov bound.

< □ > < □ > < □ > < □ > < □ > = Ξ

These two families of codes surpass the Zyablov bound.

Let $\delta_{GV}(\mathcal{R}) = \mathsf{H}_2^{-1}(1-\mathcal{R})$, and let B_1 be the largest root of the equation

$$\mathsf{H}_{2}(\mathsf{B}) = \mathsf{H}_{2}(\mathsf{B}) \left(\mathsf{B} - \mathsf{H}_{2}(\mathsf{B}) \cdot \frac{\delta_{GV}(\mathcal{R})}{1 - \mathcal{R}}\right) = -\left(\mathsf{B} - \delta_{GV}(\mathcal{R})\right) \cdot \log_{2}(1 - \mathsf{B}) \ .$$

Moreover, let

$$a_1 = \frac{\mathsf{B}_1}{\mathsf{H}_2(\mathsf{B}_1)} - \frac{\delta_{GV}(\mathcal{R})}{\mathsf{H}_2(\delta_{GV}(\mathcal{R}))} ,$$

and

$$b_1 = \frac{\delta_{GV}(\mathcal{R})}{\mathsf{H}_2(\delta_{GV}(\mathcal{R}))} \cdot \mathsf{B}_1 - \frac{\mathsf{B}_1}{\mathsf{H}_2(\mathsf{B}_1)} \cdot \delta_{GV}(\mathcal{R})) .$$

The function $g(\mathsf{B})$ is defined as

$$g(\mathsf{B}) = \begin{cases} \frac{\delta_{GV}(\mathcal{R})}{1-\mathcal{R}} & \text{if } \mathsf{B} \leq \delta_{GV}(\mathcal{R}) \\\\ \frac{\mathsf{B}}{\mathsf{H}_2(\mathsf{B})} & \text{if } \delta_{GV}(\mathcal{R}) \leq \mathsf{B} \text{ and } \mathcal{R} \leq 0.284 \\\\ \frac{a_1\mathsf{B} + b_1}{\mathsf{B}_1 - \delta_{GV}(\mathcal{R})} & \text{if } \delta_{GV}(\mathcal{R}) \leq \mathsf{B} \leq \mathsf{B}_1 \text{ and } 0.284 < \mathcal{R} \leq 1 \\\\ \frac{\mathsf{B}}{\mathsf{H}_2(\mathsf{B})} & \text{if } \mathsf{B}_1 < \mathsf{B}_1 \leq 1 \text{ and } 0.284 < \mathcal{R} \leq 1 \end{cases}$$

.

< □ > < □ > < □ > < □ > < □ > = Ξ

Vitaly Skachek Minimum Distance Bounds

Definition of the Function $\delta_0(\mathsf{B}, r)$

The function $\delta_0(\mathsf{B}, r)$ is defined to be $\omega^{\star\star}(\mathsf{B})$ for $\delta_{GV}(r) \leq \mathsf{B} \leq \mathsf{B}_1$, where

$$\omega^{\star\star}(\mathsf{B}) = r\mathsf{B} + (1-r)\mathsf{H}_2^{-1}\left(1 - \frac{r}{1-r}\mathsf{H}_2(\mathsf{B})\right) ,$$

and B_1 is the only root of the equation

$$\delta_{GV}(r) = w^{\star}(\mathsf{B}) \; ,$$

where

$$w^{\star}(\mathsf{B}) = (1-r)\left(\left(2^{\mathsf{H}_{2}(\mathsf{B})/\mathsf{B}} + 1 \right)^{-1} + \frac{\mathsf{B}}{\mathsf{H}_{2}(\mathsf{B})} \left(1 - \mathsf{H}_{2} \left(\left(2^{\mathsf{H}_{2}(\mathsf{B})/\mathsf{B}} + 1 \right)^{-1} \right) \right) \right) \right)$$

For $B_1 \leq B \leq \frac{1}{2}$, the function $\delta_0(B, r)$ is defined to be a tangent to the function $\omega^{**}(B)$ drawn from the point $(\frac{1}{2}, \omega^{*}(\frac{1}{2}))$.

Minimum Distance Bounds

Vitaly Skachek Minimum Distance Bounds

• $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ -regular, as before

· □ > · (四 > · (回 > · (回 > ·

臣

• $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ -regular, as before

•
$$B = B^1 \cup B^2, B^1 \cap B^2 = \emptyset$$
. Let
 $|B^2| = \eta n, |B^1| = (1 - \eta)n, \eta \in [0, 1].$

· □ > · (四 > · (回 > · (回 > ·

臣

- $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ -regular, as before
- $B = B^1 \cup B^2, B^1 \cap B^2 = \emptyset$. Let $|B^2| = \eta n, |B^1| = (1 - \eta)n, \eta \in [0, 1].$
- C_A , C_1 and C_2 are linear $[\Delta, r_A \Delta, \delta_A \Delta]$, $[\Delta, r_1 \Delta, \delta_1 \Delta]$ and $[\Delta, r_2 \Delta, \delta_2 \Delta]$ codes over \mathbb{F} , respectively.

(本部) (本語) (本語) (二百

• $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ -regular, as before

•
$$B = B^1 \cup B^2, B^1 \cap B^2 = \emptyset$$
. Let
 $|B^2| = \eta n, |B^1| = (1 - \eta)n, \eta \in [0, 1].$

• C_A , C_1 and C_2 are linear $[\Delta, r_A \Delta, \delta_A \Delta]$, $[\Delta, r_1 \Delta, \delta_1 \Delta]$ and $[\Delta, r_2 \Delta, \delta_2 \Delta]$ codes over \mathbb{F} , respectively.

The code code $\mathbb{C} = (\mathcal{G}, \mathcal{C}_A, \mathcal{C}_1, \mathcal{C}_2)$:

$$\mathbb{C} = \left\{ \boldsymbol{c} \in \mathbb{F}^N \quad : \ (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_A \text{ for } u \in A, \\ (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_1 \text{ for } u \in B^1 \\ \text{and} \quad (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_2 \text{ for } u \in B^2 \right\}$$

(1日) (1日) (日)

- $\mathcal{G} = (\mathcal{V} = A \cup B, \mathcal{E})$ be a bipartite Δ -regular, as before
- $B = B^1 \cup B^2, B^1 \cap B^2 = \emptyset$. Let $|B^2| = \eta n, |B^1| = (1 - \eta)n, \eta \in [0, 1].$
- C_A , C_1 and C_2 are linear $[\Delta, r_A \Delta, \delta_A \Delta]$, $[\Delta, r_1 \Delta, \delta_1 \Delta]$ and $[\Delta, r_2 \Delta, \delta_2 \Delta]$ codes over \mathbb{F} , respectively.

The code code $\mathbb{C} = (\mathcal{G}, \mathcal{C}_A, \mathcal{C}_1, \mathcal{C}_2)$:

$$\mathbb{C} = \begin{cases} \boldsymbol{c} \in \mathbb{F}^N & : \ (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_A \text{ for } u \in A, \\ & (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_1 \text{ for } u \in B^1 \\ & \text{and} & (\boldsymbol{c})_{\mathcal{E}(u)} \in \mathcal{C}_2 \text{ for } u \in B^2 \end{cases}$$

Properties of Generalized Expander Codes

• The rate:
$$\mathcal{R} \ge r_A + (1 - \eta)r_1 + \eta r_2 - 1$$
.

Vitaly Skachek Minimum Distance Bounds

・ロト ・御ト ・ヨト ・ヨト

æ

Properties of Generalized Expander Codes

• The rate: $\mathcal{R} \ge r_A + (1 - \eta)r_1 + \eta r_2 - 1.$

• Assume

$$\eta < \frac{\delta_A - \gamma_{\mathcal{G}} \sqrt{\delta_A / \delta_2}}{1 - \gamma_{\mathcal{G}}} - \gamma_{\mathcal{G}}^{2/3} .$$

Then, the relative minimum distance:

$$\delta > \delta_A(\delta_1 - \frac{1}{2}\gamma_{\mathcal{G}}^{2/3}) \; .$$

 \Rightarrow The code \mathbb{C} attains the *Zyablov bound*.

Properties of Generalized Expander Codes

• The rate: $\mathcal{R} \ge r_A + (1 - \eta)r_1 + \eta r_2 - 1.$

Assume

$$\eta < \frac{\delta_A - \gamma_{\mathcal{G}} \sqrt{\delta_A / \delta_2}}{1 - \gamma_{\mathcal{G}}} - \gamma_{\mathcal{G}}^{2/3} .$$

Then, the relative minimum distance:

$$\delta > \delta_A(\delta_1 - \frac{1}{2}\gamma_{\mathcal{G}}^{2/3}) \; .$$

 \Rightarrow The code $\mathbb C$ attains the Zyablov bound.

• A linear-time decoding algorithm: if $\delta_1 > 2\gamma_{\mathcal{G}}^{2/3}$ and η as above, the decoder corrects any error pattern of size $\mathbb{J}_{\mathbb{C}}$,

$$\mathbb{J}_{\mathbb{C}} \stackrel{\Delta}{=} \frac{\frac{1}{2}\delta_1 - \gamma_{\mathcal{G}}^{2/3} \left(1 + \sqrt{2\left(\delta_1 - 2\gamma_{\mathcal{G}}^{2/3}\right)}\right)}{1 - \gamma_{\mathcal{G}}} \cdot \delta_A \Delta n \; .$$

The number of correctable errors is (almost) half of the Zyablov bound.

Properties of Generalized Expander Codes (cont.)

Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N = n\Delta$, $n \to \infty$, and sufficiently large but constant $\Delta = \Delta(\varepsilon)$, whose relative minimum distance satisfies

$$\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r_A \leq 1} \left\{ \min_{\delta_{GV}(r_A) \leq \beta \leq 1/2} \left(\delta_0(\beta, r_A) \frac{1 - \mathcal{R}/r_A}{\mathsf{H}_2(\beta)} \right) \right\} - \varepsilon \; .$$

・四ト ・ヨト ・ヨト

Properties of Generalized Expander Codes (cont.)

Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N = n\Delta$, $n \to \infty$, and sufficiently large but constant $\Delta = \Delta(\varepsilon)$, whose relative minimum distance satisfies

$$\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r_A \leq 1} \left\{ \min_{\delta_{GV}(r_A) \leq \beta \leq 1/2} \left(\delta_0(\beta, r_A) \frac{1 - \mathcal{R}/r_A}{\mathsf{H}_2(\beta)} \right) \right\} - \varepsilon \; .$$

Consider a code \mathbb{C} with parameter $\eta = 0$. Then, $|B^2| = 0$, and the code \mathbb{C} coincides with the code in [Barg Zémor'02].

《曰》 《聞》 《臣》 《臣》

Properties of Generalized Expander Codes (cont.)

Theorem

Let $|\mathbb{F}|$ be a power of 2. There exists a polynomial-time constructible family of binary linear codes \mathbb{C} of length $N = n\Delta$, $n \to \infty$, and sufficiently large but constant $\Delta = \Delta(\varepsilon)$, whose relative minimum distance satisfies

$$\delta(\mathcal{R}) \geq \max_{\mathcal{R} \leq r_A \leq 1} \left\{ \min_{\delta_{GV}(r_A) \leq \beta \leq 1/2} \left(\delta_0(\beta, r_A) \frac{1 - \mathcal{R}/r_A}{\mathsf{H}_2(\beta)} \right) \right\} - \varepsilon \; .$$

Consider a code \mathbb{C} with parameter $\eta = 0$. Then, $|B^2| = 0$, and the code \mathbb{C} coincides with the code in [Barg Zémor'02]. The minimum distance:

$$\delta(\mathcal{R}) \geq rac{1}{4} (1-\mathcal{R})^2 \cdot \min_{\delta_{GV}((1+\mathcal{R})/2) < \mathsf{B} < rac{1}{2}} rac{g(\mathsf{B})}{\mathsf{H}_2(\mathsf{B})} \; .$$

・ロト ・四ト ・ヨト ・ヨ

Minimum Distance Bounds

Vitaly Skachek Minimum Distance Bounds

• Further improvements on the **minimum distance bounds**.

- Further improvements on the **minimum distance bounds**.
- Bounds on the **error-correcting capabilities** of the decoders.

・ロト ・聞ト ・ヨト ・ヨト

3

- Further improvements on the **minimum distance bounds**.
- Bounds on the **error-correcting capabilities** of the decoders.
- Could **other types of expander graphs** yield better properties?

・ロト ・四ト ・ヨト ・

- Further improvements on the **minimum distance bounds**.
- Bounds on the **error-correcting capabilities** of the decoders.
- Could **other types of expander graphs** yield better properties?
- Do the generalized expander codes have any advantage over the known expander codes?

・ロト ・四ト ・ヨト ・