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Turbo Codes

Presented by Berrou, Glavieux and Thitimajshima in 1993.

Very efficient in practice.

Perform at rates very close to Shannon capacity.

Hard to analyze.
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LDPC Codes

Low-density parity-check codes.

[Gallager ’62] Presented for the first time. Seemed to be
unpractical then.
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[Gallager ’62] Presented for the first time. Seemed to be
unpractical then.

[MacKay ’97] Similarity between turbo codes and
low-density parity-check codes.

[McEliece MacKay Cheng ’98] Turbo decoding can be
viewed as a belief-propagation algorithm.
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LDPC Codes

Low-density parity-check codes.

[Gallager ’62] Presented for the first time. Seemed to be
unpractical then.

[MacKay ’97] Similarity between turbo codes and
low-density parity-check codes.

[McEliece MacKay Cheng ’98] Turbo decoding can be
viewed as a belief-propagation algorithm.

[Richardson Urbanke ’01] Good average behavior over
binary memoryless channels.
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LDPC Codes

Low-density parity-check codes.

[Gallager ’62] Presented for the first time. Seemed to be
unpractical then.

[MacKay ’97] Similarity between turbo codes and
low-density parity-check codes.

[McEliece MacKay Cheng ’98] Turbo decoding can be
viewed as a belief-propagation algorithm.

[Richardson Urbanke ’01] Good average behavior over
binary memoryless channels.

[Richardson Shokrollahi Urbanke ’01] Codes, which are
extremely close to the capacity, found by the exhaustive
search.
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Explicit Constructions

[Sipser Spielman ’96] Correct constant fraction of errors,
linear time encoding and decoding.
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Explicit Constructions

[Sipser Spielman ’96] Correct constant fraction of errors,
linear time encoding and decoding.

[Barg Zémor ’01–’04] Capacity-achieving codes for BSC
with linear-time decoding, exponentially small decoding
error.
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Explicit Constructions

[Sipser Spielman ’96] Correct constant fraction of errors,
linear time encoding and decoding.

[Barg Zémor ’01–’04] Capacity-achieving codes for BSC
with linear-time decoding, exponentially small decoding
error.

[Guruswami Indyk ’02] Linear-time encodable and
decodable codes that attain the Zyablov bound, used
concatenation with nearly-MDS code. Based on
construction in [Zémor ’01] as a building block.
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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.
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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The Hamming distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Σn, d(x,y), is the number of pairs of
symbols (xi, yi), 1 ≤ i ≤ n, such that xi 6= yi.
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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The Hamming distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Σn, d(x,y), is the number of pairs of
symbols (xi, yi), 1 ≤ i ≤ n, such that xi 6= yi.

The minimum distance of a code C is

d = min
x,y∈C,x 6=y

d(x,y).
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Basic Definitions

Definition

Code C is a set of words of length n over an alphabet Σ.

Definition

The Hamming distance between x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Σn, d(x,y), is the number of pairs of
symbols (xi, yi), 1 ≤ i ≤ n, such that xi 6= yi.

The minimum distance of a code C is

d = min
x,y∈C,x 6=y

d(x,y).

The relative minimum distance of C is defined as δ = d/n.
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Linear Code

Definition

A code C over field Φ is said to be a linear [n, k, d] code if
there exists a matrix H with n columns and rank n− k
such that

Hx
t = 0̄ ⇔ x ∈ C.

The matrix H is called a parity-check matrix.

The value k is called the dimension of the code C.
The ratio r = k/n is called the rate of the code C.
The words of C can be obtained as linear combinations of
rows of a generating k × n matrix G.
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [n, k=rn, δinn] code Cin over F = GF(q) (inner
code).
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[Forney ’66] Ingredients:

A linear [n, k=rn, δinn] code Cin over F = GF(q) (inner
code).

A linear [N,RN, δoutN ] code Cout over Φ = F k (outer code).
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A linear [n, k=rn, δinn] code Cin over F = GF(q) (inner
code).

A linear [N,RN, δoutN ] code Cout over Φ = F k (outer code).

A linear one-to-one mapping E0 : Φ→ Cin.
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [n, k=rn, δinn] code Cin over F = GF(q) (inner
code).

A linear [N,RN, δoutN ] code Cout over Φ = F k (outer code).

A linear one-to-one mapping E0 : Φ→ Cin.

Concatenated code Ccont of length n ·N over F is defined as

Ccont =
{

(c1|c2| · · · |cn) ∈ Fn·N : ci = E0(Ξi) ,

for i ∈ 1, 2, · · · , n, and (Ξ1Ξ2 · · ·Ξn) ∈ Cout

}
.
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Concatenated Codes

[Forney ’66] Ingredients:

A linear [n, k=rn, δinn] code Cin over F = GF(q) (inner
code).

A linear [N,RN, δoutN ] code Cout over Φ = F k (outer code).

A linear one-to-one mapping E0 : Φ→ Cin.

Concatenated code Ccont of length n ·N over F is defined as

Ccont =
{

(c1|c2| · · · |cn) ∈ Fn·N : ci = E0(Ξi) ,

for i ∈ 1, 2, · · · , n, and (Ξ1Ξ2 · · ·Ξn) ∈ Cout

}
.

The rate Rcont = r ·R. The relative minimum distance
δ ≥ δin · δout.
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Concatenated Codes (Cont.)

Generalized minimum distance (GMD) decoder corrects
any fraction of errors up to a half of the code minimum
distance.
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Concatenated Codes (Cont.)

Generalized minimum distance (GMD) decoder corrects
any fraction of errors up to a half of the code minimum
distance.

For any rate R less than channel capacity Cq(p), the
decoding error probability of the concatenated code Ccont

(under the GMD decoder) is upper-bounded by

Probe(Ccont) ≤ max
R≤r≤Cq(p)

e
−NE(r)(1−R

r
),
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Concatenated Codes (Cont.)

Generalized minimum distance (GMD) decoder corrects
any fraction of errors up to a half of the code minimum
distance.

For any rate R less than channel capacity Cq(p), the
decoding error probability of the concatenated code Ccont

(under the GMD decoder) is upper-bounded by

Probe(Ccont) ≤ max
R≤r≤Cq(p)

e
−NE(r)(1−R

r
),

[Justesen ’72] For a wide range of rates, concatenated codes
attain the Zyablov bound

δ ≥ max
R≤r≤1

(
1− R

r

)
H
−1
q (1− r).
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LDPC Code Definition

[Gallager ’62]

Matrix H: the number of non-zero entries in each column
(row) of H is typically bounded by a small constant.
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LDPC Code Definition

[Gallager ’62]

Matrix H: the number of non-zero entries in each column
(row) of H is typically bounded by a small constant.

Alternative Description

Bipartite undirected graph G = (V,E).

Vertex set V = Vm ∪ Vc, |Vm| = n, |Vc| = n− k.
Edge set E. There is an edge between the message vertex i
and the check vertex j if and only if (H)i,j 6= 0.
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Low-Complexity Codes

[Tanner ’81]

A ∆-regular undirected graph G = (V,E).
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Low-Complexity Codes

[Tanner ’81]

A ∆-regular undirected graph G = (V,E).

Linear [∆, k=r∆, d=δ∆] code C over GF(q).

C = (G, C) is the following linear [N,K,D] code over GF(q):

C =
{
c ∈ (GF(q))N : (c)E(v) ∈ C for every v ∈ V

}
,

(c)E(v) = the sub-word of c that is indexed by the set of edges
incident with v.
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Low-Complexity Codes

[Tanner ’81]

A ∆-regular undirected graph G = (V,E).

Linear [∆, k=r∆, d=δ∆] code C over GF(q).

C = (G, C) is the following linear [N,K,D] code over GF(q):

C =
{
c ∈ (GF(q))N : (c)E(v) ∈ C for every v ∈ V

}
,

(c)E(v) = the sub-word of c that is indexed by the set of edges
incident with v.

The code C = (G, C) is a low-complexity code.
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Low-Complexity Codes – Example

Take ∆ = 3, k = 2, |V | = 4.
Let G be a generating matrix of C
over F = GF(22) = {0, 1, α, α2}:

G =

(
1 0 1
0 1 α

)
.
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Low-Complexity Codes – Example

Take ∆ = 3, k = 2, |V | = 4.
Let G be a generating matrix of C
over F = GF(22) = {0, 1, α, α2}:

G =

(
1 0 1
0 1 α

)
.

α2

1

1

α2

1

1

α2
0 α2

1 0 1
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Low-Complexity Codes – Example

Take ∆ = 3, k = 2, |V | = 4.
Let G be a generating matrix of C
over F = GF(22) = {0, 1, α, α2}:

G =

(
1 0 1
0 1 α

)
.

The resulting code C is of length
N = 6. For instance,

(1 1 α2 0 α2 1) ∈ C.

α2

1

1

α2

1

1

α2
0 α2

1 0 1

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Background
Basic Definitions
LDPC Codes
Expander Codes

Expander Graph

Consider a ∆-regular graph G = (V,E).
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Expander Graph

Consider a ∆-regular graph G = (V,E).

A subset S ⊆ V expands by a factor of ζ, 0 < ζ ≤ 1, if

|{v ∈ V : ∃ṽ ∈ S such that {v, ṽ} ∈ E}| ≥ ζ∆ · |S|.
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Expander Graph

Consider a ∆-regular graph G = (V,E).

A subset S ⊆ V expands by a factor of ζ, 0 < ζ ≤ 1, if

|{v ∈ V : ∃ṽ ∈ S such that {v, ṽ} ∈ E}| ≥ ζ∆ · |S|.

The graph G is an (α, ζ)-expander if every subset of at
most α|V | vertices expands by a factor of ζ.
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Eigenvalues of Expander Graph

Consider a graph G where each vertex has degree ∆. The
largest eigenvalue of the adjacency matrix AG of G is ∆.
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Eigenvalues of Expander Graph

Consider a graph G where each vertex has degree ∆. The
largest eigenvalue of the adjacency matrix AG of G is ∆.

Let λG be the second largest eigenvalue of AG .
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Eigenvalues of Expander Graph

Consider a graph G where each vertex has degree ∆. The
largest eigenvalue of the adjacency matrix AG of G is ∆.

Let λG be the second largest eigenvalue of AG .

Lower ratios of γG = λG

∆ imply greater values ζ of
expansion. [Alon ’86]
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Eigenvalues of Expander Graph

Consider a graph G where each vertex has degree ∆. The
largest eigenvalue of the adjacency matrix AG of G is ∆.

Let λG be the second largest eigenvalue of AG .

Lower ratios of γG = λG

∆ imply greater values ζ of
expansion. [Alon ’86]

Expander graph with

λG ≤ 2
√

∆− 1

is called a Ramanujan graph. Constructions are due to
[Lubotsky Philips Sarnak ’88], [Margulis ’88].
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Expander Codes

[Sipser Spielman ’96], [Zémor ’01].

A ∆-regular bipartite undirected Ramanujan graph
G = (V,E).
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Expander Codes

[Sipser Spielman ’96], [Zémor ’01].

A ∆-regular bipartite undirected Ramanujan graph
G = (V,E).

Vertex set V = A ∪B such that A ∩B = ∅ and
|A| = |B| = n.
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Expander Codes

[Sipser Spielman ’96], [Zémor ’01].

A ∆-regular bipartite undirected Ramanujan graph
G = (V,E).

Vertex set V = A ∪B such that A ∩B = ∅ and
|A| = |B| = n.
Edge set E of size N = n∆ such that every edge in E has
one endpoint in A and one endpoint in B.
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Expander Codes

[Sipser Spielman ’96], [Zémor ’01].

A ∆-regular bipartite undirected Ramanujan graph
G = (V,E).

Vertex set V = A ∪B such that A ∩B = ∅ and
|A| = |B| = n.
Edge set E of size N = n∆ such that every edge in E has
one endpoint in A and one endpoint in B.

A linear [∆, k=r∆, d=δ∆] code C over F = GF(q).
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Expander Codes

[Sipser Spielman ’96], [Zémor ’01].

A ∆-regular bipartite undirected Ramanujan graph
G = (V,E).

Vertex set V = A ∪B such that A ∩B = ∅ and
|A| = |B| = n.
Edge set E of size N = n∆ such that every edge in E has
one endpoint in A and one endpoint in B.

A linear [∆, k=r∆, d=δ∆] code C over F = GF(q).

Let C = (G, C) be the low-complexity linear [N,RN,D]
code.
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Example

Take the graph G with ∆ = 3 and
n = 4. (G as on the slide is both
(1/8, 1)-expander and
(1/4, 2/3)-expander.)

Let k = 2, and pick F = GF(2).

Take C parity code over F :

G =

�
1 0 1
0 1 1

�
.
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Example

Take the graph G with ∆ = 3 and
n = 4. (G as on the slide is both
(1/8, 1)-expander and
(1/4, 2/3)-expander.)

Let k = 2, and pick F = GF(2).

Take C parity code over F :

G =

�
1 0 1
0 1 1

�
.

v4

v3

v2

v1

u4

u3

u2

u1

A B

1
1

0

0
0

0

1
0
1

0
1

1

1

1

0

1
0
1

0

0
0

0

1
1
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Example

Take the graph G with ∆ = 3 and
n = 4. (G as on the slide is both
(1/8, 1)-expander and
(1/4, 2/3)-expander.)

Let k = 2, and pick F = GF(2).

Take C parity code over F :

G =

�
1 0 1
0 1 1

�
.

Thus,

( 1 1 0 0 0 0 1 0 1 0 1 1 ) ∈ C.
v4

v3

v2

v1

u4

u3

u2

u1

A B

1
1

0

0
0

0

1
0
1

0
1

1

1

1

0

1
0
1

0

0
0

0

1
1
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Parameters of Expander Codes

The Code Rate

Each sub-code vertex contributes ∆− k parity-check equations.
Thus,

N(1−R) ≤ (∆− k) · 2n,

⇒ R ≥ 1− (∆− k)2n
N

= 1− 2
∆− k

∆
= 2r − 1.
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Parameters of Expander Codes

The Code Rate

Each sub-code vertex contributes ∆− k parity-check equations.
Thus,

N(1−R) ≤ (∆− k) · 2n,

⇒ R ≥ 1− (∆− k)2n
N

= 1− 2
∆− k

∆
= 2r − 1.

Relative Minimum Distance

[Sipser Spielman ’96]

D ≥ N
(
δ − γG
1− γG

)2

.
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Linear-time Decoder of Zémor

Input: Received word y = (ye)e∈E .

Let z ← y.

For t← 1 to m do {

Let X stand for A if t is odd, and for B otherwise.

Iteration t: For every v ∈ X let (z)E(v) ← D
�
(z)E(v)

�
.

/* Decoder for C */

}

Output: z.
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Number of Correctable Errors

Zémor’s decoder:

JZ ≈
1

4
·N

(
δ2 −O(γG)

)
.
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Parameters of Expander Codes
Linear-time Decoder of Zémor
Advanced Expander Code Constructions

Number of Correctable Errors

Zémor’s decoder:

JZ ≈
1

4
·N

(
δ2 −O(γG)

)
.

Using combination of Zémor and GMD decoding
[Forney ’66] the number of correctable errors becomes
[Skachek Roth ’03]:

JSR ≈
1

2
·N

(
δ2 −O(γG)

)
.
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Decoder Analysis

Let Si be the set of corrupted vertices in A (in B) in i-th
iteration for odd i (even i).

Using expansion property, Zémor shows:

|Si+1| ≤ ρ|Si|,

for some constant ρ < 1.
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Decoder Analysis

Let Si be the set of corrupted vertices in A (in B) in i-th
iteration for odd i (even i).

Using expansion property, Zémor shows:

|Si+1| ≤ ρ|Si|,

for some constant ρ < 1.

There are only O(log n) iterations needed to correct all
errors.
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Time Complexity

During each iteration, the algorithm will construct a list of
pointers to all constraints that could be unsatisfied.

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Parameters of Expander Codes
Linear-time Decoder of Zémor
Advanced Expander Code Constructions

Time Complexity

During each iteration, the algorithm will construct a list of
pointers to all constraints that could be unsatisfied.

On next iteration, only vertices that have neighbors, which
value was changed during the last iteration, could be
unsatisfied.
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Time Complexity

During each iteration, the algorithm will construct a list of
pointers to all constraints that could be unsatisfied.

On next iteration, only vertices that have neighbors, which
value was changed during the last iteration, could be
unsatisfied.

The amount of work to be done is:

∆|S0|(1 + ρ+ ρ2 + ρ3 + · · ·+ ρm−1) = ∆|S0|
1− ρm

1− ρ
< ∆|S0|

1

1− ρ = O(N) .
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Code Modification in [Barg Zémor ’02]

Graph G = (V,E) is a ∆-regular bipartite undirected
graph.
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Code Modification in [Barg Zémor ’02]

Graph G = (V,E) is a ∆-regular bipartite undirected
graph.

Vertex set V = A ∪B such that A ∩B = ∅ and
|A| = |B| = n.
Edge set E of size n∆ such that every edge in E has one
endpoint in A and one endpoint in B.
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Code Modification in [Barg Zémor ’02]

Graph G = (V,E) is a ∆-regular bipartite undirected
graph.

Vertex set V = A ∪B such that A ∩B = ∅ and
|A| = |B| = n.
Edge set E of size n∆ such that every edge in E has one
endpoint in A and one endpoint in B.

Linear [∆, k=rA∆, δA∆] and [∆, rB∆, δB∆] codes CA and
CB, respectively, over F = GF(q).
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Barg-Zémor’s Construction

C is a linear code of length |E| over F :

C =

{
c ∈ F |E| :

(c)E(u) ∈ CA for every u ∈ A and

(c)E(u) ∈ CB for every u ∈ B

}
,

where (c)E(u) = the sub-word of c that is indexed by the set of
edges incident with u.
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Example

Take k = 2, ∆ = 3, n = 4.
Let GA and GB be generating
matrices of CA and CB
(respectively) over
F = GF(22) = {0, 1, α, α2}:

GA =

(
1 1 1
1 α 0

)
,

GB =

(
1 0 1
0 1 α

)
.
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Example

Take k = 2, ∆ = 3, n = 4.
Let GA and GB be generating
matrices of CA and CB
(respectively) over
F = GF(22) = {0, 1, α, α2}:

GA =

(
1 1 1
1 α 0

)
,

GB =

(
1 0 1
0 1 α

)
. v4

v3

v2

v1

u4

u3

u2

u1

A B
0
α

α2

0
α

α2

α2

0
α

1
α

0

0

α2

1

α
0
α

α2

α
0

α2

α
0
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Results in [Barg Zémor ’03]

In the presented construction:

Codes CA and CB are random codes;

Code C achieves the capacity of BSC under the linear-time
expander iterative decoding. The decoding error
probability decreases exponentially with the overall length.
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Results in [Barg Zémor ’03]

In the presented construction:

Codes CA and CB are random codes;

Code C achieves the capacity of BSC under the linear-time
expander iterative decoding. The decoding error
probability decreases exponentially with the overall length.

Further modified construction [Barg Zémor ’03]
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Results in [Barg Zémor ’03]

In the presented construction:

Codes CA and CB are random codes;

Code C achieves the capacity of BSC under the linear-time
expander iterative decoding. The decoding error
probability decreases exponentially with the overall length.

Further modified construction [Barg Zémor ’03]

The error exponent similar to the error exponent of
concatenated codes [Forney ’66].

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Parameters of Expander Codes
Linear-time Decoder of Zémor
Advanced Expander Code Constructions

Results in [Barg Zémor ’03]

In the presented construction:

Codes CA and CB are random codes;

Code C achieves the capacity of BSC under the linear-time
expander iterative decoding. The decoding error
probability decreases exponentially with the overall length.

Further modified construction [Barg Zémor ’03]

The error exponent similar to the error exponent of
concatenated codes [Forney ’66].

The trade-offs between the code rate and the minimum
distance attain the Zyablov bound.
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Analysis in [Barg Zémor ’04]

Analysis of the codes in [Barg Zémor ’02] and [Barg Zémor ’03].
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Analysis in [Barg Zémor ’04]

Analysis of the codes in [Barg Zémor ’02] and [Barg Zémor ’03].

Lower bounds on the relative minimum distance

(i)

δ(R) ≥ 1

4
(1−R)2 · min

δGV ((1+R)/2)<B<
1
2

g(B)

H2(B)
,

where the function g(B) is defined in the next slides.

(ii)

δ(R) ≥ max
R≤r≤1




 min
δGV (r)<B<

1
2

(
δ0(B, r) ·

1−R/r
H2(B)

)


 ,

where the function δ0(B, r) is defined in the next slides.
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Definition of the Function g(B)

These two families of codes surpass the Zyablov bound.
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Definition of the Function g(B)

These two families of codes surpass the Zyablov bound.

Let δGV (R) = H
−1
2 (1−R), and let B1 be the largest root of the

equation

H2(B) = H2(B)

(
B− H2(B) · δGV (R)

1−R

)
= − (B− δGV (R))·log2(1−B) .

Moreover, let

a1 =
B1

H2(B1)
− δGV (R)

H2(δGV (R))
,

and

b1 =
δGV (R)

H2(δGV (R))
· B1 −

B1

H2(B1)
· δGV (R)) .

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Parameters of Expander Codes
Linear-time Decoder of Zémor
Advanced Expander Code Constructions

Definition of the Function g(B) (Cont.)

The function g(B) is defined as

g(B) =






δGV (R)

1−R if B ≤ δGV (R)

B

H2(B)
if δGV (R) ≤ B and R ≤ 0.284

a1B + b1
B1 − δGV (R)

if δGV (R) ≤ B ≤ B1 and 0.284 < R ≤ 1

B

H2(B)
if B1 < B1 ≤ 1 and 0.284 < R ≤ 1

.
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Definition of the Function δ0(B, r)

The function δ0(B, r) is defined to be ω⋆⋆(B) for δGV (r) ≤ B ≤ B1,
where

ω⋆⋆(B) = rB + (1− r)H−1
2

(
1− r

1− rH2(B)

)
,

and B1 is the only root of the equation

δGV (r) = w⋆(B) ,

where

w⋆(B) = (1−r)
(

(2H2(B)/B + 1)−1 +
B

H2(B)

(
1− H2

(
(2H2(B)/B + 1)−1

)))
.

For B1 ≤ B ≤ 1
2 , the function δ0(B, r) is defined to be a tangent to the

function ω⋆⋆(B) drawn from the point
(

1
2 , ω

⋆( 1
2 )

)
.

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Parameters of Expander Codes
Linear-time Decoder of Zémor
Advanced Expander Code Constructions

Nearly-MDS Codes of Guruswami and Indyk

Used codes in [Zémor ’01] as building blocks.
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Nearly-MDS Codes of Guruswami and Indyk

Used codes in [Zémor ’01] as building blocks.

The presented codes are linear-time encodable and
decodable.
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Nearly-MDS Codes of Guruswami and Indyk

Used codes in [Zémor ’01] as building blocks.

The presented codes are linear-time encodable and
decodable.

Nearly-MDS: codes of rate R and relative minimum
distance δ such that for any small ǫ:

R+ δ ≥ 1− ǫ .
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Nearly-MDS Codes of Guruswami and Indyk

Used codes in [Zémor ’01] as building blocks.

The presented codes are linear-time encodable and
decodable.

Nearly-MDS: codes of rate R and relative minimum
distance δ such that for any small ǫ:

R+ δ ≥ 1− ǫ .

The alphabet size is

exp
{
O

(
(log(1/ǫ))/Rǫ4

)}
.
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List of Results

Nearly-MDS linear-time encodable and decodable expander
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Improvement on the minimum distance in [Barg Zémor ’03].
Improvement on the number of correctable errors over [Barg
Zémor ’03].
Nearly-MDS codes that improve on the alphabet size in
[Guruswami Indyk ’02].
Suitable for a variety of channels.
Polynomiality of the decoding complexity as a function of
the degree ∆.
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List of Results

Nearly-MDS linear-time encodable and decodable expander
codes.

Improvement on the minimum distance in [Barg Zémor ’03].
Improvement on the number of correctable errors over [Barg
Zémor ’03].
Nearly-MDS codes that improve on the alphabet size in
[Guruswami Indyk ’02].
Suitable for a variety of channels.
Polynomiality of the decoding complexity as a function of
the degree ∆.

Decoding over non-bipartite expanders.
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List of Results (Cont.)

Analysis of generalized expander codes.

For capacity-approaching codes: reduction of the decoding
error probability (polynomial → exponential), while
preserving linear-time (in the length) and polynomial (in
the gap to capacity) decoding.
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List of Results (Cont.)

Analysis of generalized expander codes.

For capacity-approaching codes: reduction of the decoding
error probability (polynomial → exponential), while
preserving linear-time (in the length) and polynomial (in
the gap to capacity) decoding.

Bounds on the minimum distance of expander codes with
weak constituent codes.
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Our Construction

Let Φ = F k. Fix a linear 1–1 mapping EA : Φ→ CA over F .
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Our Construction

Let Φ = F k. Fix a linear 1–1 mapping EA : Φ→ CA over F .

Consider the mapping ψ : C→ Φn given by

ψ(c) =
(
E−1

A ((c)E(u))
)
u∈A

, c ∈ C .
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Our Construction

Let Φ = F k. Fix a linear 1–1 mapping EA : Φ→ CA over F .

Consider the mapping ψ : C→ Φn given by

ψ(c) =
(
E−1

A ((c)E(u))
)
u∈A

, c ∈ C .

Define the code CΦ

CΦ = {ψ(c) : c ∈ C} ⊆ Φn .

CΦ is linear over F .
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Our Construction

Let Φ = F k. Fix a linear 1–1 mapping EA : Φ→ CA over F .

Consider the mapping ψ : C→ Φn given by

ψ(c) =
(
E−1

A ((c)E(u))
)
u∈A

, c ∈ C .

Define the code CΦ

CΦ = {ψ(c) : c ∈ C} ⊆ Φn .

CΦ is linear over F .

The Barg-Zémor construction can be represented as a
concatenated code with CΦ as the outer code and the inner
code taken over a sub-field of F .
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Example

Let k = 2, ∆ = 3, n = 4.
Pick F = GF(2) and Φ = F 2.
Take CA = CB = parity code over F .
Let EA(x) = xGA,

GA =

�
1 0 1
0 1 1

�
.
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Example

Let k = 2, ∆ = 3, n = 4.
Pick F = GF(2) and Φ = F 2.
Take CA = CB = parity code over F .
Let EA(x) = xGA,

GA =

�
1 0 1
0 1 1

�
.
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Example

Let k = 2, ∆ = 3, n = 4.
Pick F = GF(2) and Φ = F 2.
Take CA = CB = parity code over F .
Let EA(x) = xGA,

GA =

�
1 0 1
0 1 1

�
.

Then,

c = ( 1 1 0 | 0 0 0 | 1 0 1 | 0 1 1 ) ,

ψ(c) = ( E−1
A (110) E−1

A (000)

E−1
A (101) E−1

A (011) )

= ( 11 00 10 01 ).
v4

v3

v2

v1

u4

u3

u2

u1

A B
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1
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0
0

0

1
0
1
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Minimum Distance of CΦ

Let λG be the second largest eigenvalue of the adjacency
matrix of G, and let γG = λG/∆.
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Minimum Distance of CΦ

Let λG be the second largest eigenvalue of the adjacency
matrix of G, and let γG = λG/∆.

Relative minimum distance of CΦ:

δΦ ≥
δB − γG

√
δB/δA

1− γG
;

in particular, δΦ → δB whenever γG → 0.
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Alphabet size

For any design rate R < 1 and ǫ > 0 we obtain arbitrarily
long codes CΦ such that RΦ > R and δΦ ≥ 1−R− ǫ (thus
approaching the Singleton bound when ǫ→ 0).
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Alphabet size

For any design rate R < 1 and ǫ > 0 we obtain arbitrarily
long codes CΦ such that RΦ > R and δΦ ≥ 1−R− ǫ (thus
approaching the Singleton bound when ǫ→ 0).

The alphabet size of CΦ is

exp
{
O

(
(log(1/ǫ))/ǫ3

)}
,

compared with

exp
{
O

(
(log(1/ǫ))/Rǫ4

)}

in [Guruswami Indyk ’02].
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Error-Erasure Decoder for CΦ

Input: Received word y = (yu)u∈A in (Φ ∪ {?})n.

For u ∈ A do (z)E(u) ←

�
EA(yu) if yu ∈ Φ
?? · · ·? if yu =?

.

For i← 1, 2, . . . ,m do {

If i is even then X ≡ A, D ≡ DA, else X ≡ B, D ≡ DB .

For u ∈ X do (z)E(u) ← D((z)E(u)).

}
Output: ψ(z) if z ∈ C (and declare ‘error’ otherwise).
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Error-Erasure Decoder for CΦ (Cont.)

The algorithm makes use of a word z = (ze)e∈E over
F ∪ {?}, initialized by the contents of the received word y

over Φ ∪ {?}.
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Error-Erasure Decoder for CΦ (Cont.)

The algorithm makes use of a word z = (ze)e∈E over
F ∪ {?}, initialized by the contents of the received word y

over Φ ∪ {?}.
Iterations i = 2, 4, 6, . . . use a decoder DA : F∆ → CA that
recovers correctly any pattern of less than δA∆/2 errors
(over F ).
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Error-Erasure Decoder for CΦ (Cont.)

The algorithm makes use of a word z = (ze)e∈E over
F ∪ {?}, initialized by the contents of the received word y

over Φ ∪ {?}.
Iterations i = 2, 4, 6, . . . use a decoder DA : F∆ → CA that
recovers correctly any pattern of less than δA∆/2 errors
(over F ).

Iterations i = 1, 3, 5, . . . use a decoder
DB : (F ∪ {?})∆ → CB that recovers correctly any pattern
of θ errors and ν erasures, provided that 2θ + ν < δB∆.
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Error-Correcting Capabilities

The decoder corrects any pattern of µ errors and ρ
erasures, provided that µ+ 1

2ρ < αn, where

α =
(δB/2)− γG

√
δB/δA

1− γG
;

in particular, α→ δB/2 when γG → 0.
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Error-Correcting Capabilities

The decoder corrects any pattern of µ errors and ρ
erasures, provided that µ+ 1

2ρ < αn, where

α =
(δB/2)− γG

√
δB/δA

1− γG
;

in particular, α→ δB/2 when γG → 0.

The value of m is logarithmic in n.
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Error-Correcting Capabilities

The decoder corrects any pattern of µ errors and ρ
erasures, provided that µ+ 1

2ρ < αn, where

α =
(δB/2)− γG

√
δB/δA

1− γG
;

in particular, α→ δB/2 when γG → 0.

The value of m is logarithmic in n.

The overall time complexity of the algorithm is linear in n.
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Applications

Pick CΦ to replace an MDS outer code in asymptotic
concatenated code constructions. This leads to codes attaining:

the Zyablov bound — our bound on the minimum distance
and the number of correctable errors improves on the
analysis of Barg-Zemor;
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Applications

Pick CΦ to replace an MDS outer code in asymptotic
concatenated code constructions. This leads to codes attaining:

the Zyablov bound — our bound on the minimum distance
and the number of correctable errors improves on the
analysis of Barg-Zemor;

the capacity of the memoryless symmetric channel with
linear-time decoding and exponentially decaying error
probability.
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Linear Encoding

Using CΦ as a building block, we were able to construct a
nearly-MDS code family that is linear-time encodable and
decodable. The alphabet size of the new codes is again

exp
{
O

(
(log(1/ǫ))/ǫ3

)}
,

compared with

exp
{
O

(
(log(1/ǫ))/Rǫ4

)}

in the construction of linear-time encodable and decodable code
of [Guruswami Indyk ’02].
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Decoding over Non-bipartite Graph

Recall that the relative minimum distance of the expander
code based on a constituent code C of minimum distance δ
is δ2 + o∆(1).
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Decoding over Non-bipartite Graph

Recall that the relative minimum distance of the expander
code based on a constituent code C of minimum distance δ
is δ2 + o∆(1).

Fraction of correctable errors in [Sipser Spielman ’96] is
around 1

48 · δ2.
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Decoding over Non-bipartite Graph

Recall that the relative minimum distance of the expander
code based on a constituent code C of minimum distance δ
is δ2 + o∆(1).

Fraction of correctable errors in [Sipser Spielman ’96] is
around 1

48 · δ2.
By using a bipartite graph, this fraction was improved up to
almost 1

4 · δ2 and 1
2 · δ2, respectively ([Zémor ’01],

[Skachek Roth ’03]).
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Decoding over Non-bipartite Graph

Recall that the relative minimum distance of the expander
code based on a constituent code C of minimum distance δ
is δ2 + o∆(1).

Fraction of correctable errors in [Sipser Spielman ’96] is
around 1

48 · δ2.
By using a bipartite graph, this fraction was improved up to
almost 1

4 · δ2 and 1
2 · δ2, respectively ([Zémor ’01],

[Skachek Roth ’03]).

Problem

Could the fraction of correctable errors become close to a half
of the minimum distance when using a non-bipartite graph?
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Reduction

Let G = (V,E) be a non-bipartite underlying graph. Define

a new graph Ĝ = (V̂ , Ê).
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Reduction

Let G = (V,E) be a non-bipartite underlying graph. Define

a new graph Ĝ = (V̂ , Ê).
For each vertex v ∈ V we define vertices v1 ∈ V1, v2 ∈ V2.
For each edge e = a—b in G, we let Ĝ contain two edges:

e1 = a1—b2 , e2 = a2—b1 .

The second largest eigenvalue of the adjacency matrix of Ĝ
equals λG .
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Reduction

Let G = (V,E) be a non-bipartite underlying graph. Define

a new graph Ĝ = (V̂ , Ê).
For each vertex v ∈ V we define vertices v1 ∈ V1, v2 ∈ V2.
For each edge e = a—b in G, we let Ĝ contain two edges:

e1 = a1—b2 , e2 = a2—b1 .

The second largest eigenvalue of the adjacency matrix of Ĝ
equals λG .

Define the code Ĉ of length n∆ over F using the graph Ĝ:

Ĉ =
{

c ∈ Fn∆ : (c)bE(u) ∈ C for every u ∈ Ê
}
.
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Reduction

Let G = (V,E) be a non-bipartite underlying graph. Define

a new graph Ĝ = (V̂ , Ê).
For each vertex v ∈ V we define vertices v1 ∈ V1, v2 ∈ V2.
For each edge e = a—b in G, we let Ĝ contain two edges:

e1 = a1—b2 , e2 = a2—b1 .

The second largest eigenvalue of the adjacency matrix of Ĝ
equals λG .

Define the code Ĉ of length n∆ over F using the graph Ĝ:

Ĉ =
{

c ∈ Fn∆ : (c)bE(u) ∈ C for every u ∈ Ê
}
.

Define mapping ϕ̂, such that for y ∈ F |E|,

(ϕ̂(y))e1
= (ϕ̂(y))e2

= ye .
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Decoding

Input: Received word y = (ye)e∈E in F |E|.

Let z ← ϕ̂(y).

Let z ← D(z).

Output: ϕ̂−1(z) if there exists c ∈ C such that z = ϕ̂(c) (and
declare ‘error’ otherwise).
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Generalized Expander Codes

Let B1 ∩B2 = ∅, B1 ∪B2 = B, and let |B2| = ηn, where
η ∈ [0, 1].
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Generalized Expander Codes

Let B1 ∩B2 = ∅, B1 ∪B2 = B, and let |B2| = ηn, where
η ∈ [0, 1].

Take F be the field GF(q) and let CA, C1 and C2 be linear
[∆, rA∆, δA∆], [∆, r1∆, δ1∆] and [∆, r2∆, δ2∆] codes over
F , respectively.
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Generalized Expander Codes

Let B1 ∩B2 = ∅, B1 ∪B2 = B, and let |B2| = ηn, where
η ∈ [0, 1].

Take F be the field GF(q) and let CA, C1 and C2 be linear
[∆, rA∆, δA∆], [∆, r1∆, δ1∆] and [∆, r2∆, δ2∆] codes over
F , respectively.

We define the linear code of length |E| over F :

C =
{

c ∈ F |E| : (c)E(u) ∈ CA for every u ∈ A,

(c)E(u) ∈ C1 for every u ∈ B1 , and (c)E(u) ∈ C2 for every u ∈ B2
}

(for η = 0, 1 or, alternatively, for C1 = C2, C coincides with the
code discussed before).
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Generalized Expander Codes (Cont.)

It is possible to select parameters of the code C so the
Zyablov bound is attained.
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Generalized Expander Codes (Cont.)

It is possible to select parameters of the code C so the
Zyablov bound is attained.

Linear-time decoding algorithm that corrects number of
errors close to a half of that minimum distance.
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Generalized Expander Codes (Cont.)

It is possible to select parameters of the code C so the
Zyablov bound is attained.

Linear-time decoding algorithm that corrects number of
errors close to a half of that minimum distance.

More sophisticated analysis leads to the bound on the
minimum distance that coincides with the bound in [Barg
Zémor ’04].
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Generalized Expander Codes (Cont.)

It is possible to select parameters of the code C so the
Zyablov bound is attained.

Linear-time decoding algorithm that corrects number of
errors close to a half of that minimum distance.

More sophisticated analysis leads to the bound on the
minimum distance that coincides with the bound in [Barg
Zémor ’04].

Conclusion

The presented codes are a generalization of the known expander
codes (yet they are different), and have parameters as good as
those of the best known expander codes. Could the generalized
expander codes have better parameters than the known
expander codes have?
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Problem Statement

Consider codes of rate R transmitted over a communication
channel of capacity C. Let R = (1− ε)C.
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Problem Statement

Consider codes of rate R transmitted over a communication
channel of capacity C. Let R = (1− ε)C.

Our Goal

Codes with the following properties:

Attain the capacity of a variety of memoryless symmetric
channels.
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Problem Statement

Consider codes of rate R transmitted over a communication
channel of capacity C. Let R = (1− ε)C.

Our Goal

Codes with the following properties:

Attain the capacity of a variety of memoryless symmetric
channels.

Decoding error probability decreases exponentially with the
code length.
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Problem Statement

Consider codes of rate R transmitted over a communication
channel of capacity C. Let R = (1− ε)C.

Our Goal

Codes with the following properties:

Attain the capacity of a variety of memoryless symmetric
channels.

Decoding error probability decreases exponentially with the
code length.

Decoding time complexity is linear in the length and
polynomial in 1/ε.
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LDPC Codes

√
Attain the capacity of BEC [Luby Mitzenmacher
Shokrollahi Spielman ’01], [Oswald Shokrollahi ’02], and a
variety of other communication channels [Richardson
Shokrollahi Urbanke ’01].

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Nearly-MDS Codes
Decoding over Non-bipartite Graph
Generalized Expander Codes
Decoding Near Capacity
Expander Codes with Weak Constituent Codes

LDPC Codes

√
Attain the capacity of BEC [Luby Mitzenmacher
Shokrollahi Spielman ’01], [Oswald Shokrollahi ’02], and a
variety of other communication channels [Richardson
Shokrollahi Urbanke ’01].

× Decoding error probability is believed to decrease
polynomially with the code length.
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LDPC Codes

√
Attain the capacity of BEC [Luby Mitzenmacher
Shokrollahi Spielman ’01], [Oswald Shokrollahi ’02], and a
variety of other communication channels [Richardson
Shokrollahi Urbanke ’01].

× Decoding error probability is believed to decrease
polynomially with the code length.√
Decoding complexity per bit:

Conjectured in [Khandekar McEliece ’01] for any ‘typical’
channel as O (log(1/π) + 1/ε · log(1/ε)), where π is a
decoded error probability.
LDPC over BEC: O (log(1/ε)) [Luby Mitzenmacher
Shokrollahi Spielman ’01], [Oswald Shokrollahi ’02].
IRA over BEC: a bounded constant [Pfister Sason Urbanke
’04].
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Expander Codes

√
Attain the capacity of a variety of memoryless symmetric
channels [Barg Zémor ’02, ’03], [Roth Skachek ’04],
[Feldman Stein ’04].
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Expander Codes

√
Attain the capacity of a variety of memoryless symmetric
channels [Barg Zémor ’02, ’03], [Roth Skachek ’04],
[Feldman Stein ’04].

√
Decoding error probability is shown to decrease
exponentially with the code length.
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Expander Codes

√
Attain the capacity of a variety of memoryless symmetric
channels [Barg Zémor ’02, ’03], [Roth Skachek ’04],
[Feldman Stein ’04].

√
Decoding error probability is shown to decrease
exponentially with the code length.

? Decoding time complexity

is linear in a code length;
how does it depend on 1/ε?

Vitaly Skachek Expander Codes: Constructions and Bounds



Introduction
Properties of Expander Codes

Our Results
Conclusions

Nearly-MDS Codes
Decoding over Non-bipartite Graph
Generalized Expander Codes
Decoding Near Capacity
Expander Codes with Weak Constituent Codes

Our Approach

Memoryless BSC with crossover probability p, and capacity
C = 1− H2(p).
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Our Approach

Memoryless BSC with crossover probability p, and capacity
C = 1− H2(p).

We consider concatenated codes Ccont with:

A family of the nearly-MDS expander codes CΦ as outer
codes.
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Our Approach

Memoryless BSC with crossover probability p, and capacity
C = 1− H2(p).

We consider concatenated codes Ccont with:

A family of the nearly-MDS expander codes CΦ as outer
codes.

A ‘typical’ binary LDPC codes Cin of (constant for a fixed
ε) length nin as an inner code.

We derive a condition on the parameters of LDPC codes,
sufficient for exponential decay of error probability of Ccont.
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Characteristics of ‘Typical’ LDPC Codes

Decoding Complexity

We assume that for LDPC (or other) codes over BSC it is given
by:

O

(
ns

in ·
1

εr

)
.

(r is a positive constant, for LDPC codes essentially s = 1).
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Characteristics of ‘Typical’ LDPC Codes

Decoding Complexity

We assume that for LDPC (or other) codes over BSC it is given
by:

O

(
ns

in ·
1

εr

)
.

(r is a positive constant, for LDPC codes essentially s = 1).

Decoding error probability Probe(Cin)

No satisfying results on asymptotic behavior for LDPC
codes over BEC or other channels.

We obtain a sufficient condition to guarantee that
Probe(Ccont) decreases exponentially.
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Sufficient Condition

Notation Cin [Rin, nin] is for the code Cin of rate Rin and length nin.
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Sufficient Condition

Notation Cin [Rin, nin] is for the code Cin of rate Rin and length nin.

Theorem

Consider a BSC, and let C be its capacity. Suppose that:

(i) There exist constants b > 0, ϑ > 0, ε1 ∈ (0, 1), such that for any
ǫ, 0 < ǫ < ε1, and for a sequence of alphabets {Φi}∞i=1 where the
sequence {log2 |Φi|}∞i=1 is dense, there exists a family of codes CΦ

of rate 1− ǫ (with their respective decoders) that can correct a
fraction ϑǫb of errors.
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Sufficient Condition

Notation Cin [Rin, nin] is for the code Cin of rate Rin and length nin.

Theorem

Consider a BSC, and let C be its capacity. Suppose that:

(i) There exist constants b > 0, ϑ > 0, ε1 ∈ (0, 1), such that for any
ǫ, 0 < ǫ < ε1, and for a sequence of alphabets {Φi}∞i=1 where the
sequence {log2 |Φi|}∞i=1 is dense, there exists a family of codes CΦ

of rate 1− ǫ (with their respective decoders) that can correct a
fraction ϑǫb of errors.

(ii) There exist constants ε2 ∈ (0, 1) and h0 > 0, such that for any ǫ,
0 < ǫ < ε2 , the decoding error probability of a family of codes
Cin satisfies

Probe

(
Cin

[
(1− ǫ)C, 1

ǫh0

])
< ǫb .
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Sufficient Condition (Cont.)

Then, for any rate R < C, there exist a family of the codes
Ccont (with respective decoder) that has an exponentially
decaying (in its length) error probability.
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Sufficient Condition (Cont.)

Then, for any rate R < C, there exist a family of the codes
Ccont (with respective decoder) that has an exponentially
decaying (in its length) error probability.

Time Complexity

We show that over a BSC, when taking code Ccont with the
outer code CΦ and the inner code Cin as assumed, the decoding
time complexity of is given by

N ·Poly(1/ε) .
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Decoding in [Barg Zémor ’02] and [Barg Zémor ’03]

We show that the codes in [Barg Zémor ’02] and [Barg Zémor
’03] cannot be tuned to have all three aforementioned
properties.
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Asymptotic Goodness

Definition

A family of codes {Ci}∞i=0, where each Ci is a [ni, ki, di] linear
code, is said to be asymptotically good if it satisfies the following
conditions:

The length ni of Ci approaches infinity as i→∞.
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Asymptotic Goodness

Definition

A family of codes {Ci}∞i=0, where each Ci is a [ni, ki, di] linear
code, is said to be asymptotically good if it satisfies the following
conditions:

The length ni of Ci approaches infinity as i→∞.

limi→∞
di

ni
= δ > 0
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Asymptotic Goodness

Definition

A family of codes {Ci}∞i=0, where each Ci is a [ni, ki, di] linear
code, is said to be asymptotically good if it satisfies the following
conditions:

The length ni of Ci approaches infinity as i→∞.

limi→∞
di

ni
= δ > 0

limi→∞
ki

ni
= R > 0
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Asymptotic Goodness

Definition

A family of codes {Ci}∞i=0, where each Ci is a [ni, ki, di] linear
code, is said to be asymptotically good if it satisfies the following
conditions:

The length ni of Ci approaches infinity as i→∞.

limi→∞
di

ni
= δ > 0

limi→∞
ki

ni
= R > 0

Problem Statement

How weak the constituent codes CA and CB could be such that
the overall expander code will be asymptotically good?
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Asymptotic Goodness – Some Answers

The known bound on the minimum distance of C:

δ ≥ δAδB − γG
√
δAδB

1− γG
.
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Asymptotic Goodness – Some Answers

The known bound on the minimum distance of C:

δ ≥ δAδB − γG
√
δAδB

1− γG
.

This yields the sufficient condition
√
dAdB > γG∆ = λG .
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Asymptotic Goodness – Some Answers

The known bound on the minimum distance of C:

δ ≥ δAδB − γG
√
δAδB

1− γG
.

This yields the sufficient condition
√
dAdB > γG∆ = λG .

[Barg Zémor ’04]

If dA ≥ 3 and dB ≥ 3, then for the random bipartite graph G
with probability close to 1, the resulting code C is good
asymptotically.
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Codes of Minimum Distance 2

Theorem

Let CA and CB be codes of minimum distance 2, and let G be
any ∆-regular bipartite graph. Then, the minimum distance of
such code C is bounded from above by

D ≤ O
(
log∆−1(n)

)
.

Moreover, if the underlying graph G is a Ramanujan graph as in
[Lubotsky Philips Sarnak ’88] or [Margulis ’88], then the
minimum distance of C is bounded from below by

D ≥ 4

3
log∆−1(2n) .
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Simple Lower Bound

Theorem

Consider the code C with the constituent codes CA and CB of
minimum distance dA ≥ 2 and dB ≥ 2, respectively, with the
underlying graph G as in [Lubotsky Philips Sarnak ’88] or
[Margulis ’88]. Then, its relative minimum distance is bounded
from below by

D ≥ (2n)1/3·log∆−1(dA−1)(dB−1) − 1 .
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Sufficient Condition

Theorem

Let CA and CB(u) (for every u ∈ B) be linear codes with the
minimum distance dA = δA∆ and dB, respectively. Let G be a
bipartite (α, ζ)-expander such that the degree of every u ∈ A
is ∆. If

δA
ζ + δA − 1

< dB ,

then the relative minimum distance of C is ≥ αδA.
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Open Problems

Further improvements on rate-distance trade-offs.

Further improvements on the alphabet size of nearly-MDS
codes.

Constructions using different types of expander graphs.

Are the generalized expander codes have better parameters
than any previously known expander codes?

Improved criteria for asymptotic goodness of expander
codes with weak constituent codes.

Bounds on the minimum pseudo-code weight of expander
codes over AWGN channel.

Construction of constrained LDPC (expander) codes.
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Conclusion

Combining classical techniques from coding theory, like
GMD-decoding, concatenated code analysis, algebraic coding,
and others, with expander-based constructions leads to
interesting results, such as constructions of provably linear-time
encodable and decodable LDPC codes that have better
parameters.
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