On some data processing problems arising in the distributed storage systems

Vitaly Skachek

Joint works with Helger Lipmaa and with Michael Rabbat

COST Action IC1104 Meeting, Palmela, Portugal 18 September 2014

- Enormous amounts of data are stored in a huge number of servers.
- Occasionally servers fail.
- Failed server is replaced and the data has to be copied to the new server.

▲ 同 ▶ → 三 ▶

- Enormous amounts of data are stored in a huge number of servers.
- Occasionally servers fail.
- Failed server is replaced and the data has to be copied to the new server.

A⊒ ▶ < ∃

- Enormous amounts of data are stored in a huge number of servers.
- Occasionally servers fail.
- Failed server is replaced and the data has to be copied to the new server.

月▶ ▲ 3

- Enormous amounts of data are stored in a huge number of servers.
- Occasionally servers fail.
- Failed server is replaced and the data has to be copied to the new server.

月▶ ▲ 3

- Enormous amounts of data are stored in a huge number of servers.
- Occasionally servers fail.
- Failed server is replaced and the data has to be copied to the new server.

月▶ ▲ 3

In the context of disk storage: [Blaum, Brady, Bruck, Menon 1995].

Example

$$\begin{array}{c|c|c} X_1 & Y_1 & X_1 + Y_1 & X_1 + Y_2 \\ X_2 & Y_2 & X_2 + Y_2 & X_2 + Y_1 \end{array}$$

All the information can be recovered by using any two out of four nodes.

▲御▶ ▲臣▶ ▲臣▶

- Exact repair
- Functional repair
- Exact repair of the systematic part

合 ▶ ◀

Functional Repair

- The number of information blocks: M
- The number of information nodes: n
- The total number of active nodes: N
- Number of stored bits per node: α
- Maximal number of nodes used in repair: m
- Number of bits read from each node: t
- Total repair bandwidth: $\gamma = m \cdot t$.

Functional Repair

- The number of information blocks: M
- The number of information nodes: n
- The total number of active nodes: N
- Number of stored bits per node: α
- Maximal number of nodes used in repair: m
- Number of bits read from each node: t
- Total repair bandwidth: $\gamma = m \cdot t$.

Example

$$\begin{array}{c|c|c} X_1 & Y_1 & X_1 + Y_1 \\ X_2 & Y_2 & X_2 + Y_2 \end{array} & X_1 + Y_2 \\ \end{array}$$

Here: N = 4, n = 2, M = 4, m = 2, t = 2 blocks, $\gamma = 4$ blocks.

同 ト イ ヨ ト イ ヨ ト

Fundamental Trade-off

[Dimakis, Godfrey, Wu, Wainwright, Ramchandran 2008]

Theorem

The following point is feasible:

$$lpha \geq \left\{ egin{array}{cc} rac{M}{n} & \gamma \in [f(0), +\infty) \ rac{M-g(i)\gamma}{n-i} & \gamma \in [f(i), f(i-1)) \end{array}
ight.$$

where

$$f(i) \triangleq \frac{2Mm}{(2n-i-1)i+2n(m-n+1)}$$

$$g(i) \triangleq \frac{(2m-2n+i+1)i}{2m},$$

and m < N - 1.

A (1) > A (2) > A

- MSR: Minimum storage regenerating codes.
- MBR: Minimum bandwidth regenerating codes.

- **→** → **→**

- MSR: Minimum storage regenerating codes.
- MBR: Minimum bandwidth regenerating codes.

MSR codes

$$(\alpha, \gamma) = \left(\frac{M}{n}, \frac{M}{n} \cdot \frac{N-1}{N-n}\right)$$

- MSR: Minimum storage regenerating codes.
- MBR: Minimum bandwidth regenerating codes.

MSR codes

$$(\alpha, \gamma) = \left(\frac{M}{n}, \frac{M}{n} \cdot \frac{N-1}{N-n}\right)$$

MBR codes

$$(\alpha, \gamma) = \left(\frac{M}{n} \cdot \frac{2N-2}{2N-n-1}, \frac{M}{n} \cdot \frac{2N-2}{2N-n-1}\right)$$

・日・ ・ ヨト・

3. 3

[Gopalan, Huang, Simitci, Yekhanin 2012]

・ロト ・回ト ・ヨト

B> B

[Gopalan, Huang, Simitci, Yekhanin 2012]

Definition

Let $[n, k, d]_q$ be a linear code C over \mathbb{F}_q . We say that the C has locality r, if the value of any symbol in C can be recovered by accessing some r other coordinates of C.

▲ □ ► < □ ►</p>

[Gopalan, Huang, Simitci, Yekhanin 2012]

Definition

Let $[n, k, d]_q$ be a linear code C over \mathbb{F}_q . We say that the C has locality r, if the value of any symbol in C can be recovered by accessing some r other coordinates of C.

Bound

The following connection holds:

$$n-k\geq \left\lceil \frac{k}{r}
ight
ceil+d-2$$
.

The Pyramid codes are shown to achieve this bound.

- 4 同 ト 4 目 ト 4 目 ト

Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

・日・ ・ ヨ・ ・

문 🛌 문

Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Definition

Let $[n, k, d]_q$ be a linear code C over \mathbb{F}_q . We say that the C has (r, s)-availability, if the value of any symbol in C can be recovered by accessing s disjoint groups of other symbols, each of size at most r.

・ 同 ト ・ ヨ ト ・ ヨ ト

Code Availability

[Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]

Definition

Let $[n, k, d]_q$ be a linear code C over \mathbb{F}_q . We say that the C has (r, s)-availability, if the value of any symbol in C can be recovered by accessing s disjoint groups of other symbols, each of size at most r.

Bound

The following connection holds:

$$n-k\geq \left\lceil \frac{ks}{r}\right
ceil+d-s-2$$
.

There are explicit constructions of codes that achieve this bound for a variety of parameters.

▲ □ ▶ ▲ 三 ▶ ▲

- Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].
- Can be used in:
 - Load balancing.
 - Private information retrieval.
 - Distributed storage systems.

Image: A image: A

∃ >

- Proposed in [Ishai, Kushilevitz, Ostrovsky, Sahai 2004].
- Can be used in:
 - Load balancing.
 - Private information retrieval.
 - Distributed storage systems.

Constructions:

• [Ishai *et al.* 2004]: algebraic, expander graphs, subsets, RM codes, locally-decodable codes

Design-based constructions and bounds:

- [Stinson, Wei, Paterson 2009]
- [Brualdi, Kiernan, Meyer, Schroeder 2010]
- [Bujtas, Tuza 2011]
- [Bhattacharya, Ruj, Roy 2012]
- [Silberstein, Gal 2013]

< □ > < □ >

Design-based constructions and bounds:

- [Stinson, Wei, Paterson 2009]
- [Brualdi, Kiernan, Meyer, Schroeder 2010]
- [Bujtas, Tuza 2011]
- [Bhattacharya, Ruj, Roy 2012]
- [Silberstein, Gal 2013]

Application to distributed storage:

- [Rawat, Papailiopoulos, Dimakis, Vishwanath 2014]
- [Silberstein 2014]

・ 一 ・ ・ ・ ・ ・ ・

Definition [Ishai et al. 2004]

C is an $(n, N, m, M, t)_{\Sigma}$ batch code over Σ if it encodes any string $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \Sigma^n$ into M strings (buckets) of total length N over Σ , namely $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_M$, such that for each m-tuple (batch) of (not neccessarily distinct) indices $i_1, i_2, \dots, i_m \in [n]$, the symbols $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ can be retrieved by m users, respectively, by reading $\leq t$ symbols from each bucket, such that x_{i_ℓ} is recovered from the symbols read by the ℓ -th user alone.

ヘロマ 人間マ ヘヨマ ヘヨマ

Definition [Ishai et al. 2004]

C is an $(n, N, m, M, t)_{\Sigma}$ batch code over Σ if it encodes any string $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \Sigma^n$ into M strings (buckets) of total length N over Σ , namely $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_M$, such that for each m-tuple (batch) of (not neccessarily distinct) indices $i_1, i_2, \dots, i_m \in [n]$, the symbols $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ can be retrieved by m users, respectively, by reading $\leq t$ symbols from each bucket, such that x_{i_ℓ} is recovered from the symbols read by the ℓ -th user alone.

Definition

If t = 1, then we use notation $(n, N, m, M)_{\Sigma}$ for it. Only one symbol is read from each bucket.

Definition

An $(n, N, m, M, t)_q$ batch code is *linear*, if every symbol in every bucket is a linear combination of original symbols.

日 ト ・ ヨ ト ・

Definition

An $(n, N, m, M, t)_q$ batch code is *linear*, if every symbol in every bucket is a linear combination of original symbols.

In what follows, consider *linear codes* with t = 1 and N = M: each encoded bucket contains just one symbol in \mathbb{F}_q .

For simplicity we refer to a linear $(n, N = M, m, M)_q$ batch code as $[M, n, m]_q$ batch code.

/⊒ > < ∃ >

For simplicity we refer to a linear $(n, N = M, m, M)_q$ batch code as $[M, n, m]_q$ batch code.

- Let $\mathbf{x} = (x_1, x_2, \cdots, x_n)$ be an information string.
- Let $\mathbf{y} = (y_1, y_2, \cdots, y_M)$ be an encoding of \mathbf{x} .
- Each encoded symbol y_i , $i \in [M]$, is written as $y_i = \sum_{j=1}^n g_{j,i} x_j$.
- Form the matrix G:

$$\mathbf{G} = \left(g_{j,i}\right)_{j\in[n],i\in[M]};$$

the encoding is $\mathbf{y} = \mathbf{x}\mathbf{G}$.

Locally repairable codes, codes with locality.

0	1	?	0	1	0	1	1	0
---	---	---	---	---	---	---	---	---

< /□ > < 三

3 N 3

Locally repairable codes, codes with locality.

A 10

⊒ >

Codes with locality and availability.

< 🗇 🕨 <

Batch codes.

・ロト ・回ト ・ヨト

÷.

æ

Retrieval

Theorem

Let C be an $[M, n, m]_q$ batch code. It is possible to retrieve $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ simultaneously if and only if there exist m non-intersecting sets T_1, T_2, \dots, T_m of indices of columns in **G**, and for T_r there exists a linear combination of columns of **G** indexed by that set, which equals to the column vector $\mathbf{e}_{i_r}^T$, for all $r \in [m]$.

▲ 同 ▶ → 三 ▶

Retrieval

Theorem

Let C be an $[M, n, m]_q$ batch code. It is possible to retrieve $x_{i_1}, x_{i_2}, \dots, x_{i_m}$ simultaneously if and only if there exist m non-intersecting sets T_1, T_2, \dots, T_m of indices of columns in **G**, and for T_r there exists a linear combination of columns of **G** indexed by that set, which equals to the column vector $\mathbf{e}_{i_r}^T$, for all $r \in [m]$.

Example

[Ishai *et al.* 2004] Consider the following linear binary batch code C whose 4 \times 9 generator matrix is given by

.

Example

Let $\mathbf{x} = (x_1, x_2, x_3, x_4)$, $\mathbf{y} = \mathbf{xG}$.

Assume that we want to retrieve the values of (x_1, x_1, x_2, x_2) . We can retrieve (x_1, x_1, x_2, x_2) from the following set of equations:

$$\begin{array}{rcrcrcr}
x_1 &=& y_1 \\
x_1 &=& y_2 + y_3 \\
x_2 &=& y_5 + y_8 \\
x_2 &=& y_4 + y_6 + y_7 + y_9
\end{array}$$

It is straightforward to verify that any 4-tuple $(x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4})$, where $i_1, i_2, i_3, i_4 \in [4]$, can be retrieved by using columns indexed by some four non-intersecting sets of indices in [9]. Therefore, the code C is a $[9, 4, 4]_2$ batch code.

▲□→ < □→ < □→</p>

Theorem

Let C be an $[M, n, m]_2$ batch code C over \mathbb{F}_2 . Then, **G** is a generator matrix of the classical error-correcting $[M, n, \geq m]_2$ code.

A ≥ <</p>

Theorem

Let C be an $[M, n, m]_2$ batch code C over \mathbb{F}_2 . Then, **G** is a generator matrix of the classical error-correcting $[M, n, \ge m]_2$ code.

Example

The converse is not true. For example, take ${\bf G}$ to be a generator matrix of the classical [4,3,2]₂ ECC as follows:

$$\mathbf{G} = \left(\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right)$$

Let $\mathbf{x} = (x_1, x_2, x_3)$. Then, it is impossible to retrieve (x_2, x_3) .

・ 同 ト ・ ヨ ト ・ ヨ ト

 Various well-studied properties of linear ECCs, such as MacWilliams identities, apply also to linear batch codes (for t = 1, M = N and q = 2).

▲ □ ▶ ▲ □ ▶

- Various well-studied properties of linear ECCs, such as MacWilliams identities, apply also to linear batch codes (for t = 1, M = N and q = 2).
- A variety of bounds on the parameters of ECCs, such as sphere-packing bound, Plotkin bound, Griesmer bound, Elias-Bassalygo bound, McEliece-Rodemich-Rumsey-Welch bound apply to the parameters of [M, n, m]₂ batch codes.

・ 同 ト ・ ヨ ト ・ ヨ ト …

File Synchronization Problem

Before synchronization:

- User A: f_1 , f_2 , f_3 and f_4 .
- User B: f₁, f₃, f₄.
- User C: f₂, f₃.

< /□> < □>

File Synchronization Problem

Before synchronization:

User A: f₁, f₂, f₃ and f₄.
User B: f₁, f₃, f₄.
User C: f₂, f₃.

After synchronization:

• Users A, B, C: f_1 , f_2 , f_3 and f_4 .

• Mitzenmacher and Varghese '2012

◆□→ ◆□→ ◆国→ ◆国→

æ

• Mitzenmacher and Varghese '2012

Parameters to Consider

- Communication cost COMMUNICATION(A): the worst case number of bits sent between the devices;
- Computational complexity COMPUTATION(A): the worst case number of operations performed at each device;
- Time TIME(A): the length of the largest chain of messages in the communication protocol.

• Mitzenmacher and Varghese '2012

Parameters to Consider

- Communication cost COMMUNICATION(A): the worst case number of bits sent between the devices;
- Computational complexity COMPUTATION(A): the worst case number of operations performed at each device;
- Time TIME(A): the length of the largest chain of messages in the communication protocol.
- k is the total number of objects in possession of A and B;
- *d* is the number of objects possessed by only one user;
- *u* is the size of the space where the objects are taken from.

・ 同 ト ・ ヨ ト ・ ヨ ト

Minsky, Trachtenberg and Zippel '2003: characteristic polynomials.
 COMMUNICATION(A) = O(d log u),

COMPUTATION $(\mathcal{A}) = O(d^3)$, TIME $(\mathcal{A}) = O(\log k)$

・ロト ・回ト ・ヨト ・ヨト

3

• Minsky, Trachtenberg and Zippel '2003: characteristic polynomials.

COMMUNICATION(\mathcal{A}) = $O(d \log u)$, COMPUTATION(\mathcal{A}) = $O(d^3)$, TIME(\mathcal{A}) = $O(\log k)$

• Goodrich and Mitzenmacher '2011: invertible Bloom filters. COMMUNICATION $(\mathcal{A}) = O(d \log u)$, COMPUTATION $(\mathcal{A}) = O(d)$, TIME $(\mathcal{A}) = 3$

イロト 不得 とくほ とくほ とうほう

• Minsky, Trachtenberg and Zippel '2003: characteristic polynomials.

COMMUNICATION(\mathcal{A}) = $O(d \log u)$, COMPUTATION(\mathcal{A}) = $O(d^3)$, TIME(\mathcal{A}) = $O(\log k)$

- Goodrich and Mitzenmacher '2011: invertible Bloom filters. COMMUNICATION(A) = O(d log u), COMPUTATION(A) = O(d), TIME(A) = 3
- Mitzenmacher and Varghese '2012: Biff codes. COMMUNICATION $(\mathcal{A}) = O(d \log u)$, COMPUTATION $(\mathcal{A}) = O(k \log u)$, TIME $(\mathcal{A}) = 3$.

• Minsky, Trachtenberg and Zippel '2003: characteristic polynomials.

COMMUNICATION(\mathcal{A}) = $O(d \log u)$, COMPUTATION(\mathcal{A}) = $O(d^3)$, TIME(\mathcal{A}) = $O(\log k)$

- Goodrich and Mitzenmacher '2011: invertible Bloom filters. COMMUNICATION $(\mathcal{A}) = O(d \log u)$, COMPUTATION $(\mathcal{A}) = O(d)$, TIME $(\mathcal{A}) = 3$
- Mitzenmacher and Varghese '2012: Biff codes. COMMUNICATION $(\mathcal{A}) = O(d \log u)$, COMPUTATION $(\mathcal{A}) = O(k \log u)$, TIME $(\mathcal{A}) = 3$.

with high probability.

- (同) (目) (目) - 日

Subspace Synchronization for Two Users

- Finite field \mathbb{F} with q elements.
- Two users *w* and *v*.
- The users own vector spaces $U \subseteq \mathbb{F}^n$ and $V \subseteq \mathbb{F}^n$, respectively.
- Goal: w and v own vector space U + V.

Subspace Synchronization for Two Users

- Finite field \mathbb{F} with q elements.
- Two users *w* and *v*.
- The users own vector spaces $U \subseteq \mathbb{F}^n$ and $V \subseteq \mathbb{F}^n$, respectively.
- Goal: w and v own vector space U + V.

Algorithm \mathcal{A}

- (1) The user w draws a nonzero vector $\mathbf{x} \in U$ randomly and uniformly and communicates it to v.
- (2) The node v checks if $\mathbf{x} \in V$. If not, performs

$$V \leftarrow V \oplus \langle \mathsf{x}
angle$$
 .

- (3) Repeat (1)-(2) for $\Theta(d)$ rounds.
- (4) Switch the roles of w and v.

With high probability, COMMUNICATION $(\mathcal{A}) = O(d \cdot n \log q)$, COMPUTATION $(\mathcal{A}) = O(k^2 \cdot n)$, TIME $(\mathcal{A}) = 2$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

With high probability, COMMUNICATION $(\mathcal{A}) = O(d \cdot n \log q)$, COMPUTATION $(\mathcal{A}) = O(k^2 \cdot n)$, TIME $(\mathcal{A}) = 2$.

The scheme is easily extendable extendable to networks with many users.

・ 同 ト ・ ヨ ト ・ ヨ ト

Consider a classical [n, k, d]-linear code C over the finite field $\mathbb{F} = \mathbb{F}_q$, such that $n \ge 2^m$ for some integer m > 0. (For example, RS code with n + 1 = k + d). Let the $(n - k) \times n$ parity-check matrix of C be

$$\mathcal{H} = \left[\mathbf{h}_1 \mid \mathbf{h}_2 \mid \cdots \mid \mathbf{h}_n\right],$$

 \mathbf{h}_i 's are the columns of H.

▲□ ► < □ ►</p>

Consider a classical [n, k, d]-linear code C over the finite field $\mathbb{F} = \mathbb{F}_q$, such that $n \ge 2^m$ for some integer m > 0. (For example, RS code with n + 1 = k + d). Let the $(n - k) \times n$ parity-check matrix of C be

$$H = [\mathbf{h}_1 \mid \mathbf{h}_2 \mid \cdots \mid \mathbf{h}_n],$$

 \mathbf{h}_i 's are the columns of H.

With every vector $\mathbf{x} \in \{0, 1\}^m$ associate a unique integer index $\phi(\mathbf{x}) \in [n]$. If $\mathbf{x}_1 \neq \mathbf{x}_2$, we have $\phi(\mathbf{x}_1) \neq \phi(\mathbf{x}_2)$. Assume that $O = \{\mathbf{x}_i\}_{i \in S}$ is a collection of objects for some $S \subseteq [n]$.

Consider a classical [n, k, d]-linear code C over the finite field $\mathbb{F} = \mathbb{F}_q$, such that $n \ge 2^m$ for some integer m > 0. (For example, RS code with n + 1 = k + d). Let the $(n - k) \times n$ parity-check matrix of C be

$$H = [\mathbf{h}_1 \mid \mathbf{h}_2 \mid \cdots \mid \mathbf{h}_n],$$

 \mathbf{h}_i 's are the columns of H.

With every vector $\mathbf{x} \in \{0, 1\}^m$ associate a unique integer index $\phi(\mathbf{x}) \in [n]$. If $\mathbf{x}_1 \neq \mathbf{x}_2$, we have $\phi(\mathbf{x}_1) \neq \phi(\mathbf{x}_2)$. Assume that $O = \{\mathbf{x}_i\}_{i \in S}$ is a collection of objects for some $S \subseteq [n]$.

Represent the collection O by the vector space

$$\Phi(O) \triangleq \langle \mathbf{h}_{\phi(\mathbf{x})} \rangle_{\mathbf{x} \in O}$$
.

In order to perform reconciliation of two sets of objects, O_1 and O_2 , the corresponding vector spaces V_1 and V_2 are constructed, such that $V_i = \Phi(O_i)$ for i = 1, 2. Then the synchronization algorithm \mathcal{A} is applied to V_1 and V_2 .

(4月) (4日) (4日)

In order to perform reconciliation of two sets of objects, O_1 and O_2 , the corresponding vector spaces V_1 and V_2 are constructed, such that $V_i = \Phi(O_i)$ for i = 1, 2. Then the synchronization algorithm \mathcal{A} is applied to V_1 and V_2 .

Performance

Communication(
$$\mathcal{A}$$
) = $O(d^2m) = O(d^2\log u)$,
Computation(\mathcal{A}) = $O(d^2 \cdot u)$.
Time(\mathcal{A}) = 2

Network Coding with Hashing Approach

- Denote by $O_A = {\mathbf{x}_i \in \mathbb{F}^n}_{i \in \mathcal{X}_A}$ and $O_B = {\mathbf{x}_i \in \mathbb{F}^n}_{i \in \mathcal{X}_B}$ the set of objects, which are unique to A and to B, respectively.
- O_C = {x_i ∈ ℝⁿ}_{i∈X_O} the set of objects which are possessed by both A and B.

• Let
$$s = |\mathcal{X}_A|$$
 and $\tau = |\mathcal{X}_A \cup \mathcal{X}_O|$.

- As before, let d = |X_A ∪ X_B| be the number of different files for A and B.
- Assume that *s*, or a tight upper bound on it, is known to both *A* and *B*.

イロト 不得 とくほ とくほ とうほう

• User A creates s arbitrary linear combinations of the form

$$\mathbf{y}_j = \sum_{i \in \mathcal{X}_A \cup \mathcal{X}_O} \alpha_{j,i} \mathbf{x}_i \ , \ j \in [s] \ ,$$

- The protocol uses a hash function *H* : 𝔽ⁿ → 𝔣, where 𝗏 is the finite set of possible keys.
- User A applies H to x_i for all i ∈ X_A ∪ X_O to produce hash values H(x_i) for all i.
- These values are transmitted to *B*.

イロン 不同 とくほう イロン

• User A creates s arbitrary linear combinations of the form

$$\mathbf{y}_j = \sum_{i \in \mathcal{X}_A \cup \mathcal{X}_O} \alpha_{j,i} \mathbf{x}_i \ , \ j \in [s] \ ,$$

- The protocol uses a hash function $\mathcal{H} : \mathbb{F}^n \to \mathbb{K}$, where \mathbb{K} is the finite set of possible keys.
- User A applies H to x_i for all i ∈ X_A ∪ X_O to produce hash values H(x_i) for all i.
- These values are transmitted to *B*.
- A transmits to B the following data:
 - the header **h**, which contains the sorted list of values $\mathcal{H}(\mathbf{x}_i)$, $i \in \mathcal{X}_A \cup \mathcal{X}_O$;
 - for all $j \in [s]$, the vector pairs (α_j, \mathbf{y}_j) .

User A (cont.)

Let **X** be a $\tau \times n$ matrix over \mathbb{F} , whose rows are all vectors \mathbf{x}_i indexed by $[\tau]$. Similarly, let **Y** be a $s \times n$ matrix, whose rows are vectors \mathbf{y}_i for all $i \in [s]$. Denote

$$\mathbf{A} = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} & \cdots & \alpha_{1,\tau} \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,\tau} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{s,1} & \alpha_{s,2} & \cdots & \alpha_{s,\tau} \end{pmatrix}$$

The transmitted vector pairs can be viewed as the rows of the matrix

$$\mathbf{A} \cdot [\mathbf{I}_{\tau} \mid \mathbf{X}] = [\mathbf{A} \mid \mathbf{Y}] ,$$

where

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_{\tau} \end{bmatrix} \text{ and } \mathbf{Y} = \mathbf{A}\mathbf{X} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_s \end{bmatrix} .$$
Vitaly Skachek Problems in DSS

User B

- Compute values of the function *H* applied to the vectors in its possession. By comparing these values to the values in the header **h**, it finds the indices corresponding to elements in *X*₀.
- ② For each j ∈ [s], subtract vectors ∑_{i∈X₀} α_{j,i}x_i from y_j. Compute the resulting matrix with s rows:

$$\left[\left. \tilde{\mathbf{A}} \right| \left. \tilde{\mathbf{Y}} \right] \right.$$

where rows of $\tilde{\boldsymbol{Y}}$ are the vectors

$$\tilde{\mathbf{y}}_j = \mathbf{y}_j - \sum_{i \in \mathcal{X}_O} \alpha_{j,i} \mathbf{x}_i \; ,$$

and $\tilde{\mathbf{A}}$ is an invertible $s \times s$ matrix obtained from \mathbf{A} by removing the columns corresponding to the vectors indexed by \mathcal{X}_{O} .

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Compute the matrix

$$\left[\; \textbf{I} \mid \tilde{\textbf{A}}^{-1}\tilde{\textbf{Y}} \; \right] = \left[\; \textbf{I} \mid \tilde{\textbf{X}} \; \right] \; , \label{eq:constraint}$$

where, if there are no hashing collisions, $\tilde{\mathbf{X}}$ is exactly the matrix \mathbf{X} having rows corresponding to the vectors indexed by \mathcal{X}_A .

A (1) > A (2) > A

Compute the matrix

$$\left[\; \textbf{I} \mid \tilde{\textbf{A}}^{-1}\tilde{\textbf{Y}} \; \right] = \left[\; \textbf{I} \mid \tilde{\textbf{X}} \; \right] \; , \label{eq:starses}$$

where, if there are no hashing collisions, $\tilde{\mathbf{X}}$ is exactly the matrix \mathbf{X} having rows corresponding to the vectors indexed by \mathcal{X}_A .

Peformance

COMMUNICATION(\mathcal{A}) = $O(d \cdot n \log q)$ COMPUTATION(\mathcal{A}) = $O(k^2 \cdot n)$ If *s* is known, then TIME(\mathcal{A}) = 2. If *s* is not known, then TIME(\mathcal{A}) = 3.

・ 同 ト ・ ヨ ト ・ ヨ ト

Using a Pool of Hash Functions

- Large pool of different hash functions (known to both users).
- In each round, the hash function is selected randomly from the pool.
- User A sends to B the ID number of the selected hash function.

- Large pool of different hash functions (known to both users).
- In each round, the hash function is selected randomly from the pool.
- User A sends to B the ID number of the selected hash function.

Assume a collection \mathbb{S} of k different files in $\{0,1\}^n$. Let \mathbb{H} be a set of all functions $\mathcal{H}: \{0,1\}^n \to \mathbb{K}$, where \mathbb{K} is the set of all possible keys. Assume that $k \ll |\mathbb{K}| \ll 2^n$.

- Large pool of different hash functions (known to both users).
- In each round, the hash function is selected randomly from the pool.
- User A sends to B the ID number of the selected hash function.

Assume a collection \mathbb{S} of k different files in $\{0,1\}^n$. Let \mathbb{H} be a set of all functions $\mathcal{H}: \{0,1\}^n \to \mathbb{K}$, where \mathbb{K} is the set of all possible keys. Assume that $k \ll |\mathbb{K}| \ll 2^n$.

Theorem

If \mathbb{K} is selected such that $|\mathbb{K}| > c \cdot (k-1)^2$ for some large constant c > 0, then the probability of success is at least $e^{-1/c}$.

▲□ → ▲ □ → ▲ □ →

Questions?

・ 日 ・ ・ 日 ・ ・ 日 ・ ・

문 🛌 문