
ARTIFICIAL INTELLIGENCE 293

An Analysis of Alpha-Beta Priming'

Donald E. Knuth and Ronald W. Moore

Computer Science Department, Stanferd University,
Stanford, Calif. 94305, U.S.A.

Recommended by U. Montanari

ABSTRACT
The alpha-beta technique for searching game trees is analyzed, in an attempt to provide some
insight into its behavior. The first portion o f this paper is an expository presentation o f the
method together with a proof o f its correctness and a historical ch'scussion. The alpha-beta
procedure is shown to be optimal in a certain sense, and bounds are obtained for its running
time with various kinds o f random data.

Put one pound of Alpha Beta Prunes
in a jar or dish that has a cover.

Pour one quart o f boiling water over prunes.
The longer prunes soak, the plumper they get

Alpha Beta Acme Markets, Inc.,
La Habra, California

Computer programs for playing games like e, hess typically choos~ their
moves by seaxching a large tree of potential continuations. A technique
called "alpha-beta pruning" is generally ~ used to speed up such search
processes without loss of information, The purpose of this paper is to
analyze the alpha-beta procedure in order to obtain some quantitative
estimates of its performance characteristics.

i This research was supported in part by the National Science Foundation under grant
number GJ 36473X and by the Office of Naval Research under contract NR 044-402.

Artificial Intelligence 6 (1975), 293-326

Copyright © 1975 by North-Holland Publishing Company

294 D.E. KNUTH AND R. W. MOORE

Section 1 defines the basic concepts associated with game trees. Section 2
presents the alpha-beta method together with a related technique which is
similar, but not as powerful, because it fails to make "deep cutoffs". The
correctness of both methods is demonstrated, and Section 3 gives examples
and further development of the algorithms. Several suggestions for applying
the method in practice appear in Section 4, and the history of alpha-beta
pruning is discussed in Section 5.

Section 6 begins the quantitative analysis, byderiving lower bounds on
the amount of searching needed by alpha-beta and by any algorithm which
solves the same general problem. Section 7 derives upper bounds, primarily by
considering the case of random trees when no deep cutoffs are made. It is
shown that the procedure is reasonably efficient even under these weak
assumptions. Section 8 shows how to introduce some of the deep cutoffs into
the analysis; and Section 9 shows that the efficiency improves when there are
dependencies between successive moves. This paper is essentially self-
contained, except for a few mathematical resultsquoted i n the later sec-
tions.

1. Games and Position Values

The two-person games we are dealing with can be characterized by a set of
"positions", and by a set of rules for moving from one position to ~,nother,
the players moving alternately. We assume that no infinite sequence of
positions is allowed by the rules, 2 and that there are only finitely many legal
moves from every position. It follows from the "infinity lemma" (see [11,
Section 2.3,4.3]) that for every position p there is a number N(p) such that no
game starting a t p lasts longer than N(p) moves.

I fp is a position from which there are no legal moves, there is an integer-
valued function f(p) which represents the value of this position to the player
whose turn it is to play from p; the value to the other player is assuraed to be

- - - f (p) .

If p is a position from which there are d legal moves Pl, • •., Pd, where
d > 1, the problem is to choose the "best" move. We assume that the best
move is one which achieves the greatest possible value when the game ends,
if the opponent also chooses moves which are best for h im. Let F(p) be the
greatest possible value achievable from position p against the optimal
defensive strategy, from the standpoint of the player who is moving from that

2 Strictly speaking, chess does not satisfy this condition, since its rules for repeated
positions only give the players the option to request a draw; in certain circumstances;
if neither player actually does ask for a draw,: the game can go on forever. But this techni-
cality is of no practical importance, since computer chess programs only look finitely many
moves ahead. I r i s possible to deal with infinite games by assigning appropriate values to
repeated positions, but such questionsare beyond the scope of this paper.
Artificial Intelligence 6 f1975), 293-326

AN ANALYSIS OF ALPHA-BETA PRUNING 295

position. Since the value.(to this player) after moving to position Pt will be
-F(pl), we have

~f(p) if d = 0, (1)
F(p) = (max(-F(pl),..., i f d > 0.

This formula serves to define F(p) for al! positions p, by induction on the
length of the longest game playable from p.

In most discussions of game-playing, a slightly different formalism is used;
the two players are named Max and Min, where all values are given from
Max's viewpoint. Thus, if p is a terminal position with Max to move, its
value is f(p) as before, but if p is a terminal position with Min to move its
value is

gO') = -f(P) . (2)

Max will try to maximize the final value, and Min will try to minimize it.
There are now two functions corresponding to(l) , namely

F(p) V = ~f(P) if d = 0,
[max(G(pl) , . . . , G(pd)) if d > 0, (3)

which is the best value Max can guarantee starting at position p, and

fg(p) if d = 0,
G(p) = [.min(F(pl),..., F(Pd)) if d > 0, (4)

which is the best that Min can be sure of achieving. As before, we assume
that Pl , . •., Pa are the legal moves from position p. It is easy to prove by
induction that the two definitions of F in (1) and (3) are identical, and that

ffi - F 0 ,) (5)

for all p. Thus the two approaches are equivalent.
Sometimes it is easier to reason about game-playing by using the "mini-

max" framework of (3) and (4) instead of the "negmax" approach of eq. (1);
the reason is that we are sometimes less confused if we consistently evaluate
the game positions from one player's standpoint. On the other hand, formula-
tion (1) is advantageous when we're trying to prove things about games,
because we don't have to deal with two (or sometimes even four or eight) sep-
arate cases when we want to establish our results. Eq. (I) is analogous to
the "NOR" operation which arises in circuit design; two levels of NOR logic
are equivalent to a level of ANDs followed by a level of OR~.

The function F(p) is the maximum final value that can be achieved if both
players play optimally; but we should remark that this reflects a rather
conservative strategy that won't always be best against poor players or
against the nonoptimal players we encounter in the real world. For example,
suppose that there are two moves, to positions p~ and P2, where p~ assures a
draw (value 0) but cannot possibly win, while P2 give a chance of either
victory or defeat depending on whether or not the opponent overlooks a

Artificial Intelligence 6 (1975), 293-326

296 D.E. KNUTH AND R. W. MOORE

rather subtle winning move. We may be better off gambling on the move to
P2, which is our only chance to win, unless we are convinced of our opponent's
competence. Indeed, humans seem to beat chess-playing programs by adopting
such a strategy.

2. Development of the Algorithm

The following algorithm (expressed in an ad-hoc ALGOL-like l~ngnage)
clearly computes F(p), by following definition (1):

integer procedmre F (position p):
begin integer m, i, t, d;

determine the successor positions P i , - . . , P~;
if d = 0 then F := f (p) else
begin m :ffi -Qo;

for i :-- 1 step 1 until d do
beg i . t :ffi

i f t > m then m := t;
end;

F :-" m;
end;

end.

Here Qo denotes a value that is greater than or equal to]f(P)l for all terminal
positions of the game, hence - u3 is less than or equal to +F(p) for all p.
This algorithm is a "brute force" search through all possible continuations;
the infinity lemma assures us that the algorithm will terminate in finitely
many steps.

It is possible to improve on the brute-force search by using a "branch-and-
bound" technique [14], ignoring moves which are incapable of being better
than moves which are already known. For example, i f F(pi) = -10, then
F(p) >i 10, and we don't have to know the exact Value ofF(p2) if we can
deduce that F(p2) >I - 10 (i.e., that -F(pz) ~ 10). Thus if P~t is a legal
move from P2 such that F(Pzl)(<~ 10, w e n e e d n o t bother to explore any
other moves from Pz. In game-playing terminology, a move to Pz can be
"refuted" (relative tothe alternative move Pt) ff the opposing player can make
a reply to Pz that is at least as good as his best reply to Pl- Once a move has
been refutedi we need not search for the best possible refutation.

This line of reasoning leads to a computational technique that avoids much
of the computation done by F. We shall define FI as a procedure on two
parameters p and bound, and our goal is to achieve the following Conditions:

FI (p, bound)- F(p) if F(p) < bound,
Fl(p, bound) ~ bound i fF(p) >~rbound. (6)

Artificial Intelligence6 (1975), 293.326

AN ANALYSIS OF ALPHA-BETA PRUNING 297

These relations do not fully define F1, but they are sufficiently powerful to
calculate F(p) for any starting position p because they imply that

Fl(p, oo) = F(p). (7)
The following algorithm corresponds to this branch-and-bound idea.

integer procedure FI (positioRp, integer bound):
begin integer m, i, t, d;

determine the successor positions Pl , . •., Pj"
i f d = 0 then F l := f(p) else
begin m :-- -oo ;

for i := 1 step 1 nntil d do
begin t := -F l (p t , : m) ;

i f t > m t h e n m : = t;
if m >i bound then go to done;

end;
done: FI : = m;
end;

end.

We can prove that this procedure satisfies (6) by arguing as follows: At the
beginning of the tth iteration of the for loop, we have the "invariant"
condition

m = m a x (- F (p l) , . . . , - F (p H)) (8)
just as in procedure F. (The max operation over an empty set is conventionally
defined to be -oo.) For if ,F(pt) is >m, then F l (p i , - m) = F(p~), by
condition (6) and induction on the length of the game following p; therefore
(8) will hold on the next iteration. And i f m a x (- F (p l) , . . . , -F(pi)) >~bound
for any i, then F(p) >t bound. It follows that condition (6) holds for all p.

The procedure can be improved further if we introduce both lower and
uppe. r bounds; this idea, which is called alpha-beta pruning, is a significant
extension to the one-sided branch-and-bound method. (Unfortunately it
doesn't apply to all branch-and-bound algorithms, it works only when a
game tree is being explored.) We define a procedure F2 of three parameters p,
alpha, and beta, for alpha < beta, satisfying the following conditions
analogous to (6):

F2(p, alpha, beta) <~ alpha if F(p) ~ alpha,
F2(p, alpha, beta) - F(p) if alpha < F(p) < beta, "- (9)
F2(p, alpha, beta) >~ beta if F(p) >/ beta.

Again, these conditions do not fully specify F2, but they imply that
F2(p, - oo, oo) - F(p). (I O)

It turns out that this improved algorithm looks only a little different from the
others, when it is expressed in a programming language:

Artificial Intelligence 6 (1975), 293-326

298 D . E . KNUTH AND R. W. MOORE

integer procedure F2 (position p, integer alpha, integer beta):
begin integer m, i, t, d;

determine the successor positions p 1, • •., Pa;
i f d = 0 then F 2 : = f (p) else
begin m := alpha;

for i : - 1 step 1 until d do
begin t : = - F2(pl, -- beta, - m) ;

i f t > m then m := t;
if m >1 beta then go to done;

end;
done: F2 : = m;
end;

end;

To prove the validity of F2, we proceed as we did with FI. The invariant
relation analogous to (8) is now

m = m a x (a l p h a , - F (P i) , . . . , -F(p~-I)) (11)
and m < beta. If --F(p~ >i beta, then -F2(pl , -be ta , - m) will also be
>~beta, and i fm < - F (p i) < beta, then -F2(p t , -be ta , - m) = -F(pt) ; so
the proof goes through as before, establishing (9) by induction.

Now that we have found two improvements of the minimax procedure,
it is natural to ask whether still further improvement is possible. Is there an
"alpha-beta-gamma" p~'ocedure F3, which makes use say of the second-

largest value found so far, or some other gimmick ? Section 6 below shows
that the answer is no, or at least that there is a reasonable sense in which
procedure F2 is optimum.

3. Examples and Refinements

As an example of these procedures, consider thetree in Fig, 1, which repre-
sents a position that has three successors, each of which has three successors,
etc., until we get t o 34 = 81 positions~possible after four moves; and these
81 positions have been assigned ' , random',fvalues according to the first I]1
digits of n. Fig, 1 shows the F values computed from t he f ' s ; thus, the root
node at the top of the tree has an effective value of 2 after best play by both
sides.

Fig. 2 shows the same situation as it is evaluated by procedure FI Cp, oo).
Note that only 36 of the 81 terminal positions are examined, and that one
of the nodes at level 2 now has the "approximate" vaiue 3 instead of its true
value 7; but this approximation does not of course affect the value at the top.

Fig: 3 shows the same situation as it is evaluated by the full alpha-beta
pruning procedure. F2(p, - o o , + oo) will always examine the same nodes as
Fl(p, oo) until the fourth level of lookaheadis reached, in any game tree;
Artificial lntell~ence 6 (1975), 293-326

AN ANAEYSIS OF ALPHA-BETA PRUNING 299

this is a consequence of the theory developed below. On levels 4, 5 , . . . ,
however, procedure F2 is occasionally able to make "deep cutoffs" which
FI is incapable of finding. A comparison of Fig. 3 with Fig. 2 ~hows that
there are five deep cutoffs in this example.

2

11/\ / iX / iX / /X / i X / N I N / ~ \ / ~ \
- 1 - 1 - 2 - 3 - 7 - 2 - 4 - 2 - 3 - 2 - 0 - 2 - 1 -1 - 3 - 3 - 0 - 2 - 0 - 4 - 4 - 0 - 1 - 0 - 2 - 0 - 8

0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • •

FiG. I . Complete ev~tluatioa o f a game tree.

2

-2 2
. i . / \ /e,.,. / \..,.,.

_ ~ / ! i ! i " -
/ i N , , , , . ,

- 1 - 1 - 2 - 3 , , -4 , - 2 - o - 2 I ~\ I :~ , - - . . - o - l - o , ,
• e / t e / t • i ~ • • • - . - • • e • * •

/~, ~',~,,~,,,,,,~,,,,, ~'h,;:~ ~ ~ ~ '
3141 263358 846 3279502 0974944 230781640

F=G. 2. Tit=' ::,une tree of Fig. 1 evaluated with procedure FI (branch-and-bound strategy).

. . 1 t / \ ,. '":"-. / \ " ' -
2 / i \ 2 ~ . , 4 /

, - , , ,
I\ ;~', ;,",', I~\ , ~\ ,,,

--1 .1 - 2 - 2 r t - 2 I . 2 - 0 - 2 s i / : ~ e ' ~ , - 0 - 4 - 4 - 2 - 1 - 0 i* t ,
O O O O | ~ 0 ~ % O O O t : \ o o e o O o ~ , ,

/~ ~,, /~ ~ ,~, ;~,, /~ :t,, /~,, ~, /~ ~, ;~,, ,~,, A ~, ,~ ,A,,o~,~ ~ , p,, ~ ~ ;~,, t~,, ;~,,
3141 265358 846 3 2 9 5 0 2 ,1~ I I , , i t 2 781640

]FIG. 3. The game tree of Fig. 1 evaluated with procedure F2 (~dpha-beta strategy).

All of these illustrations present the results in terms of the "negamax"
model of Section 1; if the reader prefers to see it in "minimax" terms, it is
sufficient to ignore all the minus signs in Figs. 1-3. The procedures of Section 2
can readily be converted to the minimax conventions, for example by replac'-
ing F2 l:y the following two procedures:

Artificial Intelligence 6 (1975), 293-326

300 D.E. KNUTH AND R. W. MOORE

integer procedure F2 (position p, integer alpha, integer beta):
begin integer m, i, t, d;

determine the successor positions Pl , • • . , P~;
if d = 0 then F2 :-- f (p) else
beg~ m := alpha;

for i : - 1 step 1 until d do
begin t : = G2(ps, m, beta);

if t > m then m := t;
if m >I beta then go to done;

end;
done: F2 : - m;
end;

end;

integer procedure G2 (position p, integer alpha, integer beta);
begin integer m, i, t, d;

determine the successor p o s i t i o n s p l , . . . , Pd;
if d = 0 then G2 := g(p) else
begin m : - beta;

for i := 1 step 1 until d do
begin t : - F2(p~, alpha, m);

if t < m then m := t;
i f m ~ alpha then go to done;

end;
done: F2 := m;
end;

end.

It is a simple but instructive exercise to prove that G2(p, alpha, beta) always
equals - F2(p, -beta , - alp/~),

The above procedures have made use of a magic routine that determines
the successors Pl , - •., PJ of a given position p. If we want to be more explicit
about +how positions are represented, it is natural to use the format o f
linked records: When p is a reference to a r e ~ r d denoting a position, let
first(p) be a reference to the first successor of that position, or A (a null
reference) i f the position is terminal. Similarly if q references a successor p+
o f p, let next(q) be a referenceto the next successor P++I, or A if i - d.
Finally let generate(p)be a procedure that creates the records for P t , . . . , PJ,
sets their next fields, and makes first(p) point to Pl (or to A if d = 0). Then
the alpha-beta pruning method takes the following more explicit form.

integer procedure F2 (tel(position) p, integer alpha, integer beta):
begin integerm, t; ref (position) q;

generate(p);
q := first(p);

Artificial Intelligence 6 (1975), 293-326

AN ANALYSIS OF ALPHA-BETA PRUNING 301

i f q = A then F2 : = f (p) else
begin m := alpha;

while q ~ A and m < beta do
begin t : - - F 2 (q , - b e t a , - m) ;

i f t > m then m := t;
q : - next(q);

end;
F2 : = m ;

end;
end.

It is interesting to convert this recursive procedure to an iterative (non-
recursive) form by a sequence of mechanical transformations, and to apply
simple optimizations which preserve program correctness (see [13]). The
resulting procedure is surprisingly simple, but not as easy to prove correct as
the recursive form:

integer procedure alphabeta (gel (position) p);
begin integer I; ¢.omment level of recursion;

integer array a [-2 :L] ; comment stack for recursion, where
all - 2], a[! - 1], all], all + 1] denote respectively
alpha, - beta, m, - t in procedure F2;

ref (position) array r[0:L + 1]; comment another stack for
recursion, where rill and r[l + 1] denote respectively
p and q in F2;

1 : = 0; a [- 2] := a [- l] : - - o o ; r[0] : = p ;
1:2: generate (rill);

r [/ + 1] : - f i r s t (r i l l) ;
i f r[l + 1] = A then a[l] : = f(r[l]) else
begin a[l] := a [/ - 2];

loop: 1 := 1 + I; go to F2;
resume: if - a l l + 1] > al l] then

begin all] := - a l l + 1];
i f all + 1] ~ a[! - 1] then go to done;

end;
r[I + 1] := next(r[1 + 1]);
i f r[l + 1] :P A then go to loop;

end;
done: l : = I - 1; if 1 t> 0 then go to resume;
alphabeta : - a[0];

end.

This procedure alphabeta(p) will compute the same value as F2(p, - oo, + oo);
we must choose L large enough so that the level of recursion never exceeds L.

Artifldal Intelligence 6 (197~, 293-326

302 D.E. KNUTH AND R, W. MOORE

4. Applications

When a computer is playing a complex game, it will rarely be able to :;earch all
possibilities until truly terminal positions are reached; even the alpha-beta
technique won't be last enough to solve the game of chess:! But we can still
use the above procedures, if the routine that generates all moves is modified
so that sufficiently deep positions are considered to be terminal. For example,
if we wish to look six moves ahead (three for each player), we can pretend
that the positions reached at level 6 have no successors. To compute f at
such artificially-terminal positions, we must of course use our best guess
about the value, hoping that a sufficiently deep search will ameliorate the
inaccuracy of our guess. (Most of the time will be spent in evaluating these
guessed values for f , unless the determination of legal moves is especially
difficult, so some quickly-computed estimate is needed.)

Instead of searching to a fixed depth, it is also possible to carry some lines
further, e.g., to play out all sequences of captures. An interesting approach
was suggested by Floyd in 1965 [6]), although it has apparently not yet been
tried in large-scale experiments. Each move in Floyd's scheme is assigned a
"likelihood" according to the following general plan: A forced move has
"likelihood" of 1, while very implausible moves (like queen sacrifices in
chess) get 0.01 or so. In chess a "recapture" has "likelihood" greater than ~;
and the best strategic choice out of 20 or 30 possibilities gets a "likelihood"
of about 0.1, while the worst choices get say 0.02. When the product of all
"likelihoods" leading to a position becomes less than a given threshold
(say 10-s), we consider that position to be terminal and estimate its value
without further searching. Under this scheme, the "most likely" branches of
the tree are given the most attention.

Whatever method is used to produce a tree of reasonable size, the alpha-
beta procedure can be somewhat improved if we have an idea what the value
of the initial position will be. Instead of calling F 2 ~ , , o0, .+ ~) , we can
try F2(p, a, b) where we expect the value to be greater than a and less than b.
For example, i f F2(p, 0, 4) is used instead of F2(p, -10 , +10) in Fig. 3, the
rightmost " - 4 " on level 3, and t h e " 4 " below it, do not need to be con-
sidered. If our expectation is fulfilled, we may have pruned off more of the
tree; on theother hand if the value turns out to be low, say F2(p,a, b) ffi v,
where v ~< a, we can use F2(p, - co, v)to deduce thecorrect value. This idea
has been used in some versions of Greenblatt's chess program [8].

5. History --

Before we begin to make quantitative analyses of alpha-beta's effectiveness,
let us look briefly at its historical development. The early history is somewhat
obscure, became it is based on undocumented recollections and because
Artificial Intelligence 6 (1975), 293--326

AN ANALYSIS OF ALPHA-BETA PRUNING 303

some people have confused procedure F1 with the stronger procedure F2;
therefore the following account is based on the best information now avail-
able to the authors.

McCarthy [15] thought of the method during the Dartmouth Summer
Research Conference on Artificial Intelligence in 1956, when Bernstein
described an early chess program [3] which didn't use any sort of alpha-beta.
McCarthy "criticized it on the spot for this [reason], but Bernstein was not
convinced. No formal specification of the algorithm was given at that time."
I t is plausible that McCarthy's remarks at that conference led to the use of
alpha-beta pruning in game-playing programs of the .late 1950s. Samuel has
stated that the idea was present in his checker-playing programs, but he did
not allude to it in his classic article [21] because he felt that the other aspects
of his program were more significant.

The first published discussion of a method for game tree pruning appeared
in Newell, Shaw and Simon's description [16] of their early chess program.
However, they illustrate only the "one-sided" technique used in procedure
F1 above, so it is not clear whether they made use of "deep cutoffs".

McCarthy coined the name "alpha-beta" when he first wrote a LISp
program embodying the technique. His original approach was somewhat
more elaborate than the method described above, since he assumed the
existence of two functicns "optimistic value(p)" and "'pessimistic value(p)'"
which were to be upper and lower bounds on the value of a position.
McCarthy's form o f alpha-beta searching was equivalent to replacing the
abort: body of procedure F2 by

i f optimistic value(p) <~ alpha then F2 : = alpha
else ifpessimistic value(p) >>. beta then F2 := beta
else begin <the above body of procedure F2) end.

Because of this elaboration, he thought of alpha-beta as a (possibly in-
accurate) heuristic device, not realizing that it would also produce the same
value as full minimaxing in the special case that optimistic value(p) = + oo
and pessimistic value(p) = - c o for all p. He credits the latter discovery to
Hart and Edwards, who wrote a memorandum [10] on the subject in 1961.
Their unpublished memorandum gives examples of the general method,
including deep cutoffs; but (as usual in t961) no attempt was made to
indicate why the method worked, much less to demonstrate its validity.

The first published account of alpha-beta pruning actually appeared in
Russia, quite independently of the American work. Brudno, who wasone of the
developers of ai~ early Russian chess-playing program, described an algorithm
identical tO alpha-beta pruning, together with a rather complicated proof, in
1963 (see [4]).

The fall alpha-beta pruning technique finally appeared in "Western"
Artificial lnteUlgenc¢ 6 (1975), 293-326

304 D.E. KNUTH AND R. W. MOORE

computer-science literature in 1968, within an article on theorem-proving
strategies by Slagle and Bursky [24], but their description was somewhat
vague and they did not illustrate deep cutoffs. Thus we might say that the
first real English descriptions of themethod appeared in 1969, in articles by
Slagle and Dixon [25] and by Samuel [22]; both of these articles clearly
mention the possibifity of deep cutoffs, and discuss the idea in some
detail.

The alpha-beta technique seems to be quite difficult to communicate
verbally, or in conventional mathematical language, and the authors of
the papers cited above had to resort to rather complicated descriptions;
furthermore, considerable thought seems to be required at first exposure
to convince oneself that the method is correct, especially when it has been
described in ordinary language and "deep cutoffs" must be justified. Perhaps
this is why many years went by before the technique was published. However,
we have seen in Section 2 that the method is easily understood and proved
correct when it has been expres~d in algorithmic language; this makes a
good illustration of a case where a "dynamic" approach to process description
is conceptually superior to the "'static" approach of conventional mathe-
matics.

Excellent presentations of the method appear in the f e i n t textbooks by
Nilsson [18, Section 4] and Slagle [23, pp. 16-24], but in prose style instead of
the easier-to-understand algorithmic form. Alpha-beta pruning has become
"'well known"; yet to the authors' knowledge only two pui~lished descriptions
have heretofore been expressed in an algorithmic language. In fact the first
of these, by Wells [27, Section 4.3.3], isn't really the ful| alpha-beta pro-
cedure, it isn't even as strong as procedure FI. (Hot only is his algorithm
incapable of making deep cutoffs, it makes shallow cutoffs only on strict
inequality.) The other published algorithm, by Dahl and Belsnes [5, Section
8.i], appears in a recent Norwegian-language textbook on data structures;
however, the alpha-beta method is presented using iab=l pa. r~meters, so the
corresponding proof of correctness becomes somewhatdifficult. Another
recent textbook [17, Section 3.3.1] contains an informal description of what
is called "alpha-beta prtming", but again only .themethod of procedure
F1 is given; apparently many people are unaware that ~the alpha-beta
procedure is capable of making deep cutoffs, s For the~e reasons, the authors
of the present paper d o not fee ~t redundant to present aneW expomtory
account of the method, even though alpha-beta pruning has been in use for
more than 15 years.

s ~ d e ~ one of the authors of the present Paper 0D.E.K.) did some of the research
described in Section 7 approxinuttely five ~ before he was awar~.~ that deep cutoffs
were possible. It is easy to understand procedme F1 and to associate it with the term
"'alpha-beta pruning" your colleagues are talking about, without discovering F2.
ArtO~! Intelligence 6 (1975), 293--326

AN ANALYSIS OF ALPHA-BETA PRUNING 3 0 5

6. Analysis of the Best Case

Now let us turn to a quantitative study of the algorithm. How much of the
tree needs to be examined ?

For this purpose it is convenient to assign coordinate numbers to the nodes
of the tree as in the "Dewey decimal system" [11, p. 310]: Every position on
level l is assigned a sequence of positive integers ax a2 • • • at. The root node
(the starting position) corresponds to the empty sequence, and the dsuccessors
of position a l . . . at are assigned the respective coordinates a t . . . atl,
• • . , ai a~d. Thus, position 314 is reached after making the third possible
move from the starting position, then the first move from that position, and
then the fourth.

Let us call position a t . . . at critical if a~ ffi I for all even values of i or for
all odd values of L Thus, positions 21412, 131512, 11121113, and 11 are
critical, and the root position is always critical; but 12112 is not, since it has
non-l's in both even and odd positions. The relevance of this concept is due
to the following theorem, which characterizes the action ok" alpha-beta
pruning when we are lucky enough to consider the best move first from
every position.

TH~OP, ZM 1. Consider a game tree for which the value o f the root position is
not +_-oo, and for which the first successor o f every position is optimum; i.e.,

~f(az . . . at) i f a t . . . a4 is terminal, (12)
F (a i . . . at) "= [- F (a l . . . ajl) otherwise.

The alpha-beta procedure F2 examines precisely the critical positions o f this

game tree.

Proof. Let us say that a critical position a i . . . at is of type 1 if all the ai
are 1; it is of type 2 if at is its first entry > 1 and I - j is even; otherwise (i.e.,
when l , j is odd, hence at = I) it is of type 3. It is easy to establish the
following facts by induction on the computation, i.e., by showing that they
are invariant assertions:

(1) A type i position pis examined by calling F2(p, - ~ , + oo). If it is not
terminal, its successor positionpl is of type 1, and F(p) = - F (p 0 # +oo.
The other succesror positions p , . . . , Pd are of type 2, and they are all
examined by caning F2(pi, --o~, F(pl)).

(2) A type 2 position p is examined by calling F2(p, - c o , beta), where
- Qo < beta <<. F(p). If it is not terminal, its successor position Pi is of type 3,
and F(p)ffi -F (p l) ; hence, by the mechanism of procedure F2 as defined in
Section 2, the ot~zer successors P 2 , . . . , Pd are not examined.

(3) A type 3 position p is examined by calling F2(p, alpha, + oo) where
+ oo > alpha >t F(p). I f it is not terminal, each of its successor positions Pl
is of type 2 and they are all examined by calling F2(pi, - o o , -alpha).

Artificial Intelligence 6 (1975), 293-326

23

306 V.E. KNUTH AND R. W. MOORE

It follows by induction on I that every critical position is examined.

COROLLARY 1. I f every position on levels O; I , 1 -- 1 o f a game tree
satisfying the conditions o f Theorem 1 has exaetly d successors, for some
f i xed constant d, then the alpha-beta procedure examines exactly

d tll2j "t" d rl/21 - 1 (13t
positions on level I.

Proof. There a r e d i-|/2J sequences at • . . at, with I ~< al ~ d for all i, such
that at = I for all odd values of / ; there are dr ~/21 such sequences with a| ffi 1
for all even values of i; and we subtract I for the sequence I . . . I which was
counted twice.

This corollary was first derived by Levin in 1961, but no proof was
apparently ever written down at the time. In fact, the informal memo [I0]
by Har t and Edwards justifies the result by saying: , 'For a convincing
personal proof using the new heuristic hand waving technique, see the
author of this theorem. '~ A proof was later published by Slagle and Dixon
[25]. However, none of these authors pointed out that t h e valueof the root
position must not equal + oo. Although this is a rare occurrence innontrivial
games, since it means that the root position is a forced win or loss, it is a
necessary hypothesis for both the theorem and the corollary, since the
number of positions examined on level I will be d t|/2J when the root value is
+co, and it will be d r~/21 when the root value is - co . Roughly s ' peaking, we
gain a factor of 2 when the root value is ~ oo.

The characterization of perfect alpha-beta pruning in terms of critical
positions allows us to extend Corollary 1 to a much more general class of
game trees, having any desired probability distribution of legal moves on
each level•

COROLLARY 2. Let a random game tree be generated in such a way that each
position on leve l j has probability ql o f being nontermi~tal, and has an average o f
dj successors. Then the expected number o f position s on level l i s do dt . . . d t , l ;
and the expected number o f positions on level I e x a m ~ d by alpha-beta
technique under the assumptions o f Theorem l is

doqldzq3 . . . dt-2q,-t ~ qodxq2d3 . . • qi.2d|-t : qoqt . . . qt-i " ' " I even; ~14~
doqld~q~ . . . qr-2dl-t ~ qodiq2d3 . . . dl-2q~-x - q0qt:- 'J ql-t l odd. (')

• (M re precisely. :theassumpUons underlying this random branclfing
process are that level j :+ 1 of the: tree is formed £tom level j as follows:
Each position p on l e v e l j is assigned a probability ~str ibution <re(p),

r l ~) , , , .>. where ra(p)::~ theprobab~ty t ha tp will have d successors; these
• distributions may be d:fiTerent for:different positions p, but leach must satisfy
to(P) = i - qj, and each must have the mean vaiucrt(p) + 2r~(p) + . . .

Artif~ial lnteJligenc¢ 6 (1975)~ 7293,-326

AN ANALYSIS OF ALPHA-BETA PRUNING 307

= dj. The number of successor positions for p is chosen at random from this
distribution, independently of the number of successors of other positions on
level j.)

Proof If x is the expected number of positions of a certain type on levelA
then xd~ is the expected number of successors of these positions, and xqj is
the expected number of "number 1" successors. It follows as in Corollary 1
that (14) is the expected number of critical positions on level l; for example,
qo q l . . - q H is the expected number of positions on level ! whose identifying
coordinates are all l 's.

Note that (14) reduces to (13) when qj = 1 and dl - d for 0 ~< j < / .
Intuitively we might think that alpha-beta pruning would be most effective

when perfect-ordering assumption (12) holds; i.e., when the first successor of
every position is the best possible move. But this is not always the case:
Fig. 4 shows two game trees which are identical except for the left-to-right
ordering of successor positions; alpha-beta search will investigate more of
the left-hand tree than the right-hand tree, although the left-hand tree has
its positions perfectly ordered at every branch.

4 4

A A
2 i f " "~3 3

A , ,
- 2 -1 - I - 2

FIG. 4. Perfect ordering is not always best.

Thus the truly optimum order of game trees traversal isn't obvious. On the
other hand it is po~ible to show that there always exists an order for pro-
cessing the tree so that alpha-beta examines as few of the terminal positions
as possible; no algorithm can do better. This can be demonstrated by
strengthening the technique used to prove Theorem I, as we shall see.

Tt~oe~M 2. Alpha, beta pruning is optimum in the following sense: Given
any game tree and any algorithm which computes the value o f the root positim~,
there is a way to permute the tree (by reordering successor positions i f necessary)
so that every terminal position examined by the alpha-beta method under this
permutation is examined by the given algorithm. Furthermore i f the value of
the root is not +_ oo, the aipha-bet~ procedure examines precisely the positions
which are critical under this permutation.

(It is assumed that all terminal positions have independent values, or
Artificial Intelligence6 (1975), 293-326

308 D.E. KNUrH AND R. W, MOORE

equivalently that the algorithm has no knowledge about dependencies
between the values of terminal positions.)

An equivalent result has been obtained by G. M. Adelson-Velskiy [l,
Appendix l]; a somewhat simpler proof will be presented here.

Proof. The following functions F~ and F~ Oefine the best possible bounds
on the value of any position p, based on the terminal positions examined by
the given algorithm:

" (, ifp is terminal and not examined,
Fj(p) = ~f(p) i fp is terminal and examined, (15)

[max(- F~(p0, • . . , -F~(pd)) otherwise;

+ (, ifp is terminal and not examined,
F~(p) -- ~f(p) i fp is terminal and examined, (16)

[max(-F~(p), . . . , -F~p~)) otherwise.

Note that Fz(p) < F~(p)for all p. By independently varying the values at
unexamined terminal positions below p, we can make F(p) assume any given
value between F~p) and F.(p), but we can never go beyond these limits.
When p is the root position we must therefore have F~(p) -- F~(p) = F(p).

Assume that the root value is not _+ co. We will show how to permute the
tree so that every critical terminal position (according to the new numbering
of positions) is examined by the given al~orithm and that precisely the
critical positions are examined by the alpha-beta procedure F2. The critical
positions will be classified as type 1, 2, or 3 as in the proof of Theorem 1,
the root being type I. "Une following facts can be proved by induction :

(1) A type I positionp has Ft(p) = ~(p) = F(p) # _+ co, and it is examined
during the alpha-beta procedure by cailingF2(p, - co, + co). Ifp is terminal,
it must be examined by the given algorithm, since Fdp) # - co. I f it is not
terminal, let j and k be such that F~(p)= -F.(pj) and F.(p)--- -Fg(pt).
Then by (15) and (16) we have

,,), • •

hence ~(pj) = Fz(Pt)and wemay assume that j~=k. By pe.rmuting the
successor posi!i0ns we may assume in fact that j - k _ ~1. Posit~on Pi (after
permutation) is Of ~ 1 ; the other s U ~ o r positions pc ' . . . ,p~ are of
type 2, anti'they are allexaminedby calfing P2(pt, - c o , '~F(p0).

(2) A type 2 position phaS F~(p) ~ > - c o , and it is examined during the
a l p h a ' b e t a p r ~ u r e by calling F2(p, , c o , beta), wheie'--oo < beta ~ F~(p).
I f p ~term~ai, rit m n s t ~ ex~ined by ~ given algorithm. Other~v. !selet J
b e ~t/ch ~ a t ~ (p) = / ~ F . (p j) , ~ d ~ m u ~ the i SucceSs0r positions • if
necessary So that j = L position pk (after ~rmutation)is of type 3and is
examined by calling F2(px, -be ta ,+ co). Since F . (p O - -F~p) <~-beta,
this call returns a value ~ - b e t a ; hence the other successors P2 , - . . ,Pd
Artificial Intelligence 6(1975); 293-326

AN ANALYSIS OF ALPHA-BErA PRUNING 309

(which are not critical positions) are not examined by the alpha-beta method,
nor are their descendants.

(3) A type 3 position p has F,.(p) < co, and it is examined during the
alpha.beta procedure by calling F2(p, alpha, + co), where F~(p) <~ alpha < oo.
I fp is terminal, it must be exam/ned by the given algorithm. Otherwise all its
sl:ccessor positions p~ are of type 2, and they are all examined by calling
F2(p~, - co, -alpha). (There is no need to permute them, the ordering makes
absolutely no difference here.)

A similar argument can be given when the root value is + co (treating it as
a type 2 position) or - c o (type 3).

A surprising corollary of this proof is that the ordering of successors to
type 3 positions in an optimally-ordered tree has absolutely no effect on the
behavior o f alpha-beta pruning. Type 1 positions constitute the so-called
"principal variation", corresponding to the best strategy by both players.
The alternative responses to moves on the principal variation are of type 2.
Type 3 positions occur when the best move is made from a type 2 position,
and the successors of type 3 positions are again of type 2. Hence about half
of the critical positions of a perfectly ordered game tree are of type 3, and
current game-playing algorithms are probably wasting nearly half of the
time they now spend trying to put successor moves in order.

Let us say that a game tree is uniform of degree d and height h if every
position on levels 0~ 1 , . . . , h - i has exactly d successors, and if every
position on level h is terminal. For example, Fig. 1 is a uniform tree of
height 4 and degree 3, but the trees of Fig. 4 are not uniform. Since all
permutations of a uniform tree are uniform, Theorem 2 implies the following
generalization of Corollary 1.

COROLLARY 3. Any algorithm which evaluates a uniform game tree of height
h and degree d must evaluate at least

d rh/zl + d th/z' - 1 (17)

terminal positions. The aiFha-beta procedure achieves this lower bound, i f the
best move is considered first at each position of types 1 and 2.

7. Uniform Trees Without Deep Cutoffs

Now that we have determined the best case of alpha-beta pruning, let's be
more pessimistic and try to look at the worst that can happen. Given any
finite tree, it is possible to find a sequence of values for the terminal positions
so that the alpha-beta procedure will examine every node of the tree, without
making any cutoffs unless the tree branches are permutco. (To see this,
arrange the values so that whenever F2(p, alpha, beta) is called, the condition
-alpha > F(pj) > F(pz) > . . . > F(p~) > -be ta is satisfied.) On the other

Artbqclal lntelflgence 6 (1975), 293-326

310 D.E. KNUTH AND R. W. MOORE

hand, there are game trees with distinct terminal values forwhich thealpha-
beta procedure will always find some cutoffs no matter how the branches
are permuted, as shownin Fig. 5. (Procedure FI does not enjoy this property.)

/ \ . . l \ .
! \ ./,,. !\ . / \
/ \ / \ / \ / \ / \ / \ / ' \ / \

al a 2 b l b 2 a 3 a 4 b3 b4 a 5 a 6 b 5 be a7 a 8 b7 b 8

FXG. 5. I f max(ab as)< min(bh . . . ,be) , the alpha-beta procedure will always find at
least two cutoffs, no matter how we permute t i c branches of this game tree.

Since game-playing programs usually use some sort of ordering strategy in
connection with alpha-beta pruning, these facts about the worst case are of
tittle or no practical significance. A more useful upper bound relevant to the
behavior we may expect in practice can be based on the assumption of
random data. Feller, Gaschnig and GiUogly have recently undertaken a study
[7] of the average number of terminal positions examined when the alpha-
beta procedure is applied to a uniform tree of degree d and height h, giving
independent random values to the terminal positions on level h. They have
obtained formulas by which this average number can be computed, in roughly
d s st~,s, and their theoretically-predicted results Were only Slightly higher
than empiricaUy, observed data obtained from a modified chess-playing
program. Unfortunately the formulas turn out to be extremely complicated,
even for this reasonably simple theoretical model, so t h a t t h e asymptotic
behavior for large d and/or h seems to defy analysis.

Since we are looking for upper bounds ~yway, it is natural to consider
the behavior of the We.aker procedure F L ~ S method is weaker since it
doesn't find any "deep cutoffs" ; but it is m ~ better than complete mir~i-
niaxing, and Figs. 1-3 indicatethat deep cutoffs probably have only a
second-order effect/on the efficiency. Furthermore, procedure FI has the
great virtue that its analysis is much simpler than that of the full alpha-beta
procedure F2.

Onthe other hand, the analysis of F l i sby no means as easy as it looks,
and the mathematics turnsou~ to be extremely interesting. I n fact, the
Artificial Intelligence6 (1975), 293.37,,6

AN ANALYSIS OF ALPHA-BETA PRUNING 3ll

authors' first analysis was found to be incorrect, although several competent
people had checked it without seeing any mistakes. Since the error is quite
instructive, we shall present our original (but fallacious) analysis here,
challenging the reader to "find the bug"; then we shall study how to fix
things up.

With this understanding, let us conside~ the following problem: A uniform
game tree of degree d and height h is constructed with random values attached
to its d ~ terminal positions. What is the expected number of terminal positions
examined when procedure FI is applied to this tree? The answer to this
problem w~H be denoted by T(d, h).

Since the search procedure depends only on the relative order of the d h
terminal values, not on their magnitudes, and since there is zero probability
that two different terminal positions get the same value, we may assume that
the respective values assigned to the terminal positions are p~rmutations of
{1, 2, , dh}, each permutation occurring with probability 1/(dh)!. From
this observation it is clear that the d ~ values of positions on each level I are
also in random order, for 0 ~< l < h. Although procedure Fl does not
always compute the exact F values at every position, it is not difficult tO r'
verify that the decisions F1 makes a~aut ,'atoffs depend entirely on the F
values (not on the approximate values Fli~p)); so we may conclude that the
expected number of positions examined on level I is T(d, l) for 0 ~< l ~< h.
This justifies restricting attention to a single level h when we count the
number of positions examined.

In order to simplify the notation, let us consider first the case of ternary
trees, d = 3; the general case will follow easily once this one is understood.
Our first step is to classify the positions of the tree into types A, B, C as
follows:

The root position is type A.

The first successor of every nonterminal position is type A.

The second successor of every nonterminal position is type B.
The third successor of every nonterminal position is type C.

1 1 1 1 314 3/5 1 9/14 9/20
I i \ I I \ I I \

¥11 V12 Y13 Y21 Y22 Y23 Y31 Y32 Y33

Fzo. 6. Part of a uniform ternary tree.
Artificial Intelligence 6 (1975). 293-326

312 D.E. KNUTH AND R. W. MOORE

Fig. 6 shows the local "environment" of typical A, B, C positions, as they
appear below a nonterminal position p which may be of any type. The F-values
of these three positions are xl, x2, x3, respectively, and their descendants
have respective F-vahles Y11,--.,Y33. Our assumptions guarantee that
Yll,- .., Y33 are in random order, no matter what level of the tree we are
studying; hence the values

x~ = m a x (- Y l t , --Yl2, -Y13), • • . , x3 ~-" m a x (- y ~ l , --Y32, --733)

are also in random order.
If position p is examined by calling Fl(p, bored), then position A will be

examined by the subsequent call FI(A, + o0), by definition ofF1 (see Section
2). Eventually the valu~ xt will be returned; and if - x l < bound, position B
will be examined by calling FI(B, xt). Eventually the value x2 will be returned;
or, if x2 >i xi, any value ~ >t Xl may be returned. If max(-x l , -x~) <
bound, position C will be examined by calling FI(C, min(xl, x2)). Note that
- m a x (- x l , -~2) -min (x l , x2); the precise value of x~ is not involved
when C is called.

This argument shows that all three successors of an A position are always
examined (s,:nce the corresponding bound is +00). Each B position will
examine its first successor, but (since i',s bound is xt - - min(.vl 1, Yt 2, Yl 3)) it
will examine the second successor if and only if -Y2t < -min(y~ ~, Y12, Yi3),
i.eo, if and only if the values satisfy min(ylt, YI2, Yt3) < Y21- This
happens with probability ¼, since the y's are randomly ordered and since the
relation min(yl 1, Yl 2, Yl 3) > Y2~ obviously holds with probability ¼.Similarly
the third successor of a B position is evaluated if and only if the values
satisfy min(yll, YI2, YI3) <: min(y2t, Y22), and this has probability ~. The
probability that the second successor of a C position is evaluated is the
probability that max(min(yll, YI2, Y13), min0'21,)22, Y23)) < Y31, and this
occurs ~ of the time; the third successor is examined with probability ~o.
(A general formula for ithese probabilities is derived below.)

Let A~, B,, C~ be the expected number of positions examined n levels
below an A, B, or C position examined by p r ~ d u r e F1 in a random game
tree. Our discussion proves that

A o - B o f C o = l ;

A,,+l = A,,% B,, + C,; (18)
B.+l = A. + ¼S, + IC.;.i:

c.+i = A , + +

and T(3, h) - As is the answer to our problem when d -- 3.
The solution to these simultaneous linear rec~lrrences can be studied in

many ways, and for our purposes the use of generating functions is most
convenient. Let
Artificial Intelligence 6(1975), 293-326

AN ANALYSIS OF ALPHA-BETA PRUNING 313

A(z) = ~ A, z ~, B(z) = #~o B~ z", C(z) = E C, z',
n~-O n~>O

so that (18) is equivalent to
A(z) - 1 = zA(z) + .zB(z) + zC(z),
B (z) - 1 = zA(z) + ~}zB(z)+ ~}zC(z),
C(z) - 1 = zA(z) + ,-~4zB(z) + 2-~zC(z).

By Cramer's rule, A(z) - U(z)/V(z), where

U(z) = de 1 ~ z - 1]z ,

V(z) det ¼z-I] z
. ~-g4z ~f-6z-- 1

(19)

(2o)

¢1 c2 C3
+ + , (21) A(z) = 1 - rlz 1 - - r 2 z 1 - - r 3 z

c, = -r,U(1/rt)/r'(l/r~). (22)
Consequently A(z) = ~.)o(cl(rlz)" + cz(rzz)" + ea(raz)'), and we have

A, = + c2 z +
by equating coeflicie,Rs ofz,. Ifwe number the roots so that {rl [> It21 >~ Ir3[
(and the theorem of Perron [17] assures us that this can be done), we have
asymptotically

A, .., clr ~. (23)

Numerical calculation gives rt - 2.533911, ci---- 1.162125; thus, the alpha-
beta procedure without deep cutoffs in a random ternary tree w/ll examine
about as many nodes as in a tree of the' same height with average degree
2,534 instead of 3. (It is worthwhile to note that (23) -redicts about 48
positions to be examined on: the fourth level, while on:~; 35 occurred in
Fig. 2; the reason for this discrepancy is chiefly that the one-digit values in
Fig. 2 are nonrandom because of frequent equalities.)

Elementary manipulation of determinants shows that the equation z 3 V(l/z)
= 0 is the same as

1 - z 1 z /
det I ¼-z = 0 ;

hence r s is the largest eigenvalue of the matrix
Artificial Intelligence 6 (1975), 293-326

where

are polynomials in z. If the equation z 3 V(l/z) = 0 has distinct roots rl, r z, r3,
there will be a partial fraction expansion of the form .-

314 D . E . KNUTH AND R. W. MOORE

We might have deduced this directly from eq. (18), i f we had known enough
matrix theory to calcolat¢ the constant cl by matrix-theoretic means instead
of function-theoretio means.

This solves the case d .-- 3. For general dwe find similarly that the expected
number of terminal positions examined by the alpha-beta procedure without
deep cutoffs, in a random uniform game tree of degree d and height h, is
asymptotically

T(d , h) ,.. co(d) ro(d) ~' (24)
for fixed d as h ~ 00, where re(d) is the largest eigenvalue of a certain d x d

M d - -

matrix
rP l l P12 " ' " Ptd~

P21 P22 - - - P24
i •

Pdt Pd2 " ' - Pdd

(25)

and where co(d) is an approl ~riate consent. The general matrix element p~j
in (25) is the probability that

max (min(Ylt,. . . , Y~d)) < rain Y~ (26)
l ~ k < l 1~/¢< /

in a sequence of (i - l)d + (j - 1) independent identically distributed
random variables YI t , . . . , Ylcj-t~-

When i - 1 o r j - 1, the probability in (26) is 1, since the rain over an
empty set is + 00 and the max is -Qo. When i , j > 1 we can evaluate the
probability in several ways, of which the simplest seems to be combinatorial:
For (26) to hold, the minimum of all the Y's must b~ Yt,tl for some kl < i,
and this occurs with probability (i - l)d / ((! - l) d + j - I) ; remov-
ing Yk, t, ,Yti4 from consideration, the minimum of the remaining
Y's must be Y~a,2 for s o m e k2 < i , and this occurs with probability
(i - 2) d / ((i - 2) d + j - 1); and so on. Therefore (26) occurs with pro-
bability _ , / .

(i - 1)d (i - 2)d d
~ a e B

Pu = (i - Dd + j ' - I (i - 2)d + j - - 1 d + i - I

- - l / (i - I t 2 1 - 1) / d) . (27)

This explicit formula allows us to calculate to(d)numerically for small d
without much difficulty, and to calculate c o (d) f o r small d with somewhat
more difficulty using (22).
Arti~:intelliocnce:6 (1975), 293-326

AN ANALYSIS OF ALPHA-BETA PRUNILNG 315

The form of (27) isn't very convenient for asymptotic calculations; there is
a much simpler expression which yields an excellent approximation:

LEMMA 1. When 0 <~ x <. 1 and k is a positive integer,

k - ' , ~ < (k - l + x)
k - 1 <~ kX/r(1 + x). (a8)

(Note that 0.885603 < F(l + ac) ~< l for 0 ~< x ~< 1, with the minimum
value occurring at x = 0.461632; hence the simple formula k x is always
within about 11 ~o of the exact val!ue of the binomial coefficient.)

Proof. When 0 ~ x <~ I and t > - 1 we have

(1 + t) ~' ~< 1 + tx, (29)

since the function f (x) = (1 + t)X/(l + tx) satisfies f (0) = f (l) = 1, and
s ince

f"(x) = ((ln(l + t) - t/(1 + tx)) z + t2/(l + tx)2)f(x) > O.

Using (29) for t ~- 1, ½, ~ , . . . yields

l + x l % x l + ~ x | , < ~ < - - - - ~ < . . .
2 ~ 2 ~ (t)~

~< l i m (l + x) (2 + x) (m + x) 1 1
m-.® 1 ~ " ' ' m (m + 1)" = 1-(1 + x)

and the kth term of this series of inequalities is k - 1

For trees of height 2, deep cutoffs are impossible, and procedures F I and
F2 have an identical effect. How many or" the d 2 positions at level 2 are
examined ? Our analysis gives an exact answer for this case, and Lemma 1
can be used to give a good approximate result which we may state as a
theorem.

THEOR~ 3. The expected number of terminal positions examined by the
alpha-beta procedure on level 2 of a random uniform game tree of degree d is

T(d, 2) = E p . O0)
l~l , j~d

where the Pi~ are defined in (27). We have
dZ d 2

C, l ~ <~ T(d, 2) <~ C2 log d (31)

for certain positive constants C1 and (?2.

Proof. Eq. (30) follows from our previous remark3, and from Lemma 1
we know that

C S(d) <<. T(d, 2) g S(d),

where C ~ n.885603 = i n f o ~ t F(l + x) and
Artificial Intelligence 6 (t975), 293-326

316 v . E . KNUTH AND X. W. MOORE

l e~t,j~d
d d--I

= d + 1 k
Now for k=d'we have k- lJdfexp(-- t In d/d)f f i l - t In d/d+O((Iog d/d)Z),
hence for x / d g k ~<d, (1 - k - l) / (l - k -l/a) lies between d/lnd and
2d/In d times 1 + O(log d/d). The bounds in 01) now follow easily.

When the values of re(d) for d ~< 30 are plotted on log log paper, they seem
to be approaching a straight line, suggesting that re(d) is approximately of
order d °'75. In fact, a least-squares fit for 10 <~ d ~g 30 yielded d °'~6 as an
approximate order of growth; this can be compared to the lower bound
2d °-5 of an optimum alpha-beta search, or to the upper bound d of a full
minimax search, or to the estimate d °'Tz obtained by Fuller et al. [7] forrandom
alpha-beta pruning when deep cutoffs are included, However, we shah see
that the true order of growth of re(d) as d - , ao is really d/log d.

There is a moral to this story: If we didn't know the theoretical asymptotic
growth, we would be quite content to think of it as d °-76 when d is in a
practical range. The formula d/log d seems much worse than d °-Ts, until we
realize the magnitude of log din the range of interest. (A similar phenomenon
occurs with respect to Shell'S sorting method, see [12, pp. 93-95].) On the
basis of this theory we may well regard the approximation d °-Tz in [7] with
some suspicion.

But as mentioned above, there is a much more significant moral to this
story. Formula (24) is incorrect because the proof overlooked what appears to
be a rather subtle question of conditional probabilities. Did the reader spot
a fallacy ? The authors found it only by comparing their results to those of
[71 in the- ~ h = 3, ~ d = 2, since procedures Fi: and-F2 are equivalent for
heights ~< 3. According to the analysis above, the alpha-beta procedure will
examine an average of ~- nodes on level 3o f a random binary game tree, but
according to [7] the number is ~ . After th~ authors o f [7] were politely
informed that they must have erred, since we had proved that 67¢9 was correct,
~:hey politely replied that simulation results (including a test on all 8!
permutations) had confirmed that the corre¢: answer is 6i~s.

A careful scrutiny of the situation explains what is going on. Theorem 3 is
correct, sivce it deals only with level 2, but trouble occurs at level 3. Our
theory predicts a cutoff on the right subtree Of every B node with probability
~}, so that the terminal 'values (f~ , . . - , r e) in Fig. 7 will be examined with
respective probabilities (1, t , I, ~,:1, 1, 3, ~), Actually fs is examined with
probability ~ instead of ~; for fs is examined if and only if
Artifwial Intellioence 6 (1975), 293.326

AN ANALYSIS OF ALPHA-BETA PRUNING 317

f7 > min(j~,f6),
(32)

min(fs,f6) < max(mm(fi, f2), min(fs,f,)).
Each of these two events has probability {, but they are not independent.

A
i •

I A (IB QA (l i b OA (lib QA (liB

tl #2 f3 f4 vs fe f7 f8

FIG. 7. A tree which reveals the fallacious reasoning.

When the fallacy is stated in these terms, the error is quite plain, but the
dependence was much harder to s~; in the diagrams we had been drawing for
ourselves. For example, when we argued using Fig. 6 that the second successor
of a B position is examined with probability ¼, we neglected to consider that,
when p is itself of type B or C, the B node in Fig. 6 is entered only when
rain(y11, Y12, Yt3) is less than the bound at p; so rain(y, t, Yt2, Yl 3) is some-
what smaller than a random value would be. What we should have computed
is the probability that Yzt > min(ytl, Yl2, Y~3) given that position B is not
cut off. And unfortunately this can depend in a very complicated way on the
ancestors ofp.

To make matters worse, our error is in the wrong direction, it doesn't even
provide an upper bound for alptm-~eta searching; it yields only a lower
bound on an upper bound (i.e., nothing). In order to get information relevant
to the behavior of procedure F2 on random data, we need at least an upper
bound on the behavior of procedure F1.

A correct analysis o f the binatry case (d 2) involves the solution of
recurrences

A.+t -- An + B.¢°)'

Bi,+) ,= Aa + ~tBCt÷ t) for k ~ 0, 03)

A o = °) = Boo " =]3I, 2) = - " = l ,

where the Pt are appropriate probabilities. Fo r example, Po = ~; PoP. is the
probability that (32) holds;andpoptp2 is the probability that fifteen indepen-
dent random variables satisfy

As>f13Aft,t,
f13 A f i* < (f , Afro) V (f i t Aft2), (34)

(fg^ fto)V (f i t Af t2)>((f l ^ f ,) V (f3 ^ f ,)) A ((fs A f¢) v (f'n A fs)),
Artificial Intelligence 6 (1975), 293-326

318 D . E . KNUTH AND g. W. MOORE

writing v for max and ^ for min. These probabilities can be computed
exactly by evaluating appropriate integrals, bug the formulas are complicated
and it is easier to look for upper bounds. We can at least show easily that the
probability in (34) is g} , since the fLrSt and third conditions are independent,
and they each hold with probability ~. Thus we obtain an upper bound if we
set Po - -P , ffi P4 ffi . - - ffi ~ and Pt = Pa = . - . -- 1; this is equivalent to

A o - B o = 1~
= An + en,

en+~ = A. + }A,.

the recurrence

(35)

Similarly in the case of degree 3, we obtain an upper bound on the average
number of nodes examined without deep cutoffs by solving the recurrence

A o - B o f f i C o - - - 1 ,

A.+I = An + Bn + C., (36)
S.+~ = A . + ~}A. + ~jAn.
C.+, = A. + ~2~A. + z~oAn,

in place of (18). This is equivalent to

A.+I -- A. + (I + ¼ + t + 1 + ~ + ~o)An-t
and for general degree d we get the recurrence

An+l ffi An + $~An-l, (37)

where Ao --- 1, Al --- d, and

Sd ~" 2~l~d PlJ" (38)

This gives a valid upper bound on the behavior of procedure F1, because it is
equivalent to setting bound,-- + ooat certain positions (and this operation
never decreases the number of positions examined). Furthermore we can
solve (37) explicitly, to obtain an asymptotic upper bound on T(d, h) ofthe
form ct(d)r~(d) s, wherethe growth ratio is

rl(d) ffi ~/(Sd + ¼) + ½. (39)

Unfortunately it turns out that Sa is o f order d2/log d, by Theorem 3; so
(39) isof order d/~/logd, while an upper boundofbrder d/log dis desired.

Another way to get an upper bound reties On amore detailed analysis of
the structural behaviorof procedure F1, as in the following theorem.

Tt~om~ 4. The expocted number of tertninal positions examined by :he
alpha-beta procedure without deep cutoffs, in a random uniform gamet ree of
degree d and height h, satisfies

T(d, h) < c*(d)r*(d) h, (40)
where r*(d) is the largest eigenvalue -of the matrix
Artificial Intellt'gence 6(1975), 293-326

ANANALYSIS OF ALPHA-BETA PRUNING

g~

/Pdl ~ P d 2

and c*(d) is an appropriate constant.
(The p~ in (41) are th~ same as in (25),)

O a ~

~/P2a

~Pdd

319

(40

Proof. Assign coordinates at • . . a~ to the positions of the tree as in Section
6. For 1 1> 1, it is easy to prove by induction that position a t . . . a~ has
bound = min{F(a, . . . a:_lk) i I ~< k < al} when it is examined by procedure
F ! ; hence it is examined if and only if at . . • a H is examined and

- min F(al . . .a~_lk) < rain F(al . . .a~-2k) or I = 1, (42)
1 <~k<m i<~k<ar_

It follows that a terminal l~osition a ~ . . . ah is examined by F I if and only if
(42) holds for 1 <~ l ~< h. Let us abbreviate (42) by P~, so that al . . . ah holds
if and only if P t a n d . . , and Ph- Condition P~ by itself for 1 i> 2 holds with
probability p~j, where i = at- i and] = a~, because of definition (26); hence if
the P~ were independent we would have a ~ . . . ah examined with probability
P,~a3 polo3 • . . Po,-za,, and this is precisely equivalent to the analysis leading
to (24). However, the P~ aren't independent, as we have observed in (32) and
(34).

Condition P~ is a function of the terminal values

f (a x , . , a l -2jk a~+l . . . as),
where j < a H o r j = al- l and k < az. Hence Pi is independent of PI, P 2 , . . . ,
Pi-2. (This generalizes an observation we made about (34).) Let x be the
probability that position a l . . . ah is examine/t, and assume for convenience
in notation that h is odd. Then by the partial independence of the P{s, we
have -

X < Pala~ [' ~ 4 " " " PaJ,.2ah. t"

X < p ,~ , ~a4as" Pah',oh;
hence

x < Jpol.: p.2o3 .Poh_,
and the theorem follows by choo~.~ing c*(d) large enough.

~.T~.w.w..we are ready to establish the correct asymptotic growth rate of the
branchmg facLoz for procedure F l.

T,~ORm 5. The expected number T(d, h) of terminal positions examined by
the alpha-beta procedure without deep cutoffs, in a random uniform game tree
of degree d and height h, has a branc,~ing factor

lira T(d, h) l/h - r(d) (43)

Artificial Intelligence 6 (1975), 293-326

320 D.e. KlqUa~ Am3 x. w. MOORe

which satisfies •
d d ~

cS~ .o~ , ~< r(d~ <~ C, log. ~. . . (44)

for certain positive constants Cs and G .

Proof We have
T(d. hi + h2) <~ T(d, hi) T(d, h2); ' (45)

since the right-hand side of (45) is the number of positions that would be
examined by FI if bound were set to + oo for all positions at height hi.
Furthermore the arguments above prove that •

lim inf T(d, h) >~ ro(d), lim sup T(d, h) <~ rt(d), r*(d).
h'* ~ h-* eo

By a standard argument about subadditive functions (see, e.g,, [20, P¢oblem
1.98]) it follows that the limit (43) exists.

To prove the lower bound in (44) weshalt show that ro(d) >i C3 d]log d.
The largest eigenvalue of a matrix with positive entriesp~l is known to be
>~min~(~jp~j), according to the theory of Perron [19]; see [26, Section 2.1]
for a modem account of this theory, 4 Therefore by Lemma 1,

• (Z i ' u 1'~'~ " r e (d)~ C rain - ')

l--z
C m i n (', . I i .~

• 2 ~ , . ~ , k l - i j .
1 d - t d - 1

- C l . d . ~ / , z > C -J'~d-'

where C = 0.885603 = info~=~t F(1 + x), since d "ila ffi exp(- lnd/d) >
I - in did. • - ,

To get the upper bound in (44), we shall prove that r*(d) < C4 d/log d,
using a rather curious matrix norm. If s and t are positive real numbers with

1 I
- + = i , (46)

then all eigenvalues ~ of a matrix A with entries :a~ l satisfy

To prove this, let 24x =' ~ , where is a non~ero vector; b y H~lder's in-
equality [9, Section 2.7],

pt(E i" = (E / X a,sxjl'~ l~"
x.t , I.-,.~,~ I I

r " ' a* * I t ~ 1 t#t

• We are indebted to Dr-L H. Wilkinson for suggesting this proof of the lower bound.
Arafldal Intetllger.ee 6 (197b':), 293-326

AN ANALYSIS OF ALPHA-BETA PRUNING 321

- - (~ (' ~ la~jl)s/')I/*/~ lX~il) t/s

and (47) follows.

If we let s - t = 2, inequality (47) yields r*(d) = O(d/x/log d), while if s
or t ~ oo the upper bound is merely O(d). Therefore some care is necessary in
selecting the best s a n d t; for our purposes we choose s = f (d) and t =

f(d)/(f(d) -1) , wheref(d)= ½ In d/ln In d. Then

\ 1 -,~ i~ .d\ l -,Q'~d

< (v/d d'/''F (d - / d) G ~ ' v/d-'('i-')/2d)s") '/'" (48)

The inner sum is 9(d) = l/(1 - d -f/td) = (4d/in d)(l + O(ln In d/In d)), so

dg(d) "/* = d s(a)-x/2 exp(½ I n 4 In d/In l n d + In In d + O(1)).

Hence the right-hand side o f (48) is

exp(ln d - In In d + In 4 + O((ln In d)2/ln d));

we have proved that

r*(d) ~< (4d/In d)(l + O((ln in d)Z/ln d)) as d --~ ~ .

8
9

10
11
12
13
14
15
16

t l l

TASx~ 1. Bounds for the branching factor in a random tree
when no deep cutoffs are performed

i l l i

d ro(d)

2 1.847
3 2.534
4 3.142
5 3.701
6 4.226
7 4.724

5.203
5.664
6.!12
6.547
6.972
7.388
7.795
8,195
8:589

t I

i i i

rl(d) r*(d)

1.884 ! .912
2.666 2.722
3.397 3.473
4.095 4.186
4.767 4.871
5.421 5.532
6.059 6.176
6.684 6.805
7.298 7.420
7.902 8.024
8.498 87618
9.086 9'203
9.668 9.781

10.243 10'350
10.813 10.913

i i i

I

d

17
18
19
2O
21
22
23
24
23
26
27
28
29
30
31

i |

i

ro(d)

8.976
9.358
9.734

10.106
10.473
10.836
11.194
11.550
11.901
12.250
12.595
12.937
13.277
13.614
13.948

I l l l . I I I I

u l , • i , L i i

rl(tO r*(d)

11 378 11.470
11.938 12.021
12.494 12.567
13.045 13.108
13.593 13.644
14d37 14.176
14.678 14.704
15.215 15.228
15.750 ".5.748
16.282 16.265
16.811 16.778
17.337 17.,]8
! 7,861 17.796
18.383 18.300
18.903 18.802

i i i i i

Table 1 shows the various bounds we have obtained on r(d), namely the
lower bound to(d) and the upper bounds rl(d) and r*(d). We have proved
that to(d) and r*(d) grow as d/log d, and that rl(d) grows ~ as d/v/log d; but
the table shows that rl(d) is actually a better bound for d ~ 24.

Artificial Intelligence 6 (1975L 293-326

24

322 D. E. KNUTH AND R. W. MOORE

8. Discussion of the Model

The theoretical model we have studied gives us an upper bound on the actual
behavior obtained in practice. It is an upper bound for four separate reasons:

(a) the deep cutoffs are not considered;

(5) the ordering of successor positions is random;

(c) the terminal positions are assumed to have distinct values;

(d) the terminal values are assumed to be independent of each other.

Each of these conditions makes our model pessimistic; for example, it is
usually possible in practice to make plausible guesses that some moves will
be better than others. Furthermore, the large number of equal terminal
values in typical games helps to provide additional cutoifs. The effect of
assumption (d) is less clear, and it will be studied in Section 9.

In spite of all these pessimistic assumptions, the results of our calculations
show that alpha-beta pruning will be reasonably efficient.

Let us now try to estimate the effect of deep cutoffs vs no deep cutoffs.
One way to study this is in terms of the best case: Under 'ideal ordering of
Successor positions, what is the analogue for procedure F1 of the theory
developed in Section 67 It is not difficult to see that the positions ai . . • at
examined by FI in the best case are precisely those with no two non-l's in a
row, i.e., those for which a~ > 1 implies a~+t = 1.

In the ternary case under best ordering, we obtain the recurrence

Ao = Bo = Co = 1,

An+l - An + Bn + Cn, (49)
B.+I = A.,

C,+t = An,
hence An÷i - A, -I- 2A._i. For general d the corresponding recurrence is

A o = 1, A1 - d, An+ 2 = An+t + (d - 1)An. (50)
The solution to this recurrence is

1
An - x/(4d 3) ((x/(d - ¼) ~+ ½).+2 _ (_x/(d -i) + ½)"+2); (51)

so the growth rate or effective branching factor is x/(d - I) + ½, not much
higher than the value x/d obtained for the full method includingdeep cutoffs.
This result tends to support the rcontention that deep cutoffs have only a
second, order effect, although we must admit that poor ordering of successor
moves will make deep cutoffs increasingly valuable.

9. Dependent Terminal Values
Our model gives independent values to all the terminal positions, but such
independence doesEt happen very often i n real games. For example, i f f (p)
Artificial Intelligenee: 6 (L975), 293-,326

AN ANALYSIS OF ALPHA=BETA PRUNING 32:3

is based on the piece count in a chess game, all the positions following a
blunder will tend to have low scores for the player who loses his men.

In this section we shall try to account for such dependencies by considering
a total dependency model, which ha~ the following property for all non-
terminal positions p: For each i and A all of the terminal successors of p~
either have greater value than all terminal successors of p j, or they all have
lesser value, This model is equivalent to assigning a permutation of {0, 1 , . . . ,
d - 1 } to the moves at every position, and then l~sing the concatenation of all
move numbers leading to a terminal position as that position's value,
considered as a radix-d number. For example, Fig. 8 shows a uniform
ternary game tree of height 3 constructed in this way.

. / 0 , \ / 1 ~ o , _/ ~. ,~)_

201 .021 210 201 102. 201 102. 021. 120.
/ ~ I I \ I \ I . ~ \ 102 1(~0101/ [~122121 120/ I ~021 0~0022/ I ~20'i 2~00~202/ ~ zL~1222220

110 112 111 .012 010 011 002 O0Q 001 210 212 211
Fz(~. 8. A tree with "totally dependent" values,

Another way to look at this model is to imagine assigning the values
0, 1 , . . . , d ~ - ! in d-ary notation to the terminal positions, and then to apply
a random permutation to the branches emanating from every nonterminal
position. It follows that the F value at the root of a ternary tree is always
- (0 2 0 2 . . . 20)s i fh is odd, + (2 0 2 0 . . . 20)s i fh is even.

THEOREM 6. The expected number o f terminal positions examined by the
alpha-beta procedure, in a random totally dependent uniform game tree of
degree d and height h, is

d -//~,~,~rht21 dt~12j Hi+ -- ~ , . - + Ha i _ Hi) + H i , (52)

where Ha = 1 + ½ + . . . + l/d.

Proof. As in our other proofs, we divide the positions of the tree into a
finite number of classes or types for which recurrence relations can be given.
In this case we use three types, somewhat as in our proof of Theorems I and 2.

A type 1 position p is examined by calling F2(p, alpha, beta) where all
terminal descendants q of p have alpha < +f(q) < beta; here the + or -
sign is used according as p is an even or an odd number of kvcls from the
bottom of the tree. I f p is nonterminal, its successors ere assigned a definite
ranking; let us say that p~ is relevant ifF(pi) < F(pj) for all 1 ~. j < i. Then

Artificial Intelligence 6 (1975), 293-326

324 D.E. KNUTH.AND R. W. MOORE

all of the relevant successors ofp axe examhted by calling F2(p~, -beta, - m)
where F(pi) lies be tween-be ta and - m , hence the relevant p~ are again of
type 1. The irrelevant p~ are examined by calling F2(pa, -beta, -m) where
F(pi) > - m , and we shall call them type 2.

A type 2 position p is examined by calling F2(p, alpha, beta) where all
terminal descendants q of p have -If(q) > beta. I f p is nonterminal, its first
successor Pt is classified as type 3, and it is examined by calling F2(pl, -beta,
-alpha). This procedure call eventually returns a Value ~< -beta, causing
an immediate cutoff.

A type 3 position p is examined by calling F2(p, alpha, betd) where all
terminal descendants q of p have- l - f (q)< alpha. If p i s nonterminal, all its
successors are classified type 2, and they ar~ examined by calling F2(pi,
-beta, -alpha); they aH return values >~ -alpha.

Let An, Bn, C, be the expected number of terminal positions examined in a
random totally dependent uniform tree of degree d and height h, when the
root is of type 1, 2, or 3 respectively. The above argument shows that the
following recurrence relations hold:

A o - Bo = Co = 1,
A.+I = An + (½A. + ½On) + (An + en) + . . .

+((I/d)An + ((a" l)td)B,)
-//dAn+ (d - Hd)e,, (53)

B.+I
Cn+l = dB~.

Consequently B, -- d tn/2j, and As has the value stated in (52).

COROLLARY 4. When d >1 3, the average number of positions examined by
alpha.beta search under the assumption of totallydependent terminal values is
bounded by a constantS times the optimum number of positions specified in
Corollary 3.

Proof. The grO~:dl of (52) as h --, oo is order d s/2. The stated constant is
approxitaately

(d - Hd)(l + t td)/2(d. 1t2).

(Whenld= 2 the growth rate of (52) is order (~)~ instead o f ~/2s,)

Incidentally, we can also analyzeprocedureFlunder ~the same assumptions;
the restriction Of deep cutoffs leads to the recurrence

Ao -- 1, AI - 1, A~+2 --HdA~+I + (d - Hd)A,, (54)

and the corresponding growth rate is of order (~/(d - Ha + ¼H 2) + ½Hd) h.
So againthe branching:factor is approximately ~/d for large d.

sThis "constant" depends on the degree d, but not onthe height ,~,
Artillcial haell~ence 6 0975), 293-.326

AN ANALYSIS OF ALPHA-BETA P~UNING 325

The authors of [7] have suggested another model to account for depen-
dencies between positions: Each branch O.e., each arc) of the uniform game
tree is assigned a random number b:tween 0 and 1, and the values of terminal
positions are taken to be the sums of all values on the branches above. If we
apply the naive approach of Section 7 '!o the analysis of this model without
deep cutoffs, the probabdity needed in place of eq. (26) is the probability that

max (Xk + min(Y~l , . . . , Ykd)) < X~ + rain Yl~, (55)
l<~k<i l ~ k < j

where as before the Y's are independent and identically distributed random
variables, and where X1,. •., X: are independent uniform random variables
in [0, I]. Balkema [2] has shown that (55) never occurs with greater probability
than the value Pu derived in Section 7, regardless of the distribution of the
Y's (as long as it is continuous). Therefore we have good grounds to believe
that dependencies between position values tend to make alpha-beta pruning
more efficient than it would be if all terminal positions had independent
values.

ACKNOWLEDGMENTS
We wish to thank J. R. Slagie, whose lecture at Caltech in 1967 originally stimulated some
of the research reported here, and we also wish to thank Forest Baskett, Robert W. Floyd,
John Gasclmig, James Gillogly, John McCarthy and James H. Wilkinson for discussions
which contributed significantly to our work. Computer time for our numerical experiments
was supported in part by ARPA and in part by IBM Corporation.

REFERENCES
1. Adelson-Velskiy, G. M., Arl~,~rov, V. L., Bitman, A. R., Zhivotovskii, A. A. and

Uskov, A. V. Programming a computer to play chess. Uspehi Mat. Nauk 25 (2)
(March-April 1970), 221-260 (in Russian).

2. Balkema, G. Personal communication, July 19, 1974.
3. Bernstein, A., Roberts, M. De V., Arbuckle, T. and Belsky, M. A. A chess-playing

program for the IBM 704 computer. Proe. Western Joint Computer Conference 13
(1958), 157=i 59.

4. Brudno, A, L. Bounds and valuations for shortening the scanning of variations.
Problemy Kibernet. 10 (1963), 141-150 (in Russian).

5. Dahl, O.-J. and Belsnes, D. Algoritmer og Datastrukturer. Studentlitteratur, Lund
(1973).

6. Floyd, R. W. Personal communication, January 18, 1965.
7. Fuller, S. H., Gaschnig, J. G. and Gillogly, J. J. Analysis of the alpha-beta pruning

algorithm. Dept. of Computer Science, Carnegie-Mellon UniversitY, Pittsburgh, Pa.
(July 1973), 51 pp.

8. G~enblatt, R. D., Eastlake, D. E. and Crocker, S. D. The Greenblatt chess program.
Proc, AFIPS Fall Joint Computer Conference 31 (1967), 801-810.

9. Hardy, G. H., Littlewood, J. E. and P61ya, G. Inequalities. Cambridge Univ. Press,
London (1934).

Arti/icial Intelh'gence 6 (1975), 293-326

326 D. Eo KNUTH AND l t .W. MOORE

I0. Hart, T. P. and Edwards, D. J. The tree prune (TP) algorithm. M.I.T. Artificial
Intelligence Project Memo # 30, R.L.E, and Computation Center, Massachusetts
Institute of Technology, Cambridge, Mass. (December 41 1961), 6 pp; revised form:
The o~-~ heuristic, D. J. Edwards and T. P. Hart (October 28, 1963), 4 pp.

11. Knuth, D. E. Fundamental Algorithms: The Art of Computer Programming 1. Addison-
Wesley, Reading, Mass. (1968]1973).

12. Knuth,r D. E. Sorting and Searching: The Art of Computer Programming 3. Addison-
Wesley, Reading, Mass. (1973).

13. Knuth, D. E. Structured programming with go to statements. Comput. Surveys 6 (1974),
261-301.

I4. Lawler, E. L. and Wood, D. E. Branch-and-bound methods: A survey. Operations Res.
14 (1966), 699--719.

15. McCarthy, J. Personal communication, December 1, 1973.
t6. Neweli, A., Shaw, J. C. and Simon, H . A. Chess-playing programs and the problem

of complexity. IBM J. Res. and Develop. 2 (1958), 320-355; reprinted with minor
corrections in Computers and Thought, E. A. Feigenbaum and J. Feldmau, eds.,
McGraw-Hill, New York (1963), 1.09-133.

1% Nievergelt, J., Farrar, J. C. and Reingold, E .M. Computer Approaches to Mathe-
matical Problems. Prentice-Hall, Englewood Cliffs, N.J. (1974).

18. Nilsson, N, J. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill, New
York (! 971).

19. Perron, O. Zur Theorie tier Matrizen. Math. Ann. 64 0907), 248-263.
20. Pblya, G. and Szeg6, G. Aufgaben und Lehrsc~tze aus der Analysis 1. Springer, Berlin

(1925).
21. Samuel, A. L. Some studies in machine learning using the game of checkers. IBMJ. Res.

and Develop. 3 (1959), r 2!1-229; reprinted with minor additions and corrections in
Computers and Thought, E. A. Feigenbaum and $. Feldman, eds., McGraw-Hill, New
York (1963), 71-105.

22. Samuel, A. L. Some studies in machine learning using the game of checkers. II--Recent
progress. IBM J. Res. and Develop. 11 (1967), 601-617.

23. Slagle, J. R. ArtO'icial Intelligence: The Heuristic Programming Approach. McGraw-
Hill, New York (1971).

24. Slagle, J . R. and Bursky, P. Experiments with a multipurpose, theorem-proving
heuristic program. J.ACMI$(t968), 85-99, -

25. Slagle, J. R. and Dixon, J . K . Experiments with some programs that search game
trees. J.ACM 16 (1969), 189-207.

26. Varf, a, R.~ S., Matrix lterative Analysis, Prentice,Hall, Englewood Cliffs, N.J. (1962).
27. Wells, M. B. Elements of Combinatorial Computing. Pergamon, Oxford(1971).

Received 3 September 1974

Arti[icial Intelligence 6(i975), 293-326

