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ABSTRACT

The alpha-beta technique for searching game trees is analyzed, in an attempt to provide some
insight into its behavior. The first portion of this paper is an expository presentation of the
method together with a proof of its correctness and a historical discussion. The alpha-beta
procedure is shown to be optimal in a certain sense, and bounds are obtained for its running
time with various kinds of random data.

Put one pound of Alpha Beta Prunes

in a jar or dish that has a cover.

Pour one quart of boiling water over prunes.
The longer prunes soak, the plumper they get
Alpha Beta Acme Markets, Inc.,

La Habra, California

0. lntroductiqii

Computer programs for playing games like chess typically choose their
moves by searching a large tree of potential continuations. A technique
called “alpha-beta pruning” is generally used to speed up such search
processes without loss of information. The purpose of this paper is to
analyze the alpha-beta procedure in order to obtain some quantitative
estimates of its performance characteristics.

1 This research was supported in part by the National Science Foundation under grant
number GJ 36473X and by the Office of Naval Research under contract NR 044-102.
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294 D. E. KNUTH AND R. W. MOORE

Section 1 defines the basic concepts associated with game trees. Section 2
presents the alpha-beta method together with a related techrique which is
similar, but not as powerful, because it fails to make “deep cutoffs”. The
correctness of both methods is demonstrated, and Section 3 gives examples
and further development of the algonthms Several suggestions for applying
the method in practice appear in Section 4, and the history of alpha-beta
pruning is discussed in Section 5. . -

Section 6 begins the quantltatwe analysns, by deriving lower bounds on
the amount of searching needed by alpha-beta and by any algorithm which
solves the same general problem. Section 7 derives upper bounds, primarily by
considering the case of random trees when no deep cutoffs are made. It is
shown that the procedure is reasonably efficient even under these weak
assumptions. Section 8 shows how to introduce some of the deep cutoffs into
the analysis; and Section 9 shows that the efficiency improves when there are
dependencies between successive moves. This paper is essentially self-
contained, except for a few mathematical results quoted ‘in the later sec-
tions.

1. Games and Position Values .
The two-person games we are dealing with can be charactenzed by a set of
“positions”, and by a set of rules for moving from one position to another,
the players moving alternately. We assume that no infinite sequence of
positions is allowed by the rules,? and that there are only finitely many legal
moves from every position. It follows from the “infinity lemma” (see [11,
Section 2.3.4.3]) that for every position p there is a number N(p) such that no
game starting at p lasts longer than N(p) moves.
If p is a position from which there are no legal moves, there is an integer-
valued function f(p) which represents the value of this position to the player
whose turn it is to play from p; the value to the other player is assumed to be
~f(p). |
If p is a position from which there are d legal moves p,, <« Dgs Where
d > 1, the problem is to choose the “best” move. We assume that the best
move is one which achieves the greatest possible value when the game ends,
if the opponent also chooses moves which are best for him.. Let F(p) be the
greatest possible value achievable from position p agamst the optimal
defensive strategy, from the standpoint of the player who is moving from that

2 Strictly speaking, chess dces not satisfy this condition, since its rules for repeated
positions only give the players the option to request a draw, in certain circumstarces;
if neither player actually does ask for a draw, the game can go on forever. But this techni-
cality is of no practical importance, since computer chess programs only look finitely many
moves ahead. It is possible to déal with infinite games by assigning appropriate values to
repeated positions, but such questions are beyond the scope of this paper.
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position. Since the value.(to this player) after moving to position p; will be
—F(p;), we have
Foy = {17 d =0, W
max(—F(py), ..., —F(py)) ifd=>0.
This formula serves to define F(p) for all positions p, by induction on the
length of the longest game playable from p.

In most discussions of game-playing, a slightly different formalism is used;
the two players are named Max and Min, where all values are given from
Max’s viewpoint. Thus, if p is a terminal position with Max to move, its
value is f(p) as before, but if p is a terminal position with Min to move its
value is :
9(p) = —f(p). (2
Max will try to maximize the final value, and Min will try to minimize it.
There are now two functions corresponding to (1), namely

f(p) ifd=0,
Fi
RV {max(a(pl), ..+ Glp) ifd>0,
which is the best value Max can guarantee starting at position p, and

_ [9(p) ifd=0, ,
Glo) = {min(F(pl), ... F(p)) ifd>0, @

which is the best that Min can be sure of achieving. As before, we assume
that p,, ..., p; are the legal moves from position p. It is easy to prove by
induction that the two definitions of F in (1) and (3) are identical, and that

| G(p) = —F(p) &)
for all p. Thus the two approaches are equivalent.

Sometimes it is easier to reason about game-playing by using the *“mini-
max” framework of (3) and (4) instead of the “negmax” approach of eq. (1);
the reason is that we are sometimes less confused if we consistently evaluate
the game positions from one player’s standpoint. On the other hand, formula-
tion (1) is advantageous when we’re trying to prove things about games,
because we don’t have to deal with two (or sometimes even four or eight) sep-
arate cases when we want to establish our results. Eq. (1) is analogous to
the “NOR” operation which arises in circuit design; two levels of NOR logic
are equivalent to a level of AND:s followed by a level of ORs.

The function F(p) is the maximum final value that can be achieved if both
players play optimally; but we should remark that this reflects a rather
conservative strategy that won’t always be best against poor players or
against the nonoptimal players we encounter in the real world. For example,
suppose that there are two moves, to positions p, and p,, where p, assures a
draw (value 0) but cannot possibly win, while p, give a chance of either
victory or defeat depending on whether or not the opponent overlooks a
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296 D. E. KNUTH AND R. W, MOORE

rather subtle winning move. We may be better off gambling on the move to
P2, which is our only chance to win, unless we are convinced of our opponent’s
competence. Indeed, humans seem to beat chess-playmg programs by adopting
such a strateg;. ,

2. Development of the Algonthm

The following algorithm (expressed in an ad-hoc ALGOL-llke language)
clearly computes F(p), by following definition (1):-

integer procedure F (position p):
begin integer m, i, t, d;
determine the successor positions py, . . ., P43
if d = 0 then F := f(p) else
begin m := —o0;
for i := 1 step 1 until d do
begin ¢ := —F(p);
ft>mtherm:=1t;
end;
F:=m;
end;
end.

Here oo denotes a value that is greater than or equal to | f(p)] for all terminal
positions of the game, hence —co is less than or equal to + F(p) for all p.
This algorithm is a “brute force™ search through all possible continuations;
the infinity lemma assures us that the algorlthm will terminate in finitely
many steps.

It is possible to improve on the brute-force search by using a “branch-and-
bound” technique [14], ignoring moves which are incapable of bemg better
than moves which are already known. For example, if F(p) = — 10, then
F(p) = 10, and we don’t have to know the exact value of F(p,) if we can
deduce that F(p,) > —10 (.e., that —F(p,) < 10). Thus if p,, is a legal
move from p, such that F(p,,) < 10, we need not bother to’ explore any
other moves from p;. In game-playmg termmology, a move to Py can be
“refuted” (relative to the alternative move py)if the opposing player can make
a reply to p, that is at least as good as his best reply to p,. Once a move has
been refuted, we need not search for the best possible refutatmn

This line of reasoning leads to a computational technique | that avoids much
of the computation done by F. We shall define F1 as a procedure on two
parameters p and hound, and our goal is to achieve the following condmons

Fl(p, bozmd) F(p) lf F(p) < bound, 6
F1(p, bound) > bound if F(p) > bound. Sy
Artiﬁcz'al Intelligence 6 (1975), 293-326
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These relations do not fully define F1, but they are sufficiently powerful to
calculate F(p) for any starting position p because they imply that

Fl(p, ) = F(p). ()
The following algorithm corresponds to this branch-and-bound idea.

integer procedure F1 (positiox. p, integer bound):
begin integer m, i, ¢, d;
determine the successor positions p,, . . ., p4;
if d = 0 then F1 := f(p) else
begin m := —o0;
for i := | step 1 until d do
begin ¢t := ~Fl(p;, —m);
ift>mthenm:=¢;
if m > bound then go to done;
end;
done: Fl :=m;
end;
end.
We can prove that this procedure satisfies (6) by arguing as follows: At the
beginning of the ith iteration of the for loop, we have the “invariant”
condition
m = max('°F(pl)s srey "F(Pi—-l)) (®)
just as in procedure F. (The max operation over an empty set is conventionally
defined to be —o0.) For if —F(p)) is >m, then Fl(p;, —m) = F(p,), by
condition (6) and induction on the length of the game following p; therefore
(8) will hold on the next iteration. And if max(—F(p,), . . ., —~F(p;)) =bound
for any i, then F(p) > bound. It follows that condition (6) holds for all p.
The procedure can be improved further if we introduce both lower and
upper bounds; this idea, which is called alpha-béta pruning, is a significant
extension to the one-sided branch-and-bound method. (Unfortunately it
doesn’t apply to all branch-and-bound algorithms, it works only when a
game tree is being explored.) We define a procedure F2 of three parameters p,
alpha, and beta, for -alpha < beta, satisfying the following conditions
analogous to (6):
F2(p, alpha, beta) < alpha if F(p) < alpha,

F2(p, alpha, beta) = F(p) if alpha < F(p) < beta, " 9)
F2(p, alpha, beta) > beta if F(p) = beta.
Again, these conditions do not fully specify F2, but they impiy that
F2(p, — o0, o) = F(p). (10)

It turns out that this improved algorithm looks only a little different from the
others, when it is expressed in a programming language:
Artificial Intelligence 6 (1975), 293-326
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integer procedure F2 (position p, integer alpha, integer beta):
begin integer m, i, t, d;
determine the successor positions py, . . ., p,;
if d = 0 then F2 := f(p) else
begin m := alpha; '
fori:= 1step | until d do
begin ¢ := -—FZ(p,, —beta, -m),
ft>mthenm:=1;
if m > beta then go to done;
end;
done: F2 := m;
end;
end; ‘ , _
To prove the validity of F2, we proceed as we did with F1. The invariant
relation analogous to (8) is now , -

m = max{(alpha, — F(p,), ..., —F(p,_,) - (1D
and m < beta. If —F(p)) > beta, then —F2(p,, —beta, —m) will also be
2beta,and if m < —F(p;) < beta, then —F2(p,, —beta, —m) = —F(p,); so
the proof goes through as before, estabhshmg (9) by induction.

Now that we have found two improvements of the minimax procedure,

it is natural to ask whether still further improvement is possible. Is there an

“alpha-beta-gamma” procedure F3, which makes use say of the second-

‘largest value found so far, or some other gmmuck" Sectlon 6 below shows

that the answer is no, or at least that there is a reasonable sense in which
procedure F2 is optnmum

3. Examples and Refinements

As an example of these procedures, consnder the tree in Fig. l which repre-
sents a position that has three successors, each of which has three successors,
etc., until we get to 3* = 81 positions. p0551b1e after four moves; and these
81 positions have been: assxgned “random” f values accordmg to the first 81
digits of 7. Fig, 1 shows the F values computed from the f’s; thus, the root
node at the top of the tree has an eﬁ'ectlve value of 2 after best play by both
sides.

Fig. 2 shows the same sxtuatxon as it is evaluated by procedure Fi(p, o).
Note that only 36 of the 81 terminal positions are examined, and that one
of the nodes at level 2 now has the “approximate” value 3 instead of its true
value 7; but this approximation does not of course affect the value at the top.

Fig. 3 shows the same situation as it is evaluated by the full alpha-beta
pruning procedure. F2(p, — o0, + o0) will always examine the same nodes as

F1(p, «0) until the fourth level of lookahead is reached, in any game tree;
Artificial Intelligence 6 (1975), 293-326
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this is a consequence of the theory developed below. On levels 4, 5, . . .,
however, procedure F2 is occasionally able to make “deep cutoffs” which
F1 is incapable of finding. A comparison of Fig. 3 with Fig. 2 shows that
there are five deep cutoffs in this example.
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FiG. 2, Th- zame tree of Fig. 1 evaluated with procedure F1 (branch-and-bound strategy).
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Fi6. 3. The game tree of Fig. 1 evaluated with procedure F2 (alpha-beta strategy).

All of these illustrations present the results in terms of the “negamax”
model of Section 1; if the reader prefers to see it in “minimax™ terms, it is
sufficient to ignore all the minus sngns in Figs. 1-3. The procedures of Section 2
can readily be converted to the minimax conventions, for example by replac-
ing F2 ty the following two procedures:
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integer procedure F2 (position p, integer alpha, integer beta):
begin integer m, i, ¢, d;
determine the successor positions p;, . . ., Ps;
ifd = 0 then F2 := f(p) else
begin m := alpha;
for i := 1 step 1 wntil d do
begin ¢ := G2(p;, m, beta);
ift>mthenm:=1t,
if m > beta then go to done;
_ end;
done: F2 := m;
end;

end;
mteger procedure G2 (position p, mteger alpha, integer beta);

begin integer m, i, t, d;

determine the successor positions p,, . . ., ps;
if d = 0 then G2 := g(p) else
begin m := beta;
for i := 1 step 1 until d do
begin ¢ := F2(p;, alpha, m);
ift<mthenm:=1t;
if m < alpha then go to done;
end;
 done: F2 := m;
end;

end.

It is a simple but instruciive exercise to prove that G2(p, alpha, beta) always
equals —F2(p, —beta, — alpha).

The above procedures have made use of a magic routine that determines
the successors p,, . . ., p, of a given position p. If we want to be more explicit
about how positions are represented, it is natural to use the format of
linked records: When p is a reference to a record denoting a position, let
first(p) be a reference to the first successor of that position, or A (a null
reference) if the position is terminal. Snmllarly if g references a successor p,
of p, let next(g) be a reference to the next successor p,.,, or A if i = d.
Finally let generate(p) be a procedure that creates the records for Piss oo Pas
sets their next fields, and makes firs¢(p) point to Py (or to A if d = 0). Then
the alpha-beta pruning method takes the following more explicit form.
integer procedure F2 (ref (position) p, integer alpha, mteger bem)

begin integer-m, ¢ ¢, vef pos:tlon) q;

generate(py;
q := first(p);
Artificial Intelligence 6 (1975), 293-326
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ifg=A then F2 := f(p) else
begin m := alpha;
while g # A and m < beta do
begin ¢ := —F2(q, —beta, —m);
ift>mthenm:=1t;
q := nex#(q);
end;
F2 :=m;
end;
.end.

It is interesting to convert this recursive procedure to an iterative (non-
recursive) form by a sequence of mechanical transformations, and to apply
simple optimizations which preserve program correctness (see [13]). The
resulting procedure is surprisingly simple, but not as easy to prove correct as
the recursive form:

integer procedure alphabeta (ref (position) p);
begin integer /; comment level of recursion;
integer array a[—2:L]; comment stack for recursion, where
a[l — 2), a[l — 1}, a{l}, a[l + 1] denote respectively
" alpha, —beta, m, —t in procedure F2;
ref (position) array r[0:L + 1]; comment another stack for
recursion, where r[/] and [l + 1] denote respectively
pand gin F2;
l1:=0;a[-2]:=a[-1] := —o0; r[0] := p;
F2: generate (r[l));
[l + 1) := first(r[1));
if r[l + 1] = A then a[l] := f(r[]]) else
begin afl] := o[l - 2];
loop:I:=1+ 1;goto F2;
resume: if —a[l/ + 1] > afl] then
begin afl] := —a[l + 1];
if ]l + 1] < a[l — 1] then go to done;
end; |
ril + 1] := next(r[l + 1]);
if r[l + 1] # A then go to loop;
end;
done: !l := 1~ 1;if ] > O then go to resume;
alphabeta := a[0];
end.

This procedure alphabeta(p) will compute the same value as F2(p, — 00, + 0);
we must choose L large enough so that the level of recursion never exceeds L.
Artificial Inteilizence 6 (1975), 293-326
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4. Applications

When a computer is playing a complex game, it will rarely be able to :earch all
possibilities until truly terminal positions are reached; even the alpha-beta
technique won’t be fast enough to solve the game of chess! But we can still
use the above procedures, if the routine that generates all moves is modified
so that sufficiently deep positions are considered to be terminal. For example,
if we wish to look six moves ahead (three for each player), we can pretend
that the positions reached at level 6 have no successors. To compute f at
such artificially-terminal positions, we must of course use our best guess
about the value, hoping that a sufficiently deep search will ameliorate the
inaccuracy of our guess. (Most of the time will be spent in evaluating these
guessed values for f, unless the determination of legal moves is especially
difficult, so some quickly-computed estimate is needed.)

Instead of searching to a fixed depth, it is also possible to carry some lines
further, e.g., to play out all sequences of captures. An int¢resting approach
was suggested by Floyd in 1965 {6]), although it has apparently not yet been
tried in large-scale experiments. Each move in Floyd’s scheme is assigned a
“likelihood™ according to the following general plan: A forced move has
“likelihood™ of 1, while very unplau51ble moves (like queen sacrifices in
chess) get 0.01 or so. In chess a “recapture” has “likelihood” greater than 4;
and the best strategic choice out of 20 or 30 possibilities gets a “likelihood”
of about 0.1, while the worst choices get say 0.02. When the product of all
“likelihoods™” leading to a position becomes less than a given threshold
(say 1078), we consider that position to be terminal and estimate its value
without further searching. Under this scheme, the “most likely”” branches of
the tree are given the most attention,

Whatever method is used to produce a tree of reasonable size, the alpha-
beta procedure can be somewhat improved if we have an idea what the value
of the initial position will be. Instead of calling F2(p, — c0, -+ ), we can
try F2(p, a, b) where we expect the value to be greater than a and lessthan 5.
For example, if F2(p, 0, 4) is used instead of F2(p, — 10, +10) in Fig. 3, the
rightmost “—4” on level 3, and the “4” below it, do not need to be con-
sidered. If our expectation is fulfilled, we may have pruned off more of the
tree; on the other hand if the value turns out to be low, say F2(p, a, b) = v,
where v < a, we can use F2(p, — 0, v) to deduce the. correct value. This idea
has been used in some versions of Greenblatt’s chess program [8]

5. Hlstory

Before we begin to make quantitative analyses of alpha-beta’s effectiveness,
let us look briefly at its historical development. The early history is somewhat
obscure, because it is based on undocumented recollections and because
Artificial Intelligence 6 (1975), 293326



AN ANALYSIS OF ALPHA-BETA PRUNING 303

some people have confused procedure F1 with the stronger procedure F2;
therefore the following account is based on the best information now avail-
able to the authors.

McCarthy [15] thought of the method during the Dartmouth Summer
Research Conference on Artificial Intelligenice in 1956, when Bernstein
described an early chess program [3] which didn’t use any sort of alpha-beta.
McCarthy “criticized it on the spot for this [reason], but Bernstein was not
convinced. No formal specification of the algorithm was given at that time.”
It is plausible that McCarthy’s remarks at that conference led to the use of
alpha-beta pruning in game-playing programs of the late 1950s. Samuel has
stated that the idea was present in his checker-playing programs, but he did
not allude to it in his classic article [21] because he feit that the other aspects
of his program were more significant.

The first published discussion of a method for game tree pruning appeared

in Newell, Shaw and Simon’s description [16] of their early chess program.
However, they illustrate only the ‘“‘one-sided” technique used in procedure
F1 above, so it is not clear whether they made use of “deep cutoffs”.
. McCarthy coined the name “alpha-beta” when he first wrote a LISP
program embodying the technique. His original approach was somewhat
more elaborate than the method described above, since he assumed the
existence of two functicns “‘optimistic value(p)”’ and “‘pessimistic value(p)”’
which were to be upper and lower bounds on the value of a position.
McCarthy’s form of alpha-beta searching was equivalent to replacing the
above ody of procedure F2 by

~ if optimistic value(p) < alpha then F2 := alpha
else if pessimistic value(p) > beta then F2 := beta
else begin {the above body of procedure F2) end.

Because of this elaboratlon, he thought of alpha-beta as a (possibly in-
accurate) heuristic device, not realizing that it would also produce the same
value as full minimaxing in the special case that optimistic value(p) = + o
and pessimistic value(p) = — oo for all p. He credits the latter discovery to
Hart and Edwards, who wrote a memorandum [10] on the subject in 1961.
Their unpublished memorandum gives examples of the general method,
including deep cutoffs; but (as usual in 1961) no attempt was made to
indicate why the method worked, much less to demonstrate its validity.
- The first published account of alpha-beta pruning actually appeared in
Russia, quite independently of the American work. Brudno, who was one of the
developers of ai early Russian chess-playing program, described an algornthm
identical to alpha-beta pruning, together witha rather comphcated proof, in
1963 (see [4])..
The full alpha-beta prunmg techmque finally appeared in “Westem
Artificial Intelligence 6 (1975), 293-326
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computer-science literature in 1968, within an article on theorem-proving
strategics by Slagle and Bursky [24], but their description was somewhat
vague and they did not illustrate deep cutoffs. Thus we might say that the
first real English descriptions of the method appeared in 1969, in articles by
Slagle and Dixon [25] and by Samuel {22]; both of these articles clearly
mention the possibility of deep cutoffs, and discuss the idea in some
detail.

The alpha-beta techmque seems to be qulte difficult to commumcate
verbally, or in conventional mathematical language, and the authors of
the papers cited above had to resort to rather complicated descriptions;
furthermore, considerable thought seems to be required at first exposure
to convince oneself that the method is correct, especially when it has been
described in ordinary language and “‘deep cutoffs” must be justified. Perhaps
this is why many years went by before the technique was published. However,
we have seen in Section 2 that the method is easily understood and proved
‘correct when it has been expressed in algorithmic language; this makes a
good illustration of a case where a “dynannc”approach to process description
is conceptually superior to the “statx approach of conventional mathe-
matics. .

Excellent presentatnons of the method appear in the recent textbooks by
Nilsson [18, Section 4] and Slagle [23, pp. 16-24], but in prose style instead of
the easier-to-understand algorithmic form. Alpha-beta pruning has become
“well known”; yet to the authors’ knowledge only two puOlished descriptions
have heretofore been expressed in an algorithmic language. In fact the first
of these, by Wells [27, Section 4.3.3], isn’t really the full alpha-beta pro-
cedure, it isn’t even as strong as procedure FI. (Not only is his algorithm
incapable of making deep cutoffs, it makes shallow cutoffs only on strict
iinequality.) The other published algorithm, by Dahl and Belsnes [5, Section
8.1], appears in a recent Norwegian-language textbook on data structures;
however, the alpha-beta method is presented using labsl parameters, so the
corresponding proof of correctness becomes somewhat difficult. Another
recent textbook [17, Section 3.3.1] contains an informal description of what
is called “alpha-beta pruning”, but again-only the method of procedure
F1l is given; apparently many people are unaware that the alpha-beta
procedure is capable of making deep cutoffs.? For these reasons, the authors
of the present paper do not feel it redundant to present a'new expository
account of the method, even though alpha-beta pmmng has been in use for
more than 15 years. .

3 Indeed, one of the authors of the present paper (D E. K) dld some of the research
described in Section 7 approximately five years before he was awars that deep cutoffs
were possible, It is easy to understand procedure F1 and to associate it with the term
*‘aipha-beta pruning” your colleagues are talking about, without discovering F2.
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6. Analysis of the Best Case

Now let us turn to a quantitative study of the algorithm. How much of the
tree needs to be examired?

For this purpose it is convenient to assign coordinate numbers to the nodes
of the tree as in the “Dewey decimal system’ [11, p. 310]: Every position on
level 1 is assigned a sequence of positive integers a, a; . . . a;. The root node
(the starting position) corresponds to the empty sequence, and the d successors
of position a, ...a; are assigned the respective coordinates a,...al,
-+ @y ... ad. Thus, position 314 is reached after making the third possible
move from the starting position, then the first move from that position, and
then the fourth.

Let us call position a, . . . g, critical if a; = 1 for all even values of i or for
all odd values of i. Thus, positions 21412, 131512, 11121113, and 11 are
critical, and the root position is always critical; but 12112 is not, since it has
non-1’s in both even and odd positions. The relevance of this concept is due
to the following theorem, which characterizes the action or alpha-beta
pruning when we are lucky enough to consider the best move first from
every position. : . '

THEOREM 1. Consider a game tree for which the value of the root position is
not + oo, and for which the first successor of every position is optimum, i.e.,

_ : fla,...ap) ifa, ...a, is terminal,

Fa,...a) = {—-F(a1 ... a,1) otherwise. (2
The alpha-beta procedure F2 examines precisely the critical positions of this
game tree.

Proof. Let us say that a critical position a, . .. a; is of type 1 if all the a;
are 1; it is of type 2 if @, is its first entry >1 and / — j is even; otherwise (i.e.,
when ! — j is odd, hence a, = 1) it is of type 3. It is easy to establish the
following facts by induction on the computation, i.e., by showing that they
are invariant assertions: .

(1) A type 1 position p is examined by calling F2(p, — 0, + o). If it is not
terminal, its successor position p, is of type 1, and F(p) = —F(p)) # L .
The other succesror positions p, . . ., ps are of type 2, and they are all
examined by calling F2(p;, —oc, £(p,)).

(2 A type 2 position p is examined by calling F2(p, — o, beta), where
— 0 < beta < F(p). If it is not terminal, its successor position p; is of type 3,
and F(p) = —F(p,); hence, by the mechanism of procedure F2 as defined in
Section 2, the oti1er SUCCESSOIS ps, . . +, Py aTe Not examined.

(3) A type 3 position p is examined by calling F2(p, alpha, 4+ o) where
+00 > alpha > F(p). If it is not terminal, each of its successor positions p;

is of type 2 and they are all examined by calling F2(p,, — 0. ~alpha).
Artificial Intelligence 6 (1975), 293-32¢
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It follows by mddctxon on / that every critical posxtum is examined.

CoroLLARY 1. If every position on levels 0;1,...,1 — 1 of a game tree
satisfying the conditions of Theorem 1 has exactly d successors, for some
Sixed constam d, then the alpha-beta pracedure examines exactly

R | d”’z‘ + d"’21 - l L (13)
positions on Ieuel L S
Proof. There are d*'/1 sequences @, ... d, with 1 < a, < dfor all i, such
that a; = 1 for all odd values of i; there are d'¥/% such sequenees with g; =
for all even values of i; and we subtract 1 for the sequence 1 .1 wh:ch was
counted twice. .

This corollary was first derived by Levin in 1961 but no proof was
apparently ever written down at the time. In fact, the informal memo [10]
by Hart-and Edwards justifies the result by saying: “For a convincing
personal proof using the new heuristic hand waving technique, see the

author of this theorem.”” A proof was later published by Slagle and Dixon
{25}; However, none of these authors pointed out that the value of the root
position must not equal + co. Although this is a rare occurrence in nontrivial
games, since it means that the root position is a forced win or loss, it is a
necessary hypothesns for both the theorem and the corollary, since the
number of positions examined on level / will be dt¥21 when the root value is
4+ 00, and it will be d"/%' when the root value is —co. Roughly speakmg, we
gain a factor of 2 when the root value is + 0.

The characterization of perfect alpha-beta pruning in terms of critical
positions allows us to extend Corollary 1 to a much more general class of

game trees, having any desxred probabnhty dnstnbutxon of legal moves cn
each level. . : .

COROLLARY 2 Let a randam game tree be generated in such a way that each

poszttan on level j has probability g, of being nonterminal, and has an average of
d; successors. Then the expected number of positions on level lisdy dy .. . d,-;

‘and the expectéd number of positions on level 1 exammed by the al,pha-beta
technigue under the. assumptwns of Theorem 1 rs o ;
, do‘Ix“'z?s dt-z¢z-1 ‘*‘ ‘Iodezds Qt-zdx— ‘Io‘h _ 41-1‘ 1 even, (1 4)
‘ 'do%d*‘?s 41»2‘11—1 + %dl*hds dz-z@z—1 9091 -91— | I odd

(More precnsely, the assumptlons underlymg this random branchmg
* process are that level j + 1 of the tree is formed from level j as follows:
" Each position p on level j is assigned a probability distribution  {r4(p),
rp)s . Ds where rd(p) is the probability that pwill have d successors; these
i dxstnbut:ons may be dlﬂ'erent for different posmons P, but each must satxsfy
r@=1=g, and each ‘must have the. mean value rt(p) + 2ry(p) +.
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= d;. The number of successor positions for p is chosen at random from this
distribution, independently of the number of successors of other positions on
level j.)

Froof. If x is the expected number of positions of a certain type on level j,
then xd, is the expected number of successors of these positions, and xg; is
the expected number of “number 1" successors. It follows as in Corollary 1
that (14) is the expected number of critical positions on level /; for example,
9094, - - - 411 is the expected number of positions on level / whose 1dent1fymg
caordmates are all 1’s.

Note that (14) reduces to (13) when g;=landd; =dfor0<j<l

Intuitively we might think that alpha-beta pruning would be most effective
when perfect-ordering assumption (12) holds; i.e., when the first successor of
every position is the best possible move. But this is nct always the case:
Fig. 4 shows two game trees which are identical except for the left-to-right
ordering of successor positions; alpha-beta search will investigate more of
the left-hand tree than the right-hand tree, although the left-hand tree has
its positions perfectly ordered at every branch.

4 . . . I}
/ .\ | / .\
—2 Q\-z _ —4 O\—3
\ \
\ / '\\
2@ \3 3 , ,0
\
PN
/\ p 8
) ’ \
-2 - | -t -2

F1G. 4. Perfect ordering is not always best.

Thus the truly optimum order of game trees traversal isn’t obvious. On the
other hand it is possible to show that there always exists an order for pro-
cessing the tree so that alpha-beta examines as few of the terminal positions
as possible; no algorithm can do better. This can be demonstrated by
strengthening the technique used to prove Theorem 1, as we shall see.

THEOREM 2. Alpha-beta pruning is optimum in the following sense: Given
any game tree and any algorithm which computes the value of the root positior,
there is a way to permute the tree (by reordering successor positions if necessary)
so that every terminal position examined by the alpha-beta method under this
permutation is examined by the given algorithm. Furthermore if the value of
the root is not + oo, the alpha-betn procedure examines precisely the positions
which are critical under this permutation.

(It is assumed that all terminal positions have independent values, or
Artificial Intelligence 6 (1975), 293-326
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equivalently that the algorithm has no knowledge about dependencles
between the values of terminal positions.) :

An equivalent result has been obtained by G. M. Adelson-VeIskxy [,
Appendix 1]; a somewhat simpler proof will be presented here.

'Proof. The following functions F; and F, define the best possible bounds
on the value of any posmon p, based on the terminal posmons exammcd by
the given algorithm:

o) if p is terminal and not exammed,
F) = 1f0) if p is terminal and examined, ~  (15)
{max(—-ﬂ,(pl), - =F(py) - otherwise; L
(+00 if p is termina' and not examined,
F,,(p) P if p is terminal and examined, (16)
max(—F(p), . ., —Fipd) otherwise. | ’

Note that F(p) < F(p) for all p. By mdependently varying the values at
unexamined terminal positions below p, we can make F(p) assume any given
value between Fi(p) and F(p), but we can never go beyond these limits.
When p is the root position we must therefore have Fy(p) = F(p) = F(p).

Assume that the root value is not + 0c0. We will show how to permute the
tree so that every critical terminal position (according to the new numbering
of positions) is examined by the given algorithm and that precisely the
critical positions are examined by the alpha-beta procedure F2. The critical
positions will be classified as type 1, 2, or 3 as in the proof of Theorem 1,
the root being type 1. The following facts can be proved by induction:

(1) A type 1 position p has F(p) = F(p) = F(p) # + o0, and it is examined
during the alpha-beta procedure by calling F2(p, —00, +00). If p is terminal,
it must be examined by the given algorithm, since Fi{p) # — oo, If it is not
terminal, let j and k& be such that F,(p) = - ,(pj) and F,,(p) = —F,(p,)
Then by (15) and (16) we have .

F:(Pt) < Fl(Pj) < Fn(pj) _"F (P) F:‘P&),
hence F,(p;) = F{py) and we. may assume ‘that j %. By permutmg the
successor posmons we may assume in fact that i=k=1 Posltxon P, (after
permutatxon) is of type 1; the other successor pOSlthllS DPasee o p,, are of
type 2, and'they are all exaxmned by calhng F2(p, ~ o, —F(p,)). -

@A type 2 posxtmn f/ ‘has F,(p) > —, and it is examined durmg the
alpha-beta procedare by callmg F2(p, =0, beta), where — 0 < beta <F{p).
If p is terminal, it must be examined by the given algorlthm ‘Otherwise let j
be such that F,(p = =F(p), ‘and permute the  successor posnt:ons if
necessaty so that j = 1. Position p; (after permutatlon) is of type 3 and is
examined by calling F2(p,, —beta, + ). Since F(p,) = -F,(p) < -beta,
this call returns a value € ~beta; hence the other successots p,, . . ., p,
Artifictal Intelligence 6 (1975), 293-326



AN ANALYSIS OF ALPHA-BETA PRUNING 309

(which are not critical positions) are not examined by the alpha-beta method,
nor are their descendants. ,

(3) A type 3 position p has F(p) < o0, and it is examined during the
alpha-beta procedure by calling F2(p, alpha, + ), where F(p) < alpha < .
If p is terminal, it must be examined by the given algorithm. Otherwise all its
stccessor positions p; are of type 2, and they are all examined by calling
F2(p,, — o0, —alpha). (There is no need to permute them, the ordering makes
absolutely no difference here.) :

A similar argument can be given when the root value is + co (treating it as
a type 2 position) or — oo (type 3). ‘

A surprising corollary of this proof is that the ordering of successors to
type 3 positions in an optimally-ordered tree has absolutely no effect on the
behavior -of alpha-beta pruning. Type 1 positions constitute the so-called
“principal variation”, corresponding to the best strategy by boih players.
The alternative responses to moves on the principal variation are of type 2.
Type 3 positions occur when the best move is made from a type 2 position,
and the successors of type 3 positions are again of type 2. Hence about half
of the critical positions of a perfectly ordered game tree are of type 3, and
current game-playing algorithms are probably wasting nearly half of the
time they now spend trying to put successor moves in order. ‘

Let us say that a game tree is uniform of degree A and height 4 if every
position on levels 0, 1,..., A~1 has exactly 4 successors, and if every
position on level £ is terminal. For example, Fig. 1 is a uniform tree of
height 4 and degree 3, but the trees of Fig. 4 are not uniform. Since all
permutations of a uniform tree are uniform, Theorem 2 implies the following
generalization of Corollary 1.

COROLLARY 3. Any algorithm which evaluates a uniform game tree of height
h and degree d must evaluate at least

PO U (17

terminal positions. The ai ha-beta procedure achieves this lower bound, if the
best move is considered first at each position of types 1 and 2,

7. Umform Trees Without Deep Cutofls

Now that we have determmed the best case of alpha-beta pruning, let’s be
more pessimistic and try to look at the worst that can happen. Given any
finite tree, it is possible to find a sequence of values for the terminal positions
so that the alpha-beta procedure will examine every node of the tree, without
making any cutoffs unless the tree branches are permuted. (To see this,
arrange the values so that whenever F2(p, alpha, beta) is called, the conditicn
~alpha > F(p,) > F(p,) > ... > F(p;) > ~beta is satisfied.) On the other
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hand, there are game trees with distinct terminal values for which the alpha-
beta procedure will always find some cutoffs no matter how the branches
are permuted as shown in Fig. 5. (Procedure F1 does not enjoy this propetty )

/ \
/\ /\
WANYANYANY /\,

CAAAAAAAN

a3 a3 by bp 23 a4 by by a5 a3 bg bg 2 ag by bg

Fic. §. If max(@ay, . . ., ag) < min(by, . . ., be), the alpha-beta prooedure will aiways ﬁnd at
least two cutoffs, no matter how we permute the branches of this game tree. :

Since game-playing programs usually use some sort of ordering strategy in
connection with alpha-beta pruning, these facts about the worst case are of
little or no practical significance. A more useful upper bound relevant to the
‘behavior we may expect in practice can be based on the assumption of
random data. Fuller, Gaschnig and Gillogly have recently undertaken a study
[7] of the average number of terminal positions examined when the alpha-
beta procedure is applied to a uniform tree of degree d and height A, giving
independent random values to the terminal positions on level 5. They have
obtamed formulas by which this average number can be computed, in roughly
d” stens, and their theoretlcally-predncted results were only shghtly higher
than empirically-observed data obtained from a modified chess-playing
program. Unfortunately the formulas turn out to be extremely complicated,
even for this reasonably simple theoretlcal model, so that the asymptotic
behavior for large d and/for h scems to defy analysis. ,

Since we are lookmg for upper bourds anyway, it is natural to consider
the behavior of the weaker procedure F1. This method is weaker since it
doesn’t find any “‘deep’cutoffs’’; but it is much better than complete mini-
maxirig, and Figs. 1-3 indicate that deep cutoffs probably have only a
second-order effect: on the efficiency. Furthermore, procedure F1 has the
great virtue that its analysns is. much snmpler than that of the full alpha-beta
procedure F2.. -

On the other hand, the analysns of Fl is- by no meais as easy as 1t looks,
and the mathematics turns out to be extremely interesting. In. fact, the
Artificial Intelligence 6 (1975), 293-226
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authors’ first analysis was found to be incorrect, although several competent
people had checked it without seeing any mistakes. Since the error is quite
instructive, we shall present our original (but fallacious) analysis here,
challenging the reader to “find the bug”; then we shall study how to fix
things up.

With this understanding, let us CORSldel the followmg problem: A uniform
game tree of degree d and height / is constructed with random values attached
to its 4" terminal positions. What is the expected number of terminal positions
examined when procedure F1 is applied to this tree? The answer to this
problem wiHl be denoted by 7(d, 4). v

- Since the search procedure depends only on the relative order of the d”
termmal values, not on their magnitudes, and since there is zero probability
that two different terminal positions get the same value, we may assume that
the respective values assigned to the terminal positions are parmutations of
{1,2,...,d"}, each permutation occurring with probability 1/(d")!. From
this observation it is clear that the d' values of positions on each level / are
also in random order, for 0 < I < A. Although procedure F1 does not
always compute the exact F values at every position, it is not difficult to-
verify that the decisions F1 makes about ~utoffs depend entirely on the F
values (not on the approximate values Fl1{z)); so we may conclude that the
expected number of positions examined on level ! is T'(d,!) for 0 < I < h.
This justifies restnctmg attention to a single level # when we count the
number of positions examined.

In order to simplify the notation, let us consider first the case of ternary
trees, d = 3; the general case will follow easily once this one is understood.
Our first step is to classify the positions of the tree into types A, B, C as
follows:

The root position is type A.

The first successor of every nonterminal position is type A.
The second successor of every nonterminal position is type B.
The third successor of every nonterminal position is type C.

11 1 1 3/4 35 1 9/14 9/20
/ i N /7 | N\ /7 b\
YY1 Y12 Y13 Y21 Y22 Y23 Y3t Y32 Ya3

FiG. 6. Part of a uniform ternary tree. »
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Fig. 6 shows the local “environment” of typical A, B, C. positions, as they
appear below a nonterminal position p which may be of any type. The F-values
of these three positions are X, x,, X3, respectively, and their descendants
have respective F-values yy,...,»s;. Our assumptions guarantee that
Pi1s - - -» Y33 are in random order, no matter what level of the tree we are
studying; hence the values SR

xy = max(—yyy, —Vizs —Viah e xe. = max(")’sh ""J's'z; “J’.n)

are also in random order.

If position p is examined by calling F1(p, bound), then position A will be
examined by the subsequent call F1(A, + c0), by definition of F1 (see Section
2). Eventually the value x, will be returned; and if —x, < bound, position B
will be examined by calling F1(B, x,). Eventually the value x, will be returned;
or, if x, > x,, any value x4 > x; may be returned. If max(—x,, -xz) <
bound, position C will be examined by calling F1(C, min(x,, x,)). Note that
—max(—x,, —X3) = rmn(xl, X,); the preclse value of x5 is not mvolved
when C is called.

This argument shows that all three sucoessors of an A position are always
examined (since the correspondmg bound is +o0). Each B position will
examine its first successor, but (since its bound is x; = —min(yyy, Yiz, V13)) it
will examine the second successor if and only if — Y21 < —min(yyq, ¥12 Vi)
ie., if and only if the values satisfy min(yy;, Y12, Yi3) < Y21 This
happens with probability 2, since the y’s are randomly ordered and since the
relation min(y; 1, ¥12, ¥13) > Y23 obviously holds with probability 4. Similarly
the third successor of a B position is evaluated if and only if the values
satisfy min(pyy, 12, ¥13) < min(y;,, ¥,2), and this has probabxlxty 3. The
probability that the second successor of a C position is evaluated is the
probability that max(min(yyy, Y12, ¥13)s mm()’zb}’zz: ¥23)) < ¥31, and this
occurs % of the time; the third successor is examined with probabxhty 2.
(A general formula. for these probabilities is derived below.).

Let A,, B,, C, be the expected number of positions exammed n levels
below an A, B, or C position exammed by procedure F1 m a random game
tree. Our discussion ] proves that

AO-BO-CO—I
n+l"An_+B + C,;
By = A, + 3B, +3C;;.
Cpt = A, + 4B, + £Cy

and T(3, k) = A, is the answer to cur problem when d = 3

The solution to these snmultaneous linear recnrrences can be studied in
many ways, and for our purposes the use of generatmg functlons is most
convenient. Let L e
Artificial Intelligence 6 (1975), 293-326
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A2) = "20 Az, B2 = ,.‘;o B,z", C()= Y C,z

nz0
so that (18) is equivalent to
A@) - 1 = zA(2) + 2zB(2) + 2C(2),
- B(2) = 1 = zA(2) + 32B(2) + 32C(2), (19)
C(2) — 1 = zA(2) + %2B(2) + F52C(2). '
By Cramer’s rule, A(z) = U(2)/¥(z), where

-1 z z
U@) =detf -1 3z—1 3z ,
-1 19‘2 '296‘ _1

-1 =z z
V@z)=det{ z $z—-1 3z )
\ z ez ezl

are polynomials in z. If the equation z>V(1/z) = 0 has distinct roots r,, I r3,
there will be a partlal fraction expansion of the form :

Cy ¢y C3
A(2) = s
(,) 1-—r12+1-—rzz+1-—r32

20

21)

where

c; = —rUQr)/V'(l/r). (22)
Consequently A(2) = Y, zo(c,(ry2)" + ¢,(r22)" + ¢5(r32)"), and we have

Ay =] + ey + el
by equating coefficients of z,. If we number the roots so that {r;| > [ra] = |r5]
(and the theorem of Perron [17] assures us that this can be done), we have
asymptotically _
A, ~ 1. | (23)

Numerical calculation gives r; = 2.533911, ¢; = L. 162125 thus, the alpha-
beta procedure without deep cutoffs in a random ternary tree will examine
about as many nodes as in a tree of the same height with average degree
2.534 instead of 3. (It is worthwhile to note that (23) nredicts about 48
nositions to be examined on the fourth level, while on.; 35 occurred in
Fig. 2; the reason for this discrepancy is chiefly that the one-digit values in
Fig. 2 are nonrandom because of frequent equalities.)

Elementary manipulation of determinants shows that the equation z* F(1/z}
= 0 is the same as

1-z 1 1
detf 1 33—z 3 = 0;
| 1 &% H-2

hence r, is the largest eigenvalue of the matrix
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11 1\
(1;%).
1 % &

We might have deduced this directly from eq. (18), if we had known enough
matrix theory to calcuiate the constant ¢, by matrix-theoretic means instead
of function-theoretic means.

This solves the case d = 3. For general dwe find snmxlarly that the expected
number of terminal positions examined by the alpha-beta procedure without
deep cutoffs, in a random uniform game tree of degree d and height 4, is
asymptotically '

T(@, k) ~ co(d) ro(d)* - (29
for fixeddas h — oo, where ro(d) is the largest eigenvalue of a certain d x d
matrix
Pyy P12z - Pu
P2y P22 --- P

] O

Pay Paz v Pu

and where cy(d) is an appropriate constant. The general matrix element Py

in (25) is the probability that ,
- mag (min(Ys, . . ., Yig)) < min Y, | (26)

1€k< o 1Kk<j
in a sequence of (i — 1)d + (j — 1) independent id_entically distributed
random variables Y,,, ..., Yy ;.1

Wheni=1lorj=1, the probabxllty in (26) is 1, since the min over an
empty set is + 00 and the max is —oco. When i,j > 1 we can evaluate the
probability in several ways, of which the simplest seems to be combinatorial:
For {26) to hold, the minimum. of all the ¥’s must be Yxy, for some ky <i,
and this occurs with probablhty (= l)d/((t ~ 1)d +j~ 1); remov-
ing Y, . » Yia from consxderatlon, the minimum_ of the remammg
Y ’s. must be Yiu, for some k, < i, and this occurs with probability
- 2)d| (i — 2d +j- l), and so on. Therefore (26) occurs with: pro-
bablhty

G-0d G- . 4

I g o v s S ey v

_ —14 @~/ -
"1/( i—~1 /) ' o

This explicit formula allows us to ‘calcuiate ro(d) numerically for small d
without much dxﬁ‘xculty, and to calculate co(d) for small d thh somewhat
more difficulty using (22). : : :
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The form of (27) isn’t very convenient for asymptotic calculations; there is
a much simpler expression which vyields an excellent approximation:
LEMMA 1. When 0 < x < 1 and k is a positive integer,
es(* 1Y) <era . @)

(Note that 0.885603 < I'(1 + x) < 1 for 0 € x < 1, with the minimum
value occurring at x = 0.461632; hence the simple formula k* is always
within about 11 % of the exact value of the binomial coefficient.)

ProoﬁWhen0<x$landt>»—lwehave .

A+ 0)*<T 4+ tx, 29
since the function f(x) = (1 + #)*/(1 + tx) satisfies £(0) = f(1) = 1, and
since |

) = ((n(l + ) = 41 + 1) + 21 + x))f(x) > 0.
Using (29) for t = 1, 4, %, . . . yields
I+x 1+x 14+

i< < . — S
r ST e

< lim(1+x)(2 +x) (m+x) 1 _ 1
meow 1 2 ‘ m (m+1 T1+x)

and the kth term of this series of inequalities is (k ; 1_41' x) / k=,

For trees of height 2, deep cutoffs are impossible, and procedures F1 and
F2 have an identical effect. How many of the d? positions at level 2 are
examined ? Our analysis gives an exact answer for this case, and Lemma 1
<an be used to give a good approximate result which we may state as a
theorem. '

THEOREM 3. The expected number of terminal posztmns examined by the
alpha-beta procedure on level 2 of a random uniform game tree of degree d is

Td,2)= Y pp . (30)
_ . 1sTyed’ |
where the p;; are defined in (27). We have ,
d2 d2
31}

Jor certain positive constants C, and Cz.
Proof. Eq. (30) follows from our previous remarks, and from Lemma 1
we know that
- CSW@) < T[,2) < S@),
where C = 0,885603 = info<x<t I'(1 + x) and
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Sd= Y iU~
1€i,j<d
d d—=1 i
=d+ k™
kzz ;;o '

1-k1
=d+ 2(1 = k""’) |
Now for k=d' we have k~"?=exp(~t In d/d)=1—1t In djd+O((log d/d)?),

hence for \Jd<k<d, (1 —k™Y)/(1 — k%% lies between dfind and
2d/In d times 1 + O(log d/d). The bounds in (31) now follow easily.

When the values of ro(d) for d < 30 are plotted on log log paper, they seem
to be approaching a straight line, suggesting that ro(d) is approximately of
order d°7°. In fact, a least-squares fit for 10 < d < 30 yielded 4°7° as an
approximate order of growth; this can be compared to the lower bound
2d°-% of an optimum alpha-beta search, or to the upper bound d of a fult
minimax search, or to the estimate d°-72 obtained by Fuller et al. [7] forrandom
alpha-beta pruning when deep cutoffs are included. However, we shall see
that the true order of growth of ro(d) as d - o is really dflogd.

There is a moral to this story: If we didn’t know the theoretical asymptotic
growih, we would be quite content to think of it as 4°7¢ when d is in a
practical range. The formula d/log 4 seems much worse than 4°-75, until we
realize the magnitude of log 4 in the range of interest. (A similar phenomenon
occurs with respect to Shell’s sorting method, see [12, pp. 93-95].) On the
basis of this theory we may well regard the approximation d%72 in [7] with
some suspicion..

But as mentioned above, there is a much more qxgmﬁcant moral to this
story. Formula ( 24) is incorrect because the proof overlooked what appears to
be a rather subtle question of conditional probabilities. Did the reader spot
a fallacy? The aunthors found it only by comparing | their results to those of
[7] in the case h = 3, d = 2, since procedures F1 and F2 are equivalent for
helghts <3 Accordmg to the analysis above, the alpha-beta procedure will
examine an average of 6 nodes on level 3-of a random binary game tree, but
according to [7] the number is 6‘1‘69‘5 After the authors of [7] were politely
informed that they must have erred, since we had proved that 67 was correct,
they politely replied that simulation results (including a test on all 8!
permutations) had confirmed that the correc: answer is 68%.

A careful scrutiny of the situation explains what is going on. Theorem 3 is
correct, since it deais only with level 2, but trouble occurs at level 3. Qur
theory predicts a cutoff on the right subtree of every B node with probability
%, so that the terminal values (f}, . . ., fs) in Fig. 7 will be examined with
respective probabllxtles tL1L1,31,1,%4,9. Actually f; is exammed with
probability 3 instead of &; for f; is examined if and only if
Artificial Imelhyem:e 6(1975), 293-326
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Ja > min(fs, fo),
min(fS’ f 6) < max(nﬁn(f,,f 2)’ l'l]iﬂ(_f3,f 4))'
Each of these two events has probability £, but they are not independent.

(32)

.A// \os
QA/\M' ’.'A/ \\.s

F1G. 7. A tree which reveals the fallacious reasoning.

When the fallacy is stated in these terms, the error is quite plain, but the
dependence was much harder to see in the diagrams we had been drawing for
ourselves. For example, when we argued using Fig. 6 that the second successor
of a B position is examined with probability 4, we neglected to consider that,
when p is itself of type B or C, the B node in Fig. 6 is entered only when
min(yy 4, Y13, Y13) is less than the bound at p; so min(y, 4, ¥ 3, ¥43) is some-
what smaller than a random value would be. What we should have computed
is the probability that y,, > min(y,,, ¥12, ¥13) given that position B is not
cut off. And unfortunately this can depend in a very complicated way on the
ancestors of p.

To make matters worse, our error is in the wrong direction, it doesn’t even
provide an upper bound for alpha-beta searching; it yields only a lower
bound on an upper bound (i.e., nothing). In order to get information relevant
to the behavior of procedure F2 on random data, we need at least an upper
bound on the behavior of procedure Fl. ,

A correct analysis of the binary case (d = 2) involves the solution of
recurrences

Apry = A, + BO), |
,‘.’:2, = A, + B fork >0, (33)
-—B§,°’—B“’- B = -v0 =1, '

where the p, are appropriate probabilities. For example, p, = %; pop- is the
probability that (32) holds; and pop,p, is the probability that fifteen indepen-
dent random variables satisfy
Sis>S1a A fras
JuaAfis<(foAfio) Vv (fii A fr2)s (349

forfio)V i A1) > (i A L)V (AN A ({(fsA fo) v (f1A fo)),
Artificial Intelligence 6 (1975), 293-326
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writing ‘v for max and A for min. These probabilities can be computed
exactly by evaluating appropriate integrals, but the formulas are complicated
and it is easier to look for upper bounds. We can at least show easily that the
probability in (34) is <%, since the first and third conditions are independent,

and they each hold with probablhty % Thus we obtain an upper bound if we

set po = Py = Pg = =%and p, = p; = = 1; this is equivalent to
the recurrence

Ag =By =1,
An+i = An + B-ni : (35)
; B, = A, + A, A ’
Similarly in the case of degree 3, we obtain an upper bound on the average
number of nodes examined without deep cutoffs by solving the recurrence
AO = BO = CO = 1’
‘A,+1=‘A,,+B,,+C,,, b ' (36)
Bu+1“‘A‘+iAn+%Am‘ , '
' Cn+1 = A + 1 An +'29(_)'Am ' k |
in place of (18) This is equivalent to
n+1"A +(l +%+§+l+&+20)An—l
and for general degree d we get the recurrence

C Am=A+SAL 0D
where Ao = 1 A, = d, and o o
Sd = Pu- (38)

This gives a valid upper bound on the behavior of proczdure F1, because it is
equivalent to setting bound « + oo at certain positions (and this operation
never decreases the ‘number of positions exammed) Furthermore we can
solve (37) exphcntly, to obtain an asymptotnc upper bound on T4, h) of the
form cl(d) ri(d)", where the growth ratio is -

n@d =+ ¥ ++ 09
Unfortunately it turns out that S, is of order d’/logd by Theorem 3; so
(39) is of order d/ /log d ‘while : an upper bound of order dflog d is desired.

Another way to get an upper bound relies on a more detailed analysis of
the structural behavior: of procedure F1, as in the following theorem.

“THEOREM 4. The expected -number of terminal posmons examined by the
alpha-beta procedure without deep cutoﬁis’, in a random uniform game tree of
degree d and height h, satisfies

TW@, k) < c*(d)r*(d)" P (40)
where r*(d) is the largest eigenvalue of the matrix '
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AN.ANALYSIS OF ALPHA-BETA PRUNING ' 319

\/Pu \/Pu \/Pu

\/sz \/Pzz \/Pzd
Myp={ © T T @)

\/P.u \/sz \/pdd

and ¢*(d) is an appropriate constant.
~ (The p;; in (41) are the same as ini (25). )

Proof. Assign coordinates 4, ...a;tothe posi:ions of the tree as in Section
6. For I > 1, it is easy to prove by induction that position a, ... a; has
bound = min{F(a, ...a,_;k) | I < k < a,} whenitis examined by procedure
F1; hence it is examined if and only if g, . . . a,_; is examined and

- min F(a,...a,-,k)< min F(a;...a_,k) or l=1(42)

1 <k<a; i<k<ar_y

It follows that a terminal position 4, . . . @, is examined by F1 if and only if
(42) holds for 1 < / < h. Let us abbreviate (42) by P,, so that g, . . . g, holds
if and only if P, and . . . and P,. Condition P, by itself for / > 2 holds with
probability p;;, where i = a,_, and j = a,, because of definition (26); hence if
the P, were independent we would have a, . . . a, examined with probability
DPaaz Pazas « + » Day- 104, and this is precisely equivalent to the analysis leading
to (24). However, the P, aren’t independent, as we have observed in (32) and
(34).
Condition P, is a function of the terminal values

flay...a  jkay,...a),
wherej < g, orj=a,_;and k <« a,. Hence P, is independent of P,, Pz, cens
P,_,. (This generalizes an observation we made about (34).) Let x be the
probability that position a, . . . g, is examined, and assume for convenience
in notation that 4 is odd Then by the partial mdependenoe of the P,’s, we
have

x < panaz Pa:aq b pﬂn-zan..l’

x < p 13 Imas pa;.;;a;.;
hence

, x < \/ Paya; Pazas - - + Pan_ 1o
and the theorem follows by choosing c*(d) large enough.

~-Mow we are ready to establish the correct asymptotic growth rate of the
branchmg facisr for procedure F1.

THEOREM 5. The expecied number T(d, h) of terminal positions examined by
the alpha-beta procedure withoi:t deep cutoffs, in a random uniform game tree
of degree d and height h, has a branching factor

lim T(d, H)'* = r(d) (43)
e Artificial Intelligence 6 (1975), 293-326
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which satisfies ’
d

7 (:31 oad < Hd) < C‘logd S - (44)

for" certain positive constaats Cs and C,.
Proof. We have o ‘ S ‘
T, hy + hy)) < T(d, hl) T(d hz), @)

since the right-hand side of (45) is the number of posxtxons that would be
examined by F1 if bound were set to +co for all posmons at he;ght by
Furthermore the arguments above prove that -~ -

hm inf 7(d, B = ro(d), hm sup T(d b) r;(d), r*d).

By a standard argument about subaddmve functlons (see, e.g., [20, ?foblem
1.98}) it follows that the limit (43) exists.

. To prove the lower bound in (44) we shall show that ro(d) > C; dflogd.
The largest eigenvalue of a matrix with positive entries p; is known to be
“2=min}; p.)), according to the theory of Perron [i9]; see [26, Section 2.1]
for a- modern account of this theory.* ’I‘hexefore by Lemma 1, S

ro(d)z c mm( ) -G-n,14)
‘ 15554 -/

‘ 1<i<d
= C min { ———
\ «zs;sa(l"‘ ’m); -
o c 1—at Cd-l

e 1~-d" 7> na
where C = 0 885603 a= mf,,sxs ' I‘(l + x), since d"‘f" = exp(--—ln d/d) >
l ~ indd. -
- To get the upper bound in (44), we shall prove that r*(d) < C4 d/lﬂg d,
usmg a rather cunous matrix norm. KHs and t are positive real numbers with

“-3*131 T )

then all exgenvalues 2. ofa matnx A thh entries ay satisfy
S HE9Y0) la t)’f')*f’ A @

To prove th:s, Iet Ax = Ax where X8 a nonzcro vector' by Hblder s in-
equality [9, Section 2.7}, - - :

W zx'l)"' (o l)'_‘,asfxxl')”’
O SEEE S

4 We are mdebted to Dr J.H. W‘lkmson for suggwﬁng this prcof of the lower bound.
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. " t 1\s/t\1fs si\1/s
| (RZ 9l )") (2 )
and (47) follows.

If we let s = ¢t = 2, inequality (47) yields r*(d) = O(d/,/log d), while if s
or ¢ — oo the upper bound is merely O(d). Therefore some care is necessary in
selecting the best 5 and ¢; for our purposes we choose s = f(d) and ¢ =

S@/(f(d) — 1), where f(d) = }In dfin In d. Then
*(d) < ( y Z ift(j—l)/Zd)s/!)lls

1si"sd(1 <$i<a | ,
< (\/d & 4 (d ~ ,/d)(j);l \/d—“f*”/“)ﬂ')”s, (48)

The inner sum is g(d) = 1/(1 — d~"*%) = @d/Ind)(1 + O(In In d/In d)), so

dgd) = d' 9 2 explIn4Ind/inlnd + InInd 4+ O(1)).
Hence the right-hand side of (48) is

exp(ind — Inlnd + In 4 + O((In In d)*/In d));

we have proved that

r*(d) < (4d/lnd)(1 + O((InIn d)?/Ind)) asd — oo.

TasLE 1. Bounds for the branching factor in a random tree
when no deep cutoffs are parformed

d ro(d) ri(d) r*(d) d ro(d) rid) r*(d)
2 1.847 1.884 1.912 17 8.976 11.378 11.470
3 2.534 2.666 2.722 18 9.358 11.938 12,021
4 3,142 3.397 3473 19 9.734 12.494 12.567
5 3701 . 4.095 4.186 20 10.106 13.045 13.108
6 4.226 4.767 4.871 21 10.473 13.593 13.644
7 4.724 5.421 5.532 22 10.836 14.137 14.176
8 5.203 6.059 6.176 23 11.194 14.678 14,704
9 5.664 6.624 6.805 24 11.550 15.215 15.228
10 6.112 7.298 7.420 25 11.901 15750  °.5.748
11 6.547 7.902 8.024 26 12.250 - 16.282 16.265
12 6.972 8.498 8.618 27 12,595 16.811 16.778
13 7.388 9.086 9.203 28 12.937 17.337 17..18
14 7.795 9.668 9.781 29 13.277 17.861 17.796
15 8.195 10.243 10,350 30 13614 18.383 18.300
16 8.589 10.813 10,913 31 13.948 18.903 18.802

Table 1 shows the various bounds we have obtained on r(d), namely the
lower bound ry(d) and the upper bounds r,(d) and r*(d). We have proved
that r{d) and r*(d) grow as dflog d, and that r,(d) grows as d/,/log d; but
the table shows that r,(d) is actually a better hound for d < 24.

Ariificial Intelligence 6 (1975), 293-326
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8. Discussion of the Model

The theoretical model we have studied gives us an upper bound on the actual
behavior obtained in practice. It is an upper bound for four separate reasons:

(2) the deep cutoffs are not considered;

(b) the ordering of successor positions is random;

() the terminal positions are assumed to have distinct values;

(d) the terminal values are assumed to be mdependent of each other.

Each of these conditions makes our model pessimistic; for example, it is
usually possible in practice to make plausible guesses that some moves will
be better than others. Furthermore, the large number of equal terminal
values in typical games helps to provide additional cutoffs. The effect of
assumption (d) is less clear, and it will be studied in Section 9.

In spite of all these pessimistic assumptions, the results of our calculations
show that alpha-beta pruning will be reasonably efficient. .

Let us now try to estimate the effect of deep cutoffs vs no deep cutoffs.
One way to study this is in terms of the best case: Under ideal ordering of
successor positions, what is the analogue for procedure F1 of the theory
developed in Section 6? It is not difficult to see that the positions a, . .. q,
examined by F1 in the best case are precisely those with no two non-1’s in a
row, i.e., those for which g, > 1 implies a;,, = 1.

In the ternary case under best ordering, we obtain the recurrence

Ay =B, =C, =1,

A=A, +B,+C, | (49)
Bn+1 = An’
‘ Cn+1 = Ans )
hence A,,“ = A, + 2A, ;. For general d the correspondmg recurrence is
Ag=1, Ay=d A, = An+x +(d- I)A : (50)

The solution to thxs recurrence is S
~/Z4T'”“ e (/A = B) + P - ‘(-\/(d R an )

SO the grow:h tate or effective branching factor is Jd=-3 + e}, not much
higher than the value'\/d obtained for the full method including deep cutoffs.
This result tends to support the contention that deep cutoffs have only a
second-order eﬁ‘ect although we must admxt that poor ordenng of successor

...........

. 9 Dependent Termmal Values s
Our model gwes independent values to all the termmal pos1t10ns, but such
independence doesn’t happen very often in real games. For example, if f{p)
Artificial Intelligence 6 (1975), 293-326
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is based on the piece count in a chess game, all the positions following a
blunder will tend to have low scores for the player who loses his men.

In this section we shall try to account for such dependencies by considering
a total dependency model, which has the following property for all non-
terminal positions p: For each i and /, all of the terminal successors of p;
either have greater value than all terminal successors of p;, or they all have
iesser value, This model is equivalent to assigning a permutation of {0, 1, .. .,
d — 1} to the moves at every position, and then vsing the concatenation of all
move numbers leading to a terminal position as that position’s value,
considered as a radix-d number. For example, Fig. 8 shows a uniform
ternary game tree of height 3 constructed in this way.

0
I
/1/ ’?\2
o o ..
o’/{ N, 1/;%\'0 V o/ VS,

e ¢ N o o e Y N
AR A I\ l-\ R Y Y
201 o217 Zio 2o 1 Jo 102 021 12\0\
1081 t!o 1\0 I 122 12'1 ) o/ l \021 o&n ozz/ \201 2\)0&02 \\z 1222 220

110 112 11 012010011 002 000 001 210 212 211

FiG. 8. A tree with “totally dependent™ values.

Another way to look at this model is to imagine assigning the values
0,1,...,d" — 1ind-ary notation to the terminal positions, and then to apply
a random permutation to the branches emanating from every nonterminal
positior.. It follows that the F value at the root of a ternary tree is always
~(0202. .. 20); if i is odd, +(2020. .. 20); if & is even.

THEOREM 6. The expected number of terminal positions examined by the
alpha-beta procedure, in a random totally dependent umform game tree of
degree d and hetght h, is

d H,, |
where H; =1+ 4+ ...+ 1fd

Proof. As in our other proofs, we divide the positions of the tree into a
finite number of classes or types for which recurrence relations can be given.
In this case we use three types, somewhat as in our proof of Theorems 1 and 2.
A type 1 position p is examined by calling F2(p, alpha, beta) where all
terminal descendants g of p have alpha < +f(q) < beta; here the + or —
sign is used according as p is an even or an odd number of levzls from the
bottom of the tree. If p is nonterminal, its successors 2ve assigned a definite
ranking; let us say that p, is relevan: if F(p;) < F(p;) for all 1 < j < i. Then
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all of the relevant successors of p are examiued by calling #2(p,, —beta, —m)
where F(p,) lies between —beta and —m, hence the relevant p, are again of
type 1. The irrelevant p; are examined by callmg F2(p5, -beta, —m) where
F(p;) > —m, and we shall call them type 2. :

A type 2 position p is exammed by calling F2(p, alpha, beta) where alil
terminal descendants ¢ of p have =+ f(g) > beta. If p is nonterminal, its first
successor p, is classified as type 3, and it is examined by calling F2(p,, —beta,
~alpha). This procedure call eventually retums a value < -—beta, causing
an immediate cutoff.

A type 3 position p is examined by callmg F2(p, alpha beta) where all
terminal descendants g of p have +j(g) < alpha. If p is nonterminal, all its
successors are classified type 2, and they are examined by calling F2(p,,
—beta, — alpha); they all return values > —alpha.

Let A,, B,, C, be the expected number of terminal positions examined in a
random totally dependent uniform tree of degree d and height 4, when the
root is of type 1, 2, or 3 respectively. The above argument shows that the
following recurrence relations hold

Ap=Bp=Co=1,

An-H = A + ('}Au + %Bu) + (%A + %Bu) + .
+((fld)A + ((d 1)/d)B,)

| = HA, + (d— H)B,, ; (53)
Bn+1 = Cm
Cn+1 = dB

Consequently B, = dt"/4, and A,, has the value stated in (52).

COROLLARY 4. When d > 3, the average number of positions examined by
alpha-beta search under the assumption of totally dependent terminal values is
bounded by a constant® times the optimum number of positions specified in
Coroliary 3. : : .

Proof. The growth of (52) as h — o0 is order a2, The stated constant is
approxlmately :
o (d— H)(1 + Hd)IZ(d ~ H?).
(When d = 2 the growth rate of (52) is order (3)* instead of \/2")

Inudentally, we can also analyze procedm'e Flunder the same assumptions;
the restnctlon of deep cutoffs leads to the recurrence
'Ao =1, Ap=1, Apy = HdAn+1 +({d- Hd)Am 9
and the corresponding growth rate is of order (/d — Hy + YHD + 3H)".
So again the branching factor is approxxmately \Jd for large d
s This “constant” depends on the degree d_ ‘but not on the helght A
Artificial Intelligence 6 (1975), 293-326
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The authors of [7] have suggested another model to account for depen-
dencies between positions: Each branch (i.e., each arc) of the uniform game
tree is assigned a random number between 0 and 1, and the values of terminal
positions are taken to be the sums of all values on the branches above. If we
apply the naive approach of Section 7 to the analysis of this model without
deep cutoffs, the probability needed in place of eq. (26) is the probability that

max (X, + min(Yy, ..., h)) < X; + min Y, (55)

1<k<i 1<k<j
where as before the Y’s are independent and identically distributed random
variables, and where X,, . . ., X; are independent uniform random variables
in [0, 1]. Balkema [2] bas shown that (55) never occurs with greater probability
than the value p;; derived in Section 7, regardless of the distribution of the
Y’s (as long as it is continuous). Therefore we have good grounds to believe
that dependencies between position values tend to make alpha-beta pruning
more efficient than it would be if all terminal positions had independent
values.
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