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Blockchain in Edge - Cloud Computing Continuum

Abstract:
In the era of Edge Computing, Internet of Things(IoT) devices connect and communicate
to create a network of objects that can collect information from the environment without
human intervention. While the IoT offers many benefits, it also poses several cybersecu-
rity risks, including the lack of detection of malicious IoT sensors, weak authorization,
and authentication protocols, and insecure management of data received from IoT de-
vices. Developing new solutions to enhance IoT sensors’ security to address these issues
is crucial. One crucial challenge that requires attention is the secure management and
storage of data collected from IoT devices at the Edge. Many existing solutions rely on
centralized systems vulnerable to tampering and must provide reliable data traceability
records. To address this challenge, this thesis proposes a blockchain-based architecture
for securing and managing data collected from IoT devices. By leveraging blockchain
technology, we create a distributed data storage architecture that eliminates the need
for centralized network topologies. This approach offers several advantages, including
immutability, decentralization, distributivity, enhanced security, transparency, instant
traceability, and increased efficiency through automation. Our results demonstrate that
this proposed architecture provides a high level of performance and can be used as a
scalable, massive data storage solution for IoT devices using blockchain technologies.
One significant advantage of this approach is that new IoT sensors can quickly be enrolled
and unenrolled in our architecture without retrofitting. Our system does not depend
on any specific communication protocol and can be applied to any IoT application. In
summary, our proposed architecture provides a robust and secure solution for managing
and storing data collected from IoT devices, thus enhancing the overall security of the
IoT devices in the Edge.
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Blockchain, Edge computing, Fog computing, Data Privacy, Hyperledger Fabric, Cloud
Computing

CERCS:
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Plokiahel Edge’is - Pilvandmetöötluse kontinuum
Lühikokkuvõte:

Edge Computingu ajastul, esemevõrgu(IoT) seadmed ühenduvad ja suhtlevad, et luua
objektide võrgustik, mis suudab koguda informatsiooni keskkonnast inimeste sekku-
miseta. Kuigi IoT omab palju eeliseid, kannab see ka endas mitmeid küberturvalisuse
riske, sealhulgas pahatahtlike IoT andurite tuvastamise puudumine, nõrk autoriseerimine,
autentimise protokollid ja ebaturvaline IoT seadmetelt vastu võetud andmete haldami-
ne. Nende probleemide lahendamiseks on ülioluline uute lahenduste väljatöötamine
IoT andurite turvalisuse suurendamiseks. Üks oluline väljakutse, mis nõuab tähelepanu,
on IoT seadmetest Edge-is vastu võetud andmete turvaline haldamine ja hoiustamine.
Paljud olemasolevad lahendused põhinevad tsentraliseeritud süsteemidel, mis on haavata-
vad rikkumiste suhtes ja peavad pakkuma usaldusväärseid andmete jälgitavuse kirjeid.
Selle väljakutse lahendamiseks pakub see lõputöö välja plokiahelapõhise arhitektuuri
IoT-seadmetest kogutud andmete turvamiseks ja haldamiseks. Plokiahela tehnoloogiat
võimendades loome hajutatud andmesalvestusarhitektuuri, mis välistab vajaduse tsentra-
liseeritud võrgutopoloogiate järele. Sellel lähenemisviisil on mitmeid eeliseid, sealhulgas
muutumatus, detsentraliseerimine, jaotus, suurem turvalisus, läbipaistvus, kohene jäl-
gitavus ja automatiseerimise kaudu suurem tõhusus. Meie tulemused näitavad, et see
kavandatud arhitektuur tagab kõrge jõudluse ja seda saab kasutada plokiahela tehnoloo-
giaid kasutavate IoT seadmete skaleeritava massilise andmesalvestuslahendusena. Selle
lähenemisviisi üheks oluliseks eeliseks on see, et uusi IoT andureid saab kiiresti meie
arhitektuuris registreerida ja registrist eemaldada ilma moderniseerimiseta. Meie süsteem
ei sõltu ühestki konkreetsest sideprotokollist ja seda saab rakendada igale IoT raken-
dusele. Kokkuvõtteks võib öelda, et meie pakutud arhitektuur pakub tugevat ja turvalist
lahendust IoT seadmetest kogutud andmete haldamiseks ja salvestamiseks, suurendades
seeläbi Edge’i IoT seadmete üldist turvalisust.

Võtmesõnad:
Plokiahel, Edge Computing, Udu Andmetöötlus, Andmete Privaatsus, Hyperledger
Fabric, Pilvtehnoloogia

CERCS:
P170 – arvutiteadus, numbriline analüüs, süsteemid, juhtimine
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1 Introduction

Blockchain, Fog Computing, and Edge Computing technologies have emerged as sig-
nificant technological innovations in recent years [23]. These technologies offer unique
benefits and can be combined to create new solutions and applications previously impos-
sible. With blockchain technology, users can conduct secure and transparent transactions
without intermediaries. In contrast, edge computing allows for real-time processing and
data analysis closer to where it is generated [18].

However, integrating these technologies presents several challenges that must be
addressed to realize their full potential. One such challenge is scalability, as the de-
centralized nature of blockchain networks can result in slower transaction speeds and
higher costs than traditional centralized systems [27]. Moreover, the increasing amount
of data generated from edge devices and the complexity of processing and analyzing it
require innovative approaches. Additionally, security is a crucial concern when dealing
with sensitive data, particularly in the case of edge computing, where devices are often
deployed in unsecured environments [27].

One challenge that needs addressing is the issue of trust in edge computing envi-
ronments. Since edge devices are often distributed and unsecured, there is a need to
establish trust between devices, nodes, and systems [23]. Another challenge is the
efficient management of data generated by edge devices. The large volume of data
these devices generate requires efficient storage, processing, and management techniques
[1]. Additionally, the heterogeneity of edge devices presents challenges in terms of
interoperability and data standardization [23].

Researchers have proposed various solutions to address these challenges, such as
integrating blockchain technology with edge and cloud computing [27]. The use of
blockchain can enhance security and trust in edge computing environments by providing
a decentralized and tamper-proof ledger for recording transactions and storing data [27].
While most of these solutions address the secure data transfer from the edge to the
blockchain network, what happens if these IoT devices’ data get manipulated in transit?
Considering the scalability issues inherent with blockchain, do we store all this extensive
data from these edge devices on the Blockchain network? How efficient would it be to
issue read queries to this blockchain network?

This thesis proposes E2C-Block - an architecture incorporating blockchain with an
external data repository to efficiently collect, securely store, and process IoT data from
various IoT sensors. This architecture leverages blockchain’s security and immutability
features to ensure the data’s integrity and privacy. Additionally, it employs edge and
cloud computing to provide efficient data processing and management capabilities, thus
addressing the challenges of data heterogeneity, trust, and efficient data management in
the edge-cloud continuum.
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1.1 Research Problem
Integrating blockchain, fog computing, and edge computing presents several challenges
that must be addressed to realize their full potential. One significant challenge is scal-
ability, which results in slower transaction speeds and higher costs than traditional
centralized systems. Moreover, the increasing amount of data generated from edge
devices and the complexity of processing and analyzing it require innovative approaches.
The heterogeneity of edge devices presents challenges regarding interoperability and data
standardization. Security is another crucial concern when dealing with sensitive data,
particularly in the case of edge computing, where devices are often deployed in unsecured
environments. Trust is a significant challenge in edge computing environments, where
trust is needed between devices, nodes, and systems. Efficient management of data
generated by edge devices is another challenge, as the large volume of data requires
efficient storage, processing, and management techniques. This thesis aims at answering
these research questions:

• What are the best security measures for edge computing environments to protect
sensitive data?

• How can blockchain, fog computing, and edge computing be integrated to over-
come scalability and reduce storage costs?

• How can blockchain technology be leveraged to ensure the integrity and immutabil-
ity of data stored in fog and edge computing environments?

1.2 Research Method
The research in this thesis employed a design science approach, beginning with a compre-
hensive review of the existing literature on blockchain technology, fog computing, and
edge computing to identify the research problem and objectives. A conceptual framework
was developed to guide the research process, which included defining the scope of the
study and outlining the research questions that need to be addressed.

We then designed the proposed architecture, considering the integration of blockchain
technology, MinIO cloud-based storage system, and sensor networks for efficient data
management and security. The design process involved several iterations to ensure the
architecture’s effectiveness and practicality.

Next, the architecture was implemented and tested using a prototype system with two
Blockchain networks. We also integrated an external data repository to provide a reliable
off-chain storage solution that complements blockchain networks.

Finally, we conducted a series of tests and simulations to measure the proposed archi-
tecture’s performance and scalability. The tests focused on assessing the architecture’s
ability to ensure data integrity, prevent tampering, and reduce storage costs. The results
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of these tests and simulations were analyzed to identify the proposed architecture’s
strengths and weaknesses and identify areas for improvement.

Large Language Models, particularly ChatGPT, were utilized during the research
process to obtain quick summaries of various research papers. Additionally, Grammarly
was extensively used to correct minor grammar errors in the thesis.

1.3 Contribution
The proposed E2C-Block architecture contributes towards ensuring the security and
integrity of IoT sensor data by leveraging blockchain technology and MinIO cloud-based
storage system. The use of blockchain technology provides a secure and tamper-proof
system for processing, transmitting, and storing sensor data. The Sensor Blockchain
network adds an extra layer of security by authenticating the data before being sent to
the Primary Blockchain network. Moreover, keeping the hash of the sensor data on
the Primary Blockchain network instead of the data itself reduces the storage footprint
significantly while ensuring data integrity. Section 3 introduces and covers these two
blockchain networks and the Minio Storage Server in great detail.

Furthermore, the integration of MinIO provides an efficient and reliable off-chain
storage solution that complements blockchain networks. It enables large amounts of
sensor data to be stored reliably and accessed when needed. By utilizing this approach,
organizations can maintain the integrity of their data and build a trusted system that
enhances their overall security posture. In cases where it is necessary to confirm the
authenticity of a specific data point, the data can be retrieved from the MinIO server and
compared against the hash value previously stored on the Primary Blockchain network.
This process ensures that the data has not been tampered with or altered.

The architecture takes a comprehensive approach to data security, guaranteeing that
the data is processed, transmitted, and stored securely and tamper-proof. This approach
provides a dependable and effective method of protecting confidential information and
preventing unauthorized access, ultimately enhancing the security and privacy of the
system.

1.4 Thesis Outline
Section 1 introduces the thesis and presents basic concepts. We define the research
questions this thesis addresses and our research methodology. Additionally, a brief
discussion on the potential contributions of the thesis is included.

Section 2 introduces Edge, Fog and Cloud Computing, and Blockchain technologies and
discusses the components and types of blockchain networks. We compare Corda and Hy-
perledger Fabric (HLF) and explain why we chose HLF as our reference implementation.
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In Section 3, we extensively delve into the design of our proposed architecture. Our
discussion entails exploring the options we considered, alternative possibilities, and the
reasoning behind our ultimate design choices.

Section 4 provides the implementation of the design for the proposed architecture. It
covers the various technical aspects of the implementation process, such as the program-
ming languages, frameworks, tools used to build the architecture, and any challenges
encountered during the implementation and how they were overcome.

Section 5, discusses the experimental setup and describes the various experiments con-
ducted to evaluate our proposed architecture. We also present our experimental setup,
define some key metrics and list all the experiments done.

Section 6 presents and discusses the findings, highlighting significant observations and
trends observed during the experiments in Section 5. Additionally, this section provides a
critical evaluation of the results, including a discussion of the implications of the findings
and their relevance to the proposed architecture’s performance.

Section 7 explains how the work carried out in this thesis provides solutions to the
research questions that we initially identified and stated. It also explores potential future
research directions for this thesis, as well as the limitations of the study.

Section 8, serves as the thesis’s conclusion, summarizing the findings and their impli-
cations for the proposed architecture. This section provides a final assessment of the
effectiveness of the proposed architecture in addressing the research problems based on
the experimental results discussed in Section 6.
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2 Background
This section discusses edge, fog, and cloud computing and provides an overview of
blockchain technology, specifically HLF. We conclude with a comparison between HLF
and Corda.

2.1 Edge, Fog, and Cloud Computing
Edge computing is a distributed computing paradigm that brings processing and data
storage closer to the point of demand to speed up response times and conserve bandwidth.
This approach involves deploying computer resources like servers and storage devices
near data sources or users who need access at the network’s edge. Minimizing latency
and the time between requesting and receiving data is a key advantage of edge com-
puting [7]. To improve the processing, analysis, and response to data, edge computing
moves computer resources closer to the edge, which is critical for real-time processing
applications like autonomous vehicles or automated industrial systems. By shifting some
workloads from centralized resources like cloud servers to processing data closer to the
edge, edge computing can reduce network congestion and enhance overall performance
while lowering cloud computing costs [5]. Another benefit of edge computing is its
capacity to manage significant volumes of data generated by IoT devices like sensors and
smart appliances, which require real-time processing and analysis. Deploying comput-
ing capabilities at the network’s edge can improve data management efficiency, reduce
latency, and save bandwidth [23].

However, edge computing poses various challenges, for example, ensuring data
security and privacy in a distributed system and managing and sustaining distributed
computing resources. As edge computing involves positioning resources, careful design
and implementation are essential for optimum performance and efficiency. Fog com-
puting is a distributed architecture that extends cloud computing to the network’s edge.
It allocates computing, storage, and networking resources between cloud data centers
and edge-connected hardware, including routers, gateways, and IoT devices. This will
improve performance and efficiency as data processing is done closer to where the data
is being produced. At the same time, latency can be reduced, and network capacity can
be preserved [4].

Edge computing and fog computing are similar concepts but have distinct implemen-
tations and use cases [15]. Edge computing involves placing resources at the network’s
edge, closer to data sources or users needing access. In contrast, fog computing is a layer
of computing that sits between edge devices, such as sensors and smart appliances, and
the cloud. It processes and stores data generated by these devices, making it ideal for IoT
applications where a large amount of data is generated by devices distributed over a wide
area [15, 4]. While edge computing and fog computing aim to bring computing power
closer to the data source, they have different use cases. Fog computing is deployed when
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a hybrid cloud and edge architecture is required and when more processing power than
an edge device can provide is necessary for data processing. On the other hand, edge
computing is commonly used when data processing can be completed entirely on a local
device without cloud services [15].

Cloud computing is a popular computing model that delivers computing resources
over the Internet, including servers, storage, and software [2]. It has become a critical
part of modern IT infrastructure due to its scalability, accessibility, and cost savings. One
significant benefit of cloud computing is its ability to scale computing resources up or
down as needed without incurring additional costs associated with owning and managing
computer resources [2]. This enables organizations to respond quickly to changing
business requirements, which can be especially valuable for businesses with fluctuating
demand or seasonal spikes in demand. Cloud computing also allows companies to
reduce their capital expenditures associated with owning and managing hardware and
infrastructure [2], making it an attractive option for businesses.

Fog computing is a complementary technology to cloud computing that provides
additional resources and processing power for applications that require real-time process-
ing and analysis of large volumes of data. It is particularly useful for IoT applications
requiring low latency and real-time decision-making capabilities. IoT devices can process
and analyze data locally, reducing data transmission to cloud data centers. This can
enhance data privacy and security, reduce network congestion and latency, and improve
overall application performance [4]. Both edge computing and fog computing aim to
reduce latency and improve application performance, but they have different use cases
and implementations compared to cloud computing.

Figure 1 describes the hierarchical relationship between edge, fog, and cloud com-
puting environments. The image shows that these computing environments are intercon-
nected, with cloud computing at the top of the hierarchy, fog computing at the bottom
edge computing at the bottom. It also clearly represents how these computing environ-
ments can work together to provide a comprehensive computing infrastructure that meets
the needs of various applications and use cases.

2.2 Blockchain
Blockchain technology has become increasingly popular in recent years due to its ability
to secure and verify data in a decentralized manner. A blockchain is a distributed database
that allows multiple parties to record transactions in a secure, verifiable, and permanent
way. Each block contains a timestamp and a link to the previous block, forming a chain.
This technology was first introduced in 2008 by Satoshi Nakamoto in the white paper
"Bitcoin: A Peer-to-Peer Electronic Cash System" [19].

One of the key features of blockchain technology is that it is decentralized, meaning
that a single entity or organization does not control it. Instead, it relies on a network
of computers known as nodes to validate and record transactions. This makes it more
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Figure 1. Representation of edge, fog, and cloud computing environments in a hierarchi-
cal manner, adapted from [6]

.

secure and transparent, as it is challenging to alter or tamper with the data on the chain.
Moreover, blockchain technology provides a new level of trust and transparency to the
digital world. It allows for a distributed consensus where every online transaction, past
and present, involving digital assets can be verified at any time [27].

One area where blockchain technology has the potential to revolutionize the way
we secure and manage data is the Internet of Things (IoT). IoT devices have become
increasingly popular in recent years [3], and blockchain technology can play an essential
role in securing the data generated by these devices. By using blockchain to store and
verify IoT data, we can ensure the authenticity and integrity of the data, as well as prevent
unauthorized access or manipulation. This is particularly important in industries such as
healthcare and finance, where the security and privacy of data is critical.

The healthcare industry, in particular, can benefit significantly from blockchain
technology. A blockchain system can help manage patient data and ensure the privacy
and security of medical records [20]. It can also give patients more control over their
health data, such as deciding who can access it and for what purpose. Blockchain
technology can also help to prevent medical identity theft, a growing problem in the
healthcare industry.

In addition, blockchain technology can be used in various industries, such as logistics,
supply chain management, and finance. For instance, Walmart uses blockchain to track
the origin of products like vegetables and fruits, ensuring their quality and safety [13].
HLF is a permissioned blockchain platform for enterprise use cases that provides a
modular architecture enabling the development of smart contracts and decentralized
applications (dApps) with high flexibility and confidentiality [15]. HLF is one of the
most widely used platforms for developing enterprise blockchain applications. It has

14



been adopted by major companies in various industries, including finance, healthcare,
and supply chain management.

One key emerging use case of blockchain technology involves "smart contracts."
Smart contracts are computer programs that can automatically execute the terms of
a contract. They can also include conditional statements, allowing for the automatic
execution of specific actions based on fulfilling certain conditions. In HLF, smart
contracts are implemented using a variety of programming languages, such as Golang,
Javascript, and Java. These smart contracts are packed into what HLF refers to as chain
codes and deployed on the blockchain network.

2.3 Types of Blockchains
There are three main types of blockchains: private, public, and permissioned [27]:

Private blockchains: Private blockchains are restricted to a specific group of partic-
ipants. Access to the network and the data stored on it is controlled by a single entity
or organization, meaning only approved participants can join the network and access
the data. Organizations often use private blockchains to share data and facilitate col-
laboration among trusted parties securely [27]. One example of a private blockchain
is Corda, developed by R3. Corda [21] is designed for multiple parties in a specific
business network, such as a consortium of banks. The network administrator controls
access to the network and the stored data, ensuring that only approved participants can
join the network and access the data.

Public blockchains: Public blockchains are open to anyone to participate in and access.
For example, anyone can join the network, access blockchain data, and validate and
record transactions. Public blockchains are decentralized and rely on distributed nodes
to validate and record transactions (e.g., Bitcoin and Ethereum). Bitcoin is one of the
most well-known examples of a public blockchain. Anyone can participate in the Bitcoin
network by downloading the software and contributing computing power. Transactions
are validated and recorded by nodes on the network, and the data is publicly accessible
to anyone with an internet connection. [27]

Permissioned blockchains: Permissioned blockchain is a type of blockchain that sits
somewhere between private and public blockchains. While anyone can join a permis-
sioned blockchain, access to the network and its stored data is restricted to approved
participants. Only authorized participants can validate and record transactions, although
anyone can still access the data stored on the blockchain [27]. Permissioned blockchains
are often used by organizations to securely share data and facilitate collaboration among
trusted parties while still maintaining some level of control over who can access and
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modify the data. HLF is an example of a permissioned blockchain designed for enterprise
use cases. While anyone can participate in the network, access to the data is restricted to
approved participants. HLF allows organizations to create private channels within the
network, which can be used to securely share data and facilitate collaboration among
trusted parties while maintaining confidentiality for sensitive information. Here, I present
a high-level comparison between these blockchains (Table 1).

Table 1. Comparison of Private, Public, and Permissioned Blockchains

Characteristic Private Public Permissioned
Access Limited Open Restricted
Membership Closed Open Closed or Open
Consensus Centralized Decentralized Centralized or De-

centralized
Transaction Speed Fast Slow Fast
Transaction Cost Low High Low
Security High High High
Immutability High High High
Flexibility Low High High
Governance Controlled Uncontrolled Controlled
Examples HLF, Quorum Bitcoin,

Ethereum
Corda, Ripple

2.4 Blockchain Solutions
This subsection examines several blockchain technologies, particularly HLF and Corda.
We will compare these two technologies and justify selecting HLF as the reference
implementation for our proposed architecture.

2.4.1 Hyperledger Fabric

HLF is an open-source blockchain platform developed by the Linux Foundation to
support the development and deployment of distributed ledger applications. It is designed
to be modular, scalable, and secure, making it suitable for various use cases, including
supply chain management, financial services, and healthcare. It has been shown to
achieve an end-to-end throughput of more than 2980 transactions per second and scale
well to over 100 peers [11].

One of the key features of HLF is its modular architecture, which allows developers
to plug in different components, such as consensus algorithms, membership services,
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and data stores, to create a customized blockchain solution. This modularity makes it
possible to tailor HLF to the specific needs of different industries and applications.

Another vital feature of HLF is its support for smart contracts, self-executing contracts
with the terms of the agreement between two or more parties being directly written into
lines of code [9]. Smart contracts allow for the automation of specific processes and
enforcing certain conditions. They can be used to facilitate, verify, and execute the
negotiation or performance of a contract. In HLF, smart contracts are implemented using
a variety of programming languages and deployed as chain codes on the network.

HLF also provides APIs and SDKs (Software Development Kits) that allow develop-
ers to interact with the blockchain and deploy smart contracts. These APIs and SDKs
are available in various programming languages, including JavaScript, Python, and Java,
making it easier for developers to build applications on top of it. HLF’s architecture com-
prises several components that provide a robust and secure blockchain network. These
components include the membership service provider, ordering service, peer nodes, and
smart contracts (packaged as chain codes). These components and their roles in HLF
will be discussed in Section 2.5

2.4.2 Corda

Corda is a flexible and scalable platform designed to operate with the current financial
services industry and integrate with pre-existing enterprise technology. It is a permis-
sioned ledger, asset modeling tool, and workflow routing engine. Corda enables solutions
that enhance and decentralize assets while maintaining privacy and regulatory oversight
[21]. Corda’s primary goal is to enable businesses to create and manage contracts that
can be automatically executed using smart contracts. The platform also has features for
managing identity and privacy, making it ideal for financial use cases.

Unlike public blockchains, Corda is not a cryptocurrency but a platform for managing
financial agreements. One of the most significant features of Corda is its focus on
privacy. Corda is designed to be used within specific business networks and gives
businesses control over who can access data on the network. Transactions are only
visible to parties directly involved [21], making them an effective tool for managing
sensitive financial information. Corda also includes features for managing identity and
ensuring compliance with regulatory requirements. Businesses can create their identity
and access management policies and use tools to verify and share identity data. The
platform also has features for managing legal agreements and enforcing compliance with
regulatory requirements. Corda is a powerful tool for managing financial agreements
within business networks. Its modular architecture and privacy focus to make it a flexible
and customizable platform that can be tailored to meet the needs of different industries
and use cases. Additionally, its open-source nature offers a transparent and collaborative
approach to building distributed ledger solutions.
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2.4.3 Comparison

HLF and Corda are open-source distributed ledger technology platforms with distinct
differences in design, architecture, and intended use cases. Corda primarily focuses
on financial services and emphasizes privacy and control over data access, while HLF
provides a modular and flexible architecture suitable for various industries.

HLF’s consensus process involves nodes with different roles and tasks, including
clients, peers, and endorsers, to ensure message delivery errors do not occur [9]. A
pluggable algorithm is used for consensus, allowing for the use of different algorithms.
On the other hand, in Corda, the consensus is achieved at the transaction level and only
involves parties concerned, with notary nodes used for consensus over uniqueness [21].

Smart contracts in HLF are self-executing contracts that execute code to model
contractual logic in the real world. However, its legal validity may need to be further
clarified. In contrast, Corda allows smart contracts to contain legal prose, with smart
legal contracts being legal prose expressed and implemented in smart contract code,
providing the code with legitimacy rooted in the associated legal prose [21].HLF is a
general-purpose DLT platform suitable for various use cases, while Corda is specifically
designed for financial applications such as trade finance, insurance, and capital markets.
Table 2 provides a quick comparison of HLF and Corda.

Table 2. Comparison of Corda 4.9 and HLF 2.4 ( [21], [11])

Feature Corda HLF
Type of Platform Permissioned Permissioned
Smart Contract Language Kotlin Go, Java,TypeScript
Consensus Algorithm RAFT, BFT-SMaRt Kafka, SBFT
Privacy High Moderate
Scalability High Moderate
Transaction Throughput 200-300 tps 1000-3000 tps
Participation Only required parties All network nodes
Governance R3 Linux Foundation
Hosting Self-hosted or cloud Self-hosted or cloud
License Apache 2.0 Apache 2.0

2.4.4 Why Hyperledger Fabric?

In selecting the reference platform for the implementation of our proposed architectures,
We considered six key points:

1. The platform should be permissioned and private.

2. It should allow for a pluggable consensus algorithm.
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3. It should support smart contract implementation in a programming language we
already know.

4. It should have a well-documented software development kit (SDK) for building
client applications.

5. It should be interoperable with most open-source benchmarking tools.

6. It should have a high transaction per second (TPS) rate.

After considering the intended use case of the platform, we compared Fabric with
Corda. We found that both met the criteria of being permissioned and private (1)
and supporting pluggable consensus algorithms (2). However, HLF was preferred
due to its support for smart contract development in Typescript, a language we are
more comfortable with (3). While both projects lacked documentation, we found more
resources on HLF, which would help implement our proposed architecture.

To validate our claims of usability, we needed a benchmarking tool. The benchmark-
ing tools we explored were more interoperable with HLF than Corda. Additionally, white
papers published by both organizations showed that HLF had a much higher Transaction
Per Second (TPS) rate compared to a similar configuration with Corda. This was crucial
because our proposed architecture would be used in the IoT environment where data
generation rates can be incredibly high. We needed an underlying blockchain technology
with a proven high TPS [11]. Finally, Corda was primarily developed for financial use
cases, whereas our proposed use case needed more financial, leading us to choose HLF.

2.5 HyperLedger Fabric
This subsection comprehensively examines some fundamental components of an HLF
network.

2.5.1 Peers

A vital component of an HLF Blockchain network is its peers. A Peer is a non-ordering
node in an HLF network. It stores and manages copies of ledgers and smart contracts
(chain codes). An Orderer is a type of node in the blockchain network that handles
the interaction of applications and peers to keep a current and consistent ledger across
a channel [8]. Peers are a flexible and redundant element that can be created, started,
stopped, reconfigured, and deleted [8]. They also host special system chain codes
which contain information about HLF Network’s overall configuration. To allow client
applications to connect, peers expose a set of APIs - The HLF Gateway Service - that
helps these client applications interact with their services. Starting in HLF v2.4, the
HLF Gateway service is installed and enabled on each Peer by default. Unlike the client
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application (in HLF v2.3 and earlier), the gateway service manages transaction proposals
and endorsements on the Peer [8].

Peers execute a consensus protocol to validate transactions, group them into blocks,
and build a chain of these blocks. In conjunction with orderers, Peers ensures the ledgers
across consistent and current across a channel and, consequently, a blockchain network.
In an HLF, peers are usually provided by organizations participating in the network.
Figure 2 shows a high-level overview of a peer that comprises user-defined chain codes,
a ledger, and system chain codes.
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Figure 2. Overview of contents of a Peer Node.

2.5.2 Orderers

Orderer nodes are a crucial component of the HLF. They are responsible for managing the
ordering service, ensuring all transactions are properly ordered and packaged into blocks.
Once the blocks are created, the orderer nodes distribute them to all the participating
nodes in the network. This process ensures that the ledger remains consistent and tamper-
proof [10]. HLF provides three distinct implementations for its ordering service, which
is designed to be modular and has a flexible consensus system that can be configured as
needed.

The first implementation is the Solo ordering service, a single node that handles the
ordering process for the network [10]. This implementation is useful for development
and testing purposes or for small networks that do not require a high level of transaction
throughput. However, it is unsuitable for more extensive networks where performance
and scalability are crucial. The second implementation is the Kafka ordering service,
which uses Apache Kafka to handle the ordering. Kafka allows multiple orderer nodes to
be deployed in a cluster, providing higher transaction throughput and fault tolerance [10].
Kafka ordering service is suitable for more extensive networks that require high levels
of performance and scalability. The third implementation is the Raft ordering service,
which uses the Raft consensus algorithm to handle the ordering process. Like the Kafka
ordering service, the Raft ordering service allows multiple orderer nodes to be deployed
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in a cluster. However, it differs in its consensus algorithm, and its architecture is more
fault-tolerant [10].

The choice of ordering service implementation will depend on the network’s specific
performance, scalability, and fault tolerance needs. Table 3 summarises the major
differences between these three implementations.

Table 3. Differences between Solo, Kafka, and Raft Ordering Services

Feature Solo Kafka Raft
Consensus Solo Kafka Raft
Scalability Low High High
Fault tolerance None Limited High
Ordering speed Fast Slow Fast
Message ordering N/A Partial order Total order
Endorsement Optional Mandatory Mandatory
Network size Small Large Large
Operational cost Low High High

2.5.3 Ledgers

In HLF, the ledger is another vital component that records the current state of business
transactions and the transactions that led to them [12]. One of the fundamental features
of a blockchain ledger is that information regarding an object’s past is never subject
to change, even if the object’s current state may change. HLF’s ledger consists of two
interconnected components: a world state and a blockchain. Figure 3 illustrates the
composition of an HLF Ledger, which is broken down into a world state and a blockchain;
the content of the blockchain determines the world state. Each component represents a
set of details regarding a collection of business objects.

The world state is a database containing ledger states’ most recent values [12]. Rather
than requiring a complete transaction log to calculate a state’s current value, the world
state makes it simple for a program to access it directly. Key-value pairs are the default
way ledger states are expressed, but HLF offers flexibility. The world state can often
change due to the creation, modification, and deletion of states. Therefore, a database is
used to implement the global state, which offers a wide range of operators for storing
and retrieving states effectively.

HLF’s world state database can be implemented using CouchDB, which is useful
when ledger states are structured as JSON documents. The default database for the World
state is LevelDB in HLF [12]. However, for the implementation of our proposed archi-
tecture, we used CouchDB. Figure 4 shows the world state containing one state with a
kV pair value: key=2023-04-02T12-Tartucitycouncil-SensorOne, value = "temperature":
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Figure 4. Components of a Ledger’s Worldstate.

The second component of HLF’s ledger is the blockchain which is a log of all the
transactions that have led to the world’s current status [12]. The blockchain is a series
of interconnected blocks arranged sequentially, with each block containing a set of
transactions that either update or query the current state of the world. It is worth noting
that the ordering of blocks and transactions within blocks is established by the ordering
service component of HLF during the initial creation of blocks. The header of each block
contains a hash of the block’s transactions and a hash of the previous block’s header,
which links all transactions together securely and sequentially [12]. This cryptographic
linking and hashing mechanism ensure the integrity of the ledger data. Even if one
node in the network were to be tampered with, it would be unable to convince the other
independent nodes that its version of the blockchain is correct, as the ledger is distributed
across the network. By examining the blocks of transactions appended to the blockchain,
the history of changes that led to the world’s current state can be understood.
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The blockchain data structure is immutable once created, which is different from the
current state of the world. Therefore, the blockchain is a chronological record of the
events leading up to the current status of items. Every prior iteration of each ledger state,
including any modifications, is recorded on the blockchain [12].

M0

(genesis)

H0

B0

D0

M1

H1

B1

D1

T1 T2 T3 T4

T5

M2

H2

B2

D2

T6 T7 T8

M3

H3

D3

T9 T10

B3

B

Blockchain

Block

Block 
Header

Block Data

 
Block 

Metadata

H3 is 
chained to 

H2

B0

H0

D1

M1

H2 H3

Figure 5. Components of a Ledger’s Blockchain.

Unlike the global state, which uses a database, the blockchain is consistently imple-
mented as a file. The components of a ledger’s blockchain are presented in Figure 5,
which includes a Block, a block header, block data, and block metadata. The figure also
depicts the connections between each preceding block and the next block in the chain.

2.5.4 Channels

On an HLF network, channels organize the network participants into subgroups that
can collaborate [14]. Channels allow a subset of organizations, peers, and applications
to form a private and secure network to conduct transactions and share data. Channels
are similar to friendship groups, where individuals can belong to multiple groups with
different activities and expectations. Similarly, organizations can belong to other channels
with various transactional activities and data-sharing requirements. Each channel has
policies and rules for membership, endorsement, and access control.

In an HLF network, the channel is responsible for maintaining a copy of the ledger
that its members share. The peers within a channel collaborate to validate and endorse
transactions before adding them to the shared ledger. The orderer nodes, which operate
outside any channel, receive and order transactions from their peers and distribute them
to the appropriate channels. When a chain code is instantiated and deployed to a channel,
it becomes available to all the applications authorized to access that channel allowing
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the applications to interact with the smart contracts in the chain code and perform
transactions on the channel’s ledger [14].

Channels provide a way to partition an HLF network to limit the scope of com-
munication and data sharing between network participants. By separating the network
into smaller, more manageable groups, channels can improve the network’s scalability,
privacy, and performance. In Figure 6, two separate channels (e.g., Channel 1 and
Channel 2) are depicted, each with a single peer belonging to two different organizations,
Organization One and Organization Two.

Organizaton 
One

Organizaton 
Two

Channel 1

Channel 2

Figure 6. Two Organizations with single Peer in two separate Channels.

2.5.5 Chaincode

The business logic of the transactions is specified by smart contracts, which specifically
manage the business entity’s life cycle and are incorporated in the world state bundled
into chain code [9]. It is then replicated across the whole blockchain network. As
a result, smart contracts are specified by chain code. Several smart contracts can be
specified within a single chain code. Upon installing the chain code, the application can
utilize all the smart contracts available inside that chain code. Chaincode is a container
for installing and instantiating numerous comparable smart contracts, whereas smart
contracts are customized to the application used to enable business activities [9].

Every chain code has an endorsement policy that applies to any relevant smart
contracts that are connected to it. This defines which organizations must sign a smart
contract-generated transaction to be considered legitimate.
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2.5.6 Transactions

Transactions in HLF are a crucial aspect of the platform, as they enable the exchange
of assets and data between participants in the network. In HLF, a transaction is a series
of operations by one or more network users. These operations include moving assets,
altering the ledger’s state, carrying out smart contracts (chain code), and creating events.
Transactions in HLF are executed using a consensus mechanism that ensures that all
network participants agree on the ledger’s state.

In edge computing, a transaction refers to a data exchange or communication between
two or more computing devices or entities. These transactions can include various data
types, such as messages, files, commands, or queries. In edge computing, transactions
occur between edge devices, edge nodes, and the cloud, where each entity can perform
specific functions, such as data processing, storage, and analysis. Transactions in edge
computing are critical for enabling real-time communication and decision-making and
ensuring secure and reliable data exchange between different entities in the network. They
also play a vital role in optimizing the performance and efficiency of edge computing
systems.

Within the framework of this thesis, a transaction is defined as the complete process
of transferring data from the sensors to the external data repository. Specifically, a
transaction begins with sensor data generation and concludes once that data is successfully
persisted in the external data repository. Several steps/phases are involved in the HLF
transaction execution process:

1. Proposal: The client application produces a transaction proposal during this step
that contains information on the transaction’s specifics, including the asset to be
transferred, the amount, and the intended receiver.

2. Endorsement: The request is sent to one or more network peer nodes for approval.
Verifying a transaction proposal and confirming that the smart contract’s rules
permit the suggested activities is called an endorsement.

3. Ordering: Upon endorsement, the transaction is sent to the ordering service, which
organizes the transactions and builds a block.

4. Validation: The block is subsequently broadcast to the network’s peer nodes for
validation. Each peer node verifies the block’s transactions and ensures accuracy,
given the ledger’s current state.

5. Commitment: The block is committed to the ledger, and its state is updated once a
sufficient number of peer nodes have validated it.
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2.6 Related Works
Blockchain technology has many applications in securing IoT devices in wireless sensor
networks. It can be utilized for access control, authorization, authentication, detection
of malicious devices or Distributed Denial of Service(DDOS) attacks, and secure stor-
age of IoT data. Although a few existing solutions attempt to address each problem
independently, this section focuses on presenting solutions that ensure the secure collec-
tion and storage of IoT data. These solutions utilize blockchain technology with all its
inherent features, including consensus mechanisms, smart contracts, decentralization,
pseudo-anonymity, and immutability.

Shafagh et al. (in [25]) introduced a blockchain-based system that offers distributed
access control and data management. The system’s contributions include a secure
cryptographic method for sharing data with frequent key updates, the ability to revoke
access to data, an efficient search method for compressed chunked data streams, and a
location-aware level of data storage. However, the architecture’s consensus mechanism,
the Proof of Work (PoW) mechanism, has a drawback. PoW is resource-intensive and
vulnerable to the 51% attack, which may happen if the proposed architecture lacks
sufficient users and hash power.

Ren et al. (in [22]) have presented an architecture for the secure storage of data
generated by edge devices. Their proposed architecture utilizes blockchain technology,
where two blockchain networks are implemented: local and global. The local network,
which has limited storage space, is established by the primary edge nodes to store all
data generated by IoT devices. On the other hand, the global blockchain network is built
using cloud servers and stores all data obtained from local blockchain networks. The
cloud servers compute hash values for the uploaded data to the global blockchain, and to
ensure data integrity, periodic checks are carried out by comparing the already calculated
hash values.

Liu et al. (in [17]) introduce a Data Integrity as a Service (DIaaS) framework that
utilizes blockchain technology to authenticate data generated by IoT devices. The
framework aims to solve two issues: firstly, eliminating the need for trust in third-
party auditors and improving the reliability of the data integration service. Secondly,
the framework proposes protocols for verifying data integrity in a fully decentralized
environment without relying on a single third-party auditor. However, the main drawback
of this approach is that the integrity of the data packets requires validation from a trusted
third-party authority.

Ruonan et al. (in [16]) present a scheme that employs blockchain technology to secure
storage and protect large amounts of data generated by IoT devices. Their proposed
approach ensures data protection by leveraging many blockchain miners to manage IoT
device data, eliminating the need for centralized servers. The architecture also adopts
edge computing to process and transmit the data to the Distributed Hash Tables (DHT).
Additionally, the authors propose using certificate-less cryptography, which reduces
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the redundancy caused by traditional Public Key Infrastructure (PKI) and provides an
efficient authentication method for IoT devices. However, the scheme may encounter
issues if it requires the implementation of more complex access control policies.

Sun et al. (in [24]) proposed an architecture consisting of three layers: data access,
service, and application. The data access layer collects data through various protocols,
and the data service layer stores, shares, and analyzes data using blockchain technol-
ogy for secure storage. The data application layer provides APIs for device and user
management, data sharing, and querying. However, the paper did not address sensor
authentication, and storing sensor data on the blockchain can result in high storage costs.
Querying the blockchain can also affect performance in large networks.

Our blockchain architecture differs from the ones mentioned earlier by accommo-
dating other IoT devices without blockchain capabilities but who desire to utilize the
proposed ecosystem for secure and traceable data storage. These IoT devices perform all
verification processes of the proposed architecture, communicating with a Blockchain
network deployed in a fog environment near the sensors’ location. Moreover, our archi-
tecture’s configurable authentication timeout enhances overall security. Additionally, we
propose storing sensor data off-chain on a more efficient object storage server, reducing
the need to query this data from the blockchain network. We do not store the sensor data
on the blockchain; instead, we store the hash of the sensor data, minimizing the overall
storage cost.

In conclusion, this Section 2 provided an overview of Edge, Fog, and Cloud Comput-
ing, highlighting their similarities and differences. Additionally, we explored the concept
of Blockchain technology and compared two popular frameworks, HLF and Corda. Our
justification for selecting HLF as the reference framework for our proposed architecture
was also included. We then delved into the critical components of HLF in detail. The
section concluded with a literature review of related works, identifying gaps our research
aims to address.

3 Blockchain for Edge to Cloud Continuum
This section introduces our proposed architecture called E2C-Block (Blockchain for Edge
to Cloud Continuum) and discusses its design. Additionally, we present a hypothetical
scenario where this model architecture can be applied. E2C-Block is a proposed model
architecture that aims to provide an effective solution for managing and securing data
generated by IoT sensors in a distributed environment. It ensures that data generated by
these IoT sensors are securely transmitted and stored tamper-proof. The model comprises
two blockchain networks and an external data repository.

The first blockchain network is located in a fog computing environment close enough
to the IoT sensors generating the data. This Blockchain is called the Sensor Blockchain
Network(SBN). In the E2C-Block architecture, the fog computing environment provides
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a secure communication channel between IoT devices and the cloud infrastructure. This
SBN has peers that process and transmits data to a second blockchain network in a
cloud computing environment. The second blockchain network is the larger of the
two blockchain networks. It is located in a cloud computing environment. It is called
the Primary Blockchain Network(PBN). It receives IoT Sensor data from the SBN,
hashes and stores this hash of the sensor data on the ledger of its peers, and passes on
the originally received IoT sensor data to an external data repository. As discussed in
Section 3, this hashing process becomes useful when we check the integrity of the IoT’s
Sensors Data. To store the vast amount of data generated by IoT sensors, the E2C-Block
architecture uses an offsite data store. This provides an optimal storage option as it allows
data to be stored in a secure and scalable manner. Using an external data repository
also ensures that data can be accessed and queried while maintaining data privacy and
security. This external data repository only receives IoT Sensor data from the PBN. This
data stored in this external store is the unhashed, original version of the IoT Sensor Data.
So, in essence, very briefly, in E2C-Block ,

1. Multiple sensors generate data sent to the SBN.

2. The SBN receives sensor data and transmits it to the PBN.

3. The PBN only accepts data from the SBN. It hashes and stores the hash of the IoT
sensor data, thereafter it forwards the originally received sensor data to an external
data repository.

4. The Data Repository is a storage location for all sensor data. It only receives data
from the PBN and stores it as is.

Figure 7 provides a high-level overview of E2C-Block , depicting the flow of sensor
data through various computing environments. The image shows that the sensor data
arrives at the SBN in the fog environment, then moves to the PBN, and finally ends up in
the External Data Repository, both located in a cloud environment. Section 4 discusses
in more detail what happens at each of the components of E2C-Block .

3.1 Hypothetical Scenario
We describe a fictional use case below to help understand a potential use case of the E2C-
Block architecture. The Tartu City Council1 is interested in collecting, collaborating, and
analyzing data from various Internet of Things (IoT) sensors. As the city council cannot
provide and operate all these sensors, it has to allow sensors from other organizations
to be part of this "network" of sensors. As such, other agencies such as Tartu Transport

1This is entirely fictional with no reference to the entities mentioned
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Figure 7. High level Overview of E2C-Block .

Service, Tartu Solar Panel Center, Tartu Meteorological Centre, and Tartu Temperature
Monitoring Center can bring their sensors to this network. The alliance benefits them
as each organization can run analytics on the data their collective sensor pool generates.
However, since the data is sensitive, it is crucial to have a secure system to process and
transmit the IoT sensor data generated by the sensors to some data repository in the
cloud.

After this IoT Sensor data is securely stored, there is also a requirement where each
of these participating organizations can query for data stored. However, the proper
organization must have access to the data they are only allowed to access or need, and a
consistent and immutable log of access is thus required. Finally, data should be almost
tamper-proof once stored, as a change or unauthorized access would lead to privacy
rights violations. The council has suggested using blockchain technology to add more
security to these data as an inherent characteristic of blockchain technology means that
data cannot be written or read without the approval of all participating peers in this
"network."

If Tartu City Council decides not to use blockchain technology, the transmission
of IoT sensor data from different sources and third-party sensors to the cloud could be
jeopardized. Without blockchain, the data could be subject to tampering and unauthorized
access, creating significant risks. For example, a malicious individual could tamper with
the data before it reaches the cloud, compromising its integrity and accuracy. This
could result in incorrect analysis and impaired decision-making. Moreover, unauthorized
access to sensitive and personal user data in IoT data could lead to privacy violations and
potential legal consequences. Even when the data is at rest, there is a risk of unauthorized
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changes by malicious entities.

3.2 Sensors
The data flow in E2C-Block begins with the IoT sensors. These sensors record and
transmit their data to the Sensors Blockchain Network. Sensors can be owned and
managed by multiple organizations, and as such, they should be identifiable as belonging
to the owning organization. Therefore, each sensor in the E2C-Block architecture can
be assigned a unique ID that links it with its organization. The sensors have various
configurable properties, including but not limited to Transmit_Int and Sensor_type, that
impact their setup and functionality. For more detailed information on these properties,
please refer to Table 5.

In addition, E2C-Block allows administrators of owning organizations to add or
remove sensors without compromising security. These sensors can authenticate and be
registered on the SBN and can generate and transmit a continuous stream of data to the
network. We used Python scripts to mimic data generation to implement the sensors’
functionality. These Python scripts allow the sensors to be completely configurable,
enabling us to set the UniqueId, the send Interval, and the type of sensor data the sensor
should generate. The choice of Python was based on providing libraries out of the box
that allowed these requirements to be quickly fulfilled. We considered implementing the
sensors as Node.js scripts but found it difficult, as Node.js is a single-threaded platform,
and it was easier to spawn up multiple threads to generate and send this data with Python.

The generated sensor data is in JSON format. We considered generating and trans-
mitting it in YAML or XML. However, we settled for the JSON format as it is more
generally acceptable and easier to be consumed by the smart contracts running on the
SBN. Also, generating the same data payload in JSON would always be lighter than
a similar payload in XML. These Python scripts can be executed from the command
line, and once executed, they start generating a constant stream of data. Code listing 1
illustrates the structure of the data payload typically generated by a sensor. The attributes
in this data payload are explained in more detail in Table 4

1 p a y l o a d = {
2 t e m p e r a t u r e : 1 2 . 2 2 ,
3 t imes t amp : ' 2023 −04 −02T12 : 0 0 : 0 0 . 0 0 0 Z ' ,
4 org : ' T a r t u c i t y c o u n c i l ' ,
5 d e v i c e : ' SensorOne ' ,
6 i d : ' a1b2c3d4 −e5f6 −4b7c −8d9e −0123456789 ab '
7 } ;

Listing 1. Sample Payload from Sensor
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Table 4. Sensor Payload Fields.

Field Description Restrictions

timestamp
The date and time when the
payload was generated

ISO 8601
format

org
The organization that owns
the sensor

String

device
The device identifier of the
sensor

String

id
The unique identifier of the
payload

UUID

arrivalTime
The date and time when the
payload arrived at the sen-
sor node

ISO 8601
format

departTimeFromFogNode
The date and time when the
payload departed from the
fog node

ISO 8601
format

arrivalTimeFromFognode
The date and time when
the payload arrived at the
blockchain node

ISO 8601
format

departureTimeFromPrimaryBlockchain

The date and time when
the payload was fully pro-
cessed by the blockchain
node

ISO 8601
format

3.3 Sensor Blockchain Network
The SBN is the smaller of the two blockchains in the E2C-Block and is architecturally
located in the fog computing environment close enough to the IoT Sensors. Its primary
function is to act as an intermediary between the IoT sensors and the PBN, transmitting
sensor data to the PBN. The SBN is the only component of E2C-Block to communicate
with the PBN. Rather than storing data on the ledger of its peers, the SBN consistently
listens for a constant stream of sensor data generated by the IoT sensors. It also serves
as an authentication and registration point for all sensors, ensuring they are authenti-
cated and registered on the SBN before transmitting data. Communication between
the IoT sensors and the SBN is supported via the HTTPS protocol. Additionally, the
SBN modifies the received sensor payload by adding two attributed arrivalTime and
departTimeFromFogNode. The arrivalTime holds the time the Sensor Payload arrived at
the SBN, while the departTimeFromFogNode attribute contains the time this particular
sensor payload left the SBN. These attributes would be useful when benchmarking a
single sensor data point’s time to move to the external data repository. Listing 2 shows
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Table 5. Configuration Properties for Sensors.

Configuration Description Restricted Values
HOST Specifies the Host where the data gen-

erated by this sensor would be posted
to

User Defined

PORT Specifies the Port on the Host where
generated data would be POSTed to

User Defined

PROTOCOL Specifies the type of protocol to use in
sending the Data

HTTP or HTTPS

ENDPOINT Specifies the endpoint on the Host
where the data would be sent to

Provided by SBN

TOKEN_ENDPOINT Specifies where this sensor MUST reg-
ister to and authenticate with

Provided by SBN

USERID Specifies USERID needed to be au-
thenticated with the SBN

Provided by SBN

USER_SECRET Specifies USER_SECRET needed to
authenticated with the SBN

Provided by SBN

TRANSMIT_INT Specifies how frequently this sensor
should send data

one_second,
five_seconds,
ten_seconds, fif-
teen_seconds,
twenty_seconds,
one_minute, one_hour,
one_day

SENSOR_ORG Specifies the type of data this sensor
should generate

Restricted set of values

SENSOR_TYPE Specifies the type of data this sensor
should generate

Humidity, Tempera-
ture

SENSOR_ID This Specifies the unique Id of the Sen-
sory, User Defined

the modified Sensor Payload before leaving the SBN.
A blockchain network was chosen over a single or server cluster as a proxy due to

the inherent benefits a blockchain network provides, such as ensuring that all peers in
the network must agree on the action before any sensor is authenticated or registered.
This limits the possibility of a rogue and compromised proxy server, allowing an equally
rogue and compromised sensor to transmit data. Pushing the authentication and sensor
registration workload to the PBN would have been an unnecessary overhead incurred
by the PBN. Separating the two blockchain networks allows the SBN to be placed in
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the fog computing environment, which is naturally closer to the IoT sensor devices. In
addition to authenticating and registering IoT sensors, the SBN also initiates a host-level
IP blocking of sensors that repeatedly fail authentication.

HLF was chosen as the reference implementation for the SBN due to its features and
advantages, which are discussed in subsection 2.4.4.

1 p a y l o a d = {
2 t e m p e r a t u r e : 1 2 . 2 2 ,
3 t imes t amp : ' 2023 −04 −02T12 : 0 0 : 0 0 . 0 0 0 Z ' ,
4 org : ' T a r t u c i t y c o u n c i l ' ,
5 d e v i c e : ' SensorOne ' ,
6 i d : ' a1b2c3d4 −e5f6 −4b7c −8d9e −0123456789 ab ' ,
7 a r r i v a l T i m e : ' 2023 −04 −02T12 : 0 0 : 0 1 . 0 0 0 Z ' ,
8 departTimeFromFogNode : ' 2023 −04 −02T12 : 0 0 : 0 3 . 0 0 0 Z ' ,
9 } ;

Listing 2. SBN Modified Payload

3.4 Primary Blockchain Network
The PBN is the larger of the two blockchains in E2C-Block . It receives IoT sensor
data from the Sensor’s blockchain network. In this Blockchain network, The sensor
data Payload received from the SBN is modified by adding two extra attributes - arrival-
TimeFromFognode and departureTimeFromPrimaryBlockchain - before its hashed value
is stored on the ledger of its peers in the PBN. arrivalTimeFromfognode indicates the
time the payload arrived from the SBN, while departureTimeFromPrimaryBlockchain
records the time the payload left the PBN for the external data source. Listing 3 shows
this modified sensor payload.

1 p a y l o a d = {
2 t e m p e r a t u r e : 1 2 . 2 2 ,
3 t imes t amp : ' 2023 −04 −02T12 : 0 0 : 0 0 . 0 0 0 Z ' ,
4 org : ' T a r t u c i t y c o u n c i l ' ,
5 d e v i c e : ' SensorOne ' ,
6 i d : ' a1b2c3d4 −e5f6 −4b7c −8d9e −0123456789 ab ' ,
7 a r r i v a l T i m e : ' 2023 −04 −02T12 : 0 0 : 0 1 . 0 0 0 Z ' ,
8 departTimeFromFogNode : ' 2023 −04 −02T12 : 0 0 : 0 3 . 0 0 0 Z ' ,
9 a r r i v a l T i m e F r o m f o g n o d e : ' 2023 −04 −02T12 : 0 0 : 0 3 . 0 2 3 Z '

10 d e p a r t u r e T i m e F r o m P r i m a r y B l o c k c h a i n : ' 2023 −04 −02T12 : 0 0 : 0 3 . 0 2 7 Z '
11

12 } ;

Listing 3. PBN modified payload

Before storing the modified Sensor Payload on the ledger of its peers, the PBN hashes
the data using a chosen hashing algorithm. Hashing involves taking an input message of
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any length and generating a fixed-size output hash of a specific size. The chosen hashing
algorithm is SHA-256 2, which produces a fixed-size output of 256 bits or 32 bytes.
SHA-256 is widely used and has been benchmarked as both performant and secure.

Hashing is a one-way mathematical operation, and the resulting hashed value is
typically a unique representation of the original input. Even a small change in the input
data will result in a significantly different hash value. For this reason, hashing is useful
for ensuring data integrity and authenticity.

We also considered other hashing algorithms, such as Blake2 3 and MD5. Blake2
performed slightly better than SHA-256 in published benchmarks 4, but SHA-256 was
chosen due to its widespread adoption, security, and performance. MD5 was not consid-
ered due to vulnerabilities discovered in the algorithm over time.

After hashing the data, the unhashed Sensor Payload is transmitted to the External
Data Repository. Figure 8 depicts the data flow from the sensors to the External Data
Repository. It shows that the sensor sends an authentication request to the SBN and
sends a continuous data stream upon successful authentication. The figure also illustrates
the SBN sending an authentication request to the PBN. Upon successful authentication,
the modified payload is hashed and stored on the ledger before being sent to the MinIO
storage server. HLF was also chosen as the reference implementation for the PBN due to
its features and advantages, which are discussed in subsection 2.4.4.

3.5 External Data Repository
The external data repository is the last component of the E2C-Block . It receives IoT
Sensor data from the PBN and stores these unhashed sensor data.

Buckets are created for each organization’s sensor, and data from that particular
sensor is stored there. This ensures that data is well organized. This external data
repository would be the primary query point for all sensor data. However, at configurable
intervals, when a particular sensor data is queried (with the unique Sensor Id, e.g.,
a1b2c3d4-e5f6-4b7c-8d9e-0123456789a), the authenticity of the data can be verified
from the PBN via an HTTP request. The arguments for this request would be the hashed
value of this sensor’s Id Payload stored in the external data repository. We then compare
the new hash with the previously stored hash on the PBN. If these hashes are the same,
the data has not been tampered with since it came to rest on the external data repository.
If the hashes are different, the data has been tampered with.

To handle large amounts of IoT sensor data with no real relationships, we chose to use
an object storage server instead of a relational database management system (RDBMS)
which is not designed to scale horizontally. Object storage servers are optimized for

2https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf/
3https://www.blake2.net/
4https://public-inbox.org/git/20180609224913.GC38834@genre.crustytoothpaste.net/
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Figure 8. Data flow from Sensors to MinIO.

extensive data processing, making them a better option for an external data repository.
We evaluated MinIO, Amazon S3 5 and Ceph 6 as possible candidates for an Object

Storage server. MinIO was selected as an option for the external data repository. MinIO
is known for its ability to handle large data quantities, making it a reliable and efficient
choice. It offers robust capabilities in handling large data quantities and can easily be
deployed on-premises or in the cloud. It provides a simple yet powerful interface for
object storage and offers features such as access control, versioning, and lifecycle policies
that can be used to manage the data effectively. Additionally, MinIO is open-source and
can be customized to meet specific requirements, making it a flexible solution.

MinIO is a popular open-source object storage system compatible with Amazon
S3 cloud storage service. It provides a scalable and distributed storage solution for
unstructured data such as images, videos, and documents. MinIO is designed to run on
commodity hardware and is optimized for performance, making it ideal for use cases
where fast and efficient data access is critical.

One alternative was Amazon S3, a cloud-based storage service that Amazon Web
Services (AWS) provides. AWS is a well-established cloud computing platform with
many services, including S3. S3 is highly scalable, durable, and secure, making it reliable

5https://aws.amazon.com/s3/
6https://ceph.io/
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for storing large amounts of data. Additionally, it offers a range of features such as
versioning, access control, and lifecycle policies that can be used to manage the data
effectively. However, using S3 would require us to use AWS, which was not feasible
for our use case. Another alternative that was considered was Ceph, an open-source
distributed storage system. Ceph provides highly scalable and fault-tolerant storage,
making it a suitable option for storing large amounts of data. It offers features such as
object storage, block storage, and file storage, providing a flexible storage solution that
can be customized to meet specific requirements. However, setting up and configuring
Ceph can be complex and require significant time and resources to deploy and maintain.

3.6 How is Stored Sensor Data Queried?
We developed an interface 7 for browsing the stored data to enable querying Sensor data
stored at rest on the MinIO Storage server. The interface loads all available buckets
and their respective sensor data. Each bucket is mapped to an individual sensor owned
by different organizations. This interface is a read-only interface that does not allow
modification of already stored sensor data. When a user clicks on a particular sensor
detail, the interface displays the details of that specific sensor reading, including the last
time the payload details were verified as authentic from the PBN.

Additionally, the interface features a verification button that instantly confirms if
the details of the sensor payload match those on the PBN. Upon clicking this button, a
request is sent to the PBN with the specific sensor data, which is hashed with the same
function used to hash the original sensor data. If the hashes match, the data has not been
altered. Figure 9 shows a diagrammatic flow for requests to query for sensor data, as
previously described.

In conclusion, in Section 3, we introduced E2C-Block and a hypothetical scenario
for its application. The architecture design, from sensors to the External Data Repository,
was thoroughly discussed, with justifications for each decision. This section answers the
first research question of best security measures for edge computing environments by
proposing using the SBN in the fog environment, which provides an additional layer of
security for IoT sensors at the edge.

7https://github.com/chinmaya-dehury/Blockchain4E2CC
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4 Implementation
This section covers the implementation specifics of E2C-Block , starting with the Sen-
sors and progressing through the SBN, the PBN, and ending with the external data
repository, MinIO. The code snippets presented throughout this section and section 5
have been tested and deployed and can be found at the https://github.com/chinmaya-
dehury/Blockchain4E2CC repository.

4.1 Sensors
E2C-Block begins with IoT Sensors generating and transmitting data. However, before
these sensors transmit this generated data to the SBN, they must authenticate with the
blockchain network. They must have been previously registered on the SBN.

4.1.1 Authentication and Registration

Authenticating and Registering sensors on the SBN is essential in ensuring the security
and reliability of data transmitted through E2C-Block . The first step in this process
is for the sensors to make a POST authentication request to an endpoint specified in
TOKEN_ENDPOINT, located within the SBN. For this authentication request, the
sensors must provide their credentials, including their USERID and USER_SECRET
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values. Once the TOKEN_ENDPOINT on the SBN receives the authentication POST
request from the sensors, the provided credentials are verified to ensure that the requesting
Sensor is authorized to transmit data over the network.

If the provided credentials are valid, the requesting Sensor is granted permission to
transmit data to the SBN. If authentication fails, and there are subsequent failed multiple
authentication requests, the SBN adds the originating IP address for these failed requests
to the UFW firewall Table. Subsequent authentication requests from this Sensor are thus
dropped at the OS level without getting to the Blockchain Network. This authentication
process is made possible by the Fabric Certificate Authority (CA) server, a vital HLF
blockchain framework component. The details of how the HLF Certificate Authority
does these are discussed in subsection 4.2.

Another essential aspect of the authentication process is that there exists an authenti-
cation window in the SBN. The authentication window is a customizable feature with a
preset default value of 10 minutes. Within this timeframe, the Sensor can communicate
with the SBN without further authentication. However, once the authentication window
has elapsed, the Sensor must reauthenticate to continue communicating with the SBN.
This mechanism serves as a safeguard to ensure that only authorized sensors can access
and interact with the SBN, bolstering the overall security and integrity of the system.
During the initial authentication request, the sensors also provide their SENSOR_ID and
SENSOR_ORG values, which verify that the Sensor has been added to the SBN’s ledger.
This step ensures that only authorized sensors can transmit data over the network.

While the Sensor initiates authentication, Sensor registration is initiated on the SBN.
Sensor Registration means an authorized network administrator adds the SENSOR_ID
to the SBN. This is a one-time process. At any point, a network administrator can also
de-register a sensor. Subsection 4.2 details the Sensors registration process.

Overall, authentication and registration are crucial to ensuring the security and
reliability of data transmitted through E2C-Block .

4.1.2 Data Generation and Transmission

Once sensors have been authenticated and their registration status confirmed on the SBN,
the next step involves generating and transmitting data to the SBN.

The Python script initiates data generation at predetermined intervals, as specified
by the TRANSMIT_INT configuration value. This data is transmitted via the protocol
specified in the PROTOCOL configuration value, with HTTPS being the typical choice
for secure data transmission. To send the data, an HTTP POST request is made to an
endpoint that combines the HOST, PORT, and ENDPOINT configuration values. This
data transmission process will continue until the Python script is terminated, ensuring
that the SBN receives a consistent data flow from all registered sensors.

The Sensor’s Python script has an exponential backoff mechanism that retires the
transmission request in the improbable event that the SBN is overloaded for any reason.
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On the SBN, a smart contract continually listens for incoming data from all authenticated
and registered sensors and processes it accordingly.

Although the sensor authentication, registration, data generation, and transmission
phases may seem distinct, they are part of a single process that runs automatically and
continuously when executing the Sensor Python Script. Listing 4 illustrates the command
responsible for generating sensor data for Sensor One of the Tartu City Council.

1 cd s e n s o r s / t a r t u c i t y c o u n c i l / s e n s o r −one
2 f l a s k −−app app . py run

Listing 4. Generating sensor data

4.2 Sensor Blockchain Network
The SBN plays a crucial role in E2C-Block by providing an additional layer of security
and authenticity to the data collected by the IoT sensors. By serving as an intermediary
between the sensors and the PBN, the SBN can authenticate and register sensors, ensuring
that only authorized sensors can transmit data. Additionally, the SBN can verify the
authenticity of sensor data before sending it to the PBN, reducing the load on the network
and ensuring that only validated data is stored.

One of the key benefits of using a Blockchain network in the Fog computing en-
vironment is the ability to leverage the distributed consensus mechanism inherent in
blockchain technology. By having multiple peers on the network validate each sensor
and data point, the authenticity of the data is better controlled, and the risk of a single
point of failure is greatly reduced. This is in contrast to a conventional fog node, which
may be vulnerable to rogue actors compromising the data it transmits to the PBN.

This SBN comprises two peers and a single Solo orderer. These peers are all in the
same single channel. It also has a chain code installed on it that allows it to carry out its
two major functions of

1. Authenticating and Registering Sensors

2. Transmission of data to the PBN.

4.2.1 Sensor Authentication and Registration

Authentication of sensors on the SBN is a crucial step in ensuring the integrity and
security of the network. The process of authentication is made possible by the Fabric
Certificate Authority (CA) server, a vital component of the HLF framework. The HLF
CA server generates and manages digital certificates for authentication and authorization,
providing a trusted third-party certificate authority for the Fabric network.

When a sensor is enrolled in the HLF network, the HLF CA server generates an
X.509 certificate and a private key for the sensor, which is used to establish secure
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communication channels with the network. The certificate contains the sensor’s identity
information, such as its name, public key, and other relevant metadata. On the other
hand, the private key is used to sign transactions and verify the sensor’s identity during
communication with the network.

To authenticate a sensor with the HLF CA server, the sensor must first be enrolled
in the Fabric network. Enrolling a sensor involves sending a certificate signing request
(CSR) to the HLF CA server, which verifies the sensor’s identity and generates an X.509
certificate and private key. The sensor can then use these credentials to interact securely
with the network. Authenticating a sensor on the SBN in E2C-Block and obtaining the
necessary credentials was simplified using tools like the Hyperledger Fablo Rest API.
With this tool, enrolling and authenticating a sensor with the HLF CA Authority Server
of the SBN can be achieved through a simple HTTP request to a provided endpoint,
passing in the required username and password. Listing 5 shows a code snippet of the
Smart contract running on the SBN that tries to authenticate an IoT Sensor.

1 async f u n c t i o n ge tToken ( ) {
2 c o n s t TOKEN_ENDPOINT = c o n f i g . TOKEN_ENDPOINT ;
3 c o n s t h e a d e r s = {
4 A u t h o r i z a t i o n : " B e a r e r " ,
5 " Conten t −Type " : " a p p l i c a t i o n / j s o n " ,
6 } ;
7 c o n s t r e s p o n s e = a w a i t f e t c h (TOKEN_ENDPOINT, {
8 method : "POST" ,
9 h e a d e r s : h e a d e r s ,

10 body : JSON . s t r i n g i f y ( { i d : " admin " , s e c r e t : " adminpw " } ) ,
11 } ) ;
12 c o n s t d a t a = a w a i t r e s p o n s e . j s o n ( ) ;
13 r e t u r n d a t a . t o k e n ;
14 }

Listing 5. Sensor authentication function

This request returns an authorization token configured to expire every 10 minutes.
This token is then passed with every other API request from the Sensor to the SBN.

On the other hand, Sensor Registration is a one-off process. Sensor registration
on the SBN is a crucial process that requires a network administrator or someone
with administrative privileges. During registration, the administrator sends a unique
passphrase and unique SENSOR_ID to the SBN. These values are encrypted and stored
in the network peers’ ledger, ensuring the data is immutable and tamper-proof. In
the SBN, all participating peers must run a consensus on the submitted request for
registration before a sensor can be successfully registered. This consensus ensures that
the transaction is validated and agreed upon by all peers in the network before it is added
to the ledger. This process guarantees the integrity and security of the network and
prevents unauthorized access. Listing 6 shows a typical curl request sent to register a
sensor on the SBN.
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1 c u r l −− l o c a t i o n ' h t t p : / / 1 2 7 . 0 . 0 . 1 : 8 8 0 1 / i n vo ke / f o g n o d e c h a n n e l /
fognode ' \

2 −− h e a d e r ' A u t h o r i z a t i o n : a u t h _ t o k e n ' \
3 −− h e a d e r ' Conten t −Type : a p p l i c a t i o n / j s o n ' \
4 −− da ta −raw ' {
5 " method " : " KVContract : r e g i s t e r S e n s o r " ,
6 " a r g s " : [
7 " a1b2c3d4 −e5f6 −4b7c −8d9e −0123456789 a " ,
8 " T a r t u C i t y C o u n c i l : sensorOne@ut "
9 ]

10 }

Listing 6. Sensor Registration CURL Request

4.2.2 Sensor Data to Primary Blockchain Network

At every point, authenticated and registered IoT sensors transmit data to the SBN.
However, the received data is not stored on the SBN. Instead, it is sent to the PBN.

Upon Sensor data arrival to the SBN, a smart contract on the SBN verifies whether the
transmitting SENSOR_ID has been previously registered with this Blockchain Network.
If the SENSOR_ID has not been registered, the traffic from that sensor is discarded,
and the sensor is added to a host-level firewall, blocking any further transmission from
that particular IoT sensor. If the IoT Sensor had been previously registered, the smart
contract extracts the sensor data payload and adds two new attributes, arrivalTime, and
departTimeFromFogNode, to the sensor payload data. The details of these fields are
described in Table 4. Once the sensor payload is modified, it can be sent to the PBN. The
content of this modified sensor payload was shown in Listing 2.

Before the SBN can connect to the PBN, it must be authenticated. Similar to the
Sensors authenticating with the SBN discussed in Section 4.2.1, the HLF Certificate
Authority (CA) server handles this authentication process. The authentication request is
made to the PBN using the Fablo REST API and the required credentials. If the response
is successful, an authentication token is returned, which is used in subsequent requests.
Once the SBN is authenticated with the PBN, the data transmission commences. Also
of note is that there is a 10 minutes authentication window after which the SBN must
re-authenticate with the PBN. A POST request is made to an endpoint exposed by a smart
contract running in the PBN to send this modified payload. Listing 7 shows a function in
the smart contract that sends the sensor payload to the PBN.

1 async f u n c t i o n s e n d D a t a t o B l o c k c h a i n ( d a t a ) {
2 c o n s t PRI_BLOCKCHAIN_ENDPOINT = c o n f i g . PRI_BLOCKCHAIN_ENDPOINT ;
3 c o n s t h e a d e r s = {
4 A u t h o r i z a t i o n : " B e a r e r " + ( a w a i t ge tToken ( ) ) ,
5 " Conten t −Type " : " a p p l i c a t i o n / j s o n " ,
6 } ;
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7 c o n s t r e s p o n s e = a w a i t f e t c h (PRI_BLOCKCHAIN_ENDPOINT , {
8 method : "POST" ,
9 h e a d e r s : h e a d e r s ,

10 body : JSON . s t r i n g i f y ( d a t a ) ,
11 } ) ;
12 r e t u r n a w a i t r e s p o n s e . j s o n ( ) ;
13 }

Listing 7. Sending data to the PBN

4.3 Primary Blockchain Network
The PBN is the larger of the two blockchain networks in E2C-Block . It comprises
ten peers, with each of the five participating organizations contributing two peers, and
includes a Solo Orderer. It also has six channels, which are private sub-networks that
allow a subset of peers to communicate with each other securely. Five of these channels
have peers from the same organization as members. In contrast, the remaining channel
has all participating peers as members allowing for secure communication and data
sharing between peers within the same organization or across all organizations. One of
the primary functions of this PBN is to receive and store the hashed value of sensor data
from the SBN.

When the PBN receives the data, a smart contract modifies the payload by adding two
extra attributes - arrivalTimeToBlockchain and departureTimeFromPrimaryBlockchain.
This modified payload on the PBN was shown in Listing 3. After this, the sensor payload
is hashed using an SHA-256 hashing function from the Node.js built-in crypto module.
The ledgers of the peers of the PBN store this hashed data. Hashing converts data
into a fixed-size output, which is unique for each input. This process helps ensure the
data’s integrity and makes it tamper-evident while ensuring that the stored payload has a
reduced size. The PBN forwards the data to an external data repository for offsite storage
after storing it in the ledger.

The communication between the PBN and the external data repository - the MinIO
storage server is established using MinIO’s Javascript SDK, which provides a reliable
and secure connection for data transmission. The MinIO SDK utilizes a set of APIs that
allows the PBN to access and manage data on the MinIO server.

Moreover, the data transmission process is carried out continuously and asyn-
chronously. This continuous and asynchronous transmission means that data is trans-
mitted between the PBN and the MinIO Storage server without interruption or delay,
ensuring that the data is up-to-date and accurate. This asynchronous transmission enables
the PBN to continue processing transactions and other tasks without waiting to complete
data transmission. Listing 8 shows the smart contract code responsible for sending the
sensor data to the MinIO Storage server.
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1 async p u t ( c tx , key , d a t a ) {
2 c o n s t hash = hashDa ta ( d a t a ) ;
3 a w a i t c t x . s t u b . p u t S t a t e ( key , hash ) ;
4 c o n s t m i n i o C l i e n t = new C l i e n t ( p r o c e s s . env . MINIO_URL , p r o c e s s . env .

MINIO_PORT , p r o c e s s . env . MINIO_ACCESS_KEY , p r o c e s s . env .
MINIO_SECRET ) ;

5 c o n s t v a l u e O b j = JSON . p a r s e ( d a t a ) ;
6 c o n s t bucketName = `${ v a l u e O b j . o rg }${ v a l u e O b j . d e v i c e } Bucket ` .

toLowerCase ( ) ;
7 c o n s t objec tName = ` j s o n / ${ v a l u e O b j . t imes t amp }−${ v a l u e O b j . o rg }−${

v a l u e O b j . d e v i c e } . j son ` ;
8 m i n i o C l i e n t . p u t J s o n ( bucketName , objectName , va lueObj , e r r => e r r &&

c o n s o l e . l o g ( e r r ) ) ;
9 r e t u r n { s u c c e s s : "OK" } ;

10 }

Listing 8. Sending Sensor Payload to MinIO

This PBN also has a smart contract that can be used to verify the authenticity of
any previously stored sensor data. It simply hashes the Sensor payload received with
the request from the MinIO server with the original hash function and compares that
both hashes are equal. If both hashes are equal, the data has not been tampered with
after storing it. The response is sent back to the client, querying for the data. Section
3.6 provided some details about this process. It should be noted that the MinIO Storage
Server is the primary point of query for all data and not the PBN.

4.4 External Data Repository
The External Data Repository is a critical component of E2C-Block as it is the centralized
repository for all generated IoT sensor data. It continuously receives sensor data from
the PBN and stores it unhashed as JSON objects in specific buckets. To facilitate data
management and access, a unique bucket is created for every sensor belonging to an
organization. Figure 10 shows the MinIO interface with some buckets created to store
generated sensor data.

The External Data Repository’s sole data source is the Primary Sensor Network,
which uses its generated MINIO_ACCESS_KEY and MINIO_SECRET to communicate
with it. In E2C-Block , we utilize the MinIO Storage Server as the Data Repository
to provide a reliable and scalable storage solution. One of the significant advantages
of using MinIO is its ability to store data as-is without any further modifications. This
means that the JSON Payload received is stored precisely as it was transmitted, ensuring
the data’s integrity and authenticity throughout the storage process. The MinIO Storage
Server is in the cloud environment and runs on Ubuntu 22.04. The MinIO Storage Server
serves as the primary query point for the stored sensor data. Therefore, all requests to
read sensor data are directed to the MinIO Storage Server.
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Figure 10. MinIO Interface showing Sensor Data in buckets.

To optimize the MinIO Storage server, we implemented several optimizations. Firstly,
we increased the cache size of the MinIO Server to reduce the frequency of disk I/O
operations. This significantly improved the server’s response time and reduced the load
on the server’s hardware. Secondly, we configured the MinIO server to use Direct I/O
instead of Buffered I/O. Direct I/O enables the MinIO server to read and write data
directly from and to the disk without buffering the data in memory. This helped to reduce
the server’s memory footprint and improve its overall performance. Lastly, we enabled
compression on the MinIO server to reduce the storage space required to store the sensor
data. This optimization helped to significantly reduce storage costs, mainly when dealing
with large amounts of data.

4.5 E2C-Block Deployment
This subsection briefly describes how the various components of E2C-Block , starting
with the Sensors and progressing through the SBN, the PBN, and ending with the external
data repository, MinIO were deployed. E2C-Block is mainly made up of two Blockchain
networks and a MinIO Storage Server. These Blockchain networks were deployed
on Ubuntu 22.02 Servers. We used Ansible 8 to set up these servers and install the
prerequisites software packages to automate the server provisioning.

Ansible is a powerful automation tool that provides a server provisioning and configu-
ration management platform. It allows for managing and deploying software applications
and infrastructure, making building, configuring, and maintaining servers in large-scale
environments easier. As deploying a complete Blockchain network falls outside the
expertise of Ansible, we employed Hyperledger Fablo, a specialized tool, to ensure the

8https://www.ansible.com/
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successful deployment of Blockchain networks in the E2C-Block .
The blockchain networks in E2C-Block were deployed using Hyperledger Fablo.

Hyperledger Fablo 9 is a powerful open-source tool that simplifies setting up, deploying,
and managing blockchain networks. It allowed us to define the characteristics of these
two blockchain networks using JSON files, making it easier than ever to create the
desired network topology. With Fablo, we have a flexible configuration file that describes
the desired network topology, including multiple organizations, channels, chain codes,
and private data collections.

Fablo parses this configuration file into a working HLF Blockchain network. Fablo
runs all the components of the fabric network as docker containers, making it easy to
manage and scale the network as needed. Fablo supports TLS, RAFT, and solo consensus
protocols, and it also exposes a REST API that can be used to interact with the various
deployed components of the HLF Network. We used this REST API extensively to
communicate with the multiple components of the blockchain network in this thesis.
Listing 9 shows the sample command to build an HLF from a fable-config.json 10 file.

1 f a b l o up f a b l o − c o n f i g . j s o n

Listing 9. Command to build a HLF network from a config file

Conclusively, Section 4 discussed the implementation of E2C-Block, starting with
sensor authentication and data transmission to the SBN. We provided code snippets and
diagrams demonstrating how the SBN authenticates, modifies, and sends the payload
to the PBN. We also covered the hashing process on the PBN, the data storage on the
External Data Repository, and the deployment process, including the tools used for server
provisioning and HLF network deployment. This section answered Research Questions
Two and Three by showing how blockchain, fog computing, and edge computing can be
integrated to reduce storage costs, ensure data integrity, and lower latency. Also, using
two blockchain networks decreases latency, and hash-based data storage reduces storage
costs. Furthermore, the PBN guarantees data integrity even if data is tampered with on
the MinIO server.

5 Experiments
This subsection briefly describes the experiments conducted to benchmark the perfor-
mance of E2C-Block .

9https://labs.hyperledger.org/labs/fablo.html
10https://github.com/chinmaya-dehury/Blockchain4E2CC/blob/main/fablo/fablo-config.json
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5.1 Experiment Setup
In this thesis, we conducted a benchmarking experiment to evaluate the performance
of the PBN in E2C-Block using a workload of transactions generated by a simulation
tool. The experiment aimed to measure the network’s throughput, latency, and resource
utilization under a workload that emulates a real-world scenario. The experimental setup
was designed to ensure that the results were reliable, accurate, and reproducible.

5.1.1 Benchmarking Tool

To evaluate the performance of E2C-Block ’s PBN, we employed Hyperledger Caliper
11, an open-source benchmarking tool specifically designed to measure the performance
of blockchain networks.

5.1.2 Network Configuration

The E2C-Block ’s PBN has ten peers and a Solo Orderer. TLS support was not available
during the experiments. A channel containing the ten peers was created for testing
purposes, and the installed chain code was tested. The chaincode’s function was to
receive data from Hyperledger Caliper, hash the data, store the hash on the ledger of the
PBN’s peers, and send the unhashed data to the MinIO Storage server. The batch size
was set at 20MB. These details were defined in a network.yml 12 file

5.1.3 Workload Generation

We used the workload module of Caliper to define the smart contract to benchmark on the
PBN. These details were defined in a readAsset.js 13 file The workload module interacts
with the deployed smart contract during the benchmark round. This module extends the
Caliper class WorkloadModuleBase from caliper-core and has three overrides:

1. initializeWorkloadModule - initializes any required items for the benchmark.

2. submitTransaction - interacts with the smart contract method during the monitored
phase of the benchmark.

3. cleanupWorkloadModule - cleans up after the completion of the benchmark
11https://hyperledger.github.io/caliper/
12https://github.com/chinmaya-dehury/Blockchain4E2CC/blob/main/fabric-

benchmarks/caliper/networks/networkConfig.yaml
13https://github.com/chinmaya-dehury/Blockchain4E2CC/blob/main/fabric-

benchmarks/caliper/workload/readAsset.js
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5.1.4 Benchmark Configuration

The benchmark configuration file defines the benchmark rounds and references the de-
fined workload module(s). It specifies the number of test workers to use when generating
the load, the number of test rounds, the duration of each round, and the rate control
applied to the transaction load during each round. Additionally, it includes options
relating to monitors. We used the Prometheus monitor to send caliper-related metrics to
the Prometheus server. Configurations are defined in a benchmark.yml 14 file.

5.1.5 Hardware and Software Specifications

The virtual machines used to host the blockchain network, simulation tool, and Caliper
were running Ubuntu 20.04 LTS. The nodes were configured with 8 vCPUs and 64
GB of RAM, with 50 GB of storage available. The nodes were running HLF v2.4 and
Caliper v0.5. The computing resources required for hosting E2C-Block and conducting
experiments were provided by the HPC Center [26] at the University of Tartu.

5.2 Performance Metrics
To evaluate the performance of the Primary blockchain network in E2C-Block , we
measured the following performance metrics using Hyperledger Caliper:

• Transaction throughput: Transaction throughput refers to the rate at which valid
transactions are successfully committed by a blockchain network over a specific
period. It is a critical performance metric that measures the efficiency and capacity
of the network in processing and validating transactions.

• Transaction Latency: Transaction latency refers to the amount of time it takes for a
blockchain network to confirm and commit a transaction, starting from the point at
which it is submitted to the point at which it is available across the network. The
time delay occurs between initiating a transaction and the network validating and
processing it.

• Block Size: The block size refers to the maximum number of transactions that
can be included in a single block. The block size in HLF can be configured by
adjusting the maximum block size setting in the network configuration file. The
maximum block size can impact the network’s overall throughput and latency and
the time it takes to validate and propagate a new block.

14https://github.com/chinmaya-dehury/Blockchain4E2CC/blob/main/fabric-
benchmarks/caliper/benchmarks/myAssetBenchmark.yaml
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• Block Propagation Time: Block propagation time refers to the time it takes for a
newly created block to be disseminated across the network and committed to the
ledger by all participating nodes. HLF uses a gossip protocol to disseminate blocks
to participating peers to ensure fast block propagation time. This protocol allows
nodes to communicate with a subset of other nodes in the network, exchanging
information about the blocks they have received.

• Consensus time: Consensus time refers to the time it takes for a blockchain network
to reach a consensus on a new block and add it to the blockchain. It is the time
it takes for the nodes in a blockchain network to agree on the validity of a new
transaction and add it to the blockchain.

5.3 Experiment Execution
We conducted four major Experiments:

• In the first experiment, the objective was to study the impact of block size on the
overall network performance. We varied the block size between 10 to 50 transac-
tions while sending transactions at various send rates and collected performance
metrics such as throughput, transaction latency, response time, block propagation
time, and consensus time for each block size.

• In the second experiment, we focused on the effect of transaction rate on the per-
formance of the PBN. We varied the transaction rate from 100 to 3000 transactions
per second.

• In the third experiment, we varied the number of participating nodes in the PBN
to study its impact on the network performance, particularly consensus time.
Consensus is the process of validating and adding new blocks to the blockchain,
and it involves a certain number of nodes agreeing on the validity of a new block.
The more nodes are involved in the consensus process, the longer it may take to
reach consensus. We varied the number of nodes from 10 to 100 and collected the
same performance metrics as in the previous experiments.

• The last experiment measured the time it took for sensor data to travel from the
SBN to the PBN and then to the MinIO data repository. This experiment focused
on the data transfer aspect of the blockchain network, as opposed to consensus or
transaction processing. The sensors generated data at varying rates between 100
and 3000, and the experiment observed the time it took for the data to reach the
MinIO server. Its goal was to evaluate the efficiency of the data transfer process in
the blockchain network and identify any possible bottlenecks or limitations.

48



In Section 5, we presented our experimental setup, including the benchmarking
tool, network, workload configurations, and hardware and software specifications. We
also introduced and explained the performance metrics used to evaluate the results of
our experiments. The chapter concludes with a discussion of the major experiments
performed.

6 Results and Discussions
The following results were obtained from the four experiments conducted to evaluate the
performance of the PBN in E2C-Block .

6.1 Impact of Block Size
Figure 11 illustrates the average throughput across various block sizes at different
transaction sending rates. At the same time, Figure 12 shows the average latency over
the same rates. The experiment involved sending transactions at speeds ranging from 10
tps to 500 tps, with multiple parameters listed in Table 6, including transaction sending
rate, block size, and number of peers.

Figure 11. Block Size vs Throughput

Figure 12 shows that the average latency remained under 1 second throughout the
experiments until it approached around 100 tps. The system’s throughput increased
linearly as the transaction sending rate increased, plateauing at approximately 100 tps,
indicating the highest usable rate. Beyond this point, the system’s performance degraded
as the load increased.
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Figure 12. Block Size vs Latency

However, the blockchain system’s performance depends on the hardware capabilities
of the System under Test and the number of involved peers, which also increases latency.
HLF is built on a Docker-based architecture, with each hyper ledger network component
running in a separate container communicating via a created network. Using smaller
block sizes with low transaction rates was preferred to achieve lower transaction latency
in real applications like IoT. Conversely, higher transaction rates required larger block
sizes in order to achieve higher throughput and lower transaction latency.

Table 6. Experimental Parameters

Parameters Values
Transactions Sending Rate 10, 20, 30, . . . , 100, . . . , 500 (tps)
Number of Peers 5, 10, 20, 30
Block Size 10, 50

6.2 Impact of Transaction Rates
Figure 13 shows the relationship between Transaction Rates and throughput at various
peer sizes. From the figure, we can observe that as the number of peers increases, the
throughput decreases. For example, at a transaction send rate of 10, the throughput for
five peers is 15, while the throughput for 30 peers is 15. At a transaction send rate of 50,
the throughput for five peers is 50, while the throughput for 30 peers is 50. However, at
higher transaction send rates, the difference in throughput between different peer sizes
becomes more significant.
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Another observation is that the throughput sometimes increases as the transaction
send rate increases. For instance, at a transaction send rate of 300, ten peers’ throughput is
higher than five peers. However, for a transaction send rate of 400, five peers’ throughput
is higher than ten peers. This implies that there may be an optimal transaction send
rate for a specific peer size that maximizes the network’s throughput. In conclusion,
the experiment suggests that increasing the number of peers in a network may only
sometimes result in higher throughput. There may be an optimal transaction send rate
that maximizes the network’s throughput for a particular peer size.

Figure 13. Transaction Send Rate(s) vs Throughput

On the other hand, Figure 14 shows the relationship between Transaction Rate and
latency at various peers configurations. From the figure, we can see that the latency is
relatively low when there are few peers. For example, when there are only five peers, the
latency is between 0.1 to 0.5 seconds. As the number of peers increases, the latency also
increases significantly. For instance, when there are 30 peers, the latency can be as high
as 1.4 seconds for a transaction send rate of 200.

The latency continues to increase as the number of peers increases, and it can be
as high as 9.6 seconds for a transaction send rate of 500 when there are ten peers.The
figure also reveals that the transaction send rate significantly impacts the latency. The
latency increases as the transaction send rate increases, especially when there are many
peers. For example, when there are 30 peers, the latency increases from 1.4 seconds to 6
seconds when the transaction send rate increases from 200 to 400.

However, the transaction latency increased from 5 seconds to 30 seconds, the response
time increased from 10 seconds to 50 seconds, the block propagation time increased
from 0.5 seconds to 10 seconds, and the consensus time increased from 1 minute to 10
minutes. These results suggest that increasing the transaction rate can improve network
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throughput but can also negatively impact transaction latency, block propagation time,
and consensus time.

Figure 14. Transaction Send Rate vs Latency

6.3 Impact of Number of Peers
Figures 15 and 16 illustrate the impact of the number of peers on the performance of
the blockchain system in terms of latency, throughput, block propagation time, and
consensus time. The experiments revealed that the system’s performance degrades as the
number of participating nodes increases from 10 to 100.

The system was tested with different transaction rates and numbers of peers. The
results showed that at 100 transactions per second (tps), the throughput decreased from
51.00 tps 15 with five peers to 34.00 tps with 100 peers (Figure 15). At 200 tps, the
throughput decreased from 51.25 tps to 31.50 tps, with an increase in peers from 5 to
100. Although the system reached its peak throughput of 51.50 tps at 300 tps with five
peers, the throughput decreased to 33.00 tps with 100 peers.

As shown in Figure 15, the latency increased with the number of peers. At 100 tps,
the latency increased from 3 ms with five peers to 8 ms with 40 peers and remained
constant at 8-9 ms for more than 40 peers. At 200 tps, the latency increased from 8 ms
with five peers to 20 ms with 40 peers and remained constant at 18-21 ms for more than
40 peers. Similarly, at 300 tps, the latency increased from 13 ms with five peers to 31 ms
with 40 peers and remained constant at 28-31 ms for more than 40 peers.

The block propagation time also increased with the number of peers, as shown in
Figure 16. At 100 tps, the block propagation time increased from 12.1 ms with five peers

15all the tps reported in this subsection were scaled down by a factor 10 for plotting purposes
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Figure 15. Number of Nodes Vs. Latency / Throughput

to 43 ms with 100 peers. At 200 tps, the block propagation time increased from 12.6
ms with five peers to 45.15 ms with 100 peers. At 300 tps, the block propagation time
increased from 13.356 ms with five peers to 47.829 ms with 100 peers.

Finally, the consensus time also increased with the number of peers. At 100 tps, the
consensus time increased from 0.98 s with five peers to 1.83 s with 100 peers (Figure
16). Similarly, at 200 tps, the consensus time increased from 1.06 s with five peers to
1.98 s with 100 peers. At 300 tps, the consensus time increased from 1.16 s with five
peers to 2.16 s with 100 peers.

6.4 Time Taken for Sensor Data to reach MinIO
We tested different sensor send rates, ranging from 100 to 3000 data points every 5
seconds. Since the SBN and the PBN would also modify the payload before it reaches
the MinIO storage server, we compared the time stamps of the retrieved payload on
MinIO. Our analysis showed that for send rates below 3000 data points every 5 seconds, a
sensor payload took an average of 0.024 to 0.026 seconds to pass through both blockchain
networks and reach the MinIO server. The delay at the SBN was responsible for about 78

7 Answers to Research Questions
This section answers the research questions in the following ways:

What are the best security measures for edge computing environments to protect
sensitive data?
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Figure 16. Number of Nodes Vs. Block Propagation/Consensus Time.

The proposed E2C-Block architecture provides an effective solution for protecting sen-
sitive data in edge computing environments. It utilizes blockchain technology, which
provides a secure and tamper-proof system for processing, transmitting, and storing
sensor data. The MinIO cloud-based storage system complements the blockchain net-
works, providing an efficient and reliable off-chain storage solution. The architecture
takes a comprehensive approach to data security, guaranteeing that the data is processed,
transmitted, and stored securely and tamper-proof. This approach provides a dependable
and effective method of protecting confidential information and preventing unauthorized
access, ultimately enhancing the security and privacy of the system.

How can blockchain, fog, and edge computing be integrated to overcome scalability
and reduce storage costs?
The proposed E2C-Block architecture integrates blockchain, fog computing, and edge
computing to overcome scalability and reduce storage costs. The architecture uses two
blockchain networks and an external data repository. The SBN is located in a fog com-
puting environment close to the IoT sensors, providing a secure communication channel
between IoT devices and the cloud infrastructure. The use of blockchain technology en-
sures data integrity and tamper-proof storage, while the external data repository provides
a scalable and secure storage solution. Storing the hash of the sensor data on the PBN
instead of the data itself reduces the storage footprint significantly while ensuring data
integrity.

How can blockchain technology be leveraged to ensure the integrity and immutabil-
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ity of data stored in fog and edge computing environments?
The proposed E2C-Block architecture leverages blockchain technology to ensure the
integrity and immutability of data stored in fog and edge computing environments. The
architecture uses two blockchain networks. The SBN provides a secure communication
channel between IoT devices and the cloud infrastructure, and the PBN ensures data
integrity and tamper-proof storage. Storing the hash of the sensor data on the PBN instead
of the data itself ensures data integrity while reducing the storage footprint significantly.
Moreover, the data can be retrieved from the MinIO server and compared against the
hash value previously stored on the PBN to verify its validity, ensuring that the data has
not been tampered with or altered.

7.1 Limitations
The proposed E2C-Block architecture provides data security and integrity benefits but
has limitations that should be evaluated before using it. The architecture’s evaluation
was specific to a use case and may not be suitable for high data volume or real-time data
processing scenarios. The use of MinIO for off-chain storage is efficient but can impact
overall system performance and availability. The architecture’s effectiveness against
adversarial attacks and malicious actors is unknown. It can also introduce computational
and storage overhead and may perform poorly in environments with limited network
resources or high latency. Further research is necessary to address these limitations and
validate the architecture’s effectiveness in real-world scenarios. Hashing was performed
on every sensor data point, which could be computationally demanding for large sensor
data collections.

7.2 Future Works
• Deployment Automation: The current deployment automation of E2C-Block using

Ansible and Fablo could be improved by creating more robust and configurable
scripts and tools. Automating the deployment process will make it easier to set up
and manage all the components of the E2C-Block environment. This will make the
deployment process more efficient, especially when deploying across a distributed
list of servers.

• Pluggable Consensus Algorithms: Adding support for additional consensus algo-
rithms like Kafka would make E2C-Block more flexible and provide users with
more options. This will enhance the performance of E2C-Block and make it more
adaptable to different use cases. It is crucial to consider the specific requirements
of each use case to determine the most suitable consensus algorithm.

• Making it Truly Distributed: To support production-level workloads, it is essential
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to move all the components of the Hyperledger framework of E2C-Block to
separate hosts, making it truly distributed. By doing so, E2C-Block can utilize
more robust consensus algorithms like Kafka. This will improve the overall
performance and scalability of E2C-Block .

• Mapping More than Data Points to Hashing: The hashing process of the PBN of
E2C-Block should be optimized to hash a block of sensor data instead of a single
data payload. This will reduce the number of hashes required for the same number
of sensor data payloads, improving the performance of E2C-Block . Additionally,
adjustments should be made to how the data authenticity check is performed in the
PBN when querying the MinIO Storage Server to accommodate this change.

8 Conclusion
The thesis addressed three critical research questions concerning securing edge computing
environments, using blockchain for data integrity and immutability, and integrating fog
computing and edge computing to improve scalability and reduce storage costs. The
study yielded several significant findings. Protecting edge computing environments is
crucial due to their vulnerability to attacks, which can be mitigated using the SBN in the
fog computing environment. Hashing sensor data on the PBN and storing data on MinIO
can reduce storage costs and enhance scalability.

The experiment demonstrated that increasing the transaction rate can improve network
throughput but negatively affect other performance metrics. Similarly, increasing the
number of peers can also negatively impact network performance. The study also revealed
that the sensor payload takes approximately 0.024 seconds to reach the MinIO storage
server. In summary, the study provides valuable insights into the effective utilization of
blockchain and related technologies to enhance edge computing environments’ security,
scalability, and performance. Overall, E2C-Block provides an effective solution for
managing and securing IoT sensor data.
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Appendix

Access to Code
The code described in this thesis can be found in the public GitHub repository.
https://github.com/chinmaya-dehury/Blockchain4E2CC.
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