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Container-Based Microservice Placement Optimization in Cloud

Abstract:
Today, many applications operate as containerized microservices running on multi-

machine clusters in cloud computing environments. High container-machine placement
quality increases throughput, reduces latency, and improves cluster resource utiliza-
tion. Optimal placement is achieved by solving complex multidimensional optimization
problems. However, in response to the highly volatile nature of the cloud environ-
ment, modern container management systems opt for suboptimal placement, prioritizing
quick decision-making. Over time, these poor decisions compound, increasing the need
for placement reevaluation. Available reevaluation solutions change the placement of
containers by making them undergo the same placement process again, with no guar-
antee of improved results. To address the issue, this thesis presents a novel placement
reevaluation algorithm based on the particle swarm optimization approach with a focus
on optimizing infrastructure costs. By integrating interzonal network traffic costs, the
proposed algorithm achieves cost reductions beyond those obtained through conven-
tional solutions that focus solely on computing resource costs. The stability of the
algorithm in high-dimensional tightly bounded discrete search spaces was enhanced
through improved particle position initialization. Empirical evaluations demonstrate the
efficiency of the proposed algorithm, surpassing traditional optimization problem solvers,
while outperforming standard particle swarm optimization implementations in terms of
accuracy.

Keywords:
Particle swarm optimization, Kubernetes, offline scheduling, microservice architecture,
cost optimization, cloud computing, distributed systems.
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Konteinerpõhine mikroteenuste paigutuse optimeerimine pilves
Lühikokkuvõte:

Tänapäeval töötavad paljud rakendused konteinerite mikroteenustena, mis töötavad
mitme masinaga klastrites pilvandmetöötluse keskkondades. Konteinerite ja masinate pai-
gutuse kõrge kvaliteet suurendab läbilaskevõimet, vähendab latentsust ja parandab klastri
ressursside kasutamist. Optimaalne paigutus saavutatakse keeruliste mitmemõõtmeliste
optimeerimisülesannete lahendamisega. Kuid vastuseks pilvekeskkonna väga muutlikule
olemusele valivad kaasaegsed konteinerihaldussüsteemid mitteoptimaalse paigutuse,
eelistades kiiret otsustamist. Aja jooksul need kehvad otsused süvenevad, suurendades
vajadust paigutuse ümberhindamise järele. Saadaolevad ümberhindamise lahendused
muudavad konteinerite paigutust, pannes need uuesti läbi sama paigutusprotsessi, il-
ma et tulemused paraneksid. Selle probleemi lahendamiseks esitatakse selles lõputöös
uudne paigutuse ümberhindamise algoritm, mis põhineb osakeste sülemi optimeeri-
mise lähenemisviisil, keskendudes infrastruktuuri kulude optimeerimisele. Integreerides
tsoonidevahelisi võrguliikluskulusid, saavutab pakutud algoritm kulude vähendamise,
mis on suurem kui tavapäraste lahenduste abil, mis keskenduvad ainult ressursikulu-
de arvutamisele. Algoritmi stabiilsust suuremõõtmelistes tihedalt piiratud diskreetsetes
otsinguruumides suurendas osakeste positsiooni täiustatud lähtestamine. Empiirilised
hinnangud näitavad pakutud algoritmi tõhusust, ületades traditsioonilisi optimeerimis-
probleemide lahendajaid, ületades samal ajal täpsuse osas standardseid osakeste sülemi
optimeerimise rakendusi.

Võtmesõnad:
Osakeste sülemi optimeerimine, Kubernetes, võrguühenduseta ajakava, mikroteenuste
arhitektuur, kulude optimeerimine, pilvandmetöötlus, hajutatud süsteemid.

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll
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1 Introduction
In recent years, microservices have become increasingly popular. Many organizations
have adopted this architectural style for software development [1]. The popularity of
microservices can be attributed to several benefits, including improved scalability, agility,
and resilience. Microservices enable organizations to break down large monolithic
applications into smaller and more manageable services that can be developed, deployed,
and maintained independently. This approach allows for more frequent releases and a
faster time-to-market.

One way to operate microservices is to use containers. Containers provide a light-
weight, isolated runtime environment that enables multiple services to run on a single
host, thereby improving resource utilization and reducing costs. Containers enable
developers to package and deploy microservices as independent units, along with their
dependencies and configurations, making moving them between different platforms easy.

Cloud computing has grown in popularity, with organizations of all sizes moving their
applications to the cloud [2]. Organizations leverage cloud computing to shift from capital
expenditures (CapEx) on building their own data centers (DCs) to operating expenses
(CapEx) on used infrastructure, which is cheaper because of the higher economies of
scale. The cloud also allows going beyond the planned infrastructure or data centers in
minutes to provide customers the necessary agility.

One crucial aspect of running containerized microservice applications in the cloud is
the placement of containers on machines. Placement is influenced by the requirements to
the application or machines. One machine may be chosen over the other because of the
minimum required computing resources or specific hardware, such as GPUs, which are in
high demand owing to recent advancements in artificial intelligence. Organizations must
carefully consider these factors when deciding how to place containers because poor
placement decisions can lead to reduced performance, increased costs, and application
unavailability.

Managing a large number of containers in a distributed system is challenging. Con-
tainer orchestration is the process of automating the management, scaling, and deploy-
ment of containerized applications. Kubernetes1 is widely recognized as the most popular
system among various container orchestration platforms [3][4]. Kubernetes employs an
online scheduling model to manage newly created or scaled-out containerized workloads,
processing their requirements individually to select the most suitable machine available.
However, this placement process lacks a global perspective. It does not consider other
workloads waiting for placement or the state of the system after making a placement
decision. These locally optimal decisions can lead to globally suboptimal outcomes, such
as under- or overutilized machines, the "noisy neighbors" problem, network throttling, or
single points of failure.

1https://kubernetes.io/

10

https://kubernetes.io/


According to research findings [5], most enterprises aim to allocate a significant
portion of their IT hosting budget, specifically 8 out of every 10 USD, to cloud services by
2024. Moreover, a separate study [6] highlighted that compute services constitute at least
a quarter of the total cloud expenditure. Consequently, even incremental improvements
such as optimizing the placement of microservices within cloud environments have the
potential to yield substantial reductions in cloud-related costs.

While external tools are available to address the outcomes of suboptimal placement,
they do not address the root cause, the online scheduling model. Descheduler2 is a
community-maintained project that addresses the high volatility of the Kubernetes cluster
by evicting running workloads where possible for them to be rescheduled, hopefully
optimizing placement. Karpenter3 is an open-source Kubernetes cluster autoscaler built
by Amazon Web Services (AWS) that can deprovision machines entirely or replace them
with cheaper variants when placing their workloads differently is possible. Both tools
rely on Kubernetes to schedule evicted workloads; however, there is no guarantee that
the placement decision will improve next time.

This thesis focuses on providing an optimal container-machine placement for mi-
croservice applications. This thesis uses Kubernetes as an example, since it is the most
popular orchestrator in the industry. Kubernetes provides a set of abstractions helpful in
discussing the problem. However, the proposed solution is not limited to Kubernetes. It
can be applied to any similar distributed system that runs containerized microservices.
The solution leverages the benefits of the cloud environment, where Kubernetes often
operates, specifically the wide variety of compute instance types, and the ability to scale
on demand.

1.1 Motivation
The motivation behind this thesis stems from the recognition of a significant gap in the
market: a lack of available tools capable of suggesting new placement schemes that
effectively increase resource utilization while simultaneously decreasing infrastructure
costs. The absence of a comprehensive solution has created a compelling need for novel
approaches that address the complexities of microservice placement optimization in
cloud computing environments.

1.2 Goals
The primary objective of this thesis is to design and implement an advanced placement
reevaluation algorithm that demonstrates high accuracy without compromising the speed.
The algorithm should incorporate various real-world cloud cost factors to effectively

2https://sigs.k8s.io/descheduler
3https://karpenter.sh/
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reduce cloud costs. Through the successful implementation of such an innovative
algorithm, this thesis aims to offer a valuable tool for enterprises seeking to decrease
infrastructure expenses by optimizing their microservice placement.

1.3 Contributions
This thesis makes the following contributions:

• Catered solution to cloud customers, emphasizing a reduction in cloud infrastruc-
ture costs rather than prioritizing energy efficiency, hardware longevity, and tenant
Quality of Service (QoS), which are commonly emphasized by cloud providers.

• Included network data transfer costs in the system model increasing the granularity
of the objective function.

• Highlighted limitations of applying the widely used Particle Swarm Optimization
(PSO) algorithm to the problem.

• Enhanced implementation of the PSO algorithm by incorporating a first-fit bin
packing algorithm to improve the stability of the algorithm, fostering more consis-
tent and reliable performance throughout its iterations.

• Conducted a comparative analysis between the proposed PSO-based solution and
the standard PSO and linear solver through a series of experiments.

1.4 Thesis Outline
Chapter 2 establishes terminology and surveys related research, setting the context for
the thesis. Chapter 3 defines the system model, including cloud components, application
elements, assumptions, and notations. Chapter 4 presents the proposed algorithm’s
implementation, detailing design choices and rationales. Chapter 5 outlines experiments,
covering setup, metrics, methodologies, and results. Chapter 6 concludes findings and
suggests future research directions.
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2 State of the Art
This chapter provides an in-depth explanation of the terminologies employed throughout
the remainder of this thesis. A comprehensive analysis of related work is presented, offer-
ing insights into prior research and establishing the context for the ensuing discussions.

2.1 Background
2.1.1 Cloud Computing

Cloud computing is a model for enabling ubiquitous, convenient, and on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction [7]. A company or organization that
offers cloud computing resources is called a cloud service provider (CSP). Cloud service
providers vary in size and services they offer. Amazon Web Services4, Microsoft Azure5,
and Google Cloud Provider (GCP)6 are the most common cloud service providers.

Cloud infrastructure (hereafter, infrastructure) is a collection of hardware and soft-
ware that enables the essential characteristics of cloud computing. The cloud infrastruc-
ture can be viewed as containing both a physical layer and an abstraction layer. The
physical layer comprises the hardware resources necessary to support the services; it
typically includes servers, storage, and network components. The abstraction layer
consists of the software deployed across the physical layer, which manifests essential
cloud characteristics. Conceptually the abstraction layer sits above the physical layer [7].

Infrastructure is housed on special premises called data centers. An availability
zone (AZ) is one or more closely interconnected data centers. Availability zones are
isolated - the unavailability of one does not imply the unavailability of the other. The
availability zones are grouped into regions that may further form the geographies. Azure’s
geography Europe consists of two regions: North Europe in Ireland and West Europe
in the Netherlands; each of the regions consists of three availability zones. The AWS
spans 99 availability zones within 31 regions, with at least three availability zones in
each region [8].

As cloud computing has grown in popularity, several models and deployment strate-
gies have emerged to help meet specific needs of different users: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS). Infrastructure
as a Service is the capability provided to the consumer to provision processing, storage,
networks, and other fundamental computing resources where the consumer can deploy

4https://aws.amazon.com/
5https://azure.microsoft.com/
6https://cloud.google.com/
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and run arbitrary software. Platform as a Service is the capability provided to the con-
sumer to deploy onto the cloud infrastructure consumer-created or acquired applications
created using programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud infrastructure.
Software as a Service is the capability provided to the consumer to use the provider’s ap-
plications running on a cloud infrastructure. [7]. Figure 1 explains how the responsibility
is split between the cloud provider and the customer in these cloud models.

Virtualization

Operating
system

Application

Virtualization

Operating
system

Application

Virtualization

Operating
system

Application

IaaS PaaS SaaS

Managed by
cloud provider

Managed by
customer

Data Data Data

Hardware Hardware Hardware

Runtime Runtime Runtime

Figure 1. Comparison of IaaS, PaaS, and SaaS cloud models.

2.1.2 Virtualization and Containerization

Cloud infrastructure relies heavily on virtualization, that is, the simulation of the software
and hardware upon which other software runs. This simulated environment is called a
virtual machine (VM). Virtualization is enabled by a hypervisor (also known as a virtual
machine monitor (VMM)). A hypervisor manages the guest operating systems (OSs) on
the host and controls the instruction flow between them and the physical hardware [9].
There are two types of hypervisors that differ in their architecture and performance. The
type 1 hypervisor (bare-metal hypervisor) is installed directly on the hardware. The
type 2 hypervisor runs as software on a host OS. Despite their differences, both types of
hypervisors have their use. Because of their low resource footprint, type 1 hypervisors
are used in cloud data centers. Type 2 hypervisors are popular among consumers because
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they are more user-friendly [10]. Examples of hypervisors include Kernel-based Virtual
Machine (KVM)7, Hyper-V8, and VMware vSphere9.

While VMs provide the isolation of operating systems, they may be too heavy for
application isolation. Containers are lightweight alternatives to VMs. A container is a
method for packaging and securely running an application in a virtualization environ-
ment [11]. The container engine is responsible for managing the container lifecycle.
Common container engines include Linux Containers (LXC)10, Docker11, and Podman12.

Figure 2 shows the different abstraction layers on which the virtual machines and
containers are built. Although a hypervisor is not required for running containers, it
is always present in cloud environments to virtualize operating systems for multiple
tenants sharing the same hardware [10]. The critical difference between the VM and
container is that the former ships with its own OS, whereas the latter utilizes host OS
kernel features to run as an isolated process. The absence of an operating system inside
the container is the reason for its reduced size. A container engine is required to manage
the container lifecycle; however, running containers relies only on the OS kernel features.
The container engine usually runs in userspace, thus its failure does not affect the running
containers.

Hardware

Hypervisor

Operating
system

Application

Hardware

Operating system

Container
engine

Virtualization Containerization

Runtime

VM

Operating
system

Application

Runtime

VM

Operating
system

Application

Runtime

VM

Application

Runtime

Container

Application

Runtime

Container

Hypervisor

VM

Figure 2. Comparison of virtual machine and container models.

New technologies such as Firecracker microVMs13 represent an upgrade over tradi-
tional containers. MicroVMs are based on a minimalist kernel to reduce the memory

7https://www.linux-kvm.org/page/Main_Page
8https://learn.microsoft.com/virtualization/hyper-v-on-windows/about/
9https://www.vmware.com/products/vsphere.html

10https://linuxcontainers.org/
11https://www.docker.com/
12https://podman.io/
13https://firecracker-microvm.github.io/
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footprint and attack surface area. Characterized by VM-like security and container-like
startup times, microVMs are used in Container as a Service (CaaS) and Function as a
Service (FaaS) offerings. Although this thesis relies on the word "container", the system
may use microVMs without loss of generality.

2.1.3 Microservice Architecture

The microservice architectural style for developing software applications emphasizes
breaking down the system into loosely coupled and independently deployable services.
Unlike its counterpart, the traditional monolithic architecture, in which the entire system
is built as a single unit, the microservice architecture allows developers to build and
maintain the application as a collection of smaller interconnected services. Each service
is designed to perform a specific business function, and can be developed, tested, and
deployed independently. This approach enables faster development cycles because
services can be updated and released without disrupting the entire system. It also
improves scalability and resilience because individual services can be scaled depending
on demand, and the failure of one service does not affect the entire system [12].

Figure 3 illustrates an exemplary microservice-based design for the backend of an
online retailer website [1]. This architecture includes a common backend for frontends
pattern, that allows the teams focusing on user-facing side of the application to also
handle their own server-side components.

Mobile backend Customer website
backend

Helpdesk backend

Catalog Recommendation
service

Customer service

Figure 3. Microservice application example.

The use of containers for microservice architecture has become a widely accepted
practice in the industry [1]. This is because containers provide the isolation, portability,
and rapid deployment capabilities required to benefit entirely from the microservice
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architecture. Reduced resource requirements and startup times of containers, which
enable the scalability of microservice applications, are preferred over the improved
security of virtual machines.

2.1.4 Kubernetes

Distributed systems running containers are highly volatile. The underlying VMs may
fail because of the unpredictable increase in handled data resulting in cascading failures
of containers running there. Containers may shut down because of runtime errors or
resource shortages in a VM. A container orchestrator is a tool that makes it easier to
manage large-scale containerized applications. Container orchestration refers to the auto-
mated management of containers, which includes deployment, scaling, and scheduling.
Examples of container orchestrators include Kubernetes, Nomad by HashiCorp14, and
Apache Mesos15.

Container orchestration is necessary because it is challenging to manually manage
a large number of containers in a distributed system. Orchestration platforms, such as
Kubernetes, provide a high-level API that allows users to manage and scale containers
efficiently, abstracting the complexity of container management. These platforms provide
features, such as service discovery, load balancing, automatic scaling, self-healing, and
fault tolerance, which help ensure the high availability and reliability of containerized
applications. Furthermore, container orchestration allows for resource-efficient utilization
by optimizing the placement of containers across a cluster of hosts based on resource
requirements, availability, and workload demands.

Kubernetes is an open source container orchestration engine for automating the
deployment, scaling, and management of containerized applications. Kubernetes operates
as a cluster of multiple computing machines referred to as nodes [13]. Each node within
a cluster can fulfill the role of a control plane node, a worker node, or perform both
functions simultaneously. The control plane makes global decisions about the cluster,
as well as detects and responds to cluster events. Worker nodes host the application
workload.

Kubernetes runs the application workload inside a set of pods. Pods are the smallest
deployable computing units that can be created and managed in Kubernetes. A Pod is a
group of one or more containers with shared storage and network resources. Instead of
running pods directly, relying on workload resources to create and manage multiple pods
is recommended. A controller for the workload resource handles replication, rollout, and
automatic healing in case of pod failure. A typical long-running stateless application
workload is operated as a Deployment resource [14]. Figure 4 explains an architecture of
Kubernetes cluster.

14https://www.nomadproject.io/
15https://mesos.apache.org/
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Figure 4. Kubernetes cluster architecture.
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2.1.5 Scheduling

Scheduling and placement are two distinct but interconnected concepts within the context
of containerized systems. While placement refers explicitly to the mapping of resources
to containers, scheduling encompasses a broader scope that includes not only resource
allocation, but also the sequencing of container execution. However, within the scope
of this thesis, the focus is primarily on long-running containers, in which the order of
execution is not a significant concern. As a result, the terms scheduling and placement
are used interchangeably throughout this thesis.

In Kubernetes, a scheduler runs as part of the control plane and watches for newly
created unassigned pods [15]. First, the scheduler filters out nodes that do not meet the
requirements or waits until such node appears. Filtering is based solely on the Pod’s
requirements. Then the scheduler scores feasible nodes and selects the one with the
highest score. If there is more than one node with equal scores, the scheduler randomly
selects one of them.

When the number of nodes within a Kubernetes cluster is significant, the scheduler
experiences increased time requirements for filtering and scoring nodes. To mitigate the
scheduling latency, Kubernetes offers the option of reducing the percentage of nodes to
score [16], albeit at the expense of diminished accuracy. Additionally, as the number of
nodes in the cluster increases, the likelihood of encountering multiple feasible nodes with
equivalent scores amplifies. These nodes, however, may possess inherent inequalities
that remain unaccounted for due to the limitations imposed by the scoring rules.

Kubernetes employs an online scheduling model, which involves processing contain-
ers individually without considering the other containers awaiting scheduling. Online
scheduling focuses on optimizing decisions for each container independently. In contrast,
offline scheduling strives to optimize the overall state of the system by considering the
collective context [17]. Despite the distinctions between online and offline scheduling al-
gorithms, when confronted with a single container requiring scheduling, both approaches
should ideally converge to the same decision.

Figure 5 demonstrates the drawbacks of the online scheduling model through an
illustrative scenario. In this scenario, one container has already been scheduled in the
cluster of homogeneous virtual machines, while three additional containers of varying
sizes await scheduling in the queue. The offline approach utilizes two VMs, whereas
the online method, following the order of containers in the queue, employs three VMs,
resulting in the underutilization of two of the allocated VMs.

2.2 Related Work
Carmen Carrión [18] explores the role of the scheduler in assigning physical resources
to containers, considering various QoS parameters such as response time, energy con-
sumption, and resource utilization optimization. By conducting an empirical study of
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Figure 5. Comparison of online and offline scheduling models.

Kubernetes scheduling techniques, this study offers valuable insights and establishes
a new taxonomy for understanding and categorizing these techniques. This study ac-
knowledges the effectiveness of swarm intelligence algorithms for solving scheduling
problems, specifically Ant Colony Optimization (ACO), PSO, and Whale Optimization
algorithms. Additionally, the gaps identified in current approaches and discussions on
challenges, future directions, and research opportunities provide a solid foundation for
guiding further research in this area.

Kumar et al. [19] conduct a comprehensive systematic review and classification
of scheduling techniques, highlighting their strengths and limitations. The research is
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focused on heuristic, meta-heuristic, and hybrid scheduling algorithms. The focus of
this thesis, however, is primarily on meta-heuristic algorithms, among which the study
explores Particle Swarm Optimization, Ant Colony Optimization, Artificial Honey Bee,
and genetic algorithms. The study highlights the advantages of meta-heuristic algorithms,
such as their generalized nature, efficiency, and non-deterministic behavior. Conclusively,
the research indicates that the PSO algorithm exhibits a superior convergence rate and
complexity compared to other meta-heuristic algorithms.

Gang Zhao [20] has devised a modified Particle Swarm Optimization algorithm aimed
at optimizing cloud resource utilization, application processing time, and associated
costs. The algorithm showed positive outcomes when compared to the conventional PSO
algorithm. However, it lacks comprehensive performance evaluation against alternative
meta-heuristic or other state-of-the-art algorithms. Finally, the algorithm’s consideration
does not extend to constrained resource capacities; rather, it exclusively deals with the
cost and time functions of running tasks on the resources.

Li et al. [21] leveraged the PSO algorithm in conjunction with a real-time monitoring
framework to enhance the Quality of Service. Their study aimed at optimizing node
resource utilization, balancing node resources, and minimizing delays between services.
The algorithm demonstrates superior QoS optimization compared to the scheduler used
by Kubernetes. It is important to note, however, that while the authors implemented
an offline model, Kubernetes utilized an online scheduling approach, rendering direct
comparisons between the two problematic.
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3 Problem Statement
This chapter presents a system model that serves as the basis for subsequent research.
The system model encompasses the essential components of the cloud infrastructure and
the modelled application. It further outlines the relationships and interactions between
these elements to understand the dynamics of microservice placement. Moreover, key
assumptions and constraints applied to the system model are explicitly stated to establish
the boundaries and scope of the study. To ensure clarity and consistency in subsequent
discussions, the relevant notations and formulas that will be used throughout the thesis
are introduced in Table 1.

Notation Description
N = {N1, . . . , Nn} Set of n nodes
Nk Node at index k
costk Cost of node Nk

cpulimk Effective CPU limit of node Nk

memlimk Effective memory limit of node Nk

contlimk Container limit of node Nk

select(Nk) 1 if Nk is used by an application, 0 otherwise
AZ = {AZ1, . . . , AZa} Set of a availability zones
AZb Availability zone at index b
az(Nk) Availability zone where node Nk is placed
place(Nk, AZb) 1 if Nk is placed in AZb, 0 otherwise
A Modeled application
M = {M1, . . . ,Mm} Set of m microservices
Mi Microservice at index i
Ci =

{
Ci

1, . . . , C
i
ci

}
Set of ci containers of microservice Mi

Ci
j Container at index j of microservice Mi

cpureqi CPU requirement of container Ci
j

memreqi Memory requirement of container Ci
j

node
(
Ci

j

)
Node where container Ci

j is scheduled
sched

(
Ci

j, Nk

)
1 if Ci

j is scheduled on Nk, 0 otherwise
data(Mi,Mi′) Network data rate from microservice Mi to Mi′

datacost(Nk, Nk′) Cost of data transfer between nodes Nk and Nk′

Table 1. List of notations.
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3.1 Infrastructure Model
N is a set of n nodes {N1, . . . , Nn} employed by the cluster. Each node Nk is associated
with a defined by CSP cost costk, representing the expenses incurred for running the
node over a specific time period, typically one hour. The cost of each node depends on
its type, which is uniquely defined by the underlying hardware configuration. The node
type specifies the available resources, including CPU, memory, and container capacity.

Nk = ⟨costk; cpulimk; memlimk; contlimk⟩. (1)

The CPU and memory capacity values provided by the CSP are considered nominal,
signifying that they are not solely allocated for running user applications. To address
potential ambiguity, effective resource limits denoted by cpulimk and memlimk are
introduced, ensuring that a portion of the nominal resources is reserved for the operating
system and container orchestration. Kubernetes provides similar mechanisms for reserv-
ing node resources for operational purposes [22]. Reserving the resources also offers the
added benefit of mitigating hardware degradation over time [23][24].

The container limit, denoted by contlimk, on a node typically depends on the con-
tainer orchestrator and cloud service provider. In instances where the container limit
value for a node remains unknown, a value of positive infinity∞ should be used. Conse-
quently, the number of containers scheduled on a node is limited only by the available
resource constraints cpulimk and memlimk. In Kubernetes, however, the limitation is
imposed on the number of Pods per node rather than on the number of containers per node.
Reference values for the limit of Pods per node for popular Kubernetes distributions are
presented in table 2.

Distribution Pod limit
Kubernetes 110 16

Amazon Elastic Kubernetes Service (EKS) 737 17

Azure Kubernetes Service (AKS) 250 18

Google Kubernetes Engine (GKE) 256 19

Table 2. Pod limit reference.

16https://kubernetes.io/docs/setup/best-practices/cluster-large/
17https://github.com/awslabs/amazon-eks-ami/blob/master/files/eni-max-pods.txt
18https://learn.microsoft.com/en-us/azure/aks/quotas-skus-regions
19https://cloud.google.com/kubernetes-engine/quotas
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Each node Nk ∈ N is assigned to one of the available availability zones, repre-
sented as AZ = {AZ1, . . . , AZa}. The function az(Nk) returns the specific availability
zone where node Nk is placed. Additionally, the boolean function place(Nk, AZb) is
introduced to determine whether node Nk is placed in the availability zone AZb:

place(Nk, AZb) =

{
1 if az(Nk) = AZb;

0 if az(Nk) ̸= AZb.
(2)

3.2 Application Model
Application A adheres to the microservice architecture. Figure 3 presents an example
of an application following the microservice architecture model. Application A is
characterized by a set of long-running stateless m microservices denoted as M =
{M1, . . . ,Mm}, along with the network relationships between these microservices.

A = ⟨M ; data(Mi,Mi′)⟩. (3)

Each microservice Mi ∈M is defined by its set of containers Ci =
{
Ci

1, . . . , C
i
ci

}
,

the number of CPU cpureqi and memory memreqi resources required by each container:

Mi =
〈
Ci; cpureqi; memreqi

〉
. (4)

Each container Ci
j ∈ Ci is assigned to one of the nodes. The function node

(
Ci

j

)
returns the specific node where container Ci

j is scheduled. Additionally, the boolean
function sched

(
Ci

j, Nk

)
is introduced to determine whether container Ci

j is scheduled
on node Nk:

sched
(
Ci

j, Nk

)
=

{
1 if node

(
Ci

j

)
= Nk;

0 if node
(
Ci

j

)
̸= Nk.

(5)

3.3 Network Model
The data rate from the containers Ci of microservice Mi to the containers Ci′ of mi-
croservice Mi′ is denoted as data(Mi,Mi′). In real-world systems, the distribution of
requests across multiple servers is typically balanced through mechanisms such as load
balancers or Domain Name System (DNS) Round Robin. Thus, it is assumed that net-
work communications are perfectly balanced. Each container Ci

j ∈ Ci of a microservice
Mi both produces and consumes an equal share of network data. Figure 6 provides visual
explanation for the network communication between two microservices. Trapezoid in
the middle of the figure represents the load balancing entity.
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Container

Container

Container

Container

Container

Microservice Microservice 

Figure 6. Network communication between two microservices.

In addition the cost associated with running computing machines, cloud service
providers typically apply charges for network data transfers between these machines [25].
For this problem, a simplified billing model is adopted. The cost of network data
transfer from node Nk to node Nk′ , denoted by datacost(Nk, Nk′), depends on the logical
distance between them: whether it is the same node, the nodes are in the same, or different
availability zones. Notably, data transfer between containers running on the same
host node incurs no additional charges. While network data transfer is conventionally
measured in bits per second, to ensure clarity and consistency, it is advisable to reuse the
time unit of costk for both data(Mi,Mi′) and datacost(Nk, Nk′).

datacost(Nk, Nk′) =


0 if k = k′;

α ≥ 0 if az(Nk) = az(Nk′);

β ≥ α if az(Nk) ̸= az(Nk′).

(6)

As the application users are not situated within the CSP’s DCs, their traffic is con-
sidered external to the system. Although this external traffic incurs costs, it cannot be
affected by any changes in container placement. As a result, this external traffic is not
factored into the system model.

The network traffic is constrained by the network bandwidth available within the
system. In real-world scenarios, the network bandwidth is typically defined in Gigabits
per second on a VM basis, considering both inbound and outbound communications
separately [26]. In most cases, the provided network bandwidth values are sufficient. In
other cases, CSPs offer options to achieve higher bandwidth, for example by switching to
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larger VM types. Given the high base numbers and the possibility to upscale bandwidth
as needed, network bandwidth is not considered within the system model.

3.4 Kubernetes Model
While Kubernetes does not directly operate in terms of data transfer data(Mi,Mi′) or
infrastructure costs cost(Nk) and datacost(Nk, Nk′), it is possible to align the system
model of this thesis with Kubernetes API. Table 3 provides a mapping of notations
discussed in the chapter to the Kubernetes notations. The utilization of the provided
table streamlines the application of the solution presented in the thesis, enabling the
development of a custom scheduler or scheduling plugin for Kubernetes.

System model Kubernetes
Node Node
Nominal resource capacity Resource capacity
Reserved resource capacity Reserved resource
Effective resource limit Allocatable resource
Availability zone Zone topology domain
Microservice Deployment
Container Pod
Resource requirement Resource requirement

Table 3. System model to Kubernetes notation mapping.

3.5 Problem Objective
The optimization of container placement aims to minimize the overall cost of running
the application in the cloud. The objective model omitted several common objectives:

• Energy efficiency is crucial for cloud providers to cut utility costs but is irrelevant
to customers because of the billing model.

• Balancing resource utilization, which boosts QoS and hardware lifespans for
providers, is achieved via resource reservation.

• Performance, as each solution satisfying the constraints ensures the scheduled
containers have sufficient resources for operation.
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3.5.1 Objective function

minimize(COST = NODECOST + DATACOST ). (7)

The cost of running the application COST consists of two components: the cost
of operating computing machines NODECOST and the cost of network data transfer
between these machines DATACOST .

NODECOST =
n∑

k=1

(costk × select(Nk)). (8)

Despite the presence of n nodes in the cluster, it remains possible to rebalance con-
tainers between them in a manner that renders a particular node Nk empty, subsequently
allowing its removal from the cluster. The function select(Nk) is introduced to determine
whether node Nk is utilized by application A.

select(Nk) = sgn

(
m∑
i=1

ci∑
j=1

sched
(
Ci

j, Nk

))
. (9)

∀Mi∀Nk, sched
(
Ci

j, Nk

)
≥ 0⇒ select(Nk) ≥ 0, ∀Nk. (10)

The total cost of network data transfers between the microservices DATACOST
is equivalent to the sum of the costs incurred for each node-to-node data transfer
DATA(Nk ,Nk ′).

DATACOST =
n∑

k=1

n∑
k′=1

(datacost(Nk, Nk′)× DATA(Nk ,Nk ′)). (11)

To calculate the amount of data transferred from node Nk to node Nk′ , it is necessary
to aggregate all the network data transfer shares produced by the containers present on
the node Nk and consumed by containers present on the node Nk′ .

DATA(Nk ,Nk ′) =
m∑
i=1

m∑
i′=1

(
data(Mi,Mi′)×

ci∑
j=1

sched
(
Ci

j, Nk

)
ci

×
ci′∑
j′=1

sched
(
Ci′

j′ , Nk′
)

ci′

)
.

(12)
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3.5.2 Constraints

n∑
k=1

sched
(
Ci

j, Nk

)
= 1, ∀Mi,∀Ci

j (13)

m∑
i=1

ci∑
j=1

sched
(
Ci

j, Nk

)
≤ contlimk, ∀Nk, (14)

m∑
i=1

ci∑
j=1

(
sched

(
Ci

j, Nk

)
× cpureqi

)
≤ cpulimk, ∀Nk, (15)

m∑
i=1

ci∑
j=1

(
sched

(
Ci

j, Nk

)
×memreqi

)
≤ memlimk, ∀Nk. (16)

• Constraint (13) reflects the requirement that each container Ci
j of any microservice

Mi is assigned to exactly one node.

• Constraint (14) ensures that for any node Nk, the number of containers assigned to
it is lower or equal to contlimk.

• Constraint (15) ensures that for any node Nk, the amount of CPU resources utilized
by the containers assigned to it is lower or equal to its effective CPU limit cpulimk.

• Respectively, constraint (16) ensures that for any node Nk, the amount of memory
resources utilized by the containers assigned to it is lower or equal to its effective
memory limit memlimk.

3.6 Complexity
The well-established nondeterministic polynomial-hard vector bin packing problem [27]
can be trivially reduced to a container scheduling problem to prove the nondeterministic
polynomial-hardness of the latter. Each multidimensional vector in the vector bin packing
problem has the same characteristics as the containers within the container scheduling
problem, whereas the bins are aligned with the nodes.
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4 Solution
This chapter introduces the solution, comprising a detailed explanation of the proposed
algorithm and its implementation. Additionally, a comprehensive exploration of the
design choices made during the development process and the underlying reasons that
influence these decisions are provided.

4.1 Particle Swarm Optimization
James Kennedy and Russell Eberhart [28] initially introduced the concept of Particle
Swarm Optimization as a technique for optimizing continuous nonlinear functions. This
algorithm replicates the social behaviors observed in swarms, where individual particles
move towards both their own best known positions and the best known position of the
entire swarm. The elegance of the algorithm lies in its simplicity, relying on primitive
mathematical operations, while also demonstrating efficiency in terms of memory usage
and processing speed. The optimizer performed well on genetic algorithm test functions
and training artificial neural network weights.

Recent surveys investigating scheduling techniques in Kubernetes [18] and cloud
environments [29][30][31][32][33][19] highlighted the viability of Particle Swarm Opti-
mization or PSO-based solutions. However, it is important to recognize that scheduling
lacks a singular definitive solution owing to its NP-hard nature, and each approach
has distinct advantages and disadvantages. Notably, a significant limitation of PSO is
its attractiveness to local optima, because the global optimum is not adjusted in every
iteration. Consequently, the convergence rate of PSO is relatively slow, although it
often outperforms other meta-heuristic algorithms. The strengths of PSO include the
following:

• simplicity of implementation and extension;

• absence of complex mathematical operations such as derivatives.

• dependency on a few easily adjustable parameters.

The ease of extensibility of the algorithm plays a crucial role in its popularity because in-
corporating greedy or other meta-heuristic algorithms into PSO minimizes its drawbacks.

PSO operates on particles P = {P1, . . . , Pn} composing a swarm. Each particle Pi

is characterized by the positions Xd
i and velocities V d

i in each 1 ≤ d ≤ D dimension of
D-dimensional search space. The objective function is applied to the position of each
particle to calculate the worth of the solution. The goal of the algorithm is to determine
the position of the particle with the best value of the objective function. During the
initialization procedure, every particle is assigned a random position and random velocity
to travel in the search space. In each iteration every particle updates its velocity and
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position Xd
i = Xd

i + V d
i . Depending on the values of the objective function, personal

(local) best known position Pbesti and swarm’s (global) best known position Gbest
searched by the whole swarm is updated in every iteration. Original Particle Swarm
Optimization algorithm implementation is presented in Algorithm 1.

Algorithm 1: Original Particle Swarm Optimization algorithm [28].
Input: objective function f(), number of particles n, number of dimensions D,

termination criterion T
Result: best known position Gbest in the swarm

1 foreach particle i = 1, . . . , n do
2 foreach dimension d = 1, . . . , D do
3 V d

i ← random()
4 Xd

i ← random()

5 Pbesti ← Xi

6 if f(Pbesti) > f(Gbest) then
7 Pbesti ← Gbest

8 while not T do
9 foreach particle i = 1, . . . , n do

10 foreach dimension d = 1, . . . , D do
11 V d

i ←
V d
i +2×random()×(Pbestdi−Xd

i )+2×random()×(Gbestd−Xd
i )

12 Xd
i ← Xd

i + V d
i

13 if f(Xi) > f(Pbesti) then
14 Pbesti ← Xi

15 if f(Pbesti) > f(Gbest) then
16 Gbest← Pbesti

Yuhui Shi and Russell Ebenhart [34] modified the original PSO algorithm introducing
the inertia weight parameter w, updating the formula for particle’s velocity calculation:

V d
i = w × V d

i + c1 × r1 × (Pbestdi −Xd
i ) + c2 × r2 × (Gbestd −Xd

i ), (17)

where 0 ≤ c1, c2 ≤ 2.5 are acceleration coefficients and r1, r2 ∈ [0, 1] are random values.
Simulations showed that optimizer with inertia weight in the range [0.9, 1.2] on average
performs better. Furthermore, a time decreasing inertia weight brings in a significant
improvement on the PSO performance.
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4.2 Proposed Solution
To tailor the algorithm to the problem, each container is represented by a dimension
in the search space, while every node corresponds to a point across each dimension.
Consequently, the particle positions within the search space are the mappings of nodes
to containers, essentially representing solutions to the problem. This representation
adheres to the constraint (13) that each container is exclusively assigned to a single node,
yet a single node may accommodate multiple containers. From the proposed model,
it is evident that the total number of solutions, including both feasible and infeasible
solutions due to constraints, is equal to Πm

i=1n
ci = n

∑m
i=1 ci . An illustrative depiction of

the problem input data is presented in Table 4, and the corresponding search space is
shown in Figure 7.

Variable Value
n 4
costk [1, 1.9, 3.61, 6.86]
cpulimk [1, 2, 4, 8]
memlimk [512, 1024, 2048, 4096]
contlimk [2, 4, 8, 16]
m 2
ci [1, 1]
cpureqi [2, 1]
memreqi [512, 1024]

Table 4. Problem input example.

Infeasible
solution

Feasible
solution

Optimal
solution

Figure 7. Search space in Particle Swarm
Optimization algorithm.

Employing PSO within the context of the established system model presents a set of
challenges. The initial challenge arises from the nature of the search space. PSO was
initially formulated to function within continuous search spaces, whereas the current
space is inherently discrete. Adding to this, the constraints (14)-(16) imply that not
every point within the space corresponds to a feasible solution. This challenge is
particularly evident during the particle initialization stage. The random generation of
particle positions frequently fails to yield feasible solutions, resulting in the majority of
particles lacking a feasible best known position Pbesti. Additionally, when the number
of particles is small, the probability of no particles finding a feasible position during
the random initialization process is high, leading to the absence of the swarm’s best
known position Gbest. This deficiency significantly affects the velocity update process
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during each iteration. A heuristic bin packing algorithm First-Fit is proposed to initialize
feasible positions within a search space.

Algorithm 2 outlines the feasible position initialization procedure. For each container,
the first-fit algorithm searches through the nodes to identify the first node with sufficient
available capacity. The first-fit algorithm (lines 3-7) executed for every particle to
generate a feasible solution without any modifications will lead to identical initial
positions across particles. To mitigate this, nodes are shuffled for each particle, ensuring
distinct node orders for each first-fit instance.

Algorithm 2: Feasible position initialization algorithm.
Input: particles P , containers C, nodes N
Result: position vectors X

1 foreach particle p in P do
2 shuffle N

3 foreach container c in C do
4 foreach node n in N do
5 if n has sufficient available capacity for c then
6 decrease the available capacity of the n
7 set Xp[c] to the index of n

A subsequent challenge pertains to the dimensionality of the search space. Real-
world scenarios typically involve a significantly larger number of containers than nodes,
resulting in a highly-dimensional yet constrained search space. This tightness often
causes particles to traverse beyond the boundaries of the space. Addressing this issue
necessitates the implementation of restricted boundary conditions to ensure that particle
movement remains within acceptable limits.

4.3 Complexity Analysis
The first-fit algorithm sequentially scans each node to identify the first one capable of
accommodating a container. This process is reiterated for every container, resulting in a
time complexity of O(nc), with n denoting the number of nodes and c - the number of
containers.

The proposed PSO-based algorithm initializes each particle’s position using the
first-fit algorithm, yielding a time complexity of O(p) × O(nc) = O(pnc), where p
is the particle count. Subsequently, the algorithm updates the velocities, positions,
and best known positions of each particle. The velocity and position updates for a
single dimension require constant time O(1), resulting in an update process duration of
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O(c). For the objective function, calculating the running machine costs takes O(n) time,
while computing data transfer costs involves iterating over each potential node pair and
producer-consumer microservice pair, resulting in a time complexity of O(n2m2), where
m is the microservice count. Consequently, the total time complexity of the objective
function is O(n) + O(n2m2) = O(n2m2). Summing these complexities, the overall
time complexity of the algorithm is O(pnc) + O(i) × O(p) × (O(c) + O(n2m2)) =
O(pnc) +O(ip× (c+ n2m2))), where i denotes the number of iterations.

Throughout its execution, the algorithm retains the complete problem input in mem-
ory—nodes, microservices, and the data rate lookup table. The first-fit algorithm does not
require an auxiliary space. During the PSO phase of the proposed algorithm, each particle
tracks its velocity vector, position vector, and the best known position. Consequently, the
algorithm’s overall space complexity is O(n)+O(m)+O(m2)+O(pc)+O(pc)+O(p) =
O(n+m2 + pc), where the auxiliary space occupies O(pc).
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5 Experiments
This chapter describes the experiments conducted, including the experimental setup,
metrics that were quantified, methodologies employed for measurement, and results.

5.1 Setup
The experiments were conducted using an ASUS ROG Flow X13 GV301QE-K6065
laptop connected to a power source. The laptop is equipped with an AMD Ryzen 9
5900HS (3.0 - 4.6 GHz) CPU and 32 GiB of RAM.

The proposed algorithm is evaluated against a CP-SAT 20 on inputs which take
CP-SAT a reasonable time to finish. CP-SAT is an award-winning linear solver from
Google OR-Tools software suite [35]. The CP-SAT solver is implemented as a lazy
clause generation solver on top of a SAT solver.

Experiments were conducted on randomly generated scenarios that closely mimicked
real-world applications. Microservices exhibit multiples of 250 milli central processing
units for cpureqi and 128 MiB random access memory for memreqi. The nodes encom-
pass integer values of central processing units for cpulimk and multiples of 512 MiB
random access memory for memlimk. costk and contlimk depend on the generated
values of cpulimk and memlimk. The network data communication graph follows a
tree-like structure.

5.2 Results
Experiments were conducted to assess the performance and accuracy of the proposed
algorithms. The execution time, recorded in seconds, exclusively accounts for the solving
phase, excluding the input reading and output provision durations. Evaluating accuracy
poses a challenge because of the inherent randomness and variability of Particle Swarm
Optimization as a meta-heuristic algorithm. To mitigate this, the seed value used by the
random number generator was fixed to one of three values, repeated for each experiment,
enabling the selection of the optimal outcome.

The comparison of constraint programming-boolean satisfiability and the suggested
Particle Swarm Optimization-based solution results is illustrated in Table 5. The execu-
tion time of the proposed algorithm is heavily dependent on the number of iterations,
yet it is considerably lower than that of the linear solver. Elevating the iteration count
does not increase accuracy, as the particles tend to become entrapped in local optima.
This situation can be observed by monitoring the iteration at which the last update to
the swarm’s best position occurred. Figure 8 demonstrates the percentage of containers
scheduled by the proposed algorithm suboptimally in comparison to CP-SAT.

20https://developers.google.com/optimization/cp/cp_solver
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CP-SAT PSO
Input Time Value Time Value

m = 4 ci = 7 n = 15 20 seconds 304.17 0.1 second 442.62
m = 4 ci = 8 n = 14 51 seconds 458.40 0.1 second 538.59
m = 5 ci = 4 n = 40 83 seconds 305.26 0.1 second 437.17
m = 6 ci = 6 n = 15 548 seconds 836.23 0.1 second 1007.37
m = 9 ci = 5 n = 15 189 seconds 798.92 0.1 second 952.06

Table 5. Comparison of CP-SAT and proposed PSO-based solutions.

Figure 8. Percentage of suboptimally placed containers.

Table 6 shows the impact of applying the first-fit algorithm to initialize the particle
position on the discovery of at least one feasible solution. The experiment used identical
input scenarios and parameters for both algorithms, with the sole distinction being the
use of first-fit or random values for the position initialization. Each algorithm was run
100 times per input scenario and the number of feasible solutions found was calculated.
This approach takes advantage of the inherent randomness of the meta-heuristic PSO
algorithm. The use of the first-fit algorithm always ensures the discovery of at least one
feasible solution. Another advantage of using first-fit, which was not explored in this
particular experiment, lies in making the proposed algorithm deterministic for small-scale
scenarios.

35



Input PSO PSO+FF
m = 4 ci = 7 n = 15 100 100
m = 4 ci = 8 n = 14 39 100
m = 5 ci = 4 n = 40 90 100
m = 6 ci = 6 n = 15 100 100
m = 9 ci = 5 n = 15 0 100

random m ∈ [20, 40] ci ∈ [1, 10] n ∈ [50, 150] 4 100

Table 6. Effect of using first-fit on finding at least one feasible solution.

The multiple simulated runs revealed several distinct patterns. The proposed algo-
rithm exhibits rapid convergence, albeit frequently becoming trapped in local optima.
In particular, when the difference between the number of containers and nodes is not
substantial, the first-fit algorithm used for particle position initialization, which is re-
peated for each particle, tends to uncover a local optimum that serves as the point of
particle convergence. Therefore, the optimum was found within the initial iterations and
remained independent of the number of particles.
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6 Conclusion
This thesis addresses the complex problem of optimizing the placement of microservices
in a cloud environment. By proposing a novel particle swarm optimization PSO-based
algorithm and integrating network data transfer costs into the objective function, this
research explored an innovative approach to minimizing cloud infrastructure costs.

The experimental results, which compared the proposed algorithm with a linear solver
and the standard Particle Swarm Optimization algorithm, demonstrated its efficiency
and accuracy while also revealing the limitations common to meta-heuristic algorithms.
The proposed modifications were proven to be effective in increasing the likelihood of
identifying feasible solutions when compared with the standard PSO. The algorithm’s
capability to rapidly converge highlights its effectiveness even though it occasionally
gets trapped in local optima.

A limitation of this thesis is the assumption of application stability and disregarding
scalability. For instance, if the user-generated load suddenly increases by X%, the
existing nodes might require augmentation, potentially rendering the prior node-container
assignments suboptimal. Similarly, an X% load decrease may not justify node removal.
These scenarios encourage searching for optimal solutions that satisfy both the initial and
scaled states. Further potential research directions involve system models that consider
such fluctuations, or accommodate stateful or short-lived containers.
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Appendix

I. Source Code
The source code for this thesis is accessible from a public GitHub 21 repository: https:
//github.com/chernetskyi/container-placement/.

21https://github.com/
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II. Methodology
To enhance the overall writing quality and academic style of this thesis, AI-powered
writing assistants, Grammarly 22 and Paperpal 23, were incorporated into the writing
process. Grammarly, accessed through the Grammarly for Education plan via its website,
was used to address grammar and punctuation issues within the selected paragraphs.
Additionally, Paperpal, accessed via the free plan on its website, was used to improve
the academic style of specific text segments. These writing assistants served as valuable
tools for refining the language, coherence, and clarity of the thesis.

22https://www.grammarly.com/
23https://paperpal.com/
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