
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Software Engineering Curriculum

Manish Gupta

Google Dataflow orchestration using
TOSCA in the hybrid cloud

Master’s Thesis (30 ECTS)

Supervisor(s): Chinmaya Dehury, PhD

Pelle Jaokovits, PhD

Tartu 2022

Google Dataflow orchestration using TOSCA in the hybrid cloud

Abstract:
In today’s world, data is as precious as oil. Many organizations depend on data to make
critical business decisions, target specific customers, and accelerate their business growth.
This importance of data leads to increased data creation and consumption volume. To
process and provide logistics for this tremendous data, one requires a practical and
automated approach to data handling. Data Pipeline is a series of interconnected modular
tasks that collect, process and make data available to a wide array of systems with minimal
manual intervention. There are numerous vendors and open-source platforms that support
building Data Pipelines for an organization. However, developers need to have platform-
specific knowledge to manage and orchestrate different data pipeline platforms. The
lack of standardization for orchestrating data pipelines leads to increased development
time and reduced reusability. TOSCA is an open standard used to define topology and
orchestration specifications for different cloud services. In this paper, reusable TOSCA
components were created in the RADON ecosystem to deploy, terminate, and manage
Google Dataflow jobs. RADON is a research project that aims to develop a model-driven
DevOps framework for serverless computing. The TOSCA components for Google
Dataflow were designed to integrate with existing TOSCA components for Apache Nifi
based data pipeline. The integration provides a one-stop solution for developers to build
extensive data pipelines combining Google Dataflow and Apache Nifi.

Keywords:
ETL, Data Pipeline, Google Dataflow, TOSCA, RADON

CERCS: P170 - Computer science, numerical analysis, systems, control

2

Google Dataflow orkestreerimine TOSCA abil hübriidpilves
Lühikokkuvõte:
Tänapäeva maailmas on andmed sama väärtuslikud kui nafta. Paljud organisatsioonid
sõltuvad andmetest, et teha kriitilisi äriotsuseid, sihtida konkreetseid kliente ja kiirendada
oma ärikasvu. See tähtsus suurendab andmete loomise ja tarbimise mahtu. Suurandmete
töötlemine nõuab praktilist ja automatiseeritud lähenemist. Data Pipeline on rida oma-
vahel ühendatud modulaarseid teenuseid, mis koguvad, töötlevad ja teevad minimaalse
käsitsi sekkumisega andmeid kättesaadavaks paljudele süsteemidele. Paljud teenusepak-
kujad ja avatud lähtekoodiga platformid pakuvad organisatsioonidele andmerude loomist.
Arendajatel peavad aga olema platvormipõhised teadmised, et hallata ja korraldada eri-
nevaid andmekanaleid. Puudub andmete torujuhtmete standard, mis pikendab arendust
ning vähendab süsteemi taaskasutust. TOSCA on avatud standard, mida kasutatakse
erinevate pilveteenuste topoloogia ja orkestratsiooni spetsifikatsioonide määratlemiseks.
Selles artiklis loodi RADONi ökosüsteemis korduvkasutatavad TOSCA komponendid
Google Dataflow tööde juurutamiseks, lõpetamiseks ja haldamiseks. RADON on uuri-
misprojekt, mille eesmärk on töötada välja mudelipõhine DevOps raamistik serverita
andmetöötluse jaoks. Google Dataflow TOSCA komponendid loodi integreerimiseks
Apache Nifi-põhise andmekanali olemasolevate TOSCA komponentidega, mis pakub
arendajatele ühtset lahendust ulatuslike andmekanalite loomiseks.

Võtmesõnad:
ETL, Data Pipeline, Google Dataflow, TOSCA, RADON

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)

3

Contents
1 Introduction 6

1.1 Problem statement . 6
1.2 Thesis contributions . 7
1.3 Thesis Outline . 8

2 Background 9
2.1 ETL . 9
2.2 Data pipeline . 10

2.2.1 Apache Nifi . 10
2.2.2 AWS Data Pipeline . 11
2.2.3 Google Cloud Composer . 12
2.2.4 Google Dataflow . 13

2.3 TOSCA . 13

3 Related Work 17
3.1 RADON Project . 17
3.2 RADON data pipeline Limitations . 19

4 Methodology 20
4.1 Existing TOSCA components in RADON data pipeline 20
4.2 Developed TOSCA components for Google Dataflow 22

4.2.1 Developed TOSCA node types for Google Dataflow 22
4.2.2 Developed TOSCA relationship and capability types for Google

Dataflow . 29
4.3 Interaction between Dataflow and developed TOSCA components . . . 32
4.4 Integrating Apache Nifi and Google Dataflow 33

5 Evaluation and Results 35
5.1 Evaluation Setup . 36
5.2 Pub/Sub Subscription to BigQuery using Dataflow 36

5.2.1 Prerequisites for this Dataflow 38
5.2.2 Choosing the appropriate node types and supplying properties . 38
5.2.3 Designing the service template in the Winery 42
5.2.4 Deploying the exported CSAR file using xOpera 43
5.2.5 Evaluating final results . 44

5.3 Wordcount example using Dataflow (Batch) 47
5.3.1 Prerequisites for this Dataflow 48
5.3.2 Choosing the appropriate node types and supplying properties . 50
5.3.3 Designing the service template in the Winery 53

4

5.3.4 Deploying the exported CSAR file using xOpera 54
5.3.5 Evaluating final results . 55

5.4 Image Processing using Dataflow and Apache Nifi 59
5.4.1 Prerequisites for this Dataflow 60
5.4.2 Choosing the appropriate node types and supplying properties . 61
5.4.3 Designing the service template in the Winery 67
5.4.4 Deploying the exported CSAR file using xOpera 68
5.4.5 Evaluating final results . 68

6 Conclusion and future work 73

References 75

Appendix 76
I. Glossary . 78
II. Repositories . 78
III. Technical Manual . 78
IV. Licence . 83

5

1 Introduction
Digitization and recent data-driven approaches have led to an increase in data velocity
and volume. Every organization that uses digital systems to assist in their daily opera-
tions generate and store essential data. This data is then processed to obtain valuable
insights and make data-driven decisions. Organizations typically use different applica-
tion systems for various departments or branches—most of the time, the data needed
by various departments in an organization overlap. For example, consider a massive
organization with multiple standalone systems that need to share data between them
where the output of one system might be input to some other system. One must also build
point-to-point integrations between systems to transfer the data. However, In today’s
world of Microservices architecture, this increases complexity due to the number of
connections and data dependencies among systems. This dependency slows down the
development effort, and the failure of one system might cause the whole architecture
to fail. Additionally, expert data engineers must guarantee timely data collection and
processing, make the data available to systems as required, and monitor data flow for
errors, among other tasks, which is a lot of manual work.

Data Pipeline solves this problem of managing data in complex distributed systems.
Data pipeline involves a set of storage and data processing activities connected in a
sequential way to form a data flow that usually begins with a data source and ends in a
data sink. The Data pipeline provides features like scheduled deployment and monitoring
to ensure that the data-related tasks are performed reliably and with minimal human
intervention. One can utilize cloud services to set up Data Pipeline to unlock cloud
computing benefits like scalability, reliability, security, etc. Figure 1 shows an example
of a Cloud Data pipeline where data is fetched from the Amazon S3 bucket, transformed,
processed, and then the final results stored in a different Amazon S3 bucket.

Data pipelines may be set up over public cloud, private cloud, or a combination of
both. A public cloud service is when cloud services are provided over the internet. In
contrast, a private cloud service is the cloud infrastructure set up solely for an organization
within a private network. Hybrid cloud encompasses a combination of both public and
private clouds. Organizations may rely on a combination of private and numerous public
cloud providers, i.e., hybrid cloud, for their data processing needs. Many organizations
also rely on Cloud bursting, a technique of running the applications on private cloud
and expanding into Public cloud as the demand spikes. Therefore, Data pipelines must
support the hybrid cloud to support the all-inclusive data management in an organization.

1.1 Problem statement
Today, a typical organization has its data distributed across multiple cloud service
providers and private clouds. Therefore, data pipelines may stretch over multiple cloud
resources and data pipeline platforms. Studies have also shown that interoperability

6

between cloud platforms [1] remains one of the significant challenges for data pipelines.
Moreover, data pipelines also have to deal with infrastructural challenges like difficulty
integrating new sources, data pipeline scaling, and difficulty in adding new nodes[2].
These challenges call for a standard orchestration solution to deploy, terminate, and
manage data pipelines across multiple cloud platforms.

Topology and Orchestration Specification for Cloud Applications (TOSCA) is an
open standard that defines a cloud topology by dividing the cloud services into multiple
reusable components. These reusable components interconnect together to form a flow
of data and enable a fully automated deployment, orchestration, and termination of
cloud services and data pipelines[3, 4, 5]. Various implementations of TOSCA such as
SeaClouds[6] and ToscaMart[7] provide tools and resources to design complex cloud
applications. RADON project[8, 9] proposes an architecture to design data pipelines on
top of Apache Nifi and also allows deploying specific tasks in the AWS data pipeline.

However, there exists no TOSCA implementation for Google Dataflow, a proprietary
data pipeline solution by Google. This limitation prohibits users from having a standard
orchestration solution for Google Dataflow and may slow down the overall cloud applica-
tion deployment process. A well-designed modular TOSCA implementation for Google
Dataflow will allow users to build hybrid data pipelines that combine Dataflow and
other data pipeline platforms for which TOSCA implementation exists. This thesis will
develop TOSCA components for Google Dataflow by following a modular and extendible
architecture. The development will allow users to design, develop, and maintain Google
Dataflow faster and also make it possible to integrate Dataflow with existing TOSCA
implementation for other data pipeline platforms.

1.2 Thesis contributions
This thesis will extend the RADON data pipeline architecture by adding Google Dataflow
support to allow developers to build integrated data pipelines. Below we describe how
this thesis contributes to the RADON project[8, 9] and makes data pipeline orchestration
easier:

(A) Develop reusable TOSCA components for Google Dataflow - This development
will enable users to orchestrate their Google Dataflow for batch and streaming
data using TOSCA. Users will have to supply python code or use Google-defined
templates to run their Dataflow. The Dataflow node types will follow a modular
and extendible architecture and thereby will be divided into Input, Processing,
and Output block. In the case of Dataflow using python code, node types will
convert the user-supplied Python code to the Dataflow template. The Dataflow
template will then be executed using input and output from node types in Input and
Output blocks. Users can also run Dataflow jobs using Google provided templates
designed for basic operations like copying from one data source to another. Users

7

can supply the different data source and sink types using input and output node
types.

(B) Enable integration for developed TOSCA components - The developed Node
Types for Google Dataflow will support integration with existing TOSCA compo-
nents for Apache Nifi in the RADON ecosystem. For example, the input block
from Google Dataflow can integrate with the output pipeline block from the Nifi
data pipeline to receive data. Similarly, output block from Google Dataflow can
integrate with input pipeline block from Nifi data pipeline to supply data. This
integration will facilitate users to design data pipelines across Google Dataflow
and Apache Nifi using a single interface.

1.3 Thesis Outline
This thesis is structured as follows. Section 2 provides an introduction to the ETL
and data Pipeline concepts, discusses some state-of-the-art platforms and services that
support building and managing data pipelines, and talks about a standard language to
describe the topology of cloud-based services and their relationships. The section also
expands on how the standard language makes it easy to orchestrate cloud services and
build Data pipelines in the hybrid cloud. Section 3 describes the related works and
tools that simplify building Data pipelines in hybrid cloud, the gap in that work, and
how this thesis improves the existing work. Section 4 describes the developed tools
that simplify building Data pipelines and how they can be modeled to integrate across
multiple platforms. Section 5 describes the experimental setup and obtained results.
Finally, section 6 discusses the conclusion and future work for this thesis.

8

2 Background
This section gives a brief overview of ETL and data pipeline concepts and also talks about
some famous platforms/frameworks that allow managing Data pipelines. This section
also describes how the TOSCA standard facilitates easy designing, automates pipeline
deployment, and enables integration across multiple cloud platforms and frameworks.

2.1 ETL
ETL stands for Extraction, Transformation, and Loading of data. The ETL process
begins with the extraction of data from one or more sources, where data extraction may
be performed using the push or pull method. In the push method, the data source delivers
the data to the ETL platform, whereas the ETL platform pulls the data in the pull method.
After data extraction, the ETL platform transforms the raw data into a specified format
as needed by applications and users. Finally, the Loading step in ETL loads the data to a
target data warehouse.

The primary purpose of ETL may be to unify the data coming from multiple sources,
transform it to a standard format, and make the data available to numerous users and
applications so that meaningful information and statistics can be derived. An ETL
pipeline may be scheduled to automate regular data operations with minimal human
intervention. ETL operations can help to combine data from multiple sources into a
common format and store it in a centralized data location such as a data warehouse. For
example, a multi-branch bank may have its central data warehouse run daily ETL jobs to
collect banking data from different branches, transform it to a common format, save the
transformed data, and generate consolidated reports.

An ETL job is usually done in batches meaning that the data is extracted in one chunk
at a time. However, ETL pipelines do not support streaming data, such as continuous
data coming from an IoT device. Moreover, ETL jobs are restricted to performing only a
specific sequence of tasks that must end by storing the data into a target system. Therefore,
ETL pipelines are not suitable to manage data in complex event-driven systems. ETL
jobs are also not suitable in complex distributed data systems where the data should be
processed multiple times and made available to different systems. To overcome these
limitations, users may design data pipelines that support both streaming and batch data. A
data pipeline may be considered a more advanced version of ETL that can be configured
to move data across multiple destinations along with multiple data processing steps and
transformations in between.

9

2.2 Data pipeline
Brik et al. [10] describes Data pipelines as software systems that process collections of
data from multiple sources to produce either transformed data, aggregate data, or resulting
data from applied functions. The data processing may consist of hundreds of jobs
performed sequentially. Data pipelines can handle both batch data and streaming data.
Organizations constantly generate data and process them to derive valuable meanings.
Data handling complexity grows exponentially as the data size and number of data sources
increase. Data pipelines are a streamlined way of managing data in an organization. It
provides features like easy deployment, reduced complexity, end-to-end data monitoring,
scheduling jobs, and improved data traceability. Figure 1 shows the logical architecture
of a cloud-based sample Data pipeline where data is fetched from the Amazon S3 bucket,
transformed, processed. Then the final results are stored in a different Amazon S3 bucket.

Data
Transformation

Data
Analytics

Data
Storage

Amazon Cloud
S3 Bucket

Amazon Cloud
S3 Bucket

Data
Storage

Figure 1. A typical Cloud Data Pipeline

Numerous open-source and proprietary data pipeline platforms support designing
data pipelines. Some open-source platforms and technologies that support building data
pipelines are Apache Nifi and Apache Beam, whereas AWS data pipeline and Google
Dataflow are vendor-specific data pipeline technologies. Below some major data pipeline
technologies are discussed.

2.2.1 Apache Nifi

Apache Nifi [11] is an open-source platform for managing the flow of data across
several systems. It also provides a web interface to facilitate building data pipelines as a
connected network of Processors. Apache Nifi represents the data flowing through the
pipeline as Flowfile, consisting of a pointer to the data and dynamic attributes like data
priority and data size. Processors in Apache Nifi are designed to perform specific tasks
on data (or Flowfiles). For example, a putFTP processor sends data to an FTP server,
and a fetchFTP can receive the data from an FTP server. Apache Nifi consists of several
built-in processors which can be combined to build extensive data pipelines. Processors
are linked using Connection which acts as a queue and manages the transfer rate of
Flowfiles between processors. Apache Nifi also supports Process Group, a collection of

10

Processors and Connections attached to form a Data pipeline. Process group acts as a
BlackBox that receives input data and emits output data. The created process group can
be reused multiple times in the data pipeline to create even bigger data pipelines. Apache
Nifi also enables users to export their Data pipeline design as an XML file. This feature
enables data pipeline authors to share their designs across teams and promote reusability.

Figure 2 demonstrates a screenshot for Apache Nifi web interface containing a simple
data pipeline. The data pipeline consists of a GenerateFlowFile processor on the left
which has a directed connection towards the PutS3Object processor. In this data pipeline,
GenerateFlowFile processor generates radom Flowfiles and then pushes the Flowfile to
the PutS3Object processor via the relationship named as success in the given figure. The
PutS3Object processor then publishes the generated Flowfiles to the AWS S3 bucket.

Figure 2. A demonstration of Apache Nifi data pipeline

2.2.2 AWS Data Pipeline

AWS Data pipeline [12] is a proprietary data pipeline solution by Amazon cloud services
that allows building data pipelines across AWS cloud resources. One can also use
pre-defined templates to design simple data pipelines or use the architect to design
complex data pipelines as per their need. Users can configure their data pipelines to run
immediately or schedule them to run at specific times or based on any event. The two
main components of the AWS Data pipeline are:

(A) Data Nodes - The location in the Amazon cloud where the data is stored. Available
options for Data Nodes are:

• DynamoDBDataNode - A Dynamo DB table.

• SqlDataNode - An SQL table.

• RedshiftDataNode - An Amazon Redshift table.

11

• S3DataNode - An Amazon S3 location.

(B) Activities - Activities are the specific tasks that are performed on data stored in
Data Nodes. AWS data pipeline Activity uses computation resources, namely
’resource,’ to perform the assigned task. Supported resource types in the AWS data
pipeline are EC2 instance and EMR cluster.
Supported AWS Data pipeline activities are:

• CopyActivity - Copies data from one Data Node to another.

• EmrActivity - Runs an Amazon EMR cluster.

• HiveActivity - Executes a Hive query on an Amazon EMR cluster.

• HiveCopyActivity - Executes a Hive query on an Amazon EMR cluster and
supports advanced data filtering.

• PigActivity - Executes a Pig script on an Amazon EMR cluster.

• RedShiftCopyActivity - Copy data from one Amazon Reshift table to another.

• ShellCommandActivity - Executes a custom shell command as an activity.

• SqlActivity - Executes a SQL query on a database.

Users can write a JSON file in the specified format to design customized data
pipelines. AWS data pipeline provides a graphical interface to simplify creating the
Directed Acyclic Graph (DAG) for data pipeline jobs. AWS data pipeline also supports
scheduling for created data pipelines to execute data pipelines automatically at specific
times or based on some events. Moreover, AWS data pipeline provisions the cloud
resources and infrastructure on the cloud, meaning the data pipeline jobs are highly
scalable. However, AWS data pipeline is a proprietary solution from Amazon, and it
is challenging to use AWS data pipeline in conjunction with cloud services from other
providers.

2.2.3 Google Cloud Composer

Cloud Composer [13] is a Google service that is an implementation of the open-source
project Apache Airflow [14] running on top of Google Cloud resources. It is a fully
managed workflow orchestrator that helps create, schedule, and monitor data pipelines
and complex workflows across multiple cloud vendors. Cloud Composer is similar to
Apache Airflow, except in Cloud Composer, Google manages the resource provisioning
and platform setup. So, users can focus on building workflows via the Airflow web
interface or command-line tools.

In Cloud composer, workflows are a series of tasks represented using Directed Acyclic
Graphs, or DAGs. Tasks could involve ingesting, transforming, analyzing, or publishing

12

data, among many other options. Workflows can also be designed to create data pipelines.
Cloud Composer’s user-friendly interface makes it easier to deploy workflows with just
a drag-and-drop feature or python program. It also makes it easier to set up the workflow
environment and add required python libraries on the go. Cloud Composer provisions
Google cloud resources like Bigquery, Dataflow, Cloud Storage, Datastore, Pub/Sub,
Dataproc, and Cloud ML Engine to run workflows. So, it is not easy to estimate the cost
of running workflows beforehand.

2.2.4 Google Dataflow

Google Dataflow [15] is a serverless data processing platform that can process both batch
and stream data. Users need to write data processing jobs using Apache Beam [footnote
Apache beam SDK] library in Python or Java. The written code describes a sequence
of tasks and runtime parameters for the desired job in the Dataflow. Google Dataflow
then converts the written code into a Dataflow template. After that, the template can
be executed to create data processing jobs. Users may write the python code so that
the Dataflow job execution will require runtime parameters. In such cases, users must
provide runtime parameters to trigger the Dataflow job execution. Usually, the runtime
parameters are the input and output location. Google also provides a set of pre-defined
templates for some generic tasks like copying the data from one location and data type to
other. These Google-provided templates are beneficial for users from a non-programming
background. Google Dataflow automatically provisions cloud resources and manages
clusters for running the specified job. Dataflow automatically upscales or downscales the
number of worker instances executing the job based on the data traffic.

One of the drawbacks of using Google Dataflow is that user needs to have program-
matical knowledge to design data pipelines using the Apache Beam library. Moreover,
unlike the AWS data pipeline, Google Dataflow does not support inbuilt scheduling
services for the Dataflow job. Therefore, users need to find other ways to schedule their
Dataflow jobs. Some ways to schedule Dataflow jobs include using a Cloud scheduler
like terraform or running a cron job process.

2.3 TOSCA
Industrial data pipelines are typically complex and may use multiple distributed appli-
cations connected sequentially to design workflows. Developers need to deploy the
individual applications first in a specific sequence before deploying data pipeline compo-
nents. Each of these application may have different constraints; for example, A MySQL
database may need a computing instance with higher computing power and additional
connected storage. This complexity makes it very difficult to deploy these applications
manually one by one in the correct order. The overall deployment process is error-prone.
As the deployment is platform-specific, engineers have to start from scratch to deploy

13

a similar setup in a different cloud platform. Orchestration is the process of automatic
configuration, management, and deployment of related applications and services. The
complexity in industrial application deployment shows the need for an orchestration
specification that can be reused across multiple cloud service providers.

TOSCA, which stands for Topology and Orchestration Specification for Cloud Appli-
cations, is an open standard to describe the application topology in the cloud by dividing
the applications and infrastructural resources into multiple components. Each component
has its properties, attributes, requirements, capabilities, connections, and dependencies.
Therefore, engineers can specify their application topology using TOSCA, which can
then be deployed across multiple cloud platforms in an automated fashion.

The TOSCA metamodel [3] describes the application topology using Service Tem-
plates. Service templates include node types that define a component in an application
topology, and it also includes relationship types that describe the relationship between
node types. Both node types and relationship types may define lifecycle operations using
scripts that a TOSCA compliant orchestration engine may invoke during the instantiation
of the service template.

For example, Listing 1 illustrates a Service Template to instantiate a Java application.
The nodes and their relationships as shown in the service template are:

• Server node to instantiate a computing physical server.

• Apache node to instantiate an Apache web server and host it on a Server node.

• MyJavaApplication node to instantiate the Java application and host it on top of
Apache node.

Node types may also define lifecycle operations like create, configure, start, stop, or
delete. For example, MyJavaApplication node type defines a create method to install the
Java application, configure method to configure the java application application based on
user requirements, and finally start method to start the Java applications.

t o s c a _ d e f i n i t i o n s _ v e r s i o n : t o s c a _ s i m p l e _ y a m l _ 1 _ 3
d e s c r i p t i o n : S e r i v e Templa te f o r d e p l o y i n g M y J a v a A p p l i c a t i o n .
t o p o l o g y _ t e m p l a t e :

i n p u t s :
a p p l i c a t i o n _ a d m i n _ u s e r n a m e :

t y p e : s t r i n g
a p p l i c a t i o n _ a d m i n _ p a s s w o r d :

t y p e : s t r i n g
o m i t t e d f o r b r e v i t y

n o d e _ t e m p l a t e s :
S e r v e r :

t y p e : t o s c a . nodes . Compute
o m i t t e d f o r b r e v i t y

14

Apache :
t y p e : t o s c a . nodes . WebServer . Apache
r e q u i r e m e n t s :

− h o s t : S e r v e r
o m i t t e d f o r b r e v i t y

M y J a v a A p p l i c a t i o n :
t y p e : custom . nodes . J a v a A p p l i c a t i o n
d e r i v e d _ f r o m : t o s c a . nodes . Root
p r o p e r t i e s :

a p p l i c a t i o n _ a d m i n _ u s e r n a m e : { g e t _ i n p u t :
a p p l i c a t i o n _ a d m i n _ u s e r n a m e }

a p p l i c a t i o n _ a d m i n _ p a s s w o r d : { g e t _ i n p u t :
a p p l i c a t i o n _ a d m i n _ p a s s w o r d }

r e q u i r e m e n t s :
− h o s t : apache

i n t e r f a c e s :
S t a n d a r d :

i n p u t s :
username : { g e t _ p r o p e r t y : [SELF ,

a p p l i c a t i o n _ a d m i n _ u s e r n a m e] }
password : { g e t _ p r o p e r t y : [SELF ,

a p p l i c a t i o n _ a d m i n _ p a s s w o r d] }
o p e r a t i o n s :

c r e a t e :
i m p l e m e n t a t i o n :

p r i m a r y : c r e a t e
c o n f i g u r e :

i m p l e m e n t a t i o n :
p r i m a r y : c o n f i g u r e

s t a r t :
i m p l e m e n t a t i o n :

p r i m a r y : s t a r t
o m i t t e d f o r b r e v i t y

Listing 1. A sample TOSCA Service Template

A node type may specify a requirement on a node or multiple nodes. These require-
ments are satisfied using different relationship types, including Hosted on, Depends on,
Connects to, Attaches to, Route to, and any other custom relationship. The requirements
for a node type can only be satisfied by a node type with an equivalent capability type.
Relationship in the TOSCA decides the order of execution for node types. In the List-
ing 1, Apache node type is connected to Server node type using the relationship type
HostedOn which means Apache node type is hosted on top of the Server node type.
Therefore, the orchestrator instantiates Server node type before Apache node type. A
similar relationship applies between MyJavaApplication node type and Apache node
type, as Java application is hosted on the Apache web server.

Graphical Modeling Tools like Eclipse Winery allows users to assist users in visually

15

designing complex cloud applications using TOSCA components. Users combine node
types and relationship types to create the service template reflecting their application
topology. Finally, the lifecycle operation scripts and additional artifacts for application
deployment are packaged together with the Service template to create a TOSCA archive
called Cloud Service Archive (CSAR) file. The TOSCA-compliant orchestration engine
can then deploy the CSAR file to create and manage cloud applications. Figure 3 illus-
trates the Winery web interface.

Figure 3. Winery web interface

Alternatives to TOSCA
TOSCA is by far the most widely used orchestration standard. However, other orches-
tration standards exist, such as OpenStack heat 1 and Amazon AWS CloudFormation 2.
These orchestration standards are specific to their platform and do not support other cloud
providers. OpenStack heat does provide compatibility with the AWS CloudFormation,
but it mainly provides services for applications within the OpenStack cloud. Similarly,
AWS CloudFormation is mainly designed for AWS cloud services. Therefore, this thesis
considers TOSCA to build data pipelines in the hybrid cloud as TOSCA is compatible
across multiple cloud providers.

1https://wiki.openstack.org/wiki/Heat
2https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html

16

3 Related Work
Multiple industrial and academic projects aim to utilize TOSCA to provide an orches-
tration framework for building portable and complex cloud applications. SeaClouds[6]
provides an open-source framework to deploy and manage cloud applications over multi-
ple cloud providers. SeaClouds allows developers to integrate IaaS, PaaS, and SaaS from
different cloud service providers under a single interface making the cloud deployment
process portable. SeaCloud uses TOSCA under the hood to define application component
specifications and their interdependencies. Similarly, TOSCAMART[7] is a method that
allows developers to design complex cloud applications by reusing existing TOSCA
specifications for application components. Although much research has been done to
simplify deploying cloud applications in general, few studies specifically focus on the
automatic orchestration of data pipelines. RADON is one such research project that
focuses on simplifying building data pipelines using the TOSCA standard. This section
will discuss the RADON project and its framework for orchestrating data pipelines.

3.1 RADON Project
RADON 3 research project is working on making the benefits of serverless computing
available for the European software industry. Casale et al. [16] introduce the RADON
project as research work that aims to develop a model-driven DevOps framework for
serverless computing. The goal of the RADON project is to allow developers to de-
ploy cloud applications rapidly using RADON-developed independent microservices.
The project hopes to solve the complexity of building serverless cloud applications by
providing complete DevOps frameworks that include the modeling environment, the
runtime environment, and the coding environment. The environments will facilitate the
development and release of FaaS-based applications.

Dehury et al. [8] presents a RADON data pipeline architecture using the TOSCA
standard to utilize serverless platforms. The proposed architecture uses Apache Nifi
under the hood to automate the ingestion, transformation, and routing of data between
multiple platforms and services. The RADON project also provides reusable TOSCA
definitions and blueprints required to design the proposed data pipelines. RADON
provides numerous reusable TOSCA components (node types and relationship types)
that integrate together to create complex data pipelines using Apache Nifi under the hood.
RADON also provides support for AWS Data pipeline, using which users can automate
the orchestration of AWS data pipelines. However, the AWS data pipeline built through
RADON is inflexible and can be used to perform a specific task.

RADON project also supports numerous tools that help users to build cloud applica-
tions easily. Some RADON-supported tools that benefit users to design and maintain

3https://radon-h2020.eu/

17

cloud applications in the RADON ecosystem are described below.

(A) Graphical Modeling Tool - RADON supports Eclipse Winery, which is a graph-
ical modeling tool. It provides an easy web interface to build complex cloud
application architecture using TOSCA node types and relationship types. It also
allows the creation of new node types and relationship types. Eclipse Winery also
allows importing and exporting CSAR files for service templates, node types, and
relationship types. This thesis will use Eclipse Winery to develop node types,
relationship types, and service templates to develop data pipelines.

(B) RADON orchestrator - xOpera [17] is an open-source and lightweight RADON
orchestrator that is compliant with the TOSCA specification. xOpera supports
TOSCA Simple Profile in YAML Version 1.3 [3]. xOpera supports Ansible au-
tomation to implement the TOSCA standard. Many other TOSCA-compliant
orchestrators exist, like Ystia Orchestrator (Yorc), Cloudify, and Ubicity. How-
ever, this thesis will use the xOpera orchestrator for its experiments as xOpera is
lightweight, quick to install, and easy to use.

(C) Template library - RADON provides a Github repository 4 that contains reusable
TOSCA components. The reusable TOSCA blueprints are modular, and they can
combine to develop complex cloud applications. RADON provides support to
build data pipelines and cloud infrastructure over different vendors. Developers can
either use these templates to speed up their cloud orchestration process. Developers
can also design their custom TOSCA components building on top of existing
templates.

Why RADON
With so many cloud applications and frameworks popping up every year, industries need
a one-stop solution for designing and maintaining complex cloud applications. RADON
provides numerous tools and reusable cloud components that make building cloud
applications across multiple cloud platforms easier. RADON has already implemented
a data pipeline architecture that utilizes the Apache Nifi platform to create complex
data pipe-lines. However, some gaps need to be filled to create comprehensive data
pipelines incorporating different cloud platforms. This thesis will add features to the
RADON project because there is a need for a one-stop cloud orchestration solution for
hybrid cloud in industries. The RADON data pipeline limitations and contributions are
discussed in the subsequent section.

4https://github.com/radon-h2020/radon-particles

18

3.2 RADON data pipeline Limitations
Google Dataflow is one of the widely used services for building data pipelines in in-
dustries. Small and Medium Enterprises (SME) prefer these services as they remove
the overhead of provisioning resources for running data pipelines. Some organizations
also use Google Dataflow as a part of one big data pipeline, which spreads over many
other cloud platforms. However, RADON does not provide Node Types and Relationship
Types that facilitate building data pipelines in Google Dataflow.

As discussed, RADON does enable users to design Apache Nifi based data pipelines
that utilize the power of serverless platforms. However, this limitation restricts users
from designing data pipelines that expand over multiple platforms, stretching from Nifi
based data pipelines to Google Dataflow. Moreover, the RADON particle 5 does contain
Node Types for deploying AWS data pipelines. However, Node Types built for AWS data
pipeline are standalone, meaning all the created Node Types perform a very specific task.
These created Node Types do not integrate with other Node Types to facilitate designing
data pipelines across multiple platforms. The standalone Node Types are against the
TOSCA principal, promoting modularity where each Node Type can connect with other
Node Types to form a complex cloud application.

5https://github.com/radon-h2020/radon-particles

19

4 Methodology
This section describes the existing RADON data pipeline architecture and also discusses
how this thesis adds to the current architecture by developing reusable TOSCA compo-
nents to orchestrate Google Dataflow. The section describes the developed node types
and relationship types in detail. It also provides high-level architecture on how developed
TOSCA components for Dataflow automate the Google Dataflow orchestration under the
hood. It also discusses how the developed TOSCA components for Google Dataflow can
integrate with existing RADON data pipeline components to create hybrid data pipelines.

4.1 Existing TOSCA components in RADON data pipeline
Dehury et al. [18, 9] describes the data pipeline architecture as a combination of
PipelineBlocks, InputPipe, and OutputPipe. InputPipe serves as the gateway to in-
gest data into the PipelineBlock. Similarly, OutputPipe pushes the data out of the
PipelineBlock. The PipelineBlock is the crucial processing hub for the data pipeline,
a series of interconnected tasks implemented on top of Apache Nifi. Each component
in PipelineBlock is equivalent to a task in Apache Nifi, or an activity in the AWS data
pipeline. The uncolored components in Figure 4 represent the node types heirarchy for
the existing RADON PipelineBlock. The existing PipelineBlock can be categorized into
SourcePB, MidwayPB, and DestinationPB, which are described below.

(A) SourcePB - SourcePB acts as the starting point for PipelineBlock, which denotes
reading the data from a data source. SourcePB does not receive any incoming
connection as it is considered the data source. However, it may support outgoing
connections to either MidwayPB or DestinationPB. This node type is further
categorized into ConsumeRemote and ConsumeLocal. As the name suggests,
CosumeLocal gets the input from a local network while ConsumeRemote fetches
the input from a remote source such as Google Cloud Storage or AWS S3. This
node type defines the input location and other details required to fetch input as its
TOSCA property.

(B) MidwayPB - This PipelineBlock represents data processing tasks. Data processing
may happen locally or using a remote function such as FaaS. Therefore, Mid-
wayPB is divided into LocalAction and RemoteAction. There is also a third type
of MidwayPB, namely RouteToRemote, responsible for routing the data from a
local host to a remote host. RemoteAction represents invoking a FaaS function
such as the AWS Lambda function or OpenFaaS function. A MidwayPB has an
incoming connection from SourcePB and one or more outgoing connections to
DestinationPB.

20

(C) DestinationPB - The DestinationPB is the final block in the data pipeline, repre-
senting publishing data to a local or remote endpoint. This node type is categorized
into PublishRemote and PublishLocal based on their functionality. Users may
provide the output location and other required parameters to publish data as the
TOSCA property for the appropriate node type.

radon.nodes.abstract.Datapipeline

PipelineBlock

DestinationPBMidwayPBSourcePB DestinationDFMidwayDFSourceDF

ConsumeDataEndPoint

ConsumeRemote ConsumeLocal

S3Bucket GenericSource

RouteToRemoteRemoteActionLocalAction

FaaSFunction

Generic OpenFaaS Lambda

PublishDataEndPoint

PublishRemote PublishLocal

S3Bucket Generic

GCPubSubTopicInputDF

GCSBucketInputDF GCSBucketOutputDF

GCPubSubTopicOutputDF

GoogleDataFlow
PythonExecution

GCPubSubSubscriptionInputDF

GCBigqueryTableInputDF

GoogleDataFlow
TemplateExecution

GCBigqueryTableOutputDF

GCSBucket

ConsMQTT

FTP

ExecutePython

Encrypt

Decrypt

ExecuteCommand

ExecuteRuby

PubGCS

FTP

PubsMQTT

Standalone

copy_s3_dynamodb

copy_dynamodb_s3

ShellCommandActivity

SqlActivity

copy_s3_s3

PigActivity

Figure 4. TOSCA-based pipeline models hierarchy for RADON

Other existing TOSCA components in RADON ecosystem
RADON also provides some vendor-specific TOSCA templates that may assist further
in developing data pipelines. RADON supports orchestrating cloud resources for AWS,
Google Cloud, and Microsoft Azure. It contains TOSCA components to deploy and
configure cloud resources such as Google Cloud Storage, AWS S3 Bucket, Google Cloud
Function, AWS Lambda, etc. These TOSCA components may be used in conjunction
with the RADON data pipeline to make development easier. For example, user may set
up a GCS Bucket before deploying a data pipeline that writes to the created GCS bucket.

21

4.2 Developed TOSCA components for Google Dataflow
This thesis creates reusable TOSCA node types, relationship types, and capability types
to allow users to design Google Dataflow. The developed TOSCA components are
described below in detail.

4.2.1 Developed TOSCA node types for Google Dataflow

Developed node types for Google Dataflow follow a similar approach as the existing
RADON data pipeline to categorize the developed node types based on their purpose.
Figure 4 shows the categorization of newly developed node types as colored blocks and
also shows the existing node types for the RADON data pipeline. The newly developed
node types derive from PipelineBlock node type as part of the RADON data pipeline.
The newly developed TOSCA node types are categorized into SourceDF, MidwayDF,
and DestinationDF.

SourceDF
SourceDF is an abstract parent node type for all the node types that collects user input
parameters for the Google Dataflow job. The sourceDF node type requires an outgoing
connection to the MidwayDF node type. This connection is of many-to-many nature,
meaning that the same SourceDF node type may have outgoing connections to multiple
MidwayDF node types, and a MidwayDF node type can receive income connections from
multiple SourceDF. SourceDF contains four types of node type implementations, namely
GCSBucketInputDF, GCPubSubTopicInputDF, GCPubSubSubscriptionInputDF, and
GCBigqueryTableInputDF. These node types collect input from source types, including
Google Cloud Storage, Google Cloud Pub/Sub, and Google Cloud Bigquery table. The
SourceDF node types do not implement any life cycle operations, and it simply provides
the input parameters to the MidwayDF via its properties. The available SourceDF node
types are discussed below.

(A) GCSBucketInputDF - This node type is used to supply input GCS bucket path for
the Dataflow. This node also receives the parameter name described as runtime
argument in Dataflow Python code or Dataflow template.

(B) GCPubSubTopicInputDF – This node type receives input Topic that receives the
input streaming data for the Dataflow. It also receives the parameter name, which
is described as a runtime input argument in Dataflow Python code or Dataflow
template.

(C) GCPubSubSubscriptionInputDF - Similar to GCPubSubTopicInputDF node type,
this node type receives input Subscription for the Dataflow.

22

(D) GCBigqueryTableInputDF – This node type is used to receive input Bigquery
table for the Dataflow.

MidwayDF
This PipelineBlock is at the center of the Dataflow processing, and it is responsible for the
Python to Template conversion and triggering the Dataflow execution using the generated
template. This node type receives the input parameters from SourceDF and output
parameters from DestinationDF. It has a many-to-many relation with SourceDF and
DestinationDF. It means that this PipelineBlock can receive multiple input sources and
multiple output destinations. This node type receives the path of the Google credential
file, enabling the TOSCA lifecycle operations to make authenticated interactions with
the Google cloud services. The MidwayDF has two concrete implementations, which are
briefly described below.

(A) GoogleDataFlowPythonExecution - This node type receives the absolute path
of the Python code. If multi-file Python code is designed for the Dataflow, then
the absolute path for the entry file should be supplied. Developers also need to
include a setup file including the required Python dependencies for the Dataflow
job. The Python code is converted to a template file and stored at a user-specified
Google cloud storage using this node type’s life cycle operation. The node type
then triggers the Dataflow job using the converted template file and other required
parameters. Users should use this node type for designing data pipelines using
Python code.Below we discuss the Standard life cycle operations created for this
node type.

• Create - The create life-cycle operation is implemented using Ansible script
and is responsible for creating the template out of supplied Python code. This
operation uses Python3 to install all the Python dependencies that are sup-
plied as the property. The script configures the GOOGLE_APPLICATION
_CREDENTIALS environment variable to the path of the Google credentials
file and executes the Python code to generate a Dataflow template. Listing 2
shows the ansible script to implement create operation.

• Configure - The configure life-cycle operation is implemented using Ansible
script and is responsible for configuring the Google Cloud SDK using the
supplied credentials file and project id. Listing 3 demonstrates the ansible
script to implement configure operation.

• Start – The start operation fetches the input and output parameters and values
from SourceDF and DestinationDF node types. The io arguments are then
combined with the supplied template_specific_parameters, if any. The start
operation then executes the Dataflow template generated from the Python
code using the create operation. The start operation also passes configured io

23

arguments and supplied arguments while executing the template. Listing 4
demonstrates the ansible script to implement start operation.

• Stop – The stop operation is responsible for the cancelation of started
Dataflow job. Listing 5 demonstrates the ansible script to implement stop
operation.

• Delete – The delete operation deletes the temporary files that were created to
fetch io arguments from SourceDF and DestinationDF node types. Listing 6
shows the ansible script to implement delete operation

(B) GoogleDataFlowTemplateExecution - This node type does not require a Python
code for execution. It instead uses Google-provided templates to execute generic
data pipeline jobs in Google Dataflow. Each of these templates requires users to
provide specific runtime parameters for execution. The list of parameters to be
supplied for each template can be found in the template description 6. Users can
provide the input and output parameters using the matching implementation for
SourceDF and DestinationDF. Additional parameters are provided via the tem-
plate_specific_parameters property of the GoogleDataFlowTemplateExecution
node type.

• Configure - The configure life-cycle operation for this node type is similar
to the configure operation in GoogleDataFlowPythonExecution node type
and is responsible for configuring the Google Cloud SDK using the supplied
credentials file and project id.

• Start – The start operation is also similar to the start operation in Google-
DataFlowPythonExecution node type. However, the only difference is that it
triggers the Dataflow job execution on the supplied template location since
this node type does not need to generate template files from Python codes.

• Stop – The stop operation is responsible for the cancelation of started
Dataflow job. This is also similar to the stop operation in GoogleDataFlow-
PythonExecution node type.

• Delete – The delete operation deletes the temporary files that were cre-
ated to fetch io arguments from SourceDF and DestinationDF node types.
GoogleDataFlowPythonExecution node type has a similar ansible script to
implement delete operation.

−−−
− h o s t s : l o c a l h o s t

e n v i r o n m e n t :

6https://cloud.google.com/dataflow/docs/guides/templates/provided-templates

24

GOOGLE_APPLICATION_CREDENTIALS : " {{ c r e d e n t i a l _ f i l e _ p a t h }} "
v a r s :

a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3
t a s k s :

− name : " I n s t a l l p y p i _ d e p e n d e n c i e s : {{ p y p i _ d e p e n d e n c i e s }} "
p i p :

name : " {{ i t em }} "
s t a t e : p r e s e n t

l oop : " {{ p y p i _ d e p e n d e n c i e s }} "

− name : G e n e r a t e DataFlow t e m p l a t e from python s c r i p t
command : py thon3 {{ d a t a f l o w _ p y t h o n _ c o d e _ p a t h }} −− r u n n e r

Data f lowRunner −− p r o j e c t {{ p r o j e c t _ i d }} −− s t a g i n g _ l o c a t i o n
{{ s t a g i n g _ l o c a t i o n }} −− t e m p _ l o c a t i o n {{ s t a g i n g _ l o c a t i o n

} } / temp −− t e m p l a t e _ l o c a t i o n {{ t e m p l a t e _ l o c a t i o n }} −− r e g i o n
{{ r e g i o n }}

Listing 2. Create ansible script for GoogleDataFlowPythonExecution node type

−−−
− h o s t s : l o c a l h o s t
v a r s :

a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3
t a s k s :

− name : C o n f i g u r e a u t h e n t i c a t i o n f o r Google Cloud SDK
s h e l l : g c l oud a u t h a c t i v a t e − s e r v i c e − a c c o u n t −−key − f i l e ={{

c r e d e n t i a l _ f i l e _ p a t h }}

− name : S e t DataFlow p r o j e c t f o r Google Cloud SDK
s h e l l : g c l oud c o n f i g s e t p r o j e c t {{ p r o j e c t _ i d }}

Listing 3. Configure ansible script for GoogleDataFlowPythonExecution node type

−−−
− h o s t s : l o c a l h o s t

v a r s :
a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3

t a s k s :

− name : V e r i f y i f IO argument f i l e e x i s t s
s t a t :

p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
r e g i s t e r : c h e c k _ r e s u l t

− name : Execu te t h e Google Cloud DataFlow wi th I n p u t Outpu t
a rgumen t s when a d d i t i o n a l p a r a m e t e r s e x i s t s .

s h e l l : g c l ou d d a t a f l o w j o b s run {{ da t a f l ow _ jo b_ nam e }} −−gcs −
l o c a t i o n {{ t e m p l a t e _ l o c a t i o n }} −− r e g i o n {{ r e g i o n }} −−

25

s t a g i n g − l o c a t i o n {{ s t a g i n g _ l o c a t i o n }} −− p a r a m e t e r s {{
lookup (' f i l e ' , ' ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t ')
}} ,{{ t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s }} −− f o r m a t = j s o n

r e g i s t e r : r e s u l t
when : (c h e c k _ r e s u l t . s t a t . e x i s t s) and (

t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s != " None ")

− name : save t h e d a t a t o a V a r i a b l e a s a F a c t when I n p u t Outpu t
a rgumen t s and a d d i t i o n a l p a r a m e t e r s bo th e x i s t .

s e t _ f a c t :
p i p e l i n e _ i d : " {{ (r e s u l t . s t d o u t | f r o m _ j s o n) . i d }} "

when : (c h e c k _ r e s u l t . s t a t . e x i s t s) and (
t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s != " None ")

− name : Execu te t h e Google Cloud DataFlow wi th I n p u t Outpu t
a rgumen t s when a d d i t i o n a l p a r a m e t e r s does n o t e x i s t .

s h e l l : g c l ou d d a t a f l o w j o b s run {{ da t a f l ow _ jo b_ nam e }} −−gcs −
l o c a t i o n {{ t e m p l a t e _ l o c a t i o n }} −− r e g i o n {{ r e g i o n }} −−
s t a g i n g − l o c a t i o n {{ s t a g i n g _ l o c a t i o n }} −− p a r a m e t e r s {{
lookup (' f i l e ' , ' ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t ') }}
−− f o r m a t = j s o n

r e g i s t e r : r e s u l t
when : (c h e c k _ r e s u l t . s t a t . e x i s t s) and (

t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s == " None ")

− name : save t h e d a t a t o a V a r i a b l e a s a F a c t when I n p u t Outpu t
a rgumen t s e x i s t and a d d i t i o n a l p a r a m e t e r s does n o t e x i s t .

s e t _ f a c t :
p i p e l i n e _ i d : " {{ (r e s u l t . s t d o u t | f r o m _ j s o n) . i d }} "

when : (c h e c k _ r e s u l t . s t a t . e x i s t s) and (
t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s == " None ")

− name : Execu te t h e Google Cloud DataFlow w i t h o u t any I n p u t o r
Outpu t a rgumen t s b u t w i th a d d i t i o n a l p a r a m e t e r s .

s h e l l : g c l ou d d a t a f l o w j o b s run {{ da t a f l ow _ jo b_ nam e }} −−gcs −
l o c a t i o n {{ t e m p l a t e _ l o c a t i o n }} −− r e g i o n {{ r e g i o n }} −−
s t a g i n g − l o c a t i o n {{ s t a g i n g _ l o c a t i o n }} −− p a r a m e t e r s {{
t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s }} −− f o r m a t = j s o n

r e g i s t e r : r e s u l t
when : (n o t c h e c k _ r e s u l t . s t a t . e x i s t s) and (

t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s != " None ")

− name : save t h e d a t a t o a V a r i a b l e a s a F a c t when I n p u t Outpu t
a rgumen t s does n o t e x i s t and a d d i t i o n a l p a r a m e t e r s e x i s t .

s e t _ f a c t :
p i p e l i n e _ i d : " {{ (r e s u l t . s t d o u t | f r o m _ j s o n) . i d }} "

when : (n o t c h e c k _ r e s u l t . s t a t . e x i s t s) and (
t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s != " None ")

26

− name : Execu te t h e Google Cloud DataFlow w i t h o u t any I n p u t o r
Outpu t a rgumen t s o r a d d i t i o n a l p a r a m e t e r s .

s h e l l : g c l ou d d a t a f l o w j o b s run {{ da t a f l ow _ jo b_ nam e }} −−gcs −
l o c a t i o n {{ t e m p l a t e _ l o c a t i o n }} −− r e g i o n {{ r e g i o n }} −−
s t a g i n g − l o c a t i o n {{ t e m p _ l o c a t i o n }} −− f o r m a t = j s o n

r e g i s t e r : r e s u l t
when : (n o t c h e c k _ r e s u l t . s t a t . e x i s t s) and (

t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s == " None ")

− name : save t h e d a t a t o a V a r i a b l e a s a F a c t when n e i t h e r
I n p u t Outpu t a rgumen t s e x i s t nor a d d i t i o n a l p a r a m e t e r s .

s e t _ f a c t :
p i p e l i n e _ i d : " {{ (r e s u l t . s t d o u t | f r o m _ j s o n) . i d }} "

when : (n o t c h e c k _ r e s u l t . s t a t . e x i s t s) and (
t e m p l a t e _ s p e c i f i c _ p a r a m e t e r s == " None ")

S e t a t t r i b u t e " p i p e l i n e I D "
− name : s e t a t t r i b u t e s

s e t _ s t a t s :
d a t a :

d a t a f l o w _ j o b _ i d : " {{ p i p e l i n e _ i d }} "

Listing 4. Start ansible script for GoogleDataFlowPythonExecution node type

−−−
− h o s t s : l o c a l h o s t

v a r s :
a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3

t a s k s :

− name : Cance l t h e r u n n i n g Job
s h e l l : g c l ou d d a t a f l o w j o b s c a n c e l {{ p i p e l i n e _ i d }}

Listing 5. Stop ansible script for GoogleDataFlowPythonExecution node type

−−−
− h o s t s : l o c a l h o s t

v a r s :
a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3

t a s k s :

− name : D e l e t e temp c o n t e n t & d i r e c t o r y f o r io − a r g s .
f i l e :

s t a t e : a b s e n t
p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d }}

Listing 6. Delete ansible script for GoogleDataFlowPythonExecution node type

DestinationDF
This node type is responsible for collecting user output parameters, if any, for the Google

27

Dataflow job. The DestinationDF node types connect to MidwayDF with a many-to-many
relation, meaning multiple MidwayDF node types may provide an outgoing connection
to a single DestinationDF. It contains three types of node type implementations, which
are GCSBucketOutputDF, GCPubSubTopicOutputDF, and GCBigqueryTableOutputDF
for different types of sinks. These node types collect the output parameter name and the
output location and supply it to MidwayDF for its Dataflow job execution. Similar to
SourceDF, The DestinationDF node types do not implement life cycle operations. The
available DestinationDF node types are discussed below.

(A) GCSBucketOutputDF - This node type is used to supply output GCS bucket path
for the Dataflow. This node also receives the parameter name, which is described
as runtime argument in Dataflow Python code or Dataflow template.

(B) GCPubSubTopicOutputDF – This node type receives output Topic to direct the
output Dataflow stream. It also receives the parameter name, which is described as
a runtime output argument in Dataflow Python code or Dataflow template.

(C) GCBigqueryTableOutputDF – This node type is used to receive output Bigquery
table for the Dataflow.

GoogleDataflowPlatform
GoogleDataflowPlatform node type does not derive from PipelineBlock. However, it is
equally essential to execute Google Dataflow using RADON. This node type implements
life cycle operations that install Apache Beam library and Google Cloud SDK on the
host platform, which is a must to communicate with the Google Cloud platform and tem-
plate conversion. As this node type installs the prerequisite for the Dataflow execution,
MidwayDF should only start its lifecycle operation after the complete deployment of
this node type. In terms of the TOSCA standard, the MidwayDF is hosted on Google-
DataflowPlatform.

Why separate Abstract TOSCA node types for Dataflow
Figure 4 demonstrates that a similar abstract node types are created named as SourceDF,
MidwayDF, and DestinationDF. One may question why not use the same abstract node
types created for existing RADON data pipelines, namely SourcePB, MidwayPB, and
DestinationPB. This design decision to create different abstract node types for the Google
Dataflow can be attributed to the following reasons.

• The SourcePB, MidwayPB, and DestinationPB are special nodes created to be
hosted on the Apache Nifi environment. Adding new node types for Google
Dataflow under the same abstract node types may cause future conflicts. Future
conflicts may arise when a developer intends to implement a common life-cycle

28

operation for either the source, midway, or destination Apache Nifi nodes. Devel-
opers may not be able to add common Nifi life-cycle operations in Source, Midway,
or Destination blocks if Dataflow node types are placed under the same abstract
types.

• Currently, SourcePB can directly connect to DestinationPB for the existing RADON
data pipeline. However, for the node types in Dataflow, the Midway block is the
core of the Dataflow implementation, and hence Midway block can not be skipped.
Obviously, exceptions could be added to reiterate the importance of the Midway
block only in the case of Google Dataflow. However, that seems not an optimal
solution.

4.2.2 Developed TOSCA relationship and capability types for Google Dataflow

The SourceDF, MidwayDF, and DestinationDF may be connected in the same specified
sequence to design a Google Dataflow in the RADON ecosystem. These connections
arise from the requirements and capabilities defined for each node type. The requirements
and corresponding capabilities for each node type are listed below.

• A SourceDF node type has the Requirement to connect to one or more MidwayDF
node types. This Requirement is satisfied by the Capability MidwayDF provides
to connect zero or more SourceDF node types.

• Similarly, a MidwayDF node type has the Requirement to connect to zero or more
DestinationDF, which is satisfied by the Capability DestinationDF provides to
connect to one or more MidwayDF.

• A MidwayDF node type also has the Requirement to be hosted on the Google-
DataflowPlatform node type. In return, GoogleDataflowPlatform provides the
Capability to host MidwayDF.

The connection between the Requirements and corresponding Capabilities are made using
a specific Relationship type and specific Capability type. TOSCA provides a set of Rela-
tionship types and Capability types to describe the requirements and capabilities of node
types. One can also create custom relationship types and capability types derived from
existing ones. The developed relationship types for Google Dataflow are described below.

ConnectDataflowInput
This relationship connects the SourceDF node type with MidwayDF. It is derived from
the TOSCA’s base relationship ConnectsTo. ConnectDataflowInput relationship type
implements the pre_configure_target operation using Ansible script in the Configure
interface of the ConnectsTo relationship type. SourceDF is the source in this relation-
ship, and MidwayDF is the target. Based on the TOSCA standard, the target is always

29

deployed first, which means MidwayDF gets deployed first. However, MidwayDF needs
the input parameters from SourceDF to start the dataflow job. As the name suggests,
the pre_configure_target operation runs right before the configure method for the target,
MidwayDF. The pre_configure_target operation takes the input parameters from the
SourceDF and saves them into a host system file before the start operation runs for
MidwayDF. The same file holds the output parameters too. The start operation for the
MidayDF then starts the Dataflow job using the input and output parameters from the
file. The ansible script that implements the pre_configure_target operation is shown in
Listing 7

−−−
− h o s t s : l o c a l h o s t

v a r s :
a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3

t a s k s :

− name : V e r i f y i f IO argument f i l e e x i s t s
s t a t :

p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
r e g i s t e r : c h e c k _ r e s u l t

− name : C r e a t e temp d i r e c t o r y t o s t o r e i n p u t a r g s
f i l e :

p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d }}
s t a t e : d i r e c t o r y

when : n o t c h e c k _ r e s u l t . s t a t . e x i s t s

− name : C r e a t e io − a r g s . t x t f i l e t o s t o r e f i r s t i n p u t a rgument
f o r t h e DataFlow

l i n e i n f i l e :
p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
l i n e : ' {{ param_name }}={{ i n p u t }} '
c r e a t e : yes

when : n o t c h e c k _ r e s u l t . s t a t . e x i s t s

− name : Append a d d i t i o n a l i n p u t a rgument t o t h e io − a r g s . t x t
f i l e

l i n e i n f i l e :
p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
r eg ex p : ' ^ (. *) $ '
l i n e : ' \ 1 , { { param_name }}={{ i n p u t }} '
b a c k r e f s : yes

when : c h e c k _ r e s u l t . s t a t . e x i s t s

Listing 7. Ansible script to implement pre_configure_target operation for
ConnectDataflowInput relationship type

30

ConnectDataflowOutput
This relationship connects MidwayDF with DestinationDF. Similar to ConnectDataflow-
Input, this relationship also derives from the TOSCA’s base relationship ConnectsTo and
implements the pre_configure_source operation defined in the Configure interface. The
pre_configure_source operation runs right before the configure operation of the source
MidwayDF. This operation fetches the output parameters from the DeatinationDF and
saves them into a host system file where input parameters will also be saved. The start
operation then starts the Dataflow job along with the output parameters. The ansible
script that implements the pre_configure_source operation is shown in Listing 8

−−−
− h o s t s : l o c a l h o s t

v a r s :
a n s i b l e _ p y t h o n _ i n t e r p r e t e r : / u s r / b i n / py thon3

t a s k s :

− name : V e r i f y i f IO argument f i l e e x i s t s
s t a t :

p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
r e g i s t e r : c h e c k _ r e s u l t

− name : C r e a t e temp d i r e c t o r y t o s t o r e IO a r g s
f i l e :

p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d }}
s t a t e : d i r e c t o r y

when : n o t c h e c k _ r e s u l t . s t a t . e x i s t s

− name : C r e a t e io − a r g s . t x t f i l e t o s t o r e f i r s t o u t p u t a rgument
f o r t h e DataFlow

l i n e i n f i l e :
p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
l i n e : ' {{ param_name }}={{ o u t p u t }} '
c r e a t e : yes

when : n o t c h e c k _ r e s u l t . s t a t . e x i s t s

− name : Append a d d i t i o n a l oupu t a rgument t o t h e io − a r g s . t x t
f i l e

l i n e i n f i l e :
p a t h : ~ / tmp / { { s o u r c e _ n o d e _ i d } } / io − a r g s . t x t
r eg ex p : ' ^ (. *) $ '
l i n e : ' \ 1 , { { param_name }}={{ o u t p u t }} '
b a c k r e f s : yes

when : c h e c k _ r e s u l t . s t a t . e x i s t s

Listing 8. Ansible script to implement pre_configure_source operation for
ConnectDataflowOutput relationship type

31

This thesis has also designed specific Capability types for the Google Dataflow. The
developed capability type is discussed below.

ConnectToDataFlow
This capability type is derived from the TOSCA base Capability type Endpoint. The Mid-
wayDF and DestinationDF provide this Capability to connect SourceDF and MidwayDF,
respectively. This developed Capability does not hold any specific implementation dif-
ferent from its parent type and is just used to represent the Capability type for Google
Dataflow node types.

Designing Service Template using TOSCA components for Dataflow
Developers can use RADON graphical modeling tool (Winery) to design Google Dataflow
as a Service Template using developed components. Users must first select the appro-
priate SourceDF and DestinationDF node types based on the required input and output
type. Users then need to select either the GoogleDataFlowTemplateExecution or Google-
DataFlowTemplateExecution node type as their MidwayDF. Users may select the node
type based on their need for Dataflow creation via Python code or Google-provided tem-
plates. After selecting the node types, Users need to connect the SourceDF, MidwayDF,
and DestinationDF in a sequence according to the requirements and capabilities for each
node type. The next step involves users supplying the required properties and artifacts
to the node types involved and finally exporting the Service Template as a CSAR file.
RADON orchestrator can then deploy and manage the Google Dataflow as per user need.
Section 5 contains detailed examples for designing Google Dataflow using Winery.

4.3 Interaction between Dataflow and developed TOSCA compo-
nents

Figure 5 provides a high-level architecture of how the TOSCA components for Dataflow
communicate with the Google Dataflow platform for automated orchestration. The user
may provides the absolute path as the TOSCA property for a MidwayDF node type. The
user also provides input and output location for the job by setting the property value
in the InputDF and OutputDF node types. The user may also add multiple Input and
Output components to provide multiple IO arguments. The supplied IO arguments must
be consistent with the runtime arguments expected in the written Python code.

The RADON orchestrator creates the executable template from the Python code;
it then sends a request to Google Dataflow to start the job. The request contains the
metadata for job execution, such as the location of the executable template, runtime
parameters, and region. In response, the Google Dataflow returns the job id, which the
RADON orchestrator can use to stop the Dataflow job later.

32

RADON Dataflow components

Triggers Dataflow
Execution

InputDF MidwayDF OutputDF

dataflow
job id

Python
File

User

stop job
(id)

response

Figure 5. RADON Dataflow implementation

4.4 Integrating Apache Nifi and Google Dataflow
The existing TOSCA components for Apache Nifi data pipeline and newly developed
node types for Google Dataflow may be used in conjunction to design data pipelines
that stretch over the private cloud, public cloud resources, and Google Dataflow. Figure
6 shows how the existing RADON data pipeline can connect to the newly developed
Google Dataflow block. The output of the Apache Nifi data pipeline may be supplied as
the input to the Google Dataflow and vice versa. One point to note is that the implemented
Google Dataflow only supports Google-based services for input and output. Therefore,
only Google-based sources and sinks can be connected from the RADON data pipeline
to Google Dataflow node types. Developers can terminate their Apache Nifi data pipeline
using DestinationPB that supports publishing data to a Google-based service. Thereby,
SourceDF node type from Google Dataflow can read the input from the exact location
and extend the data pipeline further. Similarly, As Google Dataflow may finish the job
by writing the data to a Google-based service, the SourcePB is configured to read the
data from the exact Google-based service.

The connection between the Apache Nifi based data pipeline and Google Dataflow
node types are made using newly developed Relationship types and Endpoint Capability.

33

The developed relationship types to allow integration are described below.

• ConnectDataflowToNifi - This relationship connects the DestinationDF node type
with SourcePB. It is derived from the TOSCA’s base relationship ConnectsTo and
does not implement any interface or operation. Users must use this relationship
type to connect the appropriate node type in DestinationDF to match the node
type in SourcePB. For, E.g., GCSBucketOutputDF only connects to matching
ConsGCSBucket nodes because both the node types deal with GCS Buckets.

• ConnectNifiToDataflow - This relationship connects the DestinationPB node type
with SourceDF. It is derived from the TOSCA’s base relationship ConnectsTo and
does not implement any interface or operation. Users must use this relationship
type to connect the appropriate node type in DestinationPB to match the node type
in SourceDF. For, E.g., PubGCS only connects to matching GCSBucketInputDF
nodes because both the node types deal with GCS Buckets.

Google DataFlow Block

SourceDF MidwayDF DestinationDF

Apache Nifi Based Pipeline Block

MidwayPBSourcePB DestinationPB

Figure 6. Integration of Google Dataflow with RADON data pipeline

Section 5.4 presents an example of a data pipeline that starts with the Google Dataflow
processing the image and pubilshing the result to a GCS bucket. Apache Nifi based
RADON data pipeline extends by reading the input from the same GCS bucket and
publishing it to an AWS S3 bucket.

34

5 Evaluation and Results
This section discusses the evaluation of the developed TOSCA components for Google
Dataflow by deploying them as a Service Template to orchestrate batch and streaming
Dataflow. This section validates the xOpera deployment results for the developed node
types by verifying the successful Dataflow job creation in the Google Cloud Console.
The successful exection of the Dataflow job is validated by verifying the xOpera deploy
and undeploy logs and analyzing the generated Dataflow job DAG and final output
resulting from the Dataflow job. Similarly, integration of Dataflow node types with
Apache Nifi based existing node types is validated by designing a Service Template for
a batch processing data pipeline that starts with Dataflow and ends with Apache Nifi
publishing the final result. The xOpera deployment results for the integrated Service
Template are validated by confirming the successful Dataflow job creation in Cloud
Console and Apache Nifi and the Processor groups creation. The Cloud buckets are
checked for the intermediate and final output files expected as result of data pipeline
execution.

All the input and output files and figures used in this section can be found in the
GitHub Repository. Please refer to the GitHub Repository to access complete figures
and files[19].

Example Descriptions

(A) Example 1: This example was chosen to demonstrate a template-based Dataflow
deployment for Streaming data using developed TOSCA components. The used
template is Google-provided public templates for performing general tasks. The
designed Dataflow receives input from a Google Pub/Sub subscription and copies
the same data to a Google BigQuery table. Hence, this example uses one InputDF
and one OutputDF node type. Also, it uses Google provided template to design the
Dataflow. The example is illustrated in detail in section 5.2.

(B) Example 2: This goal of this example is to demonstrate a python-based Dataflow
deployment for batch data processing using developed TOSCA components. The
designed Dataflow receives input from three locations in Google Cloud Storage
and writes the output to two locations in Google Cloud Storage. Hence, three
InputDF node types and two OutputDF node types are used. This Google Dataflow
counts the frequency of all the words in the input files. This example is discussed
in detail in section 5.3.

(C) Example 3: This example was chosen to illustrate the integration between Google
Dataflow node types and Apache Nifi node types. The designed data pipeline
first uses the Google Dataflow to process the image in this example. It later uses
Apache Nifi based data pipeline to copy the data from the GCS bucket to the AWS

35

S3 bucket. The Google Dataflow takes one InputDF node type to receive GCS
bucket input and then writes the processed image to another GCS bucket using one
OutputDF node type. Python code is used to describe the workflow for this Google
Dataflow. Similarly, for Apache Nifi based data pipeline, a ConsGCSBucket is
used to read the image files from the GCS bucket, and PubsS3Bucket is used to
copy the image files to the S3 bucket. This example is discussed in detail in section
5.4.

5.1 Evaluation Setup
In order to validate the developed RADON components, this section sets up the environ-
ment to orchestrate example data pipelines. A required set of steps for performing this
evaluation are listed below.

• An OpenStack host with a Ubuntu 18.04 image and m3.tiny flavor with 2 vCPUs,
2 GB of RAM, and 10 GB of total disk was configured.

• RADON graphical modeling tool Winery with version ’Winery 1.0.0-SNAPSHOT’
was installed on the OpenStack host.

• RADON orchestrator xOpera was installed on the OpenStack host.

• A Google cloud project was created, and free tier billing was enabled for the same.

• Google Cloud APIs for Dataflow, Google Cloud Storage, BigQuery, Cloud Pub/-
Sub, and all its dependencies were enabled as instructed in Google documentation[15].

• An AWS account with free tier was created.

The above-mentioned resources and platform setup are common for all three example
data pipelines. Appendix III provides a Technical Manual that describes the above steps
in detail. It explains all the installation steps, including the platform setup needed to
deploy the RADON data pipeline explained in section 5.3.

5.2 Pub/Sub Subscription to BigQuery using Dataflow
This section orchestrates a Google Dataflow job for streaming data using a Google-
provided template. This example intends to demonstrate deploying and managing
Google Dataflow jobs for streaming data in the RADON ecosystem. In this example,
Dataflow reads the JSON-formatted streaming data from a Google Pub/Sub Subscription
and publishes them to a Google Bigquery table. Google Pub/Sub 7 is a publish-subscribe

7https://cloud.google.com/pubsub

36

message pattern in which publishers publish asynchronous messages to a topic. Systems
may create one or more subscriptions for a particular topic to consume those published
messages. Whereas Google BigQuery 8 is a serverless data warehouse solution for
enterprises that supports SQL queries. Figure 7 illustrates the high-level architecture of
the designed Google Dataflow.

Program

Simulated Taxi
data

Google-provided
template

ConnectDataflowInput
Streaming

data

ConnectDataflowOutput

Streaming
JSON
data

Streaming JSON data

Write
data as

rows

 Dataflow
Exection

hosted on

Bigquery
data

Google
BigQuery

Google Pub/Sub
Input Subscription

BigQuery Table
Ouput

Google Pub/Sub
Topic (public)

Google Dataflow
Platform

Google Dataflow

Streaming BigQuery data

Figure 7. High-level architecture of Pub/Sub Subscription to BigQuery Dataflow

Input Streaming Data
The Google-provided public Pub/Sub topic receives simulated streaming data for New
York taxi rides, which then forwards the data to the created Pub/Sub Subscription. Listing
9 shows the sample JSON data received by the created Pub/Sub subscription. The velocity
of the data received by the Subscription is extremely high, meaning thousands of JSON
records are sent to the Pub/Sub subscription every few seconds. This high velocity of
incoming data means thousands of records are written to the Bigquery table every few
seconds. While deploying this example Dataflow, one must exercise caution to avoid
exceeding free tier limits.

8https://cloud.google.com/bigquery

37

5.2.1 Prerequisites for this Dataflow

Because this Dataflow job involves reading data from a Pub/Sub subscription and writing
it to a Bigquery table, Pub/Sub Subscription and a Bigquery table are created. Details
are described below:

• Pub/Sub subscription - This example creates a Pub/Sub subscription named
taxiRidePublicDataSubscription to the topic ’projects/pubsub-public-data/topics/taxirides-
realtime’ 9. The configured topic is a publically available topic receiving emulated
taxi data stream with a fixed JSON schema. Listing 9 shows a sample JSON
message that the Subscription receives from the topic.

{
" r i d e _ i d " : " cd13c679 −a642 −43a5 −9d94 −35 e8f81993b0 " ,
" p o i n t _ i d x " : 1 7 ,
" l a t i t u d e " : 4 0 . 7 7 5 5 2 ,
" l o n g i t u d e " : −7 3 .9 82 27 ,
" t imes t amp " : " 2021 −12 −24T00 : 1 5 : 2 3 . 0 9 6 9 8 − 0 5 : 0 0 " ,
" m e t e r _ r e a d i n g " : 0 . 6 6 5 3 9 3 7 7 ,
" m e t e r _ i n c r e m e n t " : 0 . 0 3 9 1 4 0 8 1 ,
" r i d e _ s t a t u s " : " e n r o u t e " ,
" p a s s e n g e r _ c o u n t " : 5

}

Listing 9. Sample JSON message

• BigQuery table - This example creates a Bigquery table named taxiRidesSample-
Data inside the BigQuery dataset myRadonExampleDataSet, so that the Dataflow
can write the output messages to it. The Bigquery table schema must match the
JSON schema. Figure 8 shows the schema for the Bigquery table, which must
match the incoming JSON schema from Pub/Sub subscription.

5.2.2 Choosing the appropriate node types and supplying properties

Since this example uses a Google-provided template, developers must refer to the Google
Dataflow documentation 10 to get the GCS location for the template and its parameters.
In this case, the template has three mandatory and two optional parameters:

• inputSubscription - The Pub/Sub subscription to read input. This parameter will
be provided via the GCPubSubSubscriptionInputDF node type.

9https://github.com/googlecodelabs/cloud-dataflow-nyc-taxi-tycoon
10https://cloud.google.com/dataflow/docs/guides/templates/provided-streaming#pubsub-subscription-

to-bigquery

38

Figure 8. Table schema for BigQuery table taxiRidesSampleData

• outputTableSpec - The BigQuery output table location. This parameter will be
provided via GCBigqueryTableOutputDF node type.

• outputDeadletterTable - Another Bigquery table for the messages that failed to
reach the output table. If this table does not exist, it is created during Dataflow exe-
cution. The developer must provide this parameter using the template_specific_paramter
property inside the GoogleDataFlowTemplateExecution node type.

• javascriptTextTransformGcsPath (optional) - If needed, developers may provide
these non-IO parameters as template_specific_paramter property inside Google-
DataFlowTemplateExecution node type.

• javascriptTextTransformFunctionName (optional) - If needed, developers may
provide these non-IO parameters as template_specific_paramter property inside
GoogleDataFlowTemplateExecution node type.

Also, due to the use of a Google-provided template for job execution, developers must
choose GoogleDataFlowTemplateExecution as their MidwayDF. Chosen node types and

39

their supplied properties are discussed below.

GCPubSubSubscriptionInputDF
GCPubSubSubscriptionInputDF accepts two required properties. It also accepts optional
properties related to scheduling. However, the node types do not support scheduling
yet. Still, the scheduling-related properties may come in handy after the scheduling is
implemented for Google Dataflow. Table 1 describes the configured properties for this
node type.

Propery Value Description
input projects/thesis-project-

329917/subscriptions/
taxiRidePublicDataSubscription

This is the Pub/Sub subscrip-
tion for reading the stream,
and has the format of projects/
<project_id>/subscriptions/
<subscriptionid >

param_name inputSubscription This is the parameter name
expected by the template for
the ’input’ property provided
above. The parameter name
can be found in the template
specification.

schedulingStrat-
egy (optional)

EVENT_DRIVEN Leave the value to default.

name (optional) inputSubscriptionNode Name of the pipeline node
schedulingPeriod-
CRON (optional)

* * * * * ? Leave the value to default.

Table 1. Properties for GCPubSubSubscriptionInputDF node type

GoogleDataFlowTemplateExecution
GoogleDataFlowTemplateExecution node type is the central processing hub for the
RADON Dataflow. This node type triggers the actual job execution after receiving
the input and the output from other node types. Below, Table 2 describes the essential
configured properties for this node type.

40

Propery Value Description
tem-
plate_location

gs://dataflow-
templates/latest/
PubSub_Subscription_to_Big
Query

This is the GCS location where
the Dataflow template is stored.
Since a Google-provided tem-
plate is used, developers can get
the location of this template from
Dataflow documentation.

template_specific
_parameters outputDeadletterTable=thesis-

project-
329917:myRadonExampleData
Set.taxiRidesSampleDataDL

This is the template-specific pa-
rameter to supply additional
parameters needed for a tem-
plate. Here, BigQuery table
taxiRidesSampleDataDL is sup-
plied in the format parame-
ter_name=value. Multiple pa-
rameters can be separated with
a comma.

dataflow_job_name
PubSubToBigQueryJob The name of the Google Dataflow

job.
project_id thesis-project-329917 The Google project id where the

Dataflow job will run
creden-
tial_file_path

/home/ubuntu/dp-
project/cred/thesis-project-
329917-5c40808bbb3e.json

The system path to the Service
Account JSON key. It provides
authorization for the Dataflow
and the configured project. .

staging_location gs://dp-bucket-1/staging Google Cloud location where de-
veloper want to store the tempo-
rary and intermediate files. .

region europe-west1 This is the cloud region where
developer want to execute the
Dataflow job. .

Table 2. Properties for GoogleDataFlowTemplateExecutionTable node type

GCBigqueryTableOutputDF
GCBigqueryTableOutputDF accepts two mandatory properties. It also accepts optional
properties related to scheduling. However, the Google Dataflow node types do not
support scheduling yet. Therefore, these scheduling-related properties for the future
when scheduling has been implemented. Table 3 describes the mandatory properties for
this node type.

41

Propery Value Description
output thesis-project-

329917:myRadonExampleData
Set.taxiRidesSampleData

This is the BigQuery table name
where the Dataflow will publish
the data, and has the format of
<project>:<dataset>.<my-table>

param_name outputTableSpec This is the parameter name ex-
pected by the template for the
’output’ property provided above.
The parameter name can be
found in the template specifica-
tion.

Table 3. Properties for GCBigqueryTableOutputDF node type

GoogleDataflowPlatform
This node type hosts the MidwayDF node type. In this particular example, it hosts
the GoogleDataFlowTemplateExecution node type. It does not require any mandatory
property to be configured. This node type is responsible for installing the Google Cloud
SDK and Apache Beam SDK that enables the host to communicate with Google Dataflow
APIs.

5.2.3 Designing the service template in the Winery

This example creates a new Service template named GooglePubSubSubscriptionToBig-
queryDataFlow to model the Google Dataflow in Winery. Figure 9 shows the Google
Dataflow modeling using Winery. Node types described in the previous section are
connected using their defined Requirements and Capabilities. Here, this example sets up
relationships by performing the below steps:

• Dragging ConnectDataflowInput Requirement from GCPubSubSubscriptionIn-
putDF into GoogleDataFlowTemplateExecution’s connectToDataflow Capability.

• Dragging ConnectToDataflowOutput Requirement from GoogleDataFlowTempla-
teExecution into GCBigqueryTableOutputDF’s connectToDataflow Capability.

• Dragging HostedOn Requirement from GoogleDataFlowTemplateExecution into
GoogleDataflowPlatform’s host Capaibility.

Next, all the properties discussed in the previous section are configured for the node
types using the Winery. Finally, the Service Template design is saved the CSAR file is
exported using the Export button in the Winery.

42

Figure 9. Designing the Service Template GooglePubSubSubscriptionToBigquery-
DataFlow Winery

5.2.4 Deploying the exported CSAR file using xOpera

RADON orchestrator xOpera requires Cloud Service Archive (CSAR) file to orchestrate
the Google Dataflow. this example deploys the exported CSAR file from the previous
section using the below command.
opera deploy -r GooglePubSubSubscriptionToBigqueryDataFlow.csar

Figure 10 shows the Dataflow xOpera deployment logs after deploying the Google
Dataflow. After the CSAR file deployment is complete, the Google Dataflow job execu-
tion should start.

Figure 10. xOpera deployment logs for Streaming Dataflow

After the Dataflow deployment using xOpera, developer must wait around 8-10
minutes to give Google Dataflow enough time to provision the cloud resources and start
the job execution. Then, developer must un-deploy the Dataflow using the below xOpera
command.
opera undeploy

43

Figure 11 shows the xOpera logs for the undeploy method, which cancels the Dataflow
job execution.

Figure 11. xOpera undeploy logs for Streaming Dataflow

5.2.5 Evaluating final results

This example verifies the Dataflow job execution using the Google cloud console after
the xOpera deployment in Section 5.1.4. Figure 12 is a screenshot of the Google cloud
console that demonstrates the Directed Acyclic Graph (DAG) for the running Dataflow
job. The Dataflow DAG in the figure demonstrates the sequence of steps performed for
this Dataflow. The DAG starts with ReadPubSubSubscription step that reads input from
Pub/Sub subscription. Subsequently, ConvertMessagesToTableRow step, similar to its
name, receives the data from the previous step ReadPubSubSubscription and converts
the Pub/Sub messages to table rows. The successfully converted messages from the
previous step are written to the BigQuery table using the WriteSuccessfulRecords step. In
contrast, the messages that failed to convert are flattened using Flatten step and written
to a dead letter table using WriteFailedRecords. Similarly, the messages that failed to
be written using WriteSuccessfulRecords step are wrapped with insertion errors using
WrapInsertionErrors step and then written to dead letter table using WriteFailedRecords2.

This example verifies the BigQuery table in the Google cloud console to ensure that
the Dataflow job writes the JSON-formatted Subscription data into the empty BigQuery
table. This example uses an SQL query to query the number of rows that the BigQuery
table contains after running the job. Figure 13 shows the result of running the count query
using the Google cloud console. This example validates the 3229838 rows written where
each row corresponds to a JSON object received via the created Subscription. Figure 14
shows the result of an SQL query that queries the rows of stored data. The BigQuery

44

Figure 12. Dataflow Streaming Job workflow in Google cloud console

table records with a limit of 1000 records are exported as a CSV file and placed in the
GitHub repository[19] for this thesis.

Figure 13. Record counts in the BigQuery table taxiRidesSampleData

Next, this example verifies the Dataflow job execution state in the Google cloud
console after running the xOpera un-deployment in previous section. Figure 15 shows

45

Figure 14. Sample records in the BigQuery table taxiRidesSampleData

the state of the Dataflow job after the same. As seen in the figure, each DAG step is
shown in the Failed state, meaning the Dataflow job has failed and stopped executing.
As expected after the opera un-deploy command, the streaming job is canceled, and no
more data is copied from Subscription to the BigQuery table.

Figure 15. Dataflow Job in Google Cloud Console after opera undeploy

46

5.3 Wordcount example using Dataflow (Batch)
This example orchestrates a Google Dataflow job that reads three different files from three
different locations in the GCS bucket, performs the frequency count for the words in those
files, and publishes the output result to two different GCS buckets. Python code is written
to design this Dataflow, and the designed code uses the Apache Beam library to define
the data pipeline. The input and output locations are specified as runtime arguments
to the Python code. Therefore, when the MidwayDF create operation generates the
corresponding template from the Python code, then the generated template will also
require the input and output arguments as a parameter. The previous example supplies
input and output parameters using the InputDF and OutputDF node types. Any additional
parameters may be supplied via template_specific_parameters property in MidwayDF
node type. Since Python code is used to define the Dataflow DAG, developers must
select GoogleDataFlowPythonExecution as the MidwayDF node type. Figure 16 shows
the high-level architecture for the WordCount example.

Python code

ConnectDataflowInput

ConnectDataflowOutput

Perform WordCount

hosted on

Google
Dataflow
Platform

ConnectDataflowInput

ConnectDataflowInput

ConnectDataflowOutput

Google Sample File
romeoandjuliet.txt

Google Sample File
kinglear.txt

Google Sample File
macbeth.txt

Dataflow GCS
Input 1

Dataflow GCS
Input 2

Dataflow GCS
Input 3

Dataflow GCS
Output 1

Dataflow GCS
Output 2

GCS Bucket
output 1

GCS Bucket
output 2

Google Dataflow

Figure 16. High-level architecture for WordCount Dataflow

Google-provided sample text files are used as an input to this Wordcount example.
The workflow for this example Dataflow is described below:

• The Dataflow job reads the first file from the location
gs://dataflow-samples/shakespeare/kinglear.txt

47

gs://dataflow-samples/shakespeare/kinglear.txt

• The Dataflow reads the second file from the location
gs://dataflow-samples/shakespeare/romeoandjuliet.txt

• The Dataflow reads the third file from the location
gs://dataflow-samples/shakespeare/macbeth.txt

• The Dataflow combines the text in all three files and groups them together.

• The Dataflow calculates the frequency for each word in the text and stores it in
(key, value) pair format. Where key is a specific word, and value is the total number
of occurrences for that word across the combined text.

• Dataflow writes the final result into the GCS Bucket gs://dp-output1/my_
output/

• Dataflow writes the same result into another GCS Bucket
gs://dp-output2/my_output/

Input Data Files
The input data files used in this example are romeoandjuliet.txt, kinglear.txt, and mac-
beth.txt, with each of them, placed in the public GCS location gs://dataflow-samples/
shakespeare. Each of the input file is around 150 KB and contains plain text inside.
The full text files are placed in the GitHub repository and one can access the repository
to gain access to full file contents[19].

5.3.1 Prerequisites for this Dataflow

Since this example reads the text files from the Google-provided sample texts, developers
do not need to create input GCS buckets or upload the text files. However, developers
must provide GCS location for those sample text files. Google dataflow will then read
the text files from the specified GCS buckets. Also, developers must make sure that the
specified output buckets are created before running the Dataflow job. developers must
also code the Python file for describing the workflow for the Dataflow job.

GCS bucket for outputs
This example creates two GCS buckets named dp-output1 and dp-output2 to store the
output file. developers must ensure that the Google Dataflow is authorized to write to the
GCS buckets.

Python code using Apache Beam Library
Listing 10 shows the written Python code which is an adaptation of WordCount example
provided by Apache Beam[20]. The class WordcountOptions uses the add_value_provider_argument
to declare the runtime parameters. Therefore, to execute the Dataflow job using the

48

gs://dataflow-samples/shakespeare/romeoandjuliet.txt
gs://dataflow-samples/shakespeare/macbeth.txt
gs://dp-output1/my_output/
gs://dp-output1/my_output/
gs://dp-output2/my_output/
gs://dataflow-samples/shakespeare
gs://dataflow-samples/shakespeare

defined Python code, one must provide all the runtime parameters. The listed Python
code illustrates that the runtime parameters are named input1, input2, and input3 for
inputs and output1 and output2 for outputs. These parameter names will be supplied as
the property param_names using the appropriate InputDF and OutputDF node types.

This example uses the Python code that follows Apache Beam Programming guide
[21]. The guide assists users in understanding the Beam programming model and Beam
SDKs. Users can read and understand essential concepts to write effective data pipeline
code for Google Dataflows.

c l a s s WordcountOpt ions (P i p e l i n e O p t i o n s) :
@classmethod
d e f _ a d d _ a r g p a r s e _ a r g s (c l s , p a r s e r) :

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− i n p u t 1 ' , h e l p = ' Pa th o f
t h e f i l e t o r e a d from ')

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− i n p u t 2 ' , h e l p = ' Pa th o f
t h e f i l e t o r e a d from ')

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− i n p u t 3 ' , h e l p = ' Pa th o f
t h e f i l e t o r e a d from ')

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− o u t p u t 1 ' , h e l p = ' Outpu t
f i l e t o w r i t e r e s u l t s t o . ')

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− o u t p u t 2 ' , h e l p = ' Outpu t
f i l e t o w r i t e r e s u l t s t o . ')

c l a s s WordExtrac t ingDoFn (beam . DoFn) :

d e f p r o c e s s (s e l f , e l e m e n t) :
r e t u r n r e . f i n d a l l (r ' [\ w\ ']+ ' , e l ement , r e . UNICODE)

l o g g i n g . g e t L o g g e r () . s e t L e v e l (l o g g i n g . INFO)
p i p e l i n e _ o p t i o n s = P i p e l i n e O p t i o n s ()

w i th beam . P i p e l i n e (o p t i o n s = p i p e l i n e _ o p t i o n s) a s p :
d e f p r i n t _ r o w (e l e m e n t) :

l o g g i n g . i n f o (" Running p i p e l i n e : ")

my_opt ions = p i p e l i n e _ o p t i o n s . v iew_as (WordcountOpt ions)

l i n e s 1 = p | ' Read1 ' >> ReadFromText (my_opt ions . i n p u t 1)
l i n e s 2 = p | ' Read2 ' >> ReadFromText (my_opt ions . i n p u t 2)
l i n e s 3 = p | ' Read3 ' >> ReadFromText (my_opt ions . i n p u t 3)

c o u n t s = (
(l i n e s 1 , l i n e s 2 , l i n e s 3)
| ' F l a t t e n ' >> beam . F l a t t e n ()
| ' S p l i t ' >> (beam . ParDo (WordExtrac t ingDoFn ()) .

w i t h _ o u t p u t _ t y p e s (s t r))

49

| ' Pa i rWIthOne ' >> beam . Map (lambda x : (x , 1))
| ' GroupAndSum ' >> beam . CombinePerKey (sum))

d e f f o r m a t _ r e s u l t (word , c o u n t) :
r e t u r n '%s : %d ' % (word , c o u n t)

o u t p u t = c o u n t s | ' Format ' >> beam . MapTuple (f o r m a t _ r e s u l t)

o u t p u t | ' Wr i t e1 ' >> Wri teToText (my_opt ions . o u t p u t 1)
o u t p u t | ' Wr i t e2 ' >> Wri teToText (my_opt ions . o u t p u t 2)

p . run () . w a i t _ u n t i l _ f i n i s h ()

Listing 10. Python Code extracts for WordCount example[20]

5.3.2 Choosing the appropriate node types and supplying properties

This example reads the data from three different locations in the GCS bucket; thereby, it
use three GCSBucketInputDF node types for the input. Also, because Dataflow job is cre-
ated using the Python code, developers must choose GoogleDataFlowPythonExecution
node type as the MidwayDF. Finally, this example chooses two GCSBucketOutputDF
node types to represent the output GCS locations. Supplied properties for the chosen
node types are described below:

GCSBucketInputDF
This example uses three different GCSBucketInputDF node types to represent the three
inputs, where developers must provide the input file locations and the parameter names
via their properties. Since this example Dataflow reads the file from the public GCS
bucket, developers must set the input property to the GCS locations to be read. And
developers must set the param_name to input1, input2, and input3 as expected by the
Python program.
The mandatory properties and supplied value for the same are listed below for the first
GCSBucketInputDF node type in Table 4.

Similarly, for the second GCSBucketInputDF node type, the mandatory properties
and supplied value are described in Table 5. Table 6 describes the properties for the third
GCSBucketInputDF node type.

50

Propery Value Description
input gs://dataflow-samples/shakespeare/

romeoandjuliet.txt
This is the GCS Bucket loca-
tion for reading the input.

param_name input1 This is the parameter name
expected by the template for
the ’input’ property provided
above. This is defined as IO
argument in the Python code.

Table 4. Properties for first GCSBucketInputDF node type

Propery Value Description
input gs://dataflow-samples/shakespeare/

kinglear.txt
This is the GCS Bucket loca-
tion for reading the input.

param_name input2 This is the parameter name
expected by the template for
the ’input’ property provided
above. This is defined as IO
argument in the Python code.

Table 5. Properties for second GCSBucketInputDF node type

Propery Value Description
input gs://dataflow-samples/shakespeare/

macbeth.txt
This is the GCS Bucket loca-
tion for reading the input.

param_name input3 This is the parameter name
expected by the template for
the ’input’ property provided
above. This is defined as IO
argument in the Python code.

Table 6. Properties for third GCSBucketInputDF node type

GoogleDataFlowPythonExecution
Table 7 showcases the properties and the corresponding supplied values for the Google-
DataFlowPythonExecution node type.

51

Propery Value Description
dataflow_python
_code_path

/home/ubuntu/dp-
project/myWordCount.py

This is the absolute path to the
dataflow python file.

tem-
plate_location

gs://dp-bucket-
1/templates/my-template.json

The Dataflow template generated
from the provided Python code is
stored at this GCS location.

pypi_dependencies
[] Provide an empty list as no ad-

ditional dependencies are needed
to execute the supplied Python
code.

template_specific
_parameters

None No additional parameters need to
be provided for this Dataflow job.

dataflow_job_name
WorCountExampleJob The name of the Google Dataflow

job.
project_id thesis-project-329917 The Google project id where the

Dataflow job will run
credential_file_
path

/home/ubuntu/dp-
project/cred/thesis-project-
329917-5c40808bbb3e.json

The system path to the Service
Account JSON key. It provides
authorization for the Dataflow
and the configured project.

staging_location gs://dp-bucket-1/staging Google Cloud location where de-
velopers want to store the tempo-
rary and intermediate files.

region europe-west1 This is the cloud region where
developers want to execute the
Dataflow job.

Table 7. Properties for GoogleDataFlowPythonExecution node type

GCSBucketOutputDF
This example uses two different GCSBucketOutputDF node types to represent the two
GCS bucket locations to publish the final resulting file.

developers must set the output property for this node type to the GCS Bucket loca-
tions where they want to publish the output data. Moreover, developers must set the
param_name to output1 and output2 as specified in the Python program.
The mandatory properties and supplied value are listed below for the first GCSBucketOut-
putDF node type in Table 8. Similarly, for the second GCSBucketInputDF node type, the
mandatory properties and supplied value are shown in Table 9.

52

Propery Value Description
output gs://dp-output1/my_output/ This is the GCS Bucket location for

writing the output.
param_name output1 This is the parameter name expected

by the template for the ’output’ prop-
erty provided above. This is defined
as IO argument in the Python code.

Table 8. Properties for first GCSBucketOutputDF node type

Propery Value Description
output gs://dp-output2/my_output This is the GCS Bucket location for

writing the output.
param_name output2 This is the parameter name expected

by the template for the ’output’ prop-
erty provided above. This is defined
as IO argument in the Python code.

Table 9. Properties for second GCSBucketOutputDF node type

GoogleDataflowPlatform
This node type hosts the GoogleDataFlowTemplateExecution node type. It does not
require any mandatory property to be configured. This node type is responsible for
installing the Google Cloud SDK and Apache Beam SDK that enables the host to
communicate with Google Dataflow APIs.

5.3.3 Designing the service template in the Winery

A service template named GoogleDataFlowPythonWordCount is created using Winery
to model the WordCount Google Dataflow job. Figure 17 shows the Google Dataflow
modeling using Winery. This example connects the node types involved using their
Requirements and Capabilities. The connection steps are described below:

• Dragging ConnectDataflowInput requirement from all three GCSBucketInputDF
node types into the connectToDataflow capability of GoogleDataFlowPythonExe-
cution node.

• Dragging ConnectToDataflowOutput Requirement from GoogleDataFlowPythonEx-
ecution into connectToDataflow Capability for both of the GCSBucketOutputDF
node types.

53

• Dragging HostedOn Requirement from GoogleDataFlowPythonExecution into the
host Capaibility of GoogleDataflowPlatform node.

Next, developers must configure all the properties discussed in the previous section and
save the final topology using Winery. Finally, developers can export the modeled Service
template as a CSAR file.

Figure 17. Designing Service Template GoogleDataFlowPythonWordCount in Winery

5.3.4 Deploying the exported CSAR file using xOpera

The exported CSAR file from the previous section is deployed using the below command.
opera deploy -c GoogleDataFlowPythonWordCount.csar

Figure 18 shows the Dataflow xOpera deployment logs for the TOSCA deployment.
After the CSAR file deployment is complete, the Google Dataflow job execution should
start.

Next, developers may stop the Dataflow job using xOpera. For that purpose, de-
velopers may create a new Dataflow job using the Winery. The new dataflow job may
be designed in Winery with a similar steps as described in this example. However,
developers must supply a different job name using the dataflow_job_name property of
the GoogleDataFlowPythonExecution node type. After using the xOpera to deploy the
new job, developers may wait for a few seconds for the job to appear on Google cloud
console, and then undeploy the Dataflow job using below xOpera command:
opera undeploy

Figure 19 shows the xOpera logs for the undeploy method.

54

Figure 18. xOpera deployment logs for WordCount Dataflow

5.3.5 Evaluating final results

This example verifies the Dataflow job execution using the Google cloud console after the
xOpera deployment in Section 5.3.4. Figure 23 from Google Cloud Console illustrates
the Directed Acyclic Graph (DAG) for the WordCount Dataflow job. The Dataflow
DAG in the figure demonstrates the sequence of steps performed for this Dataflow. The
DAG starts with three parallel tasks, namely Read1, Read2, and Read3. The three input
files loaded using these three parallel tasks are unified together using and Flatten task.
The next three sequential tasks Split, PairWithOne, and GroupAndSum are group of
transformations and processing applied to retrieve the word count. Next, Format task is
used to format the output as per the requirement. Finally, the Dataflow writes the output
to supplied GCS buckets using Write1 and Write2 tasks. One interesting point to note
is that the Dataflow DAG in Figure 23 is generated based on the workflow instructions
specified in the Python file from Listing 10.

As the next step, this example verifies that the Dataflow job saves the output word
count file in the supplied output GCS buckets. For that purpose, GCS locations gs://dp-

55

Figure 19. xOpera un-deploy logs for WordCount Dataflow

output1/my_output and gs://dp-output2/my_output are checked for the presence
of output file using Google Cloud Console. Figure 21 and Figure 22 shows the output
WordCount file in the both the specified GCS buckets. The output word count files are
downloaded from the GCS buckets and included in the GitHub repository[19] for this
thesis.

Finally, this example verifies the Dataflow job execution state in the Google cloud
console after running the xOpera un-deployment in Section 5.2.4. Figure 23 shows the
state of the Dataflow job after the same. As seen in the figure, each DAG step is shown in
the Failed state, meaning the Dataflow job has failed and stopped executing. As expected
after the opera un-deploy command, the WordCount job is canceled before completion,
and no output is generated in the output GCS buckets.

56

Figure 20. WordCount Job workflow in Google cloud console

Figure 21. Result of WordCount job stored in GCS Bucket dp-output1

57

Figure 22. Result of WordCount job stored in GCS Bucket dp-output2

Figure 23. WordCount Job workflow in Google cloud console after job cancellation

58

5.4 Image Processing using Dataflow and Apache Nifi
This example orchestrates a data pipeline combining Google Dataflow and Apache Nifi.
Figure 24 shows the high-level architecture for this image processing example. The data
pipeline starts with Google Dataflow reading a image from a GCS bucket, resizing it,
and publishing it to another GCS bucket. Then, Apache Nifi continues the data pipeline
by fetching the resized image from the same GCS bucket and publishing it to the AWS
S3 bucket. Like the previous example, the path to the python location is provided, and
the Python code uses the Apache Beam library to define the Dataflow. The input and
output locations are specified as runtime arguments to the Python code. Therefore, when
the MidwayDF create operation generates the corresponding template from the Python
code, then the generated template will also require the input and output arguments as
parameters.

upload
Image

Python Code

ConnectDataflowInput

ConnectDataflowOutput

Hosted
on

Google
Dataflow
Platform

Google Dataflow

user

GCS Bucket

Process
Image

Dataflow output
Image

Dataflow Input
Image

Apache Nifi

OpenStack
VM

Nifi

Hosted on

Hosted onHosted on

ConnectToPipelineConsGCS PubsS3

GCS Bucket AWS S3 Bucket

ConnectDataflowToNifi

Thumbnail
Thumbnail

Figure 24. High-level architecture for image processing using Dataflow and Apache Nifi

Input Image file
Input JPG image file is uploaded to the GCS bucket for resizing. Github repository [19]
contains the image file that is uploaded to the source GCS bucket in this example. The

59

uploaded image file has dimension of 1280 X 720 pixels, which will be resized to 128 x
128 pixels using Dataflow to generate thumbnails.

5.4.1 Prerequisites for this Dataflow

GCS buckets and uploading image files
The Google Dataflow reads the image from an existing GCS bucket, so this example
creates a GCS bucket named dp-input and uploads a JPG image file. The input image
file should be uploaded to the GCS location before deploying the Dataflow job. GCS
bucket named dp-output is also created to store the Dataflow output image. Apache
Nifi will use the same dp-output bucket to consume resized image and publish them to
an AWS S3 bucket. This example also creates a GCS bucket dp-bucket-2 to store the
generated template and staging files for the Dataflow execution.

AWS S3 bucket
This example also creates an AWS S3 bucket to store the final resultant thumbnail image
from this data pipeline. The Apache Nifi data pipeline consumes the processed images
from the GCS bucket and publish it to the create AWS S3 bucket.

Python code using Apache Beam Library
Listing 11 shows the snippets from the written Python code for this image processing
example. The class ImageThumbnailOptions uses the add_value_provider_argument
to declare the runtime parameters. developers must declare two runtime parameters for
input and output GCS locations. The runtime parameters can then be supplied using
GCSBucketInputDF and GCSBucketOutputDF node types.

c l a s s ImageThumbna i lOpt ions (P i p e l i n e O p t i o n s) :
@classmethod
d e f _ a d d _ a r g p a r s e _ a r g s (c l s , p a r s e r) :

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− i n p u t B u c k e t ' , h e l p = '
Pa th o f t h e f i l e t o r e a d from ')

p a r s e r . a d d _ v a l u e _ p r o v i d e r _ a r g u m e n t (' −− o u t p u t B u c k e t ' , h e l p = '
Outpu t f i l e t o w r i t e r e s u l t s t o . ')

l o g g i n g . g e t L o g g e r () . s e t L e v e l (l o g g i n g . INFO)
p i p e l i n e _ o p t i o n s = P i p e l i n e O p t i o n s ()
p i p e l i n e _ o p t i o n s . v iew_as (S e t u p O p t i o n s) . s a v e _ m a i n _ s e s s i o n = True

wi th beam . P i p e l i n e (o p t i o n s = p i p e l i n e _ o p t i o n s) a s p :
d e f p r i n t _ r o w (e l e m e n t) :

l o g g i n g . i n f o (" Running p i p e l i n e : ")

d e f loadAndRes ize (p a t h) :

60

l o g g i n g . i n f o (" I n p u t : " + s t r (p a t h))
buf = GcsIO () . open (s t r (p a t h) , mime_type=" image / j p e g ")
img = Image . open (i o . BytesIO (buf . r e a d ()))
r e s i z e d I m g = img . r e s i z e ((1 5 0 , 150))
b = i o . BytesIO ()
r e s i z e d I m g . save (b , f o r m a t = ' JPEG ')
r e t u r n { " p a t h " : pa th , " image " : b . g e t v a l u e () }

d e f s t o r e (i t em) :
o u t p u t _ p a t h = my_opt ions . o u t p u t B u c k e t . g e t ()
name = i t em [" p a t h "] . s p l i t (" / ") [− 1] . s p l i t (" . ") [0]
p a t h = os . p a t h . j o i n (o u t p u t _ p a t h , f " {name} _ t h u m b n a i l . j p g ")
w r i t e r = f i l e s y s t e m s . F i l e S y s t e m s . c r e a t e (p a t h)
w r i t e r . w r i t e (i t em [' image '])
w r i t e r . c l o s e ()

my_opt ions = p i p e l i n e _ o p t i o n s . v iew_as (ImageThumbnai lOpt ions)

(p
| " S t a r t " >> beam . C r e a t e ([" "])
| " ReadInputParam " >> beam . Map (lambda x : my_opt ions . i n p u t B u c k e t .

g e t ())
| " LoadAndResize " >> beam . Map (loadAndRes ize)
| ' Wr i t e ' >> beam . ParDo (s t o r e))

p . run () . w a i t _ u n t i l _ f i n i s h ()

Listing 11. Python Code extracts for image processing example

5.4.2 Choosing the appropriate node types and supplying properties

This example uses Google Dataflow and Apache Nifi node types to design a combined
data pipeline. For the Dataflow, developers must select GCSBucketInputDF as the
SourceDF to receive image file from the GCS bucket. Since Python code is used to
design the Dataflow, developers must use GoogleDataFlowPythonExecution as the Mid-
wayDF. Next, this example uses GCSBucketOutputDF as the DestinationDF to specify
the GCS bucket to publish the resulting thumbnail image. For the Apache Nifi data
pipeline, this example selects ConsGCSBucket and PubsS3Bucket as the SourcePB and
DestinationPB, respectively. The ConsGCSBucket will read the processed image file
from the same bucket specified in GCSBucketOutputDF. The ConsGCSBucket then
connects to PubsS3Bucket to publish the processed images to an AWS S3 Bucket. Nifi
node type is selected to host the ConsGCSBucket and PubsS3Bucket node types. This
Nifi node type is derived from SoftwareComponent node type, and its purpose is to install
Apache Nifi Software. Finally, Nifi node type is hosted on OpenStack node type, that is
used to instantiate an OpenStack VM. The selected node types along with their properties
are discussed below.

61

GCSBucketInputDF
This node type receives the GCS location of the image file as input into the Google
Dataflow. Table 10 discusses the mandatory properties and supplied value for the same.

Propery Value Description
input gs://dp-

input/a3.jpg
This is the GCS Bucket location for reading the
input image file.

param_name inputBucket This is the parameter name expected by the tem-
plate for the ’input’ property provided above.
This is defined as an IO argument in the Python
code.

Table 10. Properties for the GCSBucketInputDF node type in image processing Dataflow

GoogleDataFlowPythonExecution
This node type receives the absolute file path of the written Python code to create the
Google Dataflow job. Table 11 showcases the properties and the corresponding supplied
values for the GoogleDataFlowPythonExecution node type.

62

Propery Value Description
dataflow_python
_code_path

/home/ubuntu/dp-
project/imageProcessing.py

This is the absolute path to the
dataflow python file.

template_location gs://dp-bucket-
2/templates/my-
template.json

The Dataflow template generated
from the provided Python code is
stored at this GCS location.

pypi_dependencies ["pillow"] Supply required python depen-
dencies to execute supplied
Python code as a list. The Python
code requires Pillow image pro-
cessing library to resize images.

template_specific
_parameters

None No additional parameters need to
be provided for this Dataflow job.

dataflow_job_name ImageProcessingJob The name of the Google Dataflow
job.

project_id thesis-project-329917 The Google project id where the
Dataflow job will run.

credential_file_ path /home/ubuntu/dp-
project/cred/thesis-
project-329917-
5c40808bbb3e.json

The system path to the Service
Account JSON key. It provides
authorization for the Dataflow
and the configured project.

staging_location gs://dp-bucket-2/staging Google Cloud location where de-
velopers want to store the tempo-
rary and intermediate files.

region europe-west1 This is the cloud region where
developers want to execute the
Dataflow job.

Table 11. Properties for GoogleDataFlowPythonExecution node type in image processing
Dataflow

GCSBucketOutputDF
This node type receives the output GCS location for Dataflow to publish the processed
image. Table 12 discusses the mandatory properties and supplied value for the same.

63

Propery Value Description
output gs://dp-output This is the GCS Bucket location for publishing

the processed image.
param_name outputBucket This is the parameter name expected by the tem-

plate for the ’output’ property provided above.
This is defined as an IO argument in the Python
code.

Table 12. Properties for the GCSBucketOutputDF node type in image processing
Dataflow

GoogleDataflowPlatform
This node type hosts the GoogleDataFlowTemplateExecution node type. It does not
require any mandatory property to be configured. This node type is responsible for
installing the Google Cloud SDK and Apache Beam SDK that enables the host to com-
municate with Google Dataflow APIs.

ConsGCSBucket
This SourcePB node type configures the Apache Nifi processors under the hood to fetch
objects from the GCS bucket. This node type integrates the Apache Nifi data pipeline
with the created Dataflow. After Dataflow is done publishing the processed image to the
GCS bucket, ConsGCSBucket fetches the same processed image as Flowfile. Table 13
describes the properties and supplied values for this node type.

64

Propery Value Description
bucket dp-output This is the GCS Bucket location for reading the

input image. For Apache Nifi nodes, users do
not need to provide the protocol gs://.

project_ID thesis-project-
329917

The Google project id where the GCS bucket is
located. This property matches the project_id
property in the GoogleDataFlowPythonExecu-
tion node type.

creden-
tial_JSON_file

{"get_artifact":
["SELF", "creden-
tialsGoogle"]}

The credential JSON file is supplied as an ar-
tifact to this node type. one should name the
artifact as credentialsGoogle because developers
expect the same file name using the get_artifact
method as seen in provided value.

schedul-
ingStrategy
(optional)

EVENT_DRIVEN
Leave the value to default. This will trigger the
Nifi data pipeline with every incoming image
file.

name (op-
tional)

consGCS-
BucketNode

Name of the pipeline node.

scheduling-
PeriodCRON
(optional)

* * * * * ? Leave the value to default.

Table 13. Properties for the ConsGCSBucket node type in image processing Dataflow

PubsS3Bucket
This DestinationPB node type receives the processed images files from the ConsGCS-
Bucket node and publishes them to an AWS S3 bucket. Table 14 describes the essential
properties and supplied value for this node type.

65

Propery Value Description
BucketName dp-aws-output-

bucket
This is the AWS S3 Bucket location for publish-
ing the processed image. For Apache Nifi nodes,
users do not need to provide the protocol s3://.

Region eu-west-1 The AWS region code for the bucket.
cred_file_path {"get_artifact":

["SELF", "creden-
tials"]}

The credential file is supplied as an artifact to
this node type. one should name the artifact as
credentials because same file name is expected
by the get_artifact method as seen in provided
value.

schedul-
ingStrategy
(optional)

EVENT_DRIVEN
Leave the value to default. This will trigger the
Nifi data pipeline with every incoming image
file.

name (op-
tional) PubsS3BucketNode

Name of the pipeline node.

scheduling-
PeriodCRON
(optional)

* * * * * ? Leave the value to default.

Table 14. Properties for the PubsS3Bucket node type in image processing Dataflow

Nifi
This node type is responsible for installing the Apache Nifi software, and thereby, this
node type hosts both ConsGCSBucket and PubsS3Bucket node types. Table 15 desribes
the mandatory properties and supplied values for this node type.

Propery Value Description
port 8080 The port on which Apache Nifi is installed.
webinterface true Whether access to Apache Nifi web interface is

allowed over public IP,this is set to true to access
the web interface for verification purposes.

compo-
nent_version

1.13.1 The Apache Nifi version that is to be installed.

Table 15. Properties for the Nifi node type in image processing Dataflow

Workstation
This node type denotes the physical server or VM using which RADON orchestrator
deploys the Service Template. This node type uses the local server to host the Apache
Nifi software, which will host the ConsGCSBucket and PubsS3Bucket node types. Table
16 discussed the properties and supplied values for this node type.

66

Propery Value Description
pypi_dependencies ["jmespath"] The Python dependencies to be in-

stalled on the local physical server
or VM. This property accepts a list
of ptyhon dependencies.

Table 16. Properties for the Workstation node type in image processing Dataflow

5.4.3 Designing the service template in the Winery

A service template named ImageProcessingWithDataflowAndNifi is created using Winery
to model the Image processing data pipeline using Dataflow and Apache Nifi. Figure 25
shows the data pipeline modeling using Winery. Developers must connect the node types
involved using their Requirements and Capabilities.

Figure 25. Designing the Service Template ImageProcessingWithDataflowAndNifi in
Winery

The connection steps for Google Dataflow node types are described below:

• Dragging ConnectDataflowInput requirement from the GCSBucketInputDF node
type into the connectToDataflow capability of GoogleDataFlowPythonExecution
node type.

• Dragging ConnectToDataflowOutput Requirement from GoogleDataFlowPythonEx-
ecution into connectToDataflow Capability of the GCSBucketOutputDF node type.

• Dragging HostedOn Requirement from GoogleDataFlowPythonExecution into the
host Capaibility of GoogleDataflowPlatform node type.

67

The connection steps for Apache Nifi data pipeline node types are described below:

• Dragging ConnectNifiLocal requirement from the ConsGCSBucket node type into
the ConnectToPipeline capability of PubsS3Bucket node.

• Dragging HostedOn Requirement from ConsGCSBucket node type into the host
Capaibility of Nifi node type.

• Dragging HostedOn Requirement from PubsS3Bucket node type into the host
Capaibility of Nifi node type.

• Dragging HostedOn Requirement from Nifi into the host Capaibility of Workstation
node type.

Finally, the connection step to integrate Google Dataflow node types with Apache Nifi
node types is described below:

• Dragging ConnectDataflowToNifi requirement from the GCSBucketOutputDF node
type into the connectToDataflow capability of ConsGCSBucket node type.

5.4.4 Deploying the exported CSAR file using xOpera

The exported CSAR file from the previous section is deployed using the below command.
opera deploy -c ImageProcessingWithDataflowAndNifi.csar

Figure 26 shows the Dataflow xOpera deployment logs for the image processing data
pipeline. After the CSAR file deployment is complete, the Google Dataflow job and
Apache Nifi data pipeline execution should start.

Next, developers may stop the Dataflow job using xOpera using the below command:
opera undeploy

Figure 27 shows the xOpera logs for the un-deploy method.

5.4.5 Evaluating final results

Dataflow job execution and Apache Nifi data pipeline deployment are verified after the
xOpera deployment described in previous section. This paper validates the Dataflow and
Apache Nifi node types integration by verifying the Dataflow job deployment, Apache
Nifi data pipeline deployment, and the overall data processing and movement using
the combined pipeline. Figure 28 shows the Cloud Console screenshot for Dataflow
Dataflow DAG to understand the workflow. As specified in the Python file in Listing
11, The Dataflow DAG starts with the Start task, which is a Dataflow initializer. Next,
the Dataflow uses ReadInputParam task to read the user input for the source GCS
bucket. The Dataflow then loads and generates a thumbnail for the input image using the

68

Figure 26. xOpera deployment logs for Image Processing

Figure 27. xOpera un-deploy logs for Image Processing

69

Figure 28. Image Processing Job workflow in Google cloud console

LoadAndResize task. Finally, Dataflow uses Write task to store the image thumbnail to
the supplied output GCS bucket.

The Apache Nifi continues further with the data pipeline tasks. It picks up the
output thumbnail image from the same GCS bucket where Google Dataflow has stored
the output. The Apache Nifi then publishes the thumbnail image to an AWS S3
bucket. Figure 29 shows the Apache Nifi process groups in the running state. As
seen in the figure, GCSObject_consume process group passes a single Flowfile to the
S3Bucket_dest_PG_LocalConn process group. Figure 30 and Figure 31 show the screen-
shot of the GCS bucket and AWS bucket, respectively, with the resulting thumbnail
image published. The GitHub repository[19] contains the supplied input and resulting
thumbnail image.

For ease of demonstration, this example chooses to design Dataflow Python code
for a single input image. However, developers can also design complex multi-file

70

Figure 29. Running Process groups in Apache Nifi data pipeline

Figure 30. Output thumbnail image from Dataflow Image processing

Figure 31. Output thumbnail image published to AWS S3 bucket by Apache Nifi

python projects following Apache Beam programming guidelines to design complex and

71

extensive Dataflow jobs. Finally, this example verifies the Dataflow job execution state
in the Google cloud console after running the xOpera un-deployment in Section 5.2.4.
The xOpera undeploy command uninstalls the Apache Nifi platform. Moreover, it also
cancels the Dataflow job if it is in a running state, as demonstrated in previous examples.

72

6 Conclusion and future work
This section summarizes the thesis and also discusses future work. This thesis develops
reusable and modular TOSCA components for the Google Dataflow in the RADON
ecosystem, thus enabling developers to deploy and manage Google Dataflow without
having platform-specific API knowledge. The use of the TOSCA standard to manage the
Google Dataflow orchestration also enables developers to use their Google Dataflow in
conjunction with other cloud services having pre-existing TOSCA implementation. The
development work for this thesis enables developers to design extensive data pipelines
in the RADON ecosystem combining Google Dataflow and Apache Nifi technology.
The modular and extendible architecture for developed components allows room to
implement additional new features for Google Dataflow and possible future integration
with other pipeline technologies.

This thesis presents three sample data pipelines designed using the Service Tem-
plates with the help of developed TOSCA components. The Service Templates are
then deployed using the proposed RADON orchestrator. The results are evaluated by
verifying whether the Dataflow deployment and its possible integration with Apache
Nifi are successful. This thesis evaluates the RADON orchestrator deployment logs,
expected results in Google Cloud Console and Apache Nifi GUI to confirm whether the
Dataflow deployment using developed TOSCA components were successful or not. The
demonstrated examples showcase the multiple use-cases for the developed TOSCA node
to create a batch and streaming Dataflow job, Template and Python-based Dataflow jobs,
and Dataflow integration with Apache Nifi.

As for future work, there is still room for improvement. Firstly, the developed node
types for the Google Dataflow could be extended to support scheduling features. The
scheduling could be implemented using a Google Cloud scheduler or a cron job process
running on a Google Compute Engine. Secondly, the TOSCA components could develop
Google Dataflow jobs using Java programming language. This development will enable
the users to write their Dataflow jobs using the Java programming language. Finally, the
TOSCA components supporting Dataflow SQL could be designed that can take the SQL
query to start the Dataflow jobs.

73

References
[1] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and

challenges. In 2010 24th IEEE international conference on advanced information
networking and applications, pages 27–33. Ieee, 2010.

[2] Aiswarya Raj Munappy, Jan Bosch, and Helena Homström Olsson. Data pipeline
management in practice: Challenges and opportunities. In International Conference
on Product-Focused Software Process Improvement, pages 168–184. Springer,
2020.

[3] OASIS. Tosca simple profile in yaml version 1.3. https://
docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/
TOSCA-Simple-Profile-YAML-v1.3-os.html, 2020. Accessed: 2021-12-15.

[4] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. Tosca: portable
automated deployment and management of cloud applications. In Advanced Web
Services, pages 527–549. Springer, 2014.

[5] Anže Luzar, Sašo Stanovnik, and Matija Cankar. Examination and comparison of
tosca orchestration tools. In European Conference on Software Architecture, pages
247–259. Springer, 2020.

[6] Antonio Brogi, José Carrasco, Javier Cubo, Francesco D’Andria, Elisabetta Di Nitto,
Michele Guerriero, Diego Pérez, Ernesto Pimentel, and Jacopo Soldani. Seaclouds:
an open reference architecture for multi-cloud governance. In European Conference
on Software Architecture, pages 334–338. Springer, 2016.

[7] Jacopo Soldani, Tobias Binz, Uwe Breitenbücher, Frank Leymann, and Antonio
Brogi. Toscamart: a method for adapting and reusing cloud applications. Journal
of Systems and Software, 113:395–406, 2016.

[8] Chinmaya Dehury, Pelle Jakovits, Satish Narayana Srirama, Vasilis Tountopoulos,
and Giorgos Giotis. Data pipeline architecture for serverless platform. In European
Conference on Software Architecture, pages 241–246. Springer, 2020.

[9] Chinmaya Kumar Dehury, Pelle Jakovits, Satish Narayana Srirama, Giorgos Giotis,
and Gaurav Garg. Toscadata: Modeling data pipeline applications in tosca. Journal
of Systems and Software, 186:111164, 2022.

[10] Alex Brik and Jeffrey Xu. Diagnosing data pipeline failures using action languages:
A progress report. In International Symposium on Practical Aspects of Declarative
Languages, pages 73–81. Springer, 2020.

74

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html

[11] Apache nifi overview. https://nifi.apache.org/docs.html. Accessed: 2021-
12-15.

[12] Aws data pipeline. https://docs.aws.amazon.com/datapipeline/latest/
DeveloperGuide/what-is-datapipeline.html. Accessed: 2021-12-15.

[13] Cloud composer documentation. https://cloud.google.com/composer/docs/
concepts/overview. Accessed: 2021-12-15.

[14] Apache airflow documentation. https://airflow.apache.org/docs/
apache-airflow/stable/index.html. Accessed: 2021-12-15.

[15] Dataflow documentation. https://cloud.google.com/dataflow/docs. Ac-
cessed: 2021-12-15.

[16] Giuliano Casale, Matej Artac, W-J van den Heuvel, André van Hoorn, Pelle Jakovits,
Frank Leymann, Mike Long, Vasilis Papanikolaou, Domenico Presenza, Alessandra
Russo, et al. Radon: Rational decomposition and orchestration for serverless
computing. SICS Software-Intensive Cyber-Physical Systems, 35(1):77–87, 2020.

[17] xopera. https://xlab-si.github.io/xopera-docs/. Accessed: 2021-12-15.

[18] Chinmaya Dehury. Data pipeline orchestration ii. https://radon-h2020.eu/
wp-content/uploads/2021/09/D5.6-Data-pipeline-orchestration-II.
pdf, 2019. Accessed: 2021-12-17.

[19] Thesis documents. https://github.com/manishgupta94/thesis-documents.
Accessed: 2022-01-04.

[20] Github repository for wordcount example. https://github.com/apache/
beam/blob/master/sdks/python/apache_beam/examples/wordcount.py.
Accessed: 2021-12-23.

[21] Apache beam programming guide. https://beam.apache.org/documentation/
programming-guide/. Accessed: 2021-12-17.

75

https://nifi.apache.org/docs.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/what-is-datapipeline.html
https://cloud.google.com/composer/docs/concepts/overview
https://cloud.google.com/composer/docs/concepts/overview
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://airflow.apache.org/docs/apache-airflow/stable/index.html
https://cloud.google.com/dataflow/docs
https://xlab-si.github.io/xopera-docs/
https://radon-h2020.eu/wp-content/uploads/2021/09/D5.6-Data-pipeline-orchestration-II.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D5.6-Data-pipeline-orchestration-II.pdf
https://radon-h2020.eu/wp-content/uploads/2021/09/D5.6-Data-pipeline-orchestration-II.pdf
https://github.com/manishgupta94/thesis-documents
https://github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/wordcount.py
https://github.com/apache/beam/blob/master/sdks/python/apache_beam/examples/wordcount.py
https://beam.apache.org/documentation/programming-guide/
https://beam.apache.org/documentation/programming-guide/

Appendix

I. Abbreviation
TOSCA - Topology and Orchestration Specification for Cloud Applications
GCP - Google Cloud Platform
GCS - Google Cloud Storage
SME - Small and Medium Enterprises
ETL - Extract, transform, load
IaaS - Infrastructure as a Service
PaaS - Platform as a Service
SaaS - Software as a Service
VM - Virtual Machine
DAG - Directed Acyclic Graph
API - Application Programming Interface
ETL - Extract, Transform, Load
IoT - Internet of Things
FTP - File Transfer Protocol
AWS - Amazon Web Services
EC2 - Elastic Compute Cloud
EMR - Elastic Map Reduce
Cloud ML - Cloud Machine Learning
CSAR - Cloud Service Archive
FaaS - Function as a Service
IO arguments - Input Output arguments
JSON - JavaScript Object Notation
CSV - Comma Separated Values
SDK - Software Development Kit

76

II. Repositories
This Appendix contains link to important GitHub Repositories.

1. Fork of RADON particle GitHub Repository - This repository contains the devel-
oped TOSCA components to orchestrate Google Dataflow. The repository can be
accessed from https://github.com/manishgupta94/radon-particles

2. Used images, files and screenshots repository - This repository contains used
figures, used input and output files to validate the developed node types, used
screenshots for this thesis. The repository has the all the files classified based
on the sections. This repository can be accessed from https://github.com/
manishgupta94/thesis-documents

77

https://github.com/manishgupta94/radon-particles
https://github.com/manishgupta94/thesis-documents
https://github.com/manishgupta94/thesis-documents

III. Technical Manual
This appendix describes the complete technical manual for orchestrating Google Dataflow
using RADON tools like Winery and xOpera. First, we set up the RADON graphical
modeling tool Winery. Next, we look at the steps of designing a service template in
Winery for Google Dataflow presented in Section 5.2. In the next step, we set up the
RADON orchestrator xOpera, and finally, we look at the steps of deploying the designed
service template using xOpera. For the mentioned steps, we need a VM or physical
server with Operating System installed. This technical manual will demonstrate these
steps for a VM server with Ubuntu 18.04 installed.
Setting up Winery
The first step toward setting up Winery is to install the docker. The installation steps are
described below.

• Create a directory in the Linux host in the directory /etc/docker using the command:
sudo mkdir /etc/docker

• Create a file daemon.json in the directory /etc/docker using the command:
sudo vi /etc/docker/daemon.json with below content.

{
" d e f a u l t − a d d r e s s − p o o l s " : [{ " base " : " 1 7 2 . 8 0 . 0 . 0 / 1 6 " , "

s i z e " : 2 4 }]
}

• Update the package repo: sudo apt-get update

• Install dependency packages for docker.
sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent

software-properties-common

• Add Docker’s GPG key:
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

• Set up the stable repository using:
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu

$(lsb_release -cs) stable"

• Update the repository and install docker.
sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

Create a remote github repository using the source code provided with this the-
sis. Let us assume for this demonstation that the link to the remote repository is:

78

https://github.com/manishgupta94/radon-particles Run the below command to run a
docker container with the Winery image from the Docker Hub.
docker run -itd -p 8080: 8080 \

-e PUBLIC_HOSTNAME = localhost \

-e WINERY_FEATURE_RADON = true \

-e WINERY_REPOSITORY_PROVIDER = yaml \

-e WINERY_REPOSITORY_URL = https://github.com/manishgupta94/radon-particles \

opentosca / radon-gmt

After the docker container for Winery is active, you can access Winery using the below
url:
http://HOST_IP:8080

The HOST_IP is the IP address of the host where the Winery is installed.

Designing the Service Template in Winery

Create a Service Template in the Winery.

• Click on Service Template on the top left and click on the Add new button on the
top right and a pop-up should appear.

• Edit the name for your Service Template, disable the versioning, and select the
appropriate Namespace for your service template as shown in Figure 32.

• Click on Add to create your Service Template.

Open the Service Template in the Editor by clicking on Topology Template and then
Open Editor button.

On the left Palette on the Canvas, drag and drop the following node types similar to
example from section 5.2.

• GCSBucketInputDF - Drag three of these node types from the package
radon.nodes.datapipeline.source

• GoogleDataFlowPythonExecution - Drag one of this node type from
radon.nodes.datapipeline.process

• GCSBucketOutputDF - Drag two of this node type from
radon.nodes.datapipeline.destination

• GoogleDataflowPlatform - Drag one of this node type from
radon.nodes.google

79

https://github.com/manishgupta94/radon-particles

Figure 32. Creating a Service Template

Configure the properties for all the nodetypes by clicking on the properties button on
top of the canvas. The value of the properties can be fetched from the section 5.2.

Configure the Requirements and Capabilities by clicking on the Requirements and
Capabilities button on the top of the canvas. Follow the below steps to connect the node
types. The end result should look like as shown in Figure 13.

• Drag ConnectDataflowInput Requirement from all three GCSBucketInputDF node
types into connectToDataflow Capability of GoogleDataFlowPythonExecution
node.

• Drag ConnectToDataflowOutput Requirement from GoogleDataFlowPythonExe-
cution into connectToDataflow Capability of both the GCSBucketOutputDF node
types.

• Drag HostedOn Requirement from GoogleDataFlowPythonExecution into host
Capaibility of GoogleDataflowPlatform node.

In case, any file needs to be provided as an artifact, then click on Artifacts button on
the top of the canvas. Expand Artifact for GoogleDataFlowPythonExecution, and click
on add artifact to add the required artifact.

80

After you are done designing your service template, click on save button on the top
left. Click on manage next and then Click on Export > Download to export the Service
template as CSAR file.

Setting up RADON xOpera
Install the RADON xOpera by following the below steps.

• Connect to the Linux host and update the repository sudo apt-get update

• Install the Python virtual environment
sudo apt install -y python3-venv python3-wheel python-wheel-common

• Create a new dp-project directory sudo mkdir /dp-project

• Move into the newly created directory
cd /dp-project

• Create a Python virtual env
python3 -m venv .venv

• Activate the virtual environment.
source .venv/bin/activate

• Update the pip.
pip install –upgrade pip

• Install opera inside the virtual environment.
pip install opera

Now opera is installed inside the virtual environment. Make sure you are inside the
virtual environment before you use opera. If you see a (.venv) in the beginning of the
command line prompt, that means you are inside the virual environment. If not, then
follow below steps to gain access.

• cd /dp-project

• source .venv/bin/activate

Deploying and Undeploying a service template
Copy the exported CSAR file to the Linux host where you installed xOpera and make
sure you are inside Python virtual environment. Run the below command to deploy your
CSAR file.
opera deploy -r GoogleDataFlowPythonWordCount.csar

81

Once the deployment is sucessful, you can go and verify the results in the Google cloud
console.
Similarly, run the below command to undeploy our CSAR file.
opera undeploy

82

IV. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Manish Gupta,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Google Dataflow orchestration using TOSCA in the hybrid cloud,

supervised by Chinmaya Dehury and Pelle Jakovits.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Manish Gupta
06/01/2022

83

	Introduction
	Problem statement
	Thesis contributions
	Thesis Outline

	Background
	ETL
	Data pipeline
	Apache Nifi
	AWS Data Pipeline
	Google Cloud Composer
	Google Dataflow

	TOSCA

	Related Work
	RADON Project
	RADON data pipeline Limitations

	Methodology
	Existing TOSCA components in RADON data pipeline
	Developed TOSCA components for Google Dataflow
	Developed TOSCA node types for Google Dataflow
	Developed TOSCA relationship and capability types for Google Dataflow

	Interaction between Dataflow and developed TOSCA components
	Integrating Apache Nifi and Google Dataflow

	Evaluation and Results
	Evaluation Setup
	Pub/Sub Subscription to BigQuery using Dataflow
	Prerequisites for this Dataflow
	Choosing the appropriate node types and supplying properties
	Designing the service template in the Winery
	Deploying the exported CSAR file using xOpera
	Evaluating final results

	Wordcount example using Dataflow (Batch)
	Prerequisites for this Dataflow
	Choosing the appropriate node types and supplying properties
	Designing the service template in the Winery
	Deploying the exported CSAR file using xOpera
	Evaluating final results

	Image Processing using Dataflow and Apache Nifi
	Prerequisites for this Dataflow
	Choosing the appropriate node types and supplying properties
	Designing the service template in the Winery
	Deploying the exported CSAR file using xOpera
	Evaluating final results

	Conclusion and future work
	References
	Appendix
	I. Glossary
	II. Repositories
	III. Technical Manual
	IV. Licence

