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Resource optimization with DRL-driven real time service placement
strategy in Edge-Cloud continuum

Abstract: The growth of Internet of Things (IoT) devices and the need for data intensive
applications has led to Edge-Fog-Cloud architecture, known as Edge-Cloud continuum.
Cloud computing is utilized for handling and keeping the large amounts of data produced
by IoT devices. One of the major limitations of Cloud computing is network latency.
Due to these limitations, the Fog computing is introduced. Fog computing provides near
real-time services and saves network resources. However, Fog computing has lower
resource capacity comparing to Cloud computing. Edge computing is an extension of
Fog Computing where data is processed closer to the source. In our study, we present
a Deep Reinforcement Learning (DRL) real time service distribution solution without
compromising the Quality of Services (QoS) in Edge-Cloud continuum. The services are
offered by Fog and Cloud environments. The request that is coming from user is sliced in
Edge and distributed between the Fog and Cloud environments using DRL. The proposed
DRL algorithm is implemented and evaluated in terms of its success rate, distribution of
service request slices, and etc. Furthermore, the study delves into the intricate dynamics
of three distinct data-intensive applications, revealing insights into their performance and
resource utilization within the Edge-Cloud continuum.

Keywords: Cloud Computing, Fog Computing, Edge Computing, Smart Gateway, Deep
Reinforcement Learning, Service Delivery, Service Dispersal

CERCS: P170 Computer science, numerical analysis, systems, control
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Ressursi optimeerimine DRL-põhise reaalajas teenuste paigutuse stra-
teegiaga Edge-Cloud kontinuums
Lühikokkuvõte: Asjade Interneti (IoT) seadmete kasv ja vajadus andmeintensiivsete
rakenduste järele on viinud Edge-Fog-Cloud arhitektuuri, mida tuntakse Edge-Cloud
kontinuums. Pilvandmetöötlust kasutatakse suurte andmehulkade haldamiseks, mida
IoT seadmed toodavad. Üks suuremaid pilvandmetöötluse piiranguid on võrgu latentsus.
Nende piirangute tõttu on kasutusele võetud Uduandmetöötlus. Uduandmetöötlus pakub
reaalajas teenuseid ja säästab võrgu ressursse. Siiski on uduandmetöötlusel võrreldes
pilvandmetöötlusega madalamad ressursimahtude võimalused. Servandmetö ötlus on
Uduandmetöötluse laiendus, kus andmeid töödeldakse lähemal allikale. Meie uuringus
esitleme SüvaTugevusõppe (DRL) reaalajas teenuste jaotuse lahendust, mis ei ohusta
teenuste kvaliteeti (QoS) Edge-Cloud kontinuums. Teenuseid pakuvad Udu- ja Pilvikesk-
konnad. Kasutajalt saabuv päring lõigatakse Edge’is ja jaotatakse Udu- ja Pilvikeskkon-
dade vahel, kasutades DRL-i. Pakutav DRL algoritm on rakendatud ja hinnatud selle
edukuse määra, teenusepäringu lõikude jaotuse jms osas. Lisaks uurib uuring kolme
erineva andmeintensiivse rakenduse keerulist dünaamikat, paljastades teadmisi nende
jõudlusest ja ressursside kasutamisest Edge-Cloud kontinuums.

Võtmesõnad: Pilvandmetöötlus, Uduarvutus, Servandmetöötlus, Nutikas Värav, Sügav
Õpetamisreinforcement, Teenuse Tarnimine, Teenuse Jaotus

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction
With the rise of the Internet of Things (IoT), smart homes have become a reality, offering
greater convenience and control over our daily lives [2]. IoT devices are equipped with
sensors and actuators that allow us to monitor and control various aspects of our home
environment, such as temperature, lighting, and security, from anywhere at any time
through dedicated mobile applications or web services. This has revolutionized the
way we live, work, and interact with our homes. In addition, the increasing demand
for computing and storage resources from these smart home services is driving the
development of cloud computing infrastructure, making it possible to store and process
large amounts of data in real-time, further enhancing the capabilities of our smart homes.

Cloud computing is comprised of a vast variety of powerful physical servers that
provide an almost infinite number of computation, storage, and networking capabilities
to enable IoT services. In cloud computing, there are typically three categories of
services: IaaS, PaaS and SaaS. IaaS (infrastructure as a service) is the most basic
type of cloud computing. It provides access to a virtualized environment that includes
computer resources such as servers and virtual machines, storage, networks, and operating
systems. PaaS (platform as a service) provides an on demand platform for developing,
testing, deploying, and managing software without having to worry about establishing
or maintaining the necessary IT infrastructure such as servers, storage, networking, and
databases. SaaS (software as a service) is a vendor-provided cloud-based software that
may be accessed via a web browser. Customers may subscribe to it and enjoy a variety
of applications like as accounting, sales, invoicing, and more. The advantages of SaaS
include low cost, great performance, and dependability. Despite its advantages, cloud
computing has drawbacks, such as geographical constraints and sophisticated network
architecture [3]. This is where Fog Computing comes in, filling the gap between the
traditional cloud computing and IoT devices. It extends cloud computing closer to the
edge devices, improving mobility support, enabling location awareness, and reducing
latency for better performance and user experience. [4]

Fog computing is proposed as a solution to address the previously mentioned issue.
Fog computing solves the issues of low latency, location awareness and improves quality-
of-service for real time and streaming applications by being deployed at the edge of the
network. Examples of fog computing applications can be found in industrial automation,
transportation and networks that involve sensors and actuators. In addition, the fog
infrastructure accommodates different types of devices, such as user end devices, access
points, edge routers, and switches. Fog computing is ideal for real-time big data analytics
and provides benefits in various fields like entertainment, advertising, personal computing,
etc. by enabling densely distributed data collection points. By utilizing local resources
in fog computing, a user’s service requirements can be met with less reliance on distant
cloud resources, leading to improved performance. Implementing fog computing can
help reduce service latency, improve overall Service Response Time (SRT), reduce
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network congestion, decrease energy consumption, and enhance system security by
utilizing resources at the edge organized as fog nodes [5, 6].

Edge computing is an extension of Fog Computing where data is processed closer to
the source, either on the device, sensor, or a nearby server. One of the crucial elements
in an edge computing is the Smart Gateway. The Smart Gateway is responsible for
managing various IoT operations, such as collecting and preprocessing data, filtering
and reformatting it, uploading relevant data to the fog/cloud, monitoring IoT objects and
sensors, monitoring energy consumption, ensuring data security and privacy, and overall
service management. Additionally, The Smart Gateway can play a key role in efficient
service dispersal process. Communication between IoT and Smart Gateway can either be
direct or through base station(s). There are two types (Single-hop communication, Multi-
hop communication) of Smart Gateway-based communication. In single-hop connectivity,
the sensors and IoT devices are directly connected to the Smart Gateway. The Smart
Gateway then collects the data and sends it to either the Fog or Cloud. This type of
communication is typically used in smaller networks where the sensor nodes have limited
roles, such as in smart health or healthcare applications. Quick monitoring and response
is possible through direct communication with the Smart Gateway. M2M communication
takes place in this scenario, and the Smart Gateway can perform data refinement, filtering,
trimming, and security measures, service dispersal process, depending on the application
needs and in conjunction with fog computing. The extent of this type of communication
depends on the capabilities of the Smart Gateway device. In a scenario where multiple
sensor networks and IoTs are connected, direct connections become unfeasible. These
networks and IoTs have their own base stations and sink nodes, and the gateway collects
data from these. This creates a multi-hop communication setup, where nodes are more
diverse and spread out and data is more heterogeneous, requiring more processing and
analysis from the gateway. Sink nodes provide an additional layer of communication
and make underlying sensors and things a "black box," adding security. Security can be
customized according to the IoT and WSN, and sink nodes can manage sensor networks
based on their constraints. The gateway must handle heterogeneous data from various
devices, IoTs, and WSNs, requiring transcoding and interoperability. This can either be
achieved through an intelligent gateway or through Fog computing resources. This setup
is suitable for large scale IoTs/WSNs and mobile objects, such as vehicle tracking IoTs
and environmental monitoring. [7] For the purpose of keeping things simple, we have
selected to use Single-hop communication in our Smart Gateway setup. As an illustrative
example, Figure 1 illustrates an abstract view of Cloud-Fog-Edge architecture.

In our approach, the service workload is divided into smaller sub-services by Smart
Gateway and is shared between fog and cloud servers. The fog node processes some
slices of the service request and the rest is sending to the cloud for processing. The
decision of which slices to be processed by the fog and cloud depends on various factors
such as user proximity, user priority, service sensitivity, service priority, etc. Determining
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the correct distribution of the service between fog and cloud becomes increasingly
complex as the service complexity grows, leading to a new research challenge.

Figure 1. Abstract view of Cloud-Fog-Edge architecture.

1.1 Motivation
The allocation of services between the fog and cloud is managed by the Smart Gateway,
as previously discussed, to provide services to the users through both fog and cloud
environments. As seen in Figure 2, the division of services between fog and cloud for
different services and users is not consistent, and an individual user may utilize a variety
of services. For example, the User1 is using three services named as Service1, Service2,
and Service3. The service request from User1 includes a request for 25% of Service1,
a request for 35% of Service2, and a request for 40% of Service3. The 45% and 55%
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Figure 2. An example motivational scenario.

of Service3 that is requested by User1 is handled by Fog and Cloud, respectively. The
distribution of service workload between fog and cloud servers can vary, depending on
various factors such as the sensitivity of the service, user location, available resources,
and others. For example, a critical service with low tolerance for latency cannot be
assigned to the cloud, whereas a fog node experiencing resource constraints may need to
delegate tasks to the cloud. Balancing the workload between fog and cloud environments
becomes challenging when taking into account multiple parameters. This motivates us
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to investigate a new solution for distributing service workload effectively between fog
and cloud computing platforms while maintaining quality of service. In this thesis, to
overcome the aforementioned issue, we are adopting deep reinforcement learning.

1.2 Goal and Contributions
The goals of this paper are to enhance QoS with reduced service latency by delegating a
portion of the service to the cloud, serve the maximum number of users in real-time by
letting the cloud handle part of the service request, and efficiently utilize the fog node’s
limited resources by incorporating the cloud in the real-time service delivery process.
The main contribution of this work can be summarized as follows:

• This paper outlines the problem of distributing users’ services among fog and
cloud environments;

• Proposed a new deep reinforcement learning (DRL) based method to distribute
service requests to fog and cloud computing environments;

• Performed comprehensive experiments employing real-world data-intensive appli-
cations to assess the performance of the proposed DRL model.

1.3 Outline
This chapter provides an overview of IoT, cloud computing, fog computing, smart
gateway, the significance of service distribution, and how deep reinforcement learning
can help resolve the issue. Chapter 2 delves into the background of service distribution
and reviews the current state of the art. In Chapter 3, we present our solution to the
service distribution problem by discussing the architecture, applications, methods, and
algorithms used. Chapter 4 details the experiment process and results are discussed in
Chapter 5. Finally, Chapter 7 concludes the work with a summary and future direction.
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2 State of the Art
In this section, we delve into the current state of the art in the field of service delivery.
Our discussion begins by providing an overview of the background of service delivery in
both fog and cloud computing environments in Section 2.1. This section aims to give the
reader a comprehensive understanding of the context in which the current work is being
carried out. Following this, in Section 2.2, we delve into the related works that have been
done in the area of service dispersal methods within the cloud domain. This section aims
to give the reader an understanding of the prior efforts-made in this field and the gaps
that the current work aims to fill. Finally, in Section 2.3, we provide a summary of the
key points covered in this section, offering a clear and concise overview of the state of
the art in the field of service delivery.

2.1 Background
2.1.1 Cloud Computing

Recently, the Internet of Things (IoT) has made a significant impact on our society
by converting everyday objects like wearable, transportation, and augmented reality
into communicating devices, bringing both new challenges and opportunities [8]. It is
evident that the existing infrastructure will not be capable of handling the vast amount of
data generated as the number of devices connected to the network is expected to reach
over 50 billion by 2020, according to Cisco [9]. The current Cloud infrastructure is
inadequate to support a substantial amount of the existing IoT applications, due to three
main reasons. First, the large volume of generated data makes it difficult to transfer it
from the end-devices where it is created to the Cloud servers where it is processed. This
is due to limitations in bandwidth, processing overhead, and transmission costs. Second,
applications that require real-time analysis, such as online gaming and video applications,
can be negatively impacted by the significant end-to-end delay from end-devices to the
faraway Cloud servers [10]. Lastly, privacy and security concerns may dictate that certain
sensitive data must not traverse the entire Internet, making it necessary to process it
closer to its source [11].

A solution has been identified to address the problems mentioned above by avoid-
ing network congestion, reducing communication costs, and minimizing the delay in
data transfer. This new concept that leverages the advantages of the Cloud and the
decentralization of service processing on edge devices is called Fog Computing [12].

2.1.2 Fog Computing

Fog Computing extends Cloud Computing by locating processing, analysis, and storage
closer to the source of requests, at the edge of the network. The goal is to minimize
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the data sent to the Cloud and lower the time delay and computational expenses [13].
One of the main challenges of Fog Computing, a new paradigm, is the management of
services, specifically the problem of determining the appropriate placement for them.
Efficiently deploying services on available Fog nodes is a significant challenge facing
the widespread adoption of Fog Computing. The difficulty in deploying services on Fog
nodes arises from the fact that they are geographically dispersed, have limited resources,
and can change dynamically, adding to the complexity of the issue. Therefore, it is
crucial to determine an efficient, effective, and equitable way of allocating resources to
IoT applications in order to provide end-to-end guaranteed services to the users.

Additionally, the focus may vary depending on the situation and the priorities, in-
cluding aspects such as resource utilization [14], Quality of Service (QoS) [15, 16], and
Quality of Experience (QoE) [17]. Over the past few years, multiple efforts have been
made to address this challenge. An efficient service placement has been proposed by
taking into account different characteristics, assumptions, and strategies.

2.1.3 Edge Computing

Edge computing extends Fog Computing, and refers to the practice of processing data
near the edge of the network, closer to the source of the data. In this paradigm, processing
takes place on the device or sensor itself or on a nearby server. The goal of edge
computing is to reduce the amount of data that needs to be transmitted to the fog or
cloud for processing, which reduces latency and improves performance. One of the
main benefits of edge computing is its ability to support mission-critical applications
that require low latency and high reliability. For example, edge computing can be used
in the healthcare industry to provide real-time monitoring and analysis of patient data,
enabling medical professionals to make informed decisions quickly.Edge computing
architectures can vary, with some relying on edge devices like smartphones, and others
using dedicated edge servers. [18]

Overall, by bringing processing and storage capabilities closer to the source of data,
edge computing enables new applications and services that were not possible before,
while also providing faster and more reliable processing and analysis of data.

2.2 Related Work
The placement of services that are effective in fog and cloud environments is a complex
task that is influenced by several factors. The first of these is the heterogeneous and
resource-constrained nature of most Fog nodes, which have limited capacities. The
second factor is the dynamic nature of the environment, where resources can change
over time and workload can be vary. Thirdly, the issue is made even more complicated
by the widespread distribution of fog devices across a large-scale infrastructure. The
problem of SPP (service placement problem) in a fog and cloud environment is a difficult
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task due to various specificities and constraints. Within the literature, we can identify
the primary approaches employed to solve this problem as heuristic approach, machine
learning based algorithms, and deep reinforcement learning based algorithms.

2.2.1 Heuristic Approaches

Wang and Li et. al [19] proposes a solution for improving task scheduling in fog
computing using a hybrid heuristic algorithm. However, this study is limited to only
using bandwidth and energy consumption. Zahoor et al. [20] proposes a model for
managing resources in SGs using cloud-fog computing, and uses several load balancing
algorithms including HABACO to optimize response time. This study is not using the
deep reinforcement learning approach as our study.

Rafique et al. [21] proposes a scheduling strategy to optimize resource utilization and
reduce average response time in fog computing. The proposed approach outperforms
other techniques in terms of energy consumption and execution time. However, it is
required to apply deep reinforcement learning techniques to improve fog-IoT resource
management. Yasmeen et al. [22] proposes a three-layered cloud and fog-based model
to decrease consumer load and power generation system. Resource balancing is achieved
through the use of three algorithms: Round Robin, throttled, and Particle Swarm Opti-
mization with Simulated Annealing (PSOSA). Unlike our study, this study does not take
reducing latency into account.

Yadav et al. [23] proposes a hybrid algorithm that combines Genetic Algorithm
and Particle Swarm Optimization to allocate services efficiently in a fog computing
environment. The algorithm minimizes total makespan and energy consumption for
IoT applications. Ren et al. [24] suggests a model to decrease energy consumption and
efficiently manage energy resources in fog systems. The proposed architecture aims to
manage resources in a way that reduces losses and ensures quality of service. However,
both these studies is only based on energy consumption unlike ours.

Hosseinioun et al. [25] suggests a method for saving energy in the fog computing
environment using the Dynamic Voltage and Frequency Scaling (DVFS) technique. A
hybrid algorithm, IWO-CA, is used to create valid task sequences. Javanmardi et al.
[26] The article describes the FPFTS fog task scheduler, which uses particle swarm
optimization and fuzzy theory to optimize application loop delay and network utilization.
The drawback of the study is that it requires developing a mobility-aware task scheduling
algorithm. The study clearly lacks the benefit of other features like resource demand as
in our study.

Xu et al. [27] proposes the LBP-ACS algorithm for task scheduling in cloud-fog
environments, which considers priority constraints, energy consumption, and mixed
deadlines. The algorithm reduces energy consumption and failure rates while ensuring
reasonable scheduling length. The study is limited to using only energy consumption
and deadlines. Djemai et al. [28] proposes a strategy for IoT services placement in Fog
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architecture using a Discrete Particles Swarm Optimization algorithm. The placement
strategy minimizes application delay violations and considers energy consumption. This
study only considers minimizing energy consumption.

2.2.2 Machine Learning based Algorithms

Rahbari and Nickray et al. [29] presents a Module Placement method by Classification
and regression tree Algorithm (MPCA) for selecting the best FDs for modules. MPCA
selects the best FDs based on decision parameters such as authentication, confidentiality,
integrity, availability, capacity, speed, and cost. As opposed to our study, these studies
are focusing on the module placement, there is no slicing method for modules.

Bashir et al. [30] proposes a dynamic resource allocation strategy for cloud, fog nodes,
and users. The strategy uses TOPSIS (technique for order performance by similarity
to ideal solution) to rank the fog nodes and logistic regression to calculate the load of
individual fog nodes. This study though uses the machine learning approach for dynamic
resource allocation but is limited to slicing.

Ferrández-Pastor et al. [31] proposes a method to design smart services based on the
edge computing paradigm. The approach addresses interoperability and scalability issues
of existing designs and implements energy management, security system, climate control,
and information services subsystems on embedded devices. This study, though, makes
use of the machine learning approach but fails to minimizing latency like our study.

He et al. [32] proposes a new fog computing model with functional modules can
reduce problems related to dedicated computing infrastructure and slow response times
in cloud computing. However, this study is limited to only using response time. Priyab-
hashana et al. [33] compares the use of various activation functions on a TensorFlow-
based neural network model built using the Keras library. The proposed fog station was
evaluated, and the experiment results showed the feasibility, efficiency, and applicability
of the system. This study is focused on cpu and ram usage.

Alsaffar et al. [34] proposes an architecture for IoT service delegation and resource
allocation that combines fog and cloud computing. The authors propose an algorithm to
allocate resources to meet SLA and QoS requirements and optimize big data distribution.
Yadav et al. [35] presents a new technique for task allocation that minimizes response
time and system cost using clustering. The proposed technique uses Fuzzy C-Means
clustering and Hungarian method for task allocations. However, this study is only based
on minimizing response time unlike ours.

2.2.3 Deep Reinforcement Learning based Algorithms

Farhat et al. [36] proposes R-learning model that aims to decrease the cloud’s load by
utilizing available fog resources in different locations. The model is demonstrating its
ability to adapt to user demand and efficiently use fog resources. However, this study is
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limited to only using user demands. Orhean et al. [37] presents a reinforcement learning
algorithm for solving the scheduling problem in distributed systems. The proposed
algorithm considers the heterogeneity of nodes and the dependency graph of tasks for
determining a scheduling policy that minimizes execution time. Unlike our study, this
study only take execution time into account.

Tang et al. [38] proposes a new architecture and algorithms for container migration to
support mobility tasks with different application requirements. The proposed algorithms
consider hosting mobile application tasks in containers of corresponding fog nodes,
and modeling container migration strategies as multiple dimensional Markov Decision
Process spaces. This study though uses the deep reinforcement learning approach but is
limited due to slicing.

Gazori et al. [39] proposes a Double Deep Q-Learning (DDQL)-based scheduling
algorithm for task scheduling of fog-based IoT applications. The aim is to minimize
long-term service delay and computation cost under resource and deadline constraints.
As opposed to our study, these studies are focusing on minimizing service delay, and
deadline constraints. Alam et al. [40] proposes a deep Q-learning based autonomic
management framework for computation offloading in mobile edge/fog. The framework
uses a distributed edge/fog network controller to allocate resources and minimize latency
of service computing while maintaining energy efficiency. However, this study is only
based on energy consumption and minimizing service latency unlike ours.

Zhang et al. [41] proposes a double deep Q-learning model for energy-efficient edge
scheduling (DDQ-EES). The model includes a generated network and a target network
for producing Q-values, and rectified linear units (ReLU) as the activation function to
avoid gradient vanishing. This study only considers energy-efficiency unlike our study.
Lu et al. [42] proposes a QoE model for computation offloading that considers service
latency, energy consumption, and task success rate. The study clearly lacks the benefit of
other features like resource demand as in our study.

Wang et al. [43] proposes a Q-learning-based hierarchical service tree placement
strategy to optimize the net utility in large networks with complex service structures.
The study is limited to using only network bandwidth feature. Dehury and Srirama
et al. [44, 45] a reinforcement learning-based (RLPSD) and a deep reinforcement
learning-based (DRLSD-FC) service delivery mechanism that distributes users’ service
requests between fog and cloud environments to to minimize the workload on fog while
maintaining service quality. The algorithms consider user constraints such as distance
from fog, service sensitivity, and other metrics. However, the study is limited because
it does not address service-placement in real-time manner as our study, and service
dispersal mechanism inside of fog nodes, in our study we use smart gateway in order to
do service dispersal jobs.
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2.3 Summary
In this chapter, we first introduced with background information on service placement in
fog and cloud environments. Then we discussed the current state-of-the-art in service
dispersal methods for both environments. We also saw the different approaches used
to answer the SP problem in related works section. Finally, we saw what is new in our
studies compared to the current state-of-the-art. Table 1 provides an overview of the
relevant literature utilized in this study. The first column displays the name of each related
work, while the second column outlines the methodology employed in each case. The
third, fourth, and fifth columns indicate whether or not the authors of each work took User
Priority, Service/Task Priority, and Input/Task Slicing into consideration, respectively.
In these columns, "Y" signifies that these factors were considered, while "N" indicates
otherwise. The final column denotes the specific resource parameters that were taken
into account by each author. Here, "B" corresponds to network bandwidth, "C" to CPU,
"PS" to processor speed, "M" to memory/RAM, "E" to energy/power consumption, and
"S" to storage. In the next chapter, we will see our approach to the problem of service
placement in fog and cloud environments.
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Table 1. Summary of Related Work

Paper Method User
Priority

Service/Task
Priority

Input/Task
Slicing

Resource

[19] Heuristic Algo-
rithm

N N N B, E

[20] Heuristic Algo-
rithm

N N N PS, M

[21] Hybrid Heuristic N N N E
[22] Heuristic Algo-

rithm
N N Y E

[23] Genetic Heuristic N N Y E
[24] Hybrid Heuristic N N N B, E
[25] Hybrid Heuristic N N N E
[26] Hybrid Heuristic N Y N B, E
[27] Heuristic Algo-

rithm
N Y N E

[28] Swarm Optimiza-
tion

N N N E

[29] Regression Tree N N N C, E, M, S
[30] Logistic Regression N N N B, C, M
[31] Machine Learning N N N E
[32] Machine Learning N N N C, M
[33] Deep Neural Net-

works
N N N C, E

[34] Linearized Deci-
sion Tree

N N Y C

[35] Machine Learning N N N C
[36] R-learning N N N B
[37] R-learning N N N B, S
[38] Deep R-learning N Y N B, E
[39] Deep R-learning N N N C, E, M, S
[40] Deep R-learning N N N E
[41] Double Deep R-

learning
N N N E

[42] Deep R-learning N N N B, C, E
[43] Deep R-learning N N N B
[44] Deep R-learning Y Y Y C, M
[45] Deep R-learning Y Y Y C, M

"Y" means feature considered, "N" means not. "B" - network bandwidth, "C" - CPU, "PS" - processor
speed, "M" - memory/RAM, "E" - energy/power consumption, and "S" - storage.
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3 Methodology
Multiple methods can be used to solve the same issue. In this chapter, we outline
our approach to addressing the challenge of distributing service requests between fog
and cloud environment. We start our discussion with architecture of the system in
Section 3.1, followed by modelling the users in Section 3.2, and modeling the services
and mathematical representation and analysis of key parameters Section 3.3. Section 3.4
delves into the deep reinforcement learning, covering topics like state space, action space,
and reward calculation. Finally, we wrap up this chapter with a summary in Section 3.5.

3.1 System Architecture
In Figure 2, the fog and cloud environments offer multiple services to users. Users
can obtain services by submitting a Service Request (SR) to the smart gateway. The
Service Request can be partitioned, which is an assumption that can be demonstrated
with various real world examples involving data intensive applications generated by
IoT devices, distributed among the fog and cloud environments. The smart gateway
collaborates with both fog and cloud environments to meet service resource demands.

3.1.1 Smart Gateway

The Smart Gateway, represented by G, plays a vital role in ensuring the efficient distribu-
tion of user requests within the fog and cloud computing environments. G’s primary task
is to break down user requests into smaller, manageable slices and allocate these slices
across the fog and cloud environments. Each slice is a logical subdivision of the service
request or input data, allowing for efficient processing and improved overall performance.
For instance, if a user uploads a 250MB file, G can divide this file into five slices with
varying sizes, each containing [ 10MB, 25MB, 30MB, 70MB, 115MB ] of the data. This
way, the processing of the file is distributed and can be handled more efficiently.

To allocate these slices effectively, G considers several essential factors that influence
the performance and user experience. These factors include user priority, service sensi-
tivity, service priority, resource demand, and more. For example, service priority takes
into account the importance of the request, with higher-priority services being assigned
more resources; service sensitivity is another key factor, as some services may require
more stringent privacy or security measures. By evaluating these factors, G is able to
distribute the slices effectively, ensuring optimal performance and user satisfaction in the
fog and cloud computing environments.

In our system, Fog Node and Cloud node are designed to offer a set of m number
of services, denoted by S = {s1, s2, s3, ..., sm}, where each service is represented as sk,
with 0 < k ≤ m.
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3.1.2 Fog and Cloud Environments

The Fog Node, represented by F , is a crucial component within the fog and cloud
computing environment, outfitted with a limited amount of resources such as CPU and
RAM. The main function of the fog node is to offer these services to as many nearby
users as possible. By functioning as an intermediary between smart gateway and the
cloud, the fog node helps to reduce the load on the cloud environment.

On the other hand, the cloud node (represented as C) has a large collection of
top-notch servers that are all connected together. This setup gives it almost limitless
processing power and storage capacity. Unlike the fog node, the cloud node is designed
to handle more resource-intensive tasks, supporting a multitude of users and services
simultaneously. While the F is responsible for receiving and processing requests from
smart gateway, some tasks are may delegated to the cloud node when required. This
could occur when the fog node is unable to handle the demand or when specific tasks
necessitate the capabilities of the cloud node. By utilizing the strengths of both the fog
node and the cloud node, the fog and cloud computing environments can ensure optimal
performance, efficient resource allocation, and a seamless user experience.

3.2 User Modelling
The fog and cloud computing environments offer a diverse range of services to cater to
the various needs of all connected users. We use the notation U = {u1, u2, u3, ..., un}
to represent the group of all users who are connected to the Smart Gateway. Each user
is represented by ui, where 0 < i ≤ n. Users have the flexibility to send requests for
multiple service types, depending on their specific requirements. The boolean variable
ui(sk) is used to indicate if user ui is currently availing the service sk. ui(sk) can be
represented mathematically as following [45]:

ui(sk) =

{
1 - if user ui is availing the service sk

0 - otherwise
(1)

This variable helps the Smart Gateway, or G, track the active services for each user,
allowing for optimal service delivery. As users interact with the fog and cloud computing
environments, two major parameters play a crucial role: distance priority and latency
priority.

3.2.1 User Distance Priority

The geographic distance between a user and the G impacts the overall latency and
performance of the system. As the distance increases, the time taken for data to travel
between the user and the gateway may also increase, potentially leading to a slower user
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experience. A user is positioned within the maximum range of the G, with each user and
the G having associated location parameters. The distance between a user and the Smart
Gateway can be computed using the Haversine formula as follows:

di = 2r · arcsin

(√
sin2

(
pg − pi

2

)
+ cos(pi) · cos(pg) · sin2

(
qg − qi

2

))
(2)

In this formula, r represents the radius of the sphere, (pi, qi) represents the latitude
and longitude of user ui, and (pg, qg) corresponds to the latitude and longitude of the
Smart Gateway. The distance of a user has to be less than the maximum range of the
Smart Gateway [45]. The maximum range of the Smart Gateway is represented by D.
By considering the D and the user’s distance (di), the distance priority of a user can be
determined as follows:

P d
i =

di
D

(3)

All users who are equidistant from the G will have the same priority based on distance,
with those farther away given higher priority.

3.2.2 User Latency Priority

Communication latency refers to the duration required for a user’s request to be sent to
the Smart Gateway and for the subsequent response to be returned. This latency can be
influenced by a variety of factors, such as network congestion or constraints in the user’s
device. Users closer to the Smart Gateway may not necessarily experience lower latency.
Let li represent the Round Trip Delay (RTD) time for user ui. Based on this value, the
latency-based priority can be calculated as:

P l
i =

li
max(li, 0 < i ≤ n)

(4)

The value of P l
i is relative and depends on the latency values for all connected users.

Users with higher values of P l
i are assigned the highest priority.

3.2.3 User Priority

We explored the methods for calculating user distance and latency priorities in the
previous subsections. Taking into account these priorities, as shown in Equation 3
and Equation 4, we can determine the combined priority of a user using the following
approach:

Pi = P d
i + P l

i (5)
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By considering both distance and latency priorities, we can develop a more com-
prehensive understanding of each user’s needs within the fog and cloud computing
environment. This overall priority calculation allows for more effective service request
allocation and ensures that users with more urgent or demanding requirements are given
the necessary attention.

3.3 Service Modelling
Here, we delve into service modeling and its various aspects. When users send a service
request, several properties of the services must be considered, such as the size of the
service request and the demand for the service request, etc. A service request (SR) from
a user is divided into ŝki service request slices, with the number of slices being greater
than 0. If the value ŝki = 0, it signifies that the user is not utilizing the service. On the
other hand, the value ŝki = 1 indicates that the service request is unsliced and will be
processed solely by the Fog Node (FN).

Each SR is also associated with a size, which represents the magnitude of the SR or
the size of the input data. Let ui(ŝk) denote the size of the SR of type sk from user ui.
The size of the SR slices can vary, meaning that ui(ŝk,j1 ) may not equal ui(ŝk,j2 ) if j1
and j2 are different, where 0 < j1, j2 < ŝki , and ∀ui ∈ U . Additionally, the sizes of SRs
differ, and the size of a specific SR slice is distinct from that of another SR slice. As a
result, u1(ŝk, j) is not equal to u2(ŝk, j), where ∀u1, u2 ∈ U , and i1 ̸= i2.

3.3.1 Service Demand

The demand for service sk from all connected users at the Smart Gateway is represented
by SD(sk). This value is calculated using the total number of users availing the service
and the cumulative size of all SRs from all users. Mathematically, the service demand
(SD) takes into account the boolean variable ui(sk), which indicates if a user is availing
the service sk, and ui(ŝk), which represents the size of the service requests of type sk
from user ui.

SD(sk) =
∑
ui∈U

[ui(ŝk) · ui(sk)] (6)

By considering these factors, the Smart Gateway can better understand each user’s
specific needs, allowing for more efficient resource allocation and improved overall
system performance.

3.3.2 Service Resource Demand

Service Resource Demand is an important aspect that illustrates the required resources
for a service to function properly and meet user expectations. The resource demand for
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service requests (SR) is represented by ui(Rk(x)). Resource demand can be categorized
into two distinct types: x = {CPU,MEM}. These categories help in evaluating the
performance and efficiency of the system across different resource dimensions. CPU
demand is an indicator of the processing power being utilized, while MEM, or memory
demand, demonstrates the consumption of the available memory capacity.

The resource demand can be determined by adding together the minimum (or base)
resource demand - ui(R

base
k (x)) and the auxiliary resource demand - ui(R

aux
k (x)). The

auxiliary resource demand accounts for the extra resources needed because of the varying
size of input data. Mathematically,

ui(Rk(x)) = ui(R
base
k (x)) + ui(R

aux
k (x)) (7)

Additionally, when dividing the service request into slices, it is necessary to determine
the resource demand for each individual slice. The resource demand for a specific slice
can be calculated by combining base resource demand and dividing the size of that slice
by the total size of the service request and then multiplying the result by the auxiliary
resource demand. Mathematically,

ui(Rk,j(x)) = ui(R
base
k (x)) + ui(R

aux
k (x)) · ui(ŝk,j)

ui(ŝk)
(8)

3.3.3 Service Sensitivity Priority

The sensitivity level of a particular service sk, is represented by P s
k , with a value ranging

between 0 and 1. The Smart Gateway is responsible for determining the sensitivity of
each service. A higher P s

k value indicates a more sensitive service. For instance, when
evaluating services, the processing of sensitive medical data has a higher sensitivity value
compared to a service that manages user-created playlists of songs.

In this context, sensitivity may relate to factors such as security, privacy, and the criti-
cal nature of the service. Services with a higher sensitivity level may require additional
precautions, resource allocation, or prioritization to ensure that they are handled properly
and securely within the fog and cloud computing environments. By taking into account
the sensitivity of each service, the Smart Gateway can effectively allocate resources and
manage the services in a way that addresses the varying requirements and expectations
of users, ultimately enhancing overall system performance and user satisfaction.

3.3.4 Service Priority

Service priority pertains to the significance assigned to a service when distributing
resources among the service slices. This concept is distinct from service sensitivity
priority, as it encompasses factors such as the distance and latency of connected users, as
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well as the relative service demand. The priority level for a service of type sk, represented
by Pk, can be determined using the following approach:

Pk = 0.5 ·
∑
ui∈U

[Pi · ui(ŝk)] + 0.5 · SD(sk)∑
sj∈S SD(sj)

(9)

The initial component of the calculation involves summing the priority of all users
availing the service sk, along with the size of the service requests. This user priority
takes into account both the user’s distance from the G and their communication latency.
By considering these factors, the system can better address each user’s specific needs
and expectations. The second component of the service priority calculation represents
the relative service demand. This is determined by comparing the demand of the current
service request to the total service demand received by the G. By incorporating the
relative service demand into the service priority calculation, the system can better
allocate resources and manage services in a manner that is responsive to varying levels of
demand, ultimately enhancing overall system performance and user satisfaction. Lastly,
multiplying by 0.5 both sides of equation means that importance factors of both sides are
equal.

3.4 DRL-based Service Placement
We discussed the challenge of effectively distributing services across fog and cloud
computing environments in the previous section. Moving forward, this part will concen-
trate primarily on the suggested strategy, which involves adapting the DRL technique
to include more practical parameters that cater to real-world situations and how this
technique can outperform other numerous strategies, including heuristic methods, RL
techniques.

The heuristic approach involves using problem-solving methods based on experience,
intuition, and trial-and-error to find solutions or make decisions in complex situations.
Heuristics can help in generating quick, approximate solutions in scenarios where obtain-
ing an optimal solution is computationally expensive or time-consuming. In the context
of service distribution across fog and cloud computing environments, heuristic methods
can be used to allocate resources, manage workload, and balance network traffic. These
approaches often rely on predefined rules, historical data, or expert knowledge to guide
the decision-making process. However, one of the major drawbacks of heuristic methods
is their inability to adapt to dynamic changes in the environment, which is common in
fog and cloud computing scenarios. Heuristic solutions may not always be optimal, as
they can sometimes lead to suboptimal allocations or under utilization of resources.

Additionally, heuristic approaches might struggle with scalability, as the complexity
of the problem increases with the growth of the infrastructure. Heuristic algorithms
can also suffer from a lack of flexibility, as updating or modifying their underlying
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rules can be challenging and time-consuming. In contrast to machine learning-based
approaches like RL and DRL, heuristic methods may not be able to learn and improve
their performance over time, limiting their long-term effectiveness. While heuristic
approaches can provide some benefits for service distribution in fog and cloud computing
environments, their limitations, such as adaptability, scalability, and flexibility, can lead
to suboptimal performance compared to more advanced techniques like RL and DRL.

Reinforcement Learning (RL) is a sub field of machine learning that focuses on
training agents to make decisions by interacting with an environment, with the aim
of maximizing a cumulative reward signal. An RL agent learns through a trial-and-
error process by continuously exploring the environment, taking actions, and receiving
feedback in the form of rewards or penalties. The central idea behind RL is to find an
optimal policy, which is a mapping from states to actions that maximizes the expected
cumulative reward over time. In RL, the agent’s learning process is typically modeled as
a Markov Decision Process (MDP), which comprises a set of states, actions, transition
probabilities, and reward functions. The Qfunction also known as the state-action value
function, is a key concept in RL. It estimates the expected cumulative reward an agent
will receive after taking a specific action in a given state and following an optimal policy
thereafter.

RL methods can adapt to dynamic environments and learn from experiences, making
them suitable for various applications, including distributing services across fog and
cloud computing environments. Q-learning, a popular RL algorithm, works by iteratively
updating the Q-function values based on the agent’s experiences, eventually converging
to the optimal Q-function. The Q-function can be represented as a table (in tabular
Q-learning). However, one of the primary challenges of RL methods is, as the state space
and action space expand, the maintenance of the large tabular data becomes a significant
limitation. One of the main issues with RL methods is that managing large amounts of
tabular data becomes harder as the state and action spaces grow. To overcome this, we
can combine RL with other machine learning methods, like deep learning, to make better
and more powerful algorithms such as DRL.

Instead of using a large matrix to store state-action pairs like Q-learning, deep learning
is used to identify features through Artificial Neural Networks. This approach is used in
many areas like image and video analysis and medical image prognosis. It’s also applied
in reinforcement learning by combining it with deep learning. This method helps the
agent predict the best action to take by using a deep learning model with the current
state as input rather than a specific state-action pair. Unlike Q-learning, which uses
a Q-function to decide the agent’s action, deep learning with reinforcement learning
predicts an action based on all possible action prediction values.

The DRL-based service placement model is depicted in Figure 3, providing a visual
representation of the architecture and components involved in the placement of services
using deep reinforcement learning technique.
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Figure 3. DRL-based service placement model

In our study, we created a sequential model with following parameters and con-
figurations for DRL-based service placement problem. The input layer consisted of
nodes corresponding to the number of states. For the dense layer, we utilized twice the
number of nodes that present in the input layer. In this layer, the sigmoid activation
function was employed, ensuring that the output always falls within the range of (0,
1). The output layer matched the number of nodes in the input layer. In this layer, a
linear activation function was utilized, enabling the input values to remain the same.
To optimize the model, we employed the Adam optimizer. This optimizer takes ad-
vantage of both the adaptive gradient algorithm and the root mean square propagation
algorithm. The loss function utilized was the Mean Squared Error (MSE), which aids in
minimizing prediction errors. The mathematical model employed for this problem was
the Markov Decision Problem (MDP). MDP is represented by a four-tuple, including
the state space, action space, state transition probability function, and reward function.
As for the framework, we utilized PyTorch. PyTorch stands out due to its dynamic
computational graph construction, efficient GPU utilization through optimized tensor
operations, and its flexibility and performance in deep learning tasks.

3.4.1 State Representation

The state space includes every possible arrangement of the states of all SRs. Let Ŝ =
{ŝ1, ŝ2, ŝ3, ...}, be the state space. A state of SR’s type sk signifies the environment in
which it operates. Mathematically,

ŝki =< f(ŝki ), c(ŝ
k
i ) > (10)

f(ŝki ) + c(ŝki ) = 1 (11)

Here, ŝki denotes the state of a SR sk from user ui. f(ŝki ) and c(ŝki ) are two boolean
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variables, indicating whether the SR is allocated to the fog or cloud environment, re-
spectively. The value 1 represents the assignment of the SR to a specific environment,
while 0 represents the opposite. Equation 11 must be satisfied for a valid service request
assignment. For example, ŝ13 =< 1, 0 > implies that SR s1 from u3 is sent to the fog
computing environment, which is this SR’s state. Let ŝki,j be the state of slice j of SR sk
from user ui. Each SR slice’s state indicates its assignment. Mathematically,

ŝki,j =


< 0, 0 > - the slice is not yet assigned to the neither fog nor cloud.
< 1, 0 > - the slice is assigned to be processed in the fog environment.
< 0, 1 > - the slice is assigned to be processed in the cloud environment.
< 1, 1 > - invalid state

(12)
By merging the states of all slices, we can determine the state of a SR ŝki,j using the

following method:

ŝki,j =< ŝki,1, ŝ
k
i,2, ..., ŝ

k
i,ŝ > (13)

Additionally, the entire SR’s state can be expressed as:

ŝki =< ŝk1, ŝ
k
2, ..., ŝ

k
n > (14)

Finally, the final state is added to the current state space. The final state represents
that all the slices of every service request are allocated to one of the computing (fog or
cloud) environment.

3.4.2 Action Selection

The action space encompasses all potential actions the agent can take, given its present
state. Denoted by Â, the action space characterizes the range of possible decisions
available to the agent. By considering all possible actions within the action space, the
agent can make informed decisions that optimize its objectives while assigning the slices
of services to the fog and cloud computing environments.

Lastly, the agent can not move from final state to other states.

3.4.3 Reward Function

When examining Figure 3, it is clear that by executing a specific action within the current
state, the agent receives a reward value from the environment. This reward value serves
as an indicator of how successful the action was in given state. In our study, a key
objective for the agent is to effectively distribute the service requests between the fog and
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cloud environments. Mathematically, reward function for each slice can be computed as
following equation:

f(ski,j) + c(ski,j) = 1 (15)

R̂(ski,j) = f(ski,j) · R̂f (ski,j) + c(ski,j) · R̂c(ski,j) (16)

R̂(ski,j) =

{
−R̂(ski,j), penalty if Texec(s

k
i,j) > Tdeadline(s

k
i,j)

R̂(ski,j), otherwise
(17)

where, f(ski,j) and c(ski,j) represent slice is assigned on fog and cloud, respectively.
Additionally, R̂f (ski,j) and R̂c(ski,j) are reward values when slice is assigned to fog and
cloud, respectively. Texec(s

k
i,j) represents the duration it takes to execute the assigned

slice, while Tdeadline(s
k
i,j) represents the specified time limit for completing the assigned

slice. In our scenario if Texec(s
k
i,j) exceeds Tdeadline(s

k
i,j), the agent receives a negative

penalty. Tdeadline(s
k
i,j) is determined by Smart Gateway. For example, the deadline for

processing a video file may be calculated as 1 second per frame, while for processing an
audio file, the deadline could be established based on the duration of the audio file itself.
Mathematically, these can be calculated using following equations:

R̂f (ski,j) = w1 · Pi + w2 · P s
k + w3 · Pk + w4 · Lf

comm(s
k
i,j) + w5 · Lf

comp(s
k
i,j) (18)

R̂c(ski,j) = w1 · Pi + w2 · P s
k + w3 · Pk + w4 · Lc

comm(s
k
i,j) + w5 · Lc

comp(s
k
i,j) (19)

where, w1, w2, w3, w4 and w5 are constant parameters that used to adjust the
significance of each factor relative to others. Here, the value of those constants are
satisfied the constraint w1 + w2 + w3 + w4 + w5 = 1. Pi represents priority of
user ui, P s

k represents sensitivity value of service sk, and Pk represents priority of
service sk. Lf

comm(s
k
i,j) and Lf

comp(s
k
i,j) represent communication latency on fog and

computation latency on fog, respectively. Similarly, Lc
comm(s

k
i,j) and Lc

comp(s
k
i,j) represent

communication latency on cloud and computation latency on cloud, respectively. The
communication latency for fog, and for cloud can be calculated using following equations:

Lf
comm(s

k
i,j) =

li
lf

(20)

Lc
comm(s

k
i,j) =

li
lc

(21)
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where, li represents the Round Trip Delay (RTD) time from user ui to Smart Gateway,
and lf represents RTD from Smart Gateway to fog node. Similarly, lc represents RTD
from Smart Gateway to cloud environment. The computation latency for fog, and for
cloud can be calculated using following equations:

Lf
comp(s

k
i,j) =

ui(ŝk,j )

ui(ŝk)
+

ui(Rk,j(x))

Rf (x)
(22)

Lc
comp(s

k
i,j) =

ui(ŝk,j )

ui(ŝk)
+

ui(Rk,j(x))

Rc(x)
(23)

where, ui(ŝk,j ) represents slice size of service sk, ui(ŝk) represents input size of
service sk, ui(Rk,j(x)) represents resource demand for slice j, Rf (x) and Rc(x) repre-
sents available resources on fog and on cloud, respectively. To determine the reward
of a service request (SR), the sum of rewards from all the slices can be computed.
Mathematically,

R̂(ski ) =
∑
sj∈S

f(ski,j) · R̂f (ski,j) + c(ski,j) · R̂c(ski,j) (24)

The goal of our agent is to divide service requests and distribute the slices efficiently
between the fog and cloud environments without compromising the QoS. When assigning
a SR slice on an environment, the following constraints have to be considered:

di < D,∀ui ∈ U (25)

1 ≤
∑

0<k≤m

ui(sk) ≤ m,∀ui ∈ U (26)

∑
0<j<ŝki

ui(ŝk,j ) = ui(ŝk), ∀ui ∈ U (27)

∑
0<j<ŝki

ui(Rk,j(x)) = ui(Rk(x)),∀ui ∈ U (28)

∑
0<j<ŝki

f(ski,j) · ui(Rk,j(x)) ≤ Rf (x),∀ui ∈ U (29)

∑
0<j<ŝki

c(ski,j) · ui(Rk,j(x)) ≤ Rc(x), ∀ui ∈ U (30)

The constraints can be summarized as below:
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• Equation 25 ensures that the user needs to be within the maximum communication
range of the fog.

• Equation 26 ensures that number of requested services should be less than the total
number of services offered by environments.

• Equation 27 ensures that total size of SR must be equal to sum of size all of SR
slices.

• Equation 28 ensures that total resource requirement of SR must be equal to sum of
resource requirement of SR slices.

• Equation 29 ensures that sum of all resource requirement of SR slices that assigned
to fog must be less or equal than available resource on Fog.

• Equation 30 ensures that sum of all resource requirement of SR slices that assigned
to cloud must be less or equal than available resource on Cloud.

Table 2, shows the list of notations that are used in our study.
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Table 2. List of Notation

Notation Description
G Smart Gateway
F Fog environment
C Cloud environment
lf Round Trip Delay (RTD) time from Smart Gateway to Fog
lc Round Trip Delay (RTD) time from Smart Gateway to Cloud
Rf (x) Available resources on Fog
Rc(x) Available resources on Cloud
U Set of users
n Total number of users
ui User i
ui(sk) Boolean variable, represents if user ui is currently availing service sk
di Distance between user ui and Smart Gateway
P d
i Distance priority of user ui

li Round Trip Delay (RTD) time from user ui to Smart Gateway
P l
i Latency priority of user ui

Pi Priority of user ui

S Set of services that offered by environments
m Total number of services
sk Service type k
ŝki Number of slices of Service Request type sk
ui(ŝk) Size of SR of type sk from user ui

ui(ŝk,j ) Size of slice of SR of type sk from user ui

SD(sk) Demand of service type sk
ui(Rk(x)) Resource demand of service type sk from user ui

P s
k Sensitivity value of service type sk

Pk Priority of service type sk
Ŝ State space
Â Action space
R̂(ski ) Sum of rewards from all the slices
Lf
comm(s

k
i,j) Communication latency reward on Fog

Lc
comm(s

k
i,j) Communication latency reward on Cloud

Lf
comp(s

k
i,j) Computation latency reward on Fog

Lc
comp(s

k
i,j) Computation latency reward on Cloud

f(ski,j) Represents that slice is assigned on Fog
c(ski,j) Represents that slice is assigned on Cloud
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3.5 Summary
In this chapter, we began by presenting the system architecture. We then proceeded to
introduce user modeling and service modeling. Following that, we presented the formu-
lation of the DRL-based service placement that we used in our study. We extensively
discussed the reasons for opting for a DRL-based solution and provided a thorough
explanation of how it operates. The chapter concluded with a detailed discussion on the
state space, action space, and reward function. In the upcoming chapter, we will delve
into the execution and methodology of the experiment.
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4 Experiment
This section describes implementation of DRL model and experimentation in detail.
The experimental settings is first described in Section 4.1, including environment setup,
hyper-parameter configurations, and performance metrics. Further, we discuss experi-
ment applications in Section 4.2, Deep learning based object classification application
in Subsection 4.2.1, Text-audio synchronisation or forced alignment application in Sub-
section 4.2.2, and Speech-to-text conversion in Section 4.2.3, with all the details. In
Section 4.3, we discuss various performance metrics to evaulate our DRL algorithm.
Lastly, we conclude this chapter by providing a summary in Section 4.4.

4.1 Experimental Settings
4.1.1 Environment setup

In our system, we have three distinct computing environments: Smart Gateway, Fog, and
Cloud environments. Each of these environments have their individual capabilities, all of
these environments are subject to various constraints including CPU limits, RAM limits
and etc. By imposing CPU limits, we ensure that the processing capabilities of the Smart
Gateway, Fog, and Cloud environments are effectively managed, preventing any single
component from monopolizing system resources. This promotes fair resource allocation
and prevents performance degradation across the entire system. Similarly, RAM limits
play a vital role in maintaining stability and preventing resource exhaustion. By defining
appropriate boundaries for memory usage within each environment, we ensure that the
system operates smoothly, avoiding potential bottlenecks and maintaining a consistent
level of performance.

We employed Raspberry PI 4 device as a Smart Gateway in Edge layer. In Fog layer,
we have 5 Raspberry PI 4 devices that installed Docker Swarm. One of the devices
used as swarm manager, other nodes used as worker nodes. Also, we have a cloud
server that represents cloud node in cloud layer. Figure 4 illustrates implementation of
Cloud-Fog-Edge architecture.
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Figure 4. Implementation of Cloud-Fog-Edge architecture.

4.1.2 Hyper-parameter configurations

The hyperparameters for training DRL model are crucial settings that affect the perfor-
mance and behavior of the model during training. We consider several hyperparameters
for training DRL-based service placement model such as discount factor, mini-batch
size, replay buffer size, epsilon max, epsilon min, epsilon decay, learning rate, and etc.
The discount factor determines the importance of future rewards compared to immediate
rewards. In our case, the discount factor is set to 0.99, implying that future rewards
are valued highly. The mini-batch size parameter specifies the number of samples used
in each iteration of the model training. A mini-batch size of 64 is chosen, indicating
that 64 samples are processed together before updating the model. The replay buffer
stores past experiences, allowing the model to learn from a mixture of recent and older
data. The replay buffer size is set to 5000, indicating that the buffer can hold up to
5000 experiences. Epsilon is the exploration factor that determines the trade-off between
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exploration and exploitation during training. Epsilon starts at a maximum value of 1
and decays gradually until it reaches a minimum value of 0.01. This ensures a balance
between exploration and exploitation over time. The epsilon decay determines the rate at
which epsilon decays. In our case, the decay factor is set to 0.99, indicating a slow and
gradual decay.

The learning rate determines the step size for adjusting the model’s parameters during
training. A learning rate of 0.001 is chosen, indicating small and gradual updates. The
parameters (no. of nodes in input layer, no. of nodes in hidden layers, and no. of nodes in
output layer) define the architecture of the neural network used in the DRL model. The
number of layers is determined based on the number of states. The optimizer specifies the
algorithm used to update the model’s parameters based on the computed gradients. Here,
the Adam optimizer is employed, which is a popular choice for deep learning models.
The loss function determines the measure of dissimilarity between the predicted and
target values during training. Mean Squared Error (MSE) is utilized as the loss function
in our case.

We utilized Python v3.10 as a programming language, and PyTorch v2.0 as a frame-
work for implementation of the DRL algorithm. Table 3 provides a summary of the
hyperparameters configurations for the training DRL model.

Table 3. Hyper-parameters for DRL model training

Parameter Value

General

Discount factor (γ) 0.99
Mini-batch size 64
Replay buffer size 5000
Epsilon max (ϵmax) 1
Epsilon min (ϵmin) 0.01
Epsilon decay factor 0.99

Neural network parameters

Learning rate (α) 0.001
No. of nodes in input layer No. of states
No. of nodes in hidden layer 2 * No. of states
No. of nodes in output layer No. of states
Optimizer Adam
Loss function MSE
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4.2 Experiment Applications
The original versions of applications were modified to satisfy the problem formulation,
and the revised editions used in this section are available in the project repository. We
utilized Python v3.10 as a programming language and Flask v2.3.1 as a web framework
for the development of the all applications. This section explains the services available
in the fog and cloud environment.

Figure 5. Network architecture of YOLOv3 [1].

4.2.1 Application 1: Deep learning based object classification

Figure 6. Architecture of Application 1: Deep learning based object classification
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YOLOv3 (You Only Look Once) is real-time object detection algorithm that uses a
single convolutional neural network (CNN) to detect objects in an image. It works by
dividing an input image into a grid of cells, and predicting bounding boxes and class
probabilities for each cell. Each bounding box consists of four coordinates (x, y, width,
height) and a confidence score, which represents the likelihood that the box contains
an object. Class probabilities are predicted for each box, indicating the likelihood that
the object in the box belongs to a certain class. To improve the accuracy of object
detection, YOLOv3 uses a few key techniques. One is feature pyramid networks, which
use a pyramid of features extracted from multiple layers of the network to improve
the detection of objects at different scales as shown in Figure 5. Another technique is
residual connections, which allow gradients to flow more easily through the network
during training, leading to better accuracy.

This application is a suitable choice for Fog environment, it can be deployed to detect
objects in order to reduce communication delays in fog computing. The Algorithm 1
represents how Yolov3 used in this application. Additionally, The Figure 6 illustrates an
architecture of deep learning based object classification application.

Algorithm 1: Deep learning based object classification
Input: Video to be analyzed
Result: Detected objects in the video

1 Load the pre-trained YOLOv3 object detection model;
2 foreach frame in video do
3 Extract image from frame;
4 Perform object detection using YOLOv3;
5 Draw bounding boxes around detected objects;
6 Add labels to bounding boxes;
7 Insert the annotated image back into the frame;
8 Add the frame to the output video;

Additionally, we have developed a flowchart illustrating the experimental setup for
streaming video in Application 1. We considered slices as a set of frames for this
experiment. In the flowchart the system initially verifies if the input is streaming before
the procedure starts. The system then reads the frame that was acquired by the cameras
after receiving the input from the CCTV camera. The system stores the captured frame
for further processing after reading the frame. The system then determines if X seconds
have passed since the last frame processing. In the event that the necessary amount of
time has passed, the system loops back to reading frames and loading the DRL model
for distributing the gathered frames between fog and cloud. If the required time has not
passed, the system checks the current frame is last frame or not. The system loops back
to read frame if it is found that the current frame is not the final one in the streaming
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input. The system starts an agent to distribute the gathered frames between fog and cloud
if it is the last frame. After successfully assigning collected frames, the system collects
various metrics such as throughput, communication times, CPU and RAM usages from
the assigned fog and cloud environments. The processing cycle is finished when the
system shows all the processed output. In our study, "online mode" refers to to employing
a trained model for real-time inference from live streaming data. On the other hand,
"offline mode" refers to the training phase of the agent when allocating frames between
fog and cloud. Lastly, X equals to 6 seconds in our experiments.

The Figure 7 illustrates an flowchart of Experimental setup for streaming slices in
Application 1.

39



Figure 7. Flowchart of Experimental setup for streaming slices in Application 1

4.2.2 Application 2: Text-audio synchronisation or forced alignment

Aeneas is a text-alignment library that aligns text with audio or video content. As shown
in Algorithm 2, the library create sync map, allowing users to jump to the corresponding
point in the audio or video when clicking on a specific word or phrase in the text. Aeneas
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Figure 8. Architecture of Application 2: Text-audio synchronisation or forced alignment

works by first converting the audio or video into a time-aligned phonetic transcript,
known as an "alignment graph." It then generates a time-aligned version of the text,
known as a "fragmented transcript," based on the words and timing information in the
alignment graph. Next, Aeneas performs a process called "forced alignment," which uses
statistical models to align the transcript to the audio or video. This process allows for a
precise time-based synchronization of the text and media content. The resulting output
of Aeneas can be an XML, JSON, SRT files that includes a detailed mapping of the text
and media content, including time codes and other metadata. The Figure 8 illustrates an
architecture of text-audio synchronisation or forced alignment application.

Algorithm 2: Text-audio synchronisation or forced alignment
Input: Text and Audio Files
Output: Alignment File (*.srt)

1 Initialize the Aeneas object;
2 Create the sync map;
3 Perform the alignment;
4 Save the alignment from the Aeneas;
5 Output the alignment file;

The experimental setup for streaming segments in Application 2 closely resembles
that of Application 1, except in this experiment, the slices are treated as collections of
segments of audio and text. The source diverges from that of Application 1 as well, in
this case, the requirement is to stream content from a source capable of transmitting both
audio and text. Furthermore, it is important to note that during audio streaming, the text
content is sliced at a rate of two words per second [46].

The Figure 9 illustrates an flowchart of Experimental setup for streaming slices in
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Application 2.

Figure 9. Flowchart of Experimental setup for streaming slices in Application 2
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4.2.3 Application 3: Speech-to-text conversion

Algorithm 3: Speech-to-text conversion
Input: Audio file to be transcribed
Result: Transcription of the audio file

1 Load the audio file;
2 Initialize the PocketSphinx recognizer;
3 Set the language model and dictionary;
4 Process the audio file in chunks;
5 Feed the chunks to the recognizer;
6 Get the transcription from the recognizer;
7 Output the transcription;

PocketSphinx is a lightweight speech recognition engine. It is based on the Sphinx-4
open source speech recognition system, which uses Hidden Markov Models (HMMs) to
model the acoustic features of speech. PocketSphinx is capable of recognizing speech
in a variety of languages, and can be used for tasks such as voice search, dictation, and
command recognition. The PocketSphinx library provides a set of Python APIs for
developers to use in their applications. As shown in Algorithm 3, to use PocketSphinx,
firstly start by configuring a decoder, which specifies the acoustic and language models
to be used for speech recognition. The audio input is then passed to the decoder, which
performs a series of signal processing and feature extraction operations to produce a
stream of speech recognition hypotheses. These hypotheses are then scored and ranked
according to their likelihood of being correct, and the most likely hypothesis is returned as
the recognized text. The Figure 10 illustrates an architecture of speech-to-text conversion
application.

Figure 10. Architecture of Application 3: Speech-to-text conversion
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The experiment setup for streaming segments within Application 3 closely mirrors
that of Application 1 and Application 2. However, in this particular experiment, the slices
are handled as a set of of audio segments. Additionally, the data source differs from that
in Application 1 and Application 2, as it must now facilitate the streaming of both audio
and text content. The figure 11 represents the flowchart outlining the experimental setup
for streaming slices in Application 3.
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Figure 11. Flowchart of Experimental setup for streaming slices in Application 3

4.2.4 Application Settings

The service requests vary in size for all applications, spanning from 50MB to 250MB.
There are two types of resource requirements for these service requests: CPU and RAM.
Application 1 exhibits a pronounced requirement for both CPU and RAM resources,
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while Application 2 necessitates an intermediate level of these resources. Conversely,
Application 3 entails a minimal demand for CPU and RAM capacities. Sensitivity
value for services range from 1 to 5. The sensitivity value for each services is assigned
randomly in Smart Gateway. Table 4 provides a summary of the configurations for these
applications.

Table 4. Application details

Name CPU RAM Input size (MB) Sensitivity value

Min Value Max Value Min Value Max Value

Application 1 High High 50 250 1 5
Application 2 Medium Medium 50 250 1 5
Application 3 Low Low 50 250 1 5

4.3 Performance metrics
We employ the following metrics for assessing the effectiveness of our solution.

Success Rate: The effectiveness of the agent’s learning in distributing service request
slices is evaluated through the success rate, which represents the proportion of times in
which the agent achieves its objective by exploring different states and actions. Factors
taken into consideration for assessing the success rate include the quantity of slices per
service request and the number of iterations performed.

Distribution of Service Request Slices: Efficiently distributing service requests
between fog and cloud environments is a key aim of our algorithm. Evaluating the
distribution of service request slices allows us to assess the efficacy of our proposed
algorithm in accomplishing this objective.

In-depth analysis encompassing various metrics: Further, we used throughput,
communication time, CPU usage, and RAM usage in in-depth analysis of all three
data-intensive applications.

4.4 Summary
In conclusion of this chapter, we observed the setup of the experiment and its execution.
We introduced the coding language, the utilized library, and provided details on the
computational capabilities. Additionally, we explored experimental settings, hyperpa-
rameters for DRL, and application settings. In the next chapter, we will will delve into
the discussion of results.

46



5 Results and Discussion
This chapter describes the results from experiments that we conducted for all three
data-intensive applications. We describe both insights from training phase, and from
in-depth analysis encompassing various metrics.

5.1 Success Rates
Figure 12a illustrates the correlation between the success rate and the number of episodes
during the training. The success rate pertains to the overall percentage of successfully
assigned slices by agent while exploring the state space. The results are collected through
the utilization of varying number of Service Requests (SRs) across all applications and
slices, with ranging from 1 to 6. The number of episodes, which ranges from 1000 to
10,000, is shown on the X-axis. The success rate (in %) for Applications 1, 2, and 3 is
shown on the Y-axis. As the number of episodes grow, the success rate is increasing
among all the applications with Application 3 having the highest value during whole
process. On the other hand, Application 1 has a lower rate of success in the initial phase,
but as the number of episodes grow the application catches up to the others.

(a) Success Rates for each Applications.
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(b) Missed Deadlines for each Applications.

Figure 12. Success Rates and Missed Deadlines for each Application.

On the contrary, Figure 12b illustrates the correlation between the slices that deadlines
are missed while assigning and the number of episodes during the training. The whole
graph has a down trend of the percentage of missed deadlines, when the number of
episodes increase. During the initial phase in the first thousands, the percentage of
missed deadlines between the applications varies, with Application 1 having a higher
percentage in comparison with the others. Although in the next episodes as the numbers
grow the variation between the applications becomes non-existent. Based on the results
that obtained from Figure 12a and Figure 12b we can say that agent has some struggles to
grasp the situation for Application 1, but in the long run all the applications have similar
results both in number of missed deadlines and their respective success rates.

5.2 Percentage of Slices
Figure 13, illustrates the distribution of SR slices between fog and cloud environments
for each applications. The number of episodes, which ranges from 1000 to 10,000, is
shown on the X-axis, and percentage of total number of slices in fog and in cloud is
shown on the Y-axis. The SRs and slices are ranging from 1 to 6 for each applications in
this experiment. It is clear from Figure 13a that the agent assigned approximately 50%
of slices for each environment at 6000th and 8000th episodes. The agent assigned slightly
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more slices to Fog at 4000th episode. For other episodes, more slices are assigned to
Cloud for Application 1.

From Figure 13b, we can say that at 2000th, 3000th and 4000th episodes, the agent
tried to assign slightly more slices to Fog. For other episodes, we clearly see that mostly
Cloud is chosen by agent for processing slices. From Figure 13c, it is observed that the
agent assigned approximately 50% of slices for each environment at 2000th. Slightly
more slices are assigned to Fog at 8000th and 9000th episodes. For other episodes, more
slices are assigned to Cloud for Application 3.

The varying loads of the environments are mostly responsible for the non-uniform
variation in the distribution of slices in each run. Nevertheless, it is important to highlight
that the agent distributes a greater number of slices to the Cloud across all applications.

(a) Distribution of SR Slices for Application 1.
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(b) Distribution of SR Slices for Application 2.

(c) Distribution of SR Slices for Application 3.

Figure 13. Distribution of SR Slices for each Application.
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5.3 In-depth analysis encompassing various metrics
5.3.1 Application 1: Deep learning based object classification

The Figure 7 illustrates a comprehensive flowchart detailing the methodology employed
in this experiment. The experiment focuses on an in-depth analysis of Application 1
encompassing throughput, communication time, CPU and RAM usage in Smart Gate-
way, Fog, and Cloud computing environments as shown in The Figure 14. Figure 14a
visualizes the throughput metrics associated with each of the environments. Throughput
is measured as slices per second meaning that set of frames per second in this experiment.
It is clear that the throughput levels of Fog and Cloud remain consistent throughout the
streaming duration. This indicates that the number of slices allocated to both Fog and
Cloud during the streaming period remain unchanged, and their processing time remains
consistent in both settings. However, the throughput of the Smart Gateway experiences a
minor fluctuation in the 18th second of streaming. This situation might arise because
the Smart Gateway is equipped with numerous threads designed for various functions,
concurrently handling tasks such as video processing, slice allocation, and output display.

Figure 14b represents communication times for environments during the streaming
time. We observed fluctuating trend on Fog, Cloud and Smart Gateway. This variability
might be attributed to the dynamic nature of environments. The values indicate that
communication times are minimal in all environments. This could be affect less the
deadlines for assignment process of slices. So that enables agent to effectively allocate
slices based on its past experiences. Both throughput and communication time results for
Fog and Cloud suggests that resource utilization should remain consistent and steady.

In Figure 14c, we are presented with CPU usage metrics throughout the streaming
duration, while Figure 14d displays RAM usage metrics for both Fog and Cloud. It
is evident that resource utilization remains stable in both environments. This stability
implies a larger allocation of video frames to the Cloud. Given Fog’s constrained
resources and the substantial demand from Application 1, the resource utilization on the
Fog side remains consistently high.
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(a) Throughput Metrics (b) Communication Times Metrics

(c) CPU Usage Metrics (d) RAM Usage Metrics

Figure 14. Application 1 - In-depth analysis metrics Metrics

5.3.2 Application 2: Text-audio synchronisation or forced alignment

The Figure 9 shows a comprehensive flowchart outlining the methodology employed
within this experiment.

Figure 15a represents the throughput metrics associated with each environment.
Throughput is quantified in terms of slices per second, denoting sets of audio and
text segments per second during this experiment. The data demonstrates consistent
throughput levels for Fog and Cloud throughout the streaming duration. However, the
Smart Gateway’s throughput experiences slight fluctuations in the 24th and 48th seconds
of streaming. This scenario could occur due to the presence of multiple threads within the
Smart Gateway, each tailored for different functions. These threads work simultaneously
to manage tasks like audio and text processing, distribution of slices, and displaying the
output.

Figure 15b illustrates the communication times among the environments during
streaming. Observable is a fluctuating trend across Fog, Cloud, and Smart Gateway. This
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(a) Throughput Metrics (b) Communication Times Metrics

(c) CPU Usage Metrics (d) RAM Usage Metrics

Figure 15. Application 2 - In-depth analysis metrics Metrics

variability can be attributed to the dynamic nature of these environments. For Application
2, the data demonstrates that communication times are minimal across various settings.
This is unlikely to significantly impact assignment process deadlines for slices, thereby
empowering agents to efficiently allocate slices drawing from their prior experiences. The
findings for both throughput and communication time in Fog and Cloud environments
imply the importance of maintaining a consistent and stable resource utilization.

In Figure 15c, we are presented with metrics regarding CPU usage throughout the
streaming period. Meanwhile, Figure 15d provides insight into RAM usage for both Fog
and Cloud. It is evident that resource utilization remains stable across both environments.
Furthermore, a notable observation is the larger allocation of audio and text segments to
the Cloud.
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5.3.3 Application 3: Speech-to-text conversion

The flowchart shown in Figure 11 presents a comprehensive flowchart outlining the
methodology employed in this experiment.

Figure 16a illustrates the throughput metrics related to each environment, quantifying
the number of audio segment sets processed per second during the experiment. The
results indicates consistent throughput levels for both Fog and Cloud throughout the
streaming period. However, the Smart Gateway’s throughput experiences a fluctuating
trend during the streaming time. Similar to previous applications results, the current
situation may also arise because of the existence of numerous threads within the Smart
Gateway, each designed for distinct purposes. These threads function concurrently to
oversee activities such as audio, allocation of slices, and displaying of output.

Communication times among the environments during streaming are depicted in
Figure 16b. A fluctuating trend can be observed across Fog, Cloud, and Smart Gateway,
with this variability attributed to the dynamic nature of these environments. Regarding
Application 3, the data indicates that communication times remain minimal across
different scenarios. This is improbable to substantially affect the assignment process
timelines for slices. As a result, agents can effectively distribute slices based on their
past encounters. The results for both throughput and communication duration in Fog and
Cloud environments underscore the significance of upholding steady and dependable
resource utilization.

Metrics regarding CPU usage throughout the streaming period are presented in
Figure 16c. Additionally, Figure 16d offers insights into RAM usage for both Fog and
Cloud. It is evident that resource utilization remains stable across both environments.
Furthermore, a notable observation is the larger allocation of audio segments to the
Cloud.
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(a) Throughput Metrics (b) Communication Times Metrics

(c) CPU Usage Metrics (d) RAM Usage Metrics

Figure 16. Application 3 - In-depth analysis metrics Metrics

5.4 Summary
In this chapter, we not only presented our comprehensive research findings but also delved
into a meticulous exploration of the intricate process of evaluation metric selection and
its profound significance within the context of our study. By meticulously analyzing and
selecting the most appropriate evaluation metrics, we aimed to ensure the robustness
and accuracy of our research outcomes, thereby reinforcing the credibility of our study’s
conclusions. In the next chapter we will discuss future research directions.
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6 Future research directions
The proposed DRL algorithm is implemented and tested using data-intensive applications
to provide a comprehensive solution to the problem at hand. However, it is crucial to
recognize the limits of our study. This section provides a more detailed description of
the potential features that can be integrated.

6.1 Network Bandwidth Demand
In the context of optimizing service placement within the Edge-Cloud continuum, a criti-
cal aspect that warrants further exploration is the dynamic assessment and management
of network bandwidth demand. This involves developing mechanisms to monitor and
predict the network traffic patterns between edge devices and fog and cloud resources.
By leveraging Deep Reinforcement Learning (DRL) techniques, future research could
focus on creating intelligent algorithms capable of adapting service placement decisions
based on real-time network bandwidth demand fluctuations. Such an approach would
contribute to enhancing the overall efficiency and performance of the system by ensuring
that service placements are aligned with the available network resources.

6.2 Disk I/O Bandwidth
Effective utilization of disk I/O bandwidth holds immense significance in the successful
execution of services within the Edge-Cloud continuum. Extending the current research,
an intriguing avenue for future investigation involves the integration of DRL-driven
strategies to optimize service placements with a keen emphasis on minimizing disk
I/O bottlenecks. This entails designing algorithms that intelligently distribute services
across fog and cloud environments, taking into account the disk I/O characteristics and
constraints of each environment and each application. A deeper exploration of this
aspect promises to yield insights into enhancing data access efficiency and overall system
responsiveness.

6.3 Service Cost Constraint
While the existing work focuses on optimizing service placement using DRL techniques,
an exciting direction for future research is the integration of service cost constraints into
the decision-making process. This entails devising algorithms that not only optimize for
performance metrics but also account for the monetary costs associated with deploying
services in the Edge-Cloud continuum. By incorporating cost-awareness into the opti-
mization framework, researchers can contribute to the development of more practical
and economically viable solutions. This can lead to the creation of strategies that strike a
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balance between performance optimization and cost-effectiveness, further enhancing the
applicability of the proposed approach.

6.4 Energy Consumption
Addressing the sustainability aspect of the Edge-Cloud continuum, a critical dimension
that deserves attention in future research is the management of energy consumption in
fog and cloud environments. Expanding on the existing DRL-driven service placement
strategy, researchers can explore novel algorithms that take into consideration the energy
consumption profiles of fog and cloud resources. By incorporating energy-awareness
into the decision-making process, the aim is to develop intelligent placement strategies
that optimize not only for performance but also for minimizing energy consumption.
This line of inquiry contributes to the broader goal of creating more environmentally
friendly and energy-efficient computing systems.

6.5 Multi-Agent DRL Architecture
Building upon the foundation of DRL-driven service placement, an intriguing avenue
for future work involves the exploration of multi-agent DRL architectures. This entails
the development of sophisticated algorithms that enable multiple autonomous agents
to collaboratively optimize service placements within the Edge-Cloud continuum. The
multi-agent approach opens up possibilities for decentralized decision-making, enabling
agents to interact, negotiate, and adapt their strategies in response to dynamic environ-
mental changes. By embracing the multi-agent paradigm, researchers can unlock new
levels of adaptability, scalability, and robustness in optimizing service placement, thus
paving the way for more advanced and resilient Edge-Cloud continuum.
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7 Conclusions
In this study, we looked at how well a deep reinforcement learning (DRL) strategy
worked for distributing services between cloud and fog computing environments. To
evaluate the effectiveness and performance of our suggested solution, we concentrated
on success rate, distribution of service request slices and in-depth analysis encompassing
various metrics for all three data intensive applications.

Our results show that applying a deep reinforcement learning-based artificial intel-
ligence technique for service allocation produces promising results. The Success Rate
indicator showed that our method successfully assigned services to the proper computing
environment, resulting in a high rate of successfully completed service executions. This
increase in success rates is a strong evidence of improved system performance and user
satisfaction.

The author faced various difficulties that required to his focus and use his problem-
solving abilities during the research process. One significant obstacle was the creation of
the fundamental elements for the Deep Reinforcement Learning (DRL) algorithm: the
State Space, Action Space, and Reward function. Designing these components carefully
was essential to provide the algorithm with what it needed to learn effectively. As the
experiment progressed, the author encountered a notable challenge related to handling
data intensive applications. This challenge involved strengthening these applications
to handle a large number of requests without any issues. He had to develop robust and
resilient applications that could handle the high volume of requests.

As a result, our research adds to the body of information on the real time service
distribution in Edge-Cloud continuum and highlights the advantages of deep reinforce-
ment learning as a useful strategy. We can create the foundation for even more effective,
long-lasting, and responsive distributed systems in the future by taking into account the
constraints and expanding on our discoveries.
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Appendix

I. Source Code
The source code of applications and developed algorithms for this study is located in
repository https://github.com/chinmaya-dehury/AI4FogCloudServiceDisperse.The
access to the repository could be granted by sending an email to chinmaya.dehury@ut.
ee
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II. Writing Assistance
ChatGPT is an instance of the GPT-3.5 architecture, a variant of the GPT (Generative
Pre-trained Transformer) model developed by OpenAI that is able to process and generate
natural language text. Natural Language Model ChatGPT’s assistance was leveraged in
the writing process of this thesis to fix grammar mistakes and reword some sentences in
academic style.
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