
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Enrih Sinilaid

Monitoring and controlling smart home appliances

using IoT devices

Bachelor’s Thesis (9 ECTS)

Supervisor: Chinmaya Kumar Dehury

Tartu 2021

2

Monitoring and controlling smart home appliances using IoT devices

Abstract:

Usage of different smart home appliances and systems is becoming increasingly more pop-

ular in many households. There are many key points for rising number of adopters. For some

it is the price as these systems and appliances are not that new to the market anymore and

thus are more reasonably priced. Also, with the development in both hardware and software

areas processing and memory units have become both faster and smaller which makes de-

signing and developing different smart home devices more viable for building and selling

commercially. This ensures that this smart home systems market is not dominated by few

companies and gives a chance for anyone to try them out price wise. The second key point

is the versatility of different smart home devices that are out in the market, ranging from

lights to home automation and security. This variability lets people start out with few

cheaper products like smart lighting or media devices and see if this is something for them.

Smart home appliances are devices that could be a common sight at many households like

lights, speakers, TVs, air conditioners and so on but what makes them different is the built-

in functionality for connecting to internet and then be monitored and controlled remotely.

This ability to be remotely controlled and monitored makes it possible to develop automa-

tions that could further enhance the way these devices are used.

The aim of this thesis is to create smart home system that could monitor and control smart

home appliances using IoT. To better demonstrate the IoT capabilities in the smart home

system, a user tracking system will be developed. This system will collect user’s location

data in real-time, which will be used to control devices around the user. This thesis uses an

open-source home automation platform and various single-board computers to handle smart

home devices and track users. As the tracking should differentiate between different users,

users are located via their smartphones using either WIFI or Bluetooth. Communication

between the home automation platform and user tracking devices is done by using MQTT

messaging protocol.

Keywords:

openHAB, openHABian, IoT, Raspberry Pi, SSH, MQTT, Python, Home Assistant, Apple

HomeKit

CERCS: P170 Computer science, numerical analysis, systems, control

Targa kodu seadmete seire ja juhtimine kasutades asjade interneti sead-

meid

Lühikokkuvõte:

Erinevate nutikate kodumasinate ja -süsteemide kasutamine on muutumas paljudes majapi-

damistes üha populaarsemaks. On mitmeid faktoreid, miks nende kasutusele võtjate arv kas-

vab. Mõne jaoks on see hind, sest need seadmed pole enam turul uued, seega ka enamikel

seadmetel on hinnad palju käepärasemaks muutunud. Samuti on nii riist- kui ka tarkvara

arengu tõttu protsessorid ja mäluüksused muutunud kiiremaks kui ka väiksemaks, mis

3

muudab erinevate nutikodu seadmete kujundamise ja arendamise elujõulisemaks äride jaoks

See tagab, et vähesed suuremad ettevõtted ei domineeri nutikodu süsteemide turgu, andes

võimaluse ka väiksematel ettevõtetel oma lahendusi luua ja müüa, mis annab kõigile või-

maluse neid seadmeid hinnatarkalt proovida.

Teine faktor on mitmesuguste turul olevate nutikate koduseadmete mitmekülgsus, alates tu-

ledest kuni koduautomaatika ja turvalisuseni välja. See varieeruvus võimaldab inimestel

alustada mõne odavama tootega, näiteks nutivalgustuse või meediumiseadmetega, ja vaa-

data, kas see on midagi nende jaoks.

Nutikad kodumasinad on seadmed, mis võivad olla paljudes majapidamistes tavalised näh-

tused, näiteks valgustid, kõlarid, telerid, konditsioneerid ja nii edasi, kuid mis muudab need

erinevaks on sisseehitatud funktsionaalsus interneti-ühenduse loomiseks ning seejärel lasta

kasutajal neid kaugelt juhtida ja seirata. See kaugjuhtimise ja seiramise võimalus võimaldab

välja töötada automaatika, mis võiks veelgi täiendada nende seadmete kasutamist.

Selle lõputöö eesmärk on luua aruka kodu süsteem, mis saaks IoT abil nutikaid kodumasi-

naid jälgida ja juhtida. Targa kodu süsteemi IoT võimaluste paremaks demonstreerimiseks

töötatakse välja kasutaja jälgimissüsteem. See süsteem kogub reaalajas kasutaja asukoha-

teavet, mida kasutatakse kasutaja ümbritsevate seadmete juhtimiseks. Selles lõputöös kasu-

tatakse nutikodu seadmete käitlemiseks ja kasutajate jälgimiseks avatud lähtekoodiga ko-

duautomaatika platvormi ja mitmeid üheplaadilisi arvuteid. Kuna jälgimisel tuleks eristada

erinevate kasutajate vahel, siis leitakse kasutajad nende nutitelefonide kaudu, kas WIFI või

Bluetoothi abil. Koduautomaatika platvormi ja kasutajate jälgimisseadmete vahel toimub

suhtlus MQTT sõnumside protokolli abil.

Märksõnad:

openHAB, openHABian, IoT, Raspberry Pi, SSH, MQTT, Python, Home Assistant, Apple

HomeKit

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-

teooria)

4

Table of Contents

1. Introduction ... 6

1.1 Aim of the thesis ... 7

1.2 Outline of the thesis .. 7

2. Background ... 9

2.1 Idea ... 9

2.2 Home Automation Platform ... 9

2.2.1 Platforms ... 10

2.2.1.1 Home Assistant .. 10

2.2.1.2 openHAB ... 11

2.2.1.3 Apple HomeKit .. 12

2.2.2 Chosen Platform .. 13

2.3 User tracking system .. 13

2.3.1 Trackers hardware ... 14

2.3.2 Trackers software .. 15

2.4 Smart Home Devices .. 16

3. Requirements ... 17

3.1 Functional requirements ... 17

3.2 Non-functional requirements .. 18

4. Smart Home System Architecture ... 19

4.1 System Overview .. 19

4.2 Home Automation Platform ... 20

4.2.1 System ... 20

4.2.2 Initial Setup ... 20

4.2.3 Configuration .. 22

4.2.3.1 Configuring openHAB ... 24

4.2.3.2 Adding Devices & Services ... 26

4.2.3.3 Automation .. 30

4.3 User Tracking System Configuration ... 31

4.3.1 System ... 31

4.3.2 Initial Setup ... 32

4.3.3 User Tracking Software .. 34

4.4 Example of implementation ... 35

5. Implementation Challenges ... 37

6. Conclusion ... 38

5

7. References ... 39

Appendix ... 41

I. Rule for user location based automation ... 41

II Custom user tracking script ... 44

III License .. 48

6

1. Introduction

With the progress in various information technology fields, many aspects of human society

have changed. Access to information has never been quicker and easier as devices capable

of accessing information anywhere with internet coverage have become very common. To-

day many devices around us can receive, store, process and transfer data to connected de-

vices. This system is known as the internet of things (IoT). Over the years, the popularity in

this field has been increasing rapidly. According to the GSM Association, it is expected that

the number of IoT devices will grow to 25.1 billion by 2025 [1].

One of many popular real-world applications for IoT is in smart home ecosystems. Through

IoT, it becomes possible to monitor, control and automate smart home devices at some level,

even for private consumers with no prior knowledge in this field. A large part of the popu-

larity also stems from the fact that it is possible to create smart home systems with relatively

more nominal cost than in the past. This is due to the development and the broader availa-

bility of older technologies. Adroid Market Research, a global market research firm, points

out that smart home system’s take-up is growing and that smart home systems’ global mar-

ket is expected to exceed USD 95 billion by 2025 [2].

A smart home is essentially a home where through wireless technologies, various appliances

and devices can be monitored and controlled using mobiles or other networked devices.

Data generated by sensors and smart home appliances make it possible to monitor conditions

at home and its devices. Devices themselves can communicate with each other or with smart

home central platform through WIFI and Bluetooth. This enables for smart home solutions

where through IoT capabilities, more complex automations are possible.

Smart homes are not only more popular due to the capability and affordability of smart

devices but also since there are open-source smart home platforms. Some of these platforms

are easy to implement and do not require huge investment. They can enable the user to tie

in existing smart systems in the house to one central system. These platforms work by using

wireless technologies and IoT capabilities to communicate with smart solutions from differ-

ent ecosystems.

The flexibility of some open-source smart home platforms is not only limited to connecting

different smart systems in homes. With some research and time, users can try to build their

own solutions on top of these platforms or implement advanced automations. This level of

flexibility gives the users a certain degree of control of how their smart home systems han-

dles information flow around the house. This enables users to have better control over their

privacy and be sure that their private information will not reach any third party.

The degree of control over the private information gives certain open-source smart home

platforms advantage over commercial smart home platforms. This is not the only advantage

of choosing open-source platform for smart home. Open-source solutions often have better

transparency than commercial solutions. This means that users could have better idea how

open-source smart home platform works and how it works behind the scenes, thus possibly

gaining better trust than their commercial counterparts.

7

Although smart home platforms importance in smart home is not low, it would be almost

useless without any devices to control, monitor or automate. These devices can almost be

anything in the house that could gather information, use information to accomplish some

task or perform simple actions when triggered. These devices could be smart entertainment,

climate, kitchen, security devices and the list does not end there.

With microcontrollers and single-board computers, even normal devices could act as smart

devices. As an example, it is possible to monitor ordinary devices and appliances’ energy

usage and implement a switch for turning them off and on. This allows for creating a home

system with efficient electricity usage and thus lowers the overall cost in electricity. Due to

that, homeowners could invest more into field of smart homes without having to worry about

accumulating huge electricity bills.

1.1 Aim of the thesis

The aim of this thesis is to create smart home system that could monitor and control smart

home appliances using IoT. To better demonstrate the IoT capabilities in the smart home

system, a user tracking system will be developed. This system will collect user’s location

data in real-time, which will be used to control devices around the user. This thesis uses an

open-source home automation platform and various single-board computers to handle smart

home devices and track users. As the tracking should differentiate between different users,

users are located via their smartphones using either WIFI or Bluetooth. Communication

between the home automation platform and user tracking devices is done by using MQTT

messaging protocol.

1.2 Outline of the thesis

This thesis consists of three stages that are:

• Research and idea stage. In this stage the outline of the system will be thought out.

Following that will be a research period into different technologies that would allow

to construct the envisioned system.

• Setting up home automation platform. In this stage an open-source platform Open-

HAB is used for monitoring, controlling and automating various smart home devices

across the house. As such this stage will consist of exploring OpenHAB functional-

ities and possibilities, setting up the OpenHAB, connecting devices into it and im-

plementing automation and UI for controlling and monitoring smart home devices.

This stage will also describe any problems or findings found.

• Developing user tracking system. This stage will cover how house user tracking sys-

tem was developed. This will cover the research into different approaches and what

approach was used in the end. As such there will also be steps taken in development

phase and all risen problems will also be covered.

As for thesis structure it is as following:

• Background, section for information about the technologies and tools used in this

thesis.

8

• Requirements, section describing use cases and requirements for the system devel-

oped in this thesis.

• System architecture, section that will cover the following subsections:

o House automation system, section about setting up home automation plat-

form, connecting smart home devices into it and automating said devices.

o User tracking system, section about developing system for tracking users in

the house.

• Implementation Challenges, section describing different challenges that were faced

when developing the system.

• Conclusion, section describing the work accomplished.

• Appendix, section with the following:

o Appendix I, section that showcases the automation script.

o Appendix II, section that showcases the user tracking script.

o Appendix III, section for license.

9

2. Background

This section will give information about the system built in the thesis and introduce different

components and technologies used in the implementation. This section will cover different

open-source house automation platforms and explain why openHAB was used in the end.

Next, there will be information about what tools and hardware will be used for the user

tracking system. Finally, the smart home devices that are going to be used in this thesis will

be introduced.

2.1 Idea

This thesis aims to create an IoT-based smart home central system that could control, mon-

itor, and automate different smart home devices in the house. This system will make use of

a small single-board computer and open-source platform capabilities of good modularity,

easy development and low cost. The user tracking system will be built with the purpose to

gather data about user’s whereabouts in the house. This data will be used to automate smart

devices around the house to respond when users are near them or have left their range. The

main purpose of interaction between user location tracking and smart appliance control is

to show what IoT-based smart home system is capable of.

Not only is the location of users monitored but also the smart home devices. The smart home

system will use the data gathered from each smart home device and enable a manual control

panel for house users to access. Said control panel would show each device’s state, have an

option to control these devices manually, and possibly show any data that is useful for the

user, for example, time, date, the climate in and out of the house, energy consumption and

more. This control panel will be able in both web and mobile application form.

An example of a possible scenario that should be possible with this system: Joe arrives at

home. The system detects that and will turn on lights in the vestibule and cloakroom. Next,

as it is a warm summer day, the system will turn the air conditioner on. As Joe reaches his

room, the system will turn off lights in previous locations and turn on the Joes room lights.

After some time, Joe leaves, and the system will turn off all the active devices and as indoor

temperature is still relatively high, the air conditioner is set to run in an eco-mode for more

efficient power consumption.

Later, Joes wife reaches home and starts doing laundry. As she is working in the laundry

room and going around the house collecting old bedsheets, the system automatically switch-

ing on and off lights in the rooms she is visiting.

According to this example, the system should work with multiple users and should be able

to differentiate between them. This will also make it possible for customised automations.

The following subsections will introduce the components and tools used for making this

system possible.

2.2 Home Automation Platform

A home automation platform is a system that is responsible for monitoring and controlling

home devices like lightning, climate, entertainment systems, appliances and even home

10

security. These devices are typically connected to a central hub that is managed by a house

automation platform. There are many competing vendors for these platforms, and there are

even several open-source systems.

2.2.1 Platforms

For this thesis, the home automation platform must be able to handle multiple devices effi-

ciently and have support for MQTT for simple and effective communication between de-

vices and includes support for a large variety of smart home devices and appliances. These

platforms should also have well-prepared documentation for understanding platforms’ ca-

pabilities and limits and have an active user base and community for quickly getting answers

to any specific question.

One other criterion for the home automation platform is to be IoT friendly and be efficient

in its use of resources. As this smart home system will use a small single-board computer,

the preferred platform would need to be optimised to run on it. Stability is also a significant

factor, and there should not be any problem with storing and keeping safe the gathered data

for a certain amount of time.

The following subsections will introduce few platforms that potentially cover the set criteria

and could be used to build similar systems created in this thesis. Based on these platforms,

the one used in this thesis will be selected and further presented and discussed. One com-

mercial platform is also introduced for better comparison.

2.2.1.1 Home Assistant

Home automation software Home Assistant1 is a free and open-source platform for creating

central control systems for smart home devices and appliances. This platform is designed

around and written in Python, enabling Python’s use in further custom development. Since

November 2020, according to their official integration page [3], Home Assistant has over

1700 modular add-ons that will allow it to use various smart home devices, services, and

systems.

Project Home Assistant started in September of 2013, and after few months in November,

the core project was first published publicly on GitHub. The founder of this project is Paulus

Schoutsen, and according to him, this project’s goal was to be the platform for the home.

Since the initial release, the project was more of a hobby project aimed at controlling Philips

Hue lights [4]. Now, the Home Assistant community has risen in numbers, and in 2020

GitHub listed Home Assistant as second place in Python packages with the most active

contributors.

As mentioned by the founder of Home Assistant in one article [4], this project aimed to

create smart home platform that could control everything from a central point. His idea was

to make smart home platform that focuses on smart home systems’ usability and adaptivity.

In his vision, that he talked about in one of his blog posts [5], the home automation system

should not be something that would become cumbersome to use but instead be something

that all people in the household would find helpful. This means that system should work

1 https://www.home-assistant.io/

11

flawlessly, blend with everyday workflow and should run at home. Overall, according to the

blog post, the vision for Home Automation was to be able to develop smart home systems

that would never get in the way or annoy but would be missed when not working.

Home Assistant can be used in numerous ways. Recommended way would be to use their

operating system in a dedicated system, for example, on Raspberry Pi. It is also available as

a container-based solution that, for example, could run on Docker. After initial configura-

tion, the platform could already detect some smart home appliances on the home network.

Other devices that were not automatically found can easily be added through UI. if there are

integrations available to those devices.

According to Home Assistant documentation page [6], automation in Home Assistant can

be accomplished in multiple ways. The easiest way to implement automation is through UI

using the Automation Editor feature. This builds automation that works by waiting for a

trigger, then checking conditions and finally calling an action. For more advanced automat-

ing, Home Assistant has Templating feature that uses Jinja2 templating engine and syntax.

Using this, users could benefit from a wider variety of operations and custom variables to

build more in-depth automations and system rules. Home Assistant is also capable of run-

ning python scripts. This means that users are not limited to use only the provided templating

engine but could push their imagination to the limit and implement functionalities that are

only limited by Python and hardware capabilities.

2.2.1.2 openHAB

The open Home Automation Bus, or openHAB2 for short, is an open-source home automa-

tion platform designed to be a central piece for a smart home [7]. openHAB is entirely writ-

ten in Java and is based on the Eclipse SmartHome framework. It is also very modular, and

its base platform can be enhanced and extended through different add-ons. This allows for

openHAB to be able to use different kinds of services or communicate with various home

automation solutions and devices. The openHAB supports close to 3000 various add-ons for

both different services and devices as of writing this thesis.

In Kai Kreuzer blog post [8] he briefly explains about the origin of openHAB and the pro-

cess of development of both openHAB and the team behind it. According to him, the open-

HAB project was initially released in 2010 by Kai Kreuzer and has since then become very

popular. In 2013 openHAB core framework was contributed to Eclipse Foundation and be-

came the Eclipse SmartHome project. According to him, this move allowed openHAB to

truly become an open-source project with well protected and rigid intellectual property man-

agement. This enabled other companies and developers to use the openHAB core in their

own solutions and ultimately helped with the openHAB community’s growth and contribu-

tions. Based on the Eclipse SmartHome framework, new development branches of open-

HAB were created as versions 2.X and 3.X.

On openHAB vison page [9], the idea behind openHAB was to combat the situation where

the user comes up with ideas and wishes on how to use different devices and systems but

2 https://www.openhab.org/

12

that were not supported out of the box or intended in their use cases. Thus, according to

them, this project was imagined as a central integration point between all of the different

systems and services. As the vision behind this project was to consider users’ wishes, han-

dling information and privacy of users was also one of the key points. Considering that,

openHAB gives their user the option to decide how they wish to control the data movement

in and out of the local system.

According to the team behind the openHAB [9], the openHAB was never intended to replace

the existing solutions but rather enhance them, it is considered a system of systems. This

means that all the sub-sub systems are to be configured and set up independently, leaving

openHAB to only focus on these sub-systems’ daily use. These sub-systems can further be

broken down into items that are used in defining automation rules and UIs of the system. In

openHAB, the notion of an item is a data-centred functional building block, and it does not

matter whether this item is a device or some web service, which makes the concept of item

abstract. They say that, this concept makes it easy to switch between different services and

devices without changing the automation rules and UIs defined beforehand.

openHAB automations are handled through a lightweight rule engine as such automations

are referred to as rules in openHAB. These rules work using a trigger-based action activation

model. These rules can be defined few different ways. One of the ways is to use the UI based

simple rule creator. Their users can easily choose triggers and corresponding actions to be

executed.

According to openHAB documentation [10], for more in-depth automation, users can write

their own rule files. Documentation mentions that, as the rule syntax is based on Xbase and

is similar to Xtend, users can refer to Xtend documentation when writing rules. Also, the

process of writing rules is made easier through openHAB VS Code Extension, which offers

syntax checks, colouring, and many more valuable features. The rule engine can also use

JavaScript scripts which gives the users even more freedom when creating automations.

2.2.1.3 Apple HomeKit

HomeKit3 is according to Apple’s developer page [11] a framework for smart home devices

and appliances that are HomeKit enabled by manufactures. This software framework only

works with applications that run on Apples operating system. These applications like home

allow users to configure, monitor, control and automate their smart devices.

Apple HomeKit was first released with iOS 8 on 2014. At release the framework worked

with third-party applications which enabled them to have interface for HomeKit devices.

On 2016 Apple released their own official application called Home for managing all

HomeKit enabled devices and made simple automations possible through that. Home appli-

cation only worked with devices running iOS 10 and watchOS 3 but later, on 2018, this

application was also released Apples computers, running macOS 10.14.

According to Apple [12], the main idea behind HomeKit was to simplify the tasks around

the home. For that HomeKit was developed to act as a set of tools, enabling Apple and other

3 https://developer.apple.com/documentation/homekit#//apple_ref/doc/uid/TP40015050

13

people to build solutions for their needs. These solutions could allow for high level man-

agement over accessories and devices.

Although HomeKit could be used by users to develop their own complex smart home solu-

tion for monitoring, controlling or automating HomeKit enabled devices, it does have a mi-

nus over open-source platforms. That minus is that the number of supported devices is little.

According to J. Porter’s article [13], as of 2019 only 450 devices were marked as compati-

ble. This may be due to MFI program, that manufactures must enrol in, in order to have

permission to add HomeKit capabilities to their devices. This means that only certain man-

ufactures can develop devices that work with HomeKit.

2.2.2 Chosen Platform

The requirements and capabilities expected from the home automation platform used in this

thesis were numerus. From three solutions only openHAB and Home Assistant met those

requirements. Both are essentially very similar in their capabilities with no noticeable limi-

tation for neither of them. However, openHAB was picked to be the platform to be used in

this thesis.

One of the key differences between the two platforms, that decided which platform was

going to be used in this thesis, was documentation quality. The documentation for automa-

tion syntax and different add-ons were more in-depth and extensive in openHAB. Both plat-

forms have also included examples of possible use-cases for better understanding, but open-

HAB seemed to have more comprehensive and overall, more examples than Home Assis-

tant.

As for other requirements, openHAB is configured to run on a myriad of different platforms

such as Windows, macOS and Linux and even in container-based environments like Docker.

It will work with almost any hardware in the range of limited single-board computers to

server computers. According to their documentation, the system will behave well with 2 GB

of random-access memory and 16 GB of low-speed storage using SD card. This means that

Raspberry Pi’s 2 to 4 are good enough, where Pi 4 would give the best experience.

Due to openHAB’s modular design with close to 3000 add-ons and well-established support

for MQTT, it is fair to say that the openHAB platform is very IoT friendly. Their add-ons

enable using a myriad of different IoT devices and services, which lets the users design

solutions for practically any IoT device. The well thought out MQTT support makes it pos-

sible for other IoT systems and devices to communicate effortlessly with openHAB.

2.3 User tracking system

This thesis aims to show what IoT can accomplish in a smart home environment. This thesis

will develop a user tracking system that could gather data about user’s whereabouts around

the house and transmit that data through MQTT to the home automation platform. The user

tracking system will essentially allow for more complex automations and smart home sys-

tem control thanks to IoT capabilities.

User tracking systems can be implemented in a variety of different forms. One way to divide

them would be a system that either could or could not differentiate between users. Both

14

systems have their use-cases, methodology and implementations. For a system that could

not acknowledge one user from another, it is usually implemented to sense movement or

existence of entity around the system. For this, these systems would use sensors that could

detect movement or heat emission from a foreign entity. An example of where these systems

are most often found is in security to detect intrusion.

The tracking systems that could differentiate between users in its detection range are usually

implemented to keep track of users’ whereabouts. This is done for a couple of reasons. One

of them is for security. If it is possible to know where somebody is, then it is possible to seal

off access to areas they are not privileged for. Many offices use this approach to keep the

personnel to their specified areas.

The second use case is for controlling and automating the environment around the user. This

is mainly implemented in smart home solutions for more complex, personalised and con-

venient automations. An example of a home automation system with this tracking system

would be when one user could enter the bathroom and bath would be preheated to their

preferred temperature.

For this system to differentiate between users and track their whereabouts, the system would

need to read identification data from the user when they enter a new area. The data used for

identification could be always on the user, for example, biometrics data or an external data

carrier. In the case of using biometrics, then the system could either implement face recog-

nition through cameras or fingerprint scanners at each entrance.

Using external identity data carriers, the system could be implemented in various ways de-

pending on the carrier. The carriers could share the data two ways, either in contact or near

range. For contact range, the carriers are not active and only passively share data once they

come in contact with some sort of reader. This system could be implemented through the

usage of personalised key cards and card readers at each entrance. As for the near range

carriers, they could be active and connect to nearby scanners to transmit identification data

from range. This means that users would not need to take action at each entrance but simply

pass by, and the system would record their whereabouts by itself.

For this thesis, the tracking system will be able to differentiate between users using the

external identity data carriers that the system from a close range could read. This will make

it possible to implement automations near the users seamlessly and be more convenient as

the user does not need to perform an identification action at each entrance. The system will

consist of multiple trackers, one per room, to automatically detect the user when they are

near or in the room.

2.3.1 Trackers hardware

This thesis’s user tracking system will be a series of stand-alone devices capable of wireless

technologies like WIFI and Bluetooth. These devices are going to be divided around the

house, one device per room. WIFI will be required to send data from each device to the

home automation platform.

Wireless technology will also be used to track users. In order to discover users, tracking

devices in different rooms will be using Bluetooth to find user carried Bluetooth devices.

15

By doing so, if a user carried Bluetooth device is discovered, for example, their phone, the

tracker can check the signal strength from it to the device. After one iteration of scanning,

the device will send data consisting of discovered devices and their signal strengths to it via

MQTT.

In order to realise this idea, the stand-alone devices need to be programmable and capable

of running continuously. There are multiple different hardware options that could be con-

sidered. Two main options are to use either Arduino single-board microcontrollers or Rasp-

berry Pi single-board computers. Both options have their strengths and weaknesses.

Arduino is an open-source company that designs and manufactures single-board microcon-

trollers, according to Arduinos introduction page [14]. From a wide variety of controllers

that they manufacture, some can use WIFI and Bluetooth. In essence, Arduino microcon-

trollers are perfect for interacting with sensors and handling data in small quantities. De-

pending on the use case, they can be very affordable. The main downside of Arduino mi-

crocontrollers is that they are capable of primarily small singular tasks, and some controllers

are not easy to source.

Raspberry Pis are developed by Raspberry Pi Foundation in the United Kingdoms. The

Raspberry Pi is a single-board computer that can run operating systems and graphical output.

Their use-cases are broader compared to Arduino microcontrollers as they are not that lim-

ited in hardware and are also affordable.

The tracking system stand-alone devices in this thesis make use of Raspberry Pi Zero W

single-board computers. Although Arduino also has microcontrollers that would fit into the

tracking system use-case, Raspberry Pi Zero Ws were more accessible. Also, these Rasp-

berry Pis enabled more tinkering and researching into different ideas of discovering user.

2.3.2 Trackers software

For trackers to work, they needed to have software capable of utilising the hardware. As the

trackers are running Linux based Raspberry Pi OS Lite operating system, then there were

multiple different ways to implement user tracking and discovery. One of the ways was to

use some familiar programming language and its modules to implement the Bluetooth dis-

covering and data transfer over MQTT. The other option was to find an already existing

open-source solution and develop software on top of that.

After searching for possible open-source solutions, there was only one that suited the use

case called reelyActive. reelyActive was founded in 2012 with the idea to create a cloud-

based active RFID system. Over the years, their team and project have grown, and as of

2017, the solution is capable of running on Raspberry Pi and supports identifying Bluetooth

devices.

reelyActive seemed to be an excellent open-source solution that could be used in imple-

menting the software for trackers. But due to aged and almost non-existent documentation

and support for seemingly only Bluetooth Low Energy technology, this open-source solu-

tion was not used.

16

As there were no suitable open-source solutions to implement trackers software, the only

way was to implement a solution from scratch. The user tracking system software will be

implemented using Python, as it has support for Bluetooth and MQTT.

2.4 Smart Home Devices

In this thesis, due to limited amount of resources, Philips Hue smart light bulbs will be used

as smart home devices. In total 3 Philips Hue ambient and colour smart lights will be used.

The Philips Hue line of smart LED lights is manufactured by Signify N.V. This line of LED

lamps can have colour changing, light level, and temperature control capabilities and come

in various forms. Apart from more traditional bulbs, they can also be in light strip, outdoor

lamp, floodlamp, and many other forms.

What makes Philips Hue lights smart is the capability for them to be controlled wirelessly

as specified on Philips Hue about page [15]. For that, there are few ways. With newer lights,

it is possible to connect to them over Bluetooth and manage them through smartphone ap-

plications or computers. The second way is to have Hue Bridge, a central controller for

Philips Hue lights. The Hue Bridge can be connected to home internet through an ethernet

cable, and then Hue Bridge will handle each light by itself. This means that users do not

need to connect to each light separately and easily control them through the internet.

This thesis uses only these lights as they are capable of different automations and thus suf-

ficient for demonstrating IoT capabilities in monitoring and controlling smart home devices.

17

3. Requirements

This section will give overview of functional and non-functional requirements. These re-

quirements will describe what was focused on in setup and development process of automa-

tion and user tracking systems. Described requirements are based on presented idea in sec-

tion 2 and goals set with thesis supervisor.

3.1 Functional requirements

This subsection will describe the functionalities that both smart home and tracking system

will provide to users. Description will follow the schema of functionality and then descrip-

tion of functionality.

• The smart home system should show data about connected devices. This means that

users should be able to see any meaningful information about the devices connected

to the smart home system through use of user interface. For example, the data could

be about the power state of devices or information collected by sensors.

• User should be able to manually control the devices. The devices that are connected

to smart home system and can be controlled should be controllable by user. This

means that user should be able to use user interface to control devices in any mean-

ingful way.

• User should be able to add new devices to the smart home system easily. This means

that smart home system should have functionality to easily add any supported de-

vice. For example, this system could find new devices by looking through devices

connected to network.

• The smart home system should allow writing automation scripts and rules. This

means that smart home system used in this thesis should allow for writing custom

automation scripts for devices connected to it.

• The smart home system should be able to store data to it. This means that the smart

home system should enable for automatically or manually storing information to it

or to the cloud. This is for saving states of devices for automation and monitor pur-

poses and creating graphs using selected data collected over time.

• Guests locations should be included in location-based automations in the smart home

system. This means that smart home system could make use of information regard-

ing guests’ location and enable generic automations based on their location.

• The user tracking system should be able to frequently share information with the

smart home system. This means that the smart home system should have access to

user location that is updated frequently. This enables for user location-based auto-

mations that could trigger whenever user is near to a certain room or location.

• The user tracking system trackers should be plugged in and out without any problem.

This means that users could unplug the trackers from the electricity and re-plug them

without facing any problem. The trackers should automatically start scanning for

users when turned on.

18

• The user tracking system should be able to track guests’ locations. This means that

user tracking systems trackers would not only track the users but also any unknown

user and their devices. This would enable for the smart home system automations to

work with guest locations as well.

3.2 Non-functional requirements

This subsection will describe the non-functional requirements that act as a criterion for both

the smart home system and the user tracking system. Descriptions will follow the schema

of non-functionality and then description of non-functionality.

• The smart home system user location automation should trigger almost immediately

when user’s location changes. This means that there should not be large time differ-

ence between user changing their location and location-based automations trigger-

ing.

• The smart home system should allow for multiple automations to trigger simultane-

ously. This means that system could handle multiple automations at the same time

which would prevent tasks from piling up.

19

4. Smart Home System Architecture

This section will cover the architecture and configuration of the home automation platform

and the user tracking system. The following subsections will describe how both systems

were designed and cover the steps taken to build them.

4.1 System Overview

The home automation system built in this thesis consists of two sub-systems: the home au-

tomation platform and the user tracking system. The home automation platform will be the

central system that handles the smart devices and services, enables automations and user

interaction. The user tracking system consists of stand-alone tracker devices, each respon-

sible for specific rooms in the home. This tracking system could be viewed as a service for

the home automation platform. Essentially the tracking system is responsible for collecting

user location data and sending that to the home automation platform for user location-based

automations.

These two sub-systems communicate through the MQTT network. The network will consist

of an MQTT broker, hosted by the home automation platform, and MQTT clients on each

tracker. Each MQTT client on trackers will be publishing collected data to the MQTT bro-

ker. The home automation platform will also have an MQTT client that is subscribed to the

broker. This enables the platform to manage sent data and use that information in automa-

tion. The described system communication network is represented in Figure 1.

Figure 1. Communication network between systems.

20

4.2 Home Automation Platform

The following subsections will cover the overview of the system, the setup and configura-

tion processes, adding the devices and services to the platform and implementing the auto-

mation.

4.2.1 System

The home automation platform will consist of two parts, the software and hardware. The

software sets the requirements for hardware. In this thesis, the software used is the open-

source home automation platform openHAB. Based on openHAB documentation, the plat-

form is suitable to run on various systems and hardware. One of the hardware that is sup-

ported by the openHAB is the Raspberry Pi line of single-board computers.

This thesis uses Raspberry Pi 4 for containing and running the openHAB platform. Rasp-

berry Pi 4 has different available configurations on the market, and one used in the thesis

has the following hardware specifications:

• CPU – Broadcom BCM2711, Quad-core Cortex-A72, 64-bit, 1.5 GHz

• RAM – 4GB LPDDR4-3200 SDRAM

• WIFI – 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless

• Bluetooth – Bluetooth 5.0 and BLE

This single-board computer does not have any built-in storage, and as such, the storage is

handled through a Micro-SD card as the board has an available slot for it. There are other

features on the board like graphical output ports over micro-HDMI, Gigabit Ethernet port

and USB 3.0 and 2.0 ports, but these do not have any purpose in this thesis.

The Raspberry Pi 4 single-board computer will be running a Linux system setup by open-

HAB called openHABian4. openHABian is based on standard Raspberry Pi OS Lite and

designed as a headless system. It has plenty of features that make setting up openHAB easy.

One of the features is that openHABian will set up all the necessary tools on the first boot

and install the latest packages on the first boot. This makes it easy for new users that have

no prior experience with Linux based systems as they only need to provide ethernet access

to Raspberry Pi and leave it to set itself up.

Other than that, openHABian also comes with Linux packages and pre-installed settings that

enable users to set up more advanced system configurations. A few of these packages are

for setting up security measures, providing IoT-friendly communication through MQTT,

enabling databases and data visualisation, and providing secure remote connectivity through

VPN. All of these packages and more can be enabled and configured through the open-

HABian Configuration Tool. The user could also configure the system setting to create

backups and update openHAB and openHABian through this tool.

4.2.2 Initial Setup

4 https://www.openhab.org/docs/installation/openhabian.html

21

With hardware and software introduced in the previous section, the home automation plat-

form can be set up.

The home automation platform setup on Raspberry Pi single-board computer requires the

following:

• Raspberry Pi 4

• openHABian image file

• Flash tool

• 16 GB Micro-SD card

• Micro-SD card reader

• Ethernet access

To get the openHAB platform running on the Raspberry Pi 4, the openHABian image file

is needed. It can be acquired on the openHAB project GitHub page5, accessed easily through

the documentation page, covering the openHABian installation process. There are multiple

versions of openHABian images, but the image used in this thesis is version 1.6.1, which

has version 2 of openHAB called openHAB 2. This image was at the time of installation the

newest available stable release. Since then, there have been new releases with updates to

openHAB tools and packages. Even a new version of openHAB has been introduced, which

is openHAB 3.

After the image file has been acquired, it can be flashed onto a Micro-SD card. There are

plenty of tools available for flashing, but one used in this thesis is balenaEtcher6 by balena.

This tool is relatively easy to use, as it only needs few inputs from the user. Using this tool

first image file was selected and then the destination. It should be noted that when using

balenaEtcher, the openHABian image file should be unpackaged before flashing to a storage

device.

Another requirement for flashing image on a Micro-SD card is to have a Micro-SD card

with 16 GB of storage and a way for the computer to manage the flashing process. The 16

GB of storage is not mandatory for the Micro-SD card as the image does not take up a large

amount of space but is recommended by the documentation. For computer to access Micro-

SD card, it needs to have a SD card reader compatible with Micro-SD cards. As the com-

puter used for flashing purpose already had an inbuilt reader, no additional tool was neces-

sary.

After the flashing process has finished, the next step is to set up openHAB on Raspberry Pi

4. The Micro-SD card with flashed image needs to be installed on the Raspberry Pi 4, con-

nected to the internet either through WIFI or Ethernet cable. Using the Ethernet cable is

easier as connecting with WIFI involves modifying the configuration file with WIFI SSID

and password before the first boot. After the Micro-SD card is installed and a way for con-

necting to the internet is provided, the single-board computer can be booted.

5 https://github.com/openhab/openhabian
6 https://www.balena.io/etcher/

22

After the Raspberry Pi 4 is booted for the first time, it will automatically set everything up.

This process length is entirely based on the internet connection, Micro-SD card writes and

reads speed and the Raspberry Pi computers processing capabilities. In the installation doc-

umentation, it is mentioned that this process could take around 15 to 45 minutes. It should

be noted that Raspberry Pi 4 in this thesis took about 20 minutes to finish this process.

When the process finishes, the openHAB web server is set up. Web server’s user interface

can be accessed on any computer on network through a web browser with the network router

designated IP address for Raspberry Pi 4 on port 8080. For example, when the router sets

the IP address for the Raspberry device to be 192.168.1.3, then the user interface can be

accessed on a web browser at 192.168.1.3:8080.

4.2.3 Configuration

This section will focus on configuring the home automation platform openHAB. Through

this process, connecting various devices and services to openHAB is possible. The user in-

terface will be implemented and configured to enable the user to monitor and manually

control added devices and services. This section will also describe the automation process

and how user location data will be used.

There are a couple of ways to configure openHAB depending on what the user is trying to

achieve. Suppose the user aims to configure the openHAB system like settings concerning

updating, restoring from backups and creating backups or changing hardware features. In

that case, openHABian has a tool called Configuration Tool. This can be accessed through

connection to the command line console running on the openHABian image. The described

tool is represented in Figure 2.

Figure 2. Configuration Tool.

Other than that, the configuration can be aimed to add new devices, services, packages,

implement user interfaces and add automation. This can be done in two different ways. The

first option is to use the openHAB web user interface. Through the Paper UI tool, users

could install packages and modules for adding various devices and services and configure

them. This tool also allows to monitor and control added devices and services and add au-

tomations to them. The described tool and actions are represented in Figures 3, 4 and 5.

23

Figure 3. List of tools on openHAB.

Figure 4. Control menu view.

Figure 5. New rule template.

24

The second option is to modify configuration files on the openHAB system directly.

Through this option, users could achieve the same results, that was possible with the Paper

UI tool on the openHAB web user interface. This option also allows users to write more

advanced automations and develop JavaScript-based scripts, making it more flexible than

the first option. The downside of this option is that modifying and writing custom configu-

ration files may be more complex than using the Paper UI tool and could require more in-

depth knowledge. The upside is that this option allows for more advanced system setups and

configurations.

In this thesis, the first option is used to discover and add the devices, and the second option

is used for installing packages and implementing user interfaces and automation. This will

be further explained in the following subsections. The following subsections will also cover

the process of configuring openHAB.

4.2.3.1 Configuring openHAB

After the openHABian system has booted for the first time, the openHAB platform does not

need any additional configuration to start functioning. Although it is not required, some

advanced features will not work without configuring the system. One of the advanced fea-

tures is MQTT capability, which is by default disabled. As the system built in this thesis

requires this functionality, then it should be enabled.

To configure the openHAB, the openHABian Configuration Tool was used. This tool can

be accessed through the command line console on the openHABian system. To access the

openHABian system, a SSH connection was established using PuTTY7, which is shown in

Figure 6. To open a PuTTY session in the openHABian system, the IP address of Raspberry

Pi 4 and SSH port is required as the destination. The IP address was found using the network

routers interface. As for the SSH port, it is by default 22.

7 https://www.putty.org/

25

Figure 6. SSH configuration tool

After the SSH connection is opened, PuTTY will display the command line console. As the

openHABian system is protected, then the console will request a username and password,

which is by default “openhabian” for both. After successful login, a welcome screen is dis-

played, which is shown in Figure 7. As the openHABian image is based on the Linux kernel,

the console can be operated with Linux commands. The configuration tool can be accessed

with the command “sudo openhabian-config”, as shown in Figure 8.

26

Figure 7. openHABian welcome screen.

Figure 8. Command for accessing the openHABian Configuration Tool.

In the tool menu, the MQTT can be enabled under the “Optional Components” tab. The

Mosquitto8 MQTT broker is used by the system built in this thesis and can be enabled by

selecting it in the menu. Additionally to MQTT, WIFI was also enabled, and that was done

under the “System Settings” tab.

After that, the tool can be exited, and the SSH connection closed. It should be noted that if

enabling WIFI, then the system will be assigned a new IP address. This means that to access

web-based openHAB user interface or establish SSH connection, the new IP address should

be used.

4.2.3.2 Adding Devices & Services

openHAB documentation states that each device connected to openHAB is different and

needs base components to represent all of them [16]. The main base components responsible

for adding and managing devices and services are the Add-ons, Things and Items. Each of

these base components has its own function.

8 https://mosquitto.org/

27

Add-ons, as described on openHAB add-ons page [17], are the base components responsible

for integrating support for devices and services, integrating external systems, handling data

storage and transformation, extending the automation engine, and enabling voice features.

Each add-on for device or service contains tools for openHAB to monitor, control and au-

tomate them.

Things are the base components representing all the entities like devices, services, etc., that

are managed by the system. According to documentation [18], they are connected to the

system through the add-ons, which enable the system to manage them. The system can ac-

cess the devices or services functionality through Channels that every corresponding Thing

has.

Item is described in the documentation [19] as the base component that can represent all the

properties of the automation system. They can be strings, number, switches, sliders, colour

pickers or other Item types. It is mentioned, that item can be connected to a Thing to have

control over its Channel. Items can be used in both automation and when defining user in-

terfaces as they enable interaction with Things with corresponding devices and services that

they are connected to.

First, the add-on for that device needs to be installed to add a device to the system. This can

be done by modifying the addons.cfg file by adding the add-on package name to bindings

list, as shown in Figure 9 or by installing through Paper UI, as shown in Figure 10. Suppose

this process is done by modifying the addons.cfg file, then the package name can be found

on the Add-ons page9 by searching for the device or service. After a successful search, the

result page can be opened, and the required package name is the last slash-separated word

in the URL, as shown in Figure 11.

9 https://www.openhab.org/addons/

28

Figure 9. addons.cfg file with instructions and listed installed add-ons.

Figure 10. Add-ons menu in Paper UI tool.

Figure 11. Example of finding package name for addons.cfg file.

If an add-on was installed through Paper UI, then after a system restart, these add-ons are

removed and need to be added again. This is not the case when add-ons are installed by

modifying the add-ons configuration file, and as such, this method is used in this thesis for

installing add-ons.

29

In this thesis, as the only smart devices, we had access to were Philips Hue smart lights, the

add-on was called Philips Hue Binding with package name “hue”. For services, we used an

add-on for MQTT with the package name “mqtt”. It was added to the bindings list in add-

ons.cfg file.

After support for devices and services is enabled for openHAB by installing corresponding

add-ons, the next step is to add devices and services. This can be done by specifying them

in the Things file, default.things, manually or by automatically searching for them in Paper

UI. If done manually by modifying the Things file for devices and services, it is advised to

follow instructions given by the corresponding add-on on the add-ons page.

In this thesis, the devices were added through the usage of Paper UI as this process seemed

quicker and easier. To add the devices on the Paper UI, we first went to the “Inbox” menu

and clicked the “Scan” button, as seen in Figure 12. After few moments, devices started to

appear. The Philips Hue lights that we had were connected to Hue Bridge. Both the Bridge

and each light were added by clicking on the blue circle with white checkmark and then on

“ADD AS THING” button, as shown in Figure 13 and 14.

Figure 12. Scanning for devices on network through Inbox menu.

Figure 13. Buttons for adding found devices on network.

Figure 14. Confirmation pop-up for adding a device.

The MQTT service was added by modifying Things file default.things and adding additional

configuration file mqtt.cfg. This configuration file was for holding core parameters for the

30

MQTT service. The Things file was for defining the MQTT service as an entity so that

openHAB could access its functionalities. For the MQTT service, a broker and a client were

determined, where Channel for the client was added for storing data from the subscribed

topic. Figures 15 and 16 show the contents of described files.

Figure 15. Example of Mosquitto MQTT configuration file.

Figure 16. MQTT configured as a Thing in default.things file.

4.2.3.3 Automation

According to openHAB documentation, automations in openHAB have their base compo-

nent known as Rules. Each rule works through a lightweight rule engine and invokes a script

when triggered. Rules can be defined either through Paper UI or by writing rule files, where

the file could hold multiple rules. Rule syntax is based on Xbase and follows the structure

of:

• Rule name – a unique name for each rule

• Trigger condition – an event that triggers the rule execution

• Script block – a container for logic that should be executed on the trigger

For executing a rule, there are different categories of triggers:

• Item event-based – The Item-based triggers react to Item updates

• Thing event-based – Thing based triggers react to device or service status changes

• Group event-based – Group based triggers react to Item state changes that are in a

specific group

• Time event passed – Time-based triggers react at specified times

• System event-based – The System based triggers react to system start events

Rules after triggering can do various things. In the documentation [10] it is mentioned, that

they could change Item states, send command to Things, accomplish mathematical calcula-

tions and even trigger other scripts.

31

The automation that is implemented in this thesis is for controlling devices that are in the

same room as the user. In essence, as the only smart devices that we have for this thesis are

the Philips Hue smart lights, then if the user’s location is near a room, where light is, then

the light in that room will turn on. Similarly, if the user leaves the room, then the light in

there turns off.

This automation is accomplished through a rule that triggers whenever the MQTT client that

is subscribed to a specific topic receives new data. This data is in JSON format, containing

information about:

• which room this data came from

• Bluetooth signal strength between each users device and the tracker

• if any guest is in the room

This rule uses the data to determine if any user moved to another room by comparing the

signal strengths between the current room and the last room. If the current room is different

from the previous room and the signal strength is better, then the user is written into the new

room. This rule also writes user out of any room if their Bluetooth signal can not be deter-

mined.

After all user locations are determined, the rule will check if any room user count reached

zero or became greater than zero. In case it reached zero, then Philips Hue lights in that

room are turned off. But if the user count changes from zero to a greater value, then lights

in that room are turned on.

Additionally, a switch disables or enables this rule, which users can manually control

through a user interface.

The described rule will be shown in Appendix I.

4.3 User Tracking System Configuration

This section will focus on the user tracking system. The following subsections will cover

the overview of the system, the setup process and finally, explain the script used for user

tracking.

4.3.1 System

The user tracking system will consist of multiple individual trackers. Each tracker will be

placed in different rooms and will independently track user whereabouts through Bluetooth

scanning. This information is then sent to the home automation platform openHAB through

MQTT. For trackers to accomplish such actions, they need to have support for WIFI and

Bluetooth. Other than that, they also need to be able to run the script that scans for users,

compiles the data and sends it over the MQTT.

As mentioned in the Background section of this thesis, Arduino microcontrollers and Rasp-

berry Pi are single-board computers available for such tasks. For this thesis, Raspberry Pi

Zero W will be used for each tracker. The main reasons for picking Raspberry over the

Arduino was that they allow for better experimenting with different software and scripting

languages and are more accessible.

32

According to the official Raspberry product specification [20], the used Raspberry Pi Zero

W’s have the following specifications:

• CPU – Single-core, 1 GHz

• RAM – 4GB LPDDR4-3200 SDRAM

• WIFI – 2.4 GHz 802.11 b/g/n wireless

• Bluetooth – Bluetooth 4.1 and BLE

Each Raspberry Pi Zero W will be running Linux based Raspberry Pi OS Lite that is a port

of Debian. This operating system does not have graphical output and works as a headless

system.

4.3.2 Initial Setup

With the hardware and operating system introduced in the previous section, each tracker can

be set up.

Trackers, that were set up in this thesis required the following components:

• Raspberry Pi Zero W

• Raspberry Pi OS Lite image

• Flash tool

• Micro-SD card with 4 GB or more storage

• Micro-SD card reader

• WIFI access

To get the Raspberry Pi OS Lite running on Raspberry Pi Zero W, the image file is first

required. For this, a tool like Raspberry Pi Imager10 can be used to acquire the image file

and flash the image onto a Micro-SD card. As with the home automation platform setup, to

flash the image onto a Micro-SD card, a Micro-SD card reader is necessary.

After the image is acquired and flashed onto a Micro-SD card, the image should be config-

ured to connect to WIFI after booting up and allowing SSH connection. For that image root

directory needs to be accessed. For enabling SSH, an empty file named ssh should be cre-

ated. As for enabling access to WIFI, a file named wpa_supplicant.conf should be created

with the following contents that can be found in Figure 17.

10 https://www.raspberrypi.org/software/

33

Figure 17. Example of wpa_supplicant.conf file.

After configuration for SSH and WIFI is done, the Micro-SD card can be mounted into the

Raspberry Pi Zero W and booted up. It can take a couple of minutes for trackers to boot up

entirely, but once they appear on the network routers devices list, an SSH session can be

created to connect to the trackers.

When the SSH session is created, the console will prompt the user to log in. The default

username is “pi”, and the password is “raspberry”. After that, access to the Raspberry Pi OS

system is obtained. As Raspberry Pi OS is Linux based system, then the command line con-

sole can be operated with Linux commands.

For the user tracking script to work, additional packages need to be installed. First, the mod-

ules for MQTT need to be installed. For this, the following commands need to be run:

• sudo apt-get install mosquito

• sudo apt-get install mosquitto-clients

After that, a module with Bluetooth tools need to be installed through the following com-

mand:

• sudo apt-get install bluetooth bluez libbluetooth-dev

Now that the modules for sending data through MQTT and working with Bluetooth are

installed next, the tools necessary for running the Python script are needed. This Python

script will use the paho-mqtt11 module to allow the use of MQTT resources and pybluez12

module to enable the use of Bluetooth resources in the script. Python and mentioned Python

modules can be installed through the following commands:

• sudo apt-get install python-pip

• sudo python -m pip install paho-mqtt

• sudo python -m pip install pybluez

It should be noted that the Python version that is used by this script is Python 2. Although

Python 2 is deprecated, the pybluez module did not work well with Python 3.

11 https://pypi.org/project/paho-mqtt/
12 https://pypi.org/project/PyBluez/

34

After all the required packages are installed, the script for user tracking can be implemented.

4.3.3 User Tracking Software

The user tracking script has multiple tasks defined. These tasks are for handling MQTT

service, scanning Bluetooth devices, measuring their signal strength from the tracker, and

compiling and sending acquired data through MQTT.

The MQTT has tasks to handle the connection and disconnection. In case of disconnecting

from the broker function, signal_handler will be triggered, which will gracefully close the

MQTT client and end the script. As for handling the connection, the function on_connect

will trigger when the connection to the broker is attempted. After activating, the function

will print out the connection result code. This function can be used in the future to trigger

specific actions, but as of now lacks any functionality.

For scanning for the Bluetooth devices and measuring their signal strength, there are func-

tions guests_nearby and bluetooth_rssi. The first function will try to discover new devices,

and if a device with strong enough signal strength is found, the function returns true, other-

wise, false. The second function will look for the predefined device and measure their signal

strength, which will be returned at the end. This function was forked from GitHub user

dagar13.

The main function works by first setting up MQTT and connecting to the broker on the

home automation platform. After that, a loop will look for guests for a certain amount of

time, then acquiring signal strength from each predefined user device. When this is done,

the data will be packaged into the JSON format and sent by MQTT publish action. After

that loop repeats the process.

All the explained functions are shown in Appendix II.

13 https://github.com/dagar/bluetooth-proximity

35

4.4 Example of implementation

Figure 18. Sequence diagram of the smart home system’s workflow.

36

The smart home system’s workflow from detecting users location to controlling smart de-

vices around the home through automation is explained in Figure 18. The workflow goes

through four major groups, each containing one or more minor components.

The first group is the Actors. This group contains the different actors, that interact with the

system. They are the users and the guests and can interact with the system by moving around

the house, from one room to another.

The second group is the user tracking system. This diagram represents the individual track-

ers in different rooms. This group has two components, the Bluetooth tracking module and

the MQTT publishing client. Bluetooth tracking module scans for devices nearby and

pickups the known and unknown nearby devices from users and guests. Each discovered

device signal strength is measured and compiled into location data. This data also contains

information about guests and the room the tracker is in. After the data is compiled, then the

MQTT publishing client sends the data to the home automation systems MQTT broker.

The third group is the home automation platform. This group contains three components,

the MQTT module, the rule engine and the controller. The MQTT module is responsible for

handling MQTT broker and subscribing client. The subscribing MQTT client is listening to

MQTT broker and once new data is available it receives it. From there the data is forwarded

to rule engine.

The rule engine is responsible for handling automations and can contain multiple rules. The

location-based automation rule implemented in this thesis is triggered whenever the sub-

scribing MQTT client receives new data. The rule takes the received data and process it.

After that it will use this data to figure out which devices should be turned off or on and

sends this information to the controller. The controller uses this data to send commands to

each concerning device.

The last group is for smart home devices. This contains all the different devices connected

to the home automation platform. These devices can be controlled by the commands issued

by the controller from the home automation platform.

37

5. Implementation Challenges

When implementing the home automation system and creating the user tracking system,

there were few problems that needed to be resolved. The more significant issues on open-

HAB were file system corrupting and MQTT broker frequent crashes. As for the tracking

system, the main problem was with IP address changing.

The most severe problem was the file system corruption on the openHAB system. This oc-

curred after the power was cut from the openHAB system without prior safe shut down. As

openHABian is Linux based system, then ungraceful shutdowns like this can easily break

the file system. To overcome this, there are a couple of ways. One of them is to have a UPS,

which could power the system for a short time after power is cut. During this time, the UPS

could send a shutdown signal to the openHAB system and prevent file systems from cor-

rupting.

The other way is to occasionally back up the system on an external storage device. In the

event of corruption occurring, the system could be easily restored from the external backup.

This solution was used to prevent setting up and reconfiguring a new system, should it hap-

pen again.

The problem with MQTT crashing on openHAB could not be traced to a cause. This prob-

lem seemed to be mainly because multiple clients were publishing data to broker and over-

whelming it in the process. To solve this, the user tracking scripts main loop was slowed

down. After that, MQTT on openHAB seemed to work fine.

The only problem faced with trackers was that their IP address could change when they were

rebooted. This problem made it difficult to access the trackers through an SSH session, as

the new IP address was necessary. There were multiple ways of solving this problem, but

the easiest way was to modify these devices on the network router and assign a permanent

IP address to them.

38

6. Conclusion

This thesis aimed to create a smart home system that could monitor and control smart home

appliances through IoT. As a result of this thesis, an IoT system was built to manage these

devices and achieve automation using data sent through an IoT-friendly communication

protocol. This system consisted of two sub-systems, the home automation platform and the

user tracking system.

The sub-system responsible for managing the home through monitoring, controlling and

automating smart home devices and services was the home automation platform. This plat-

form was implemented using an open-source smart home platform called openHAB. It al-

lowed for connecting and managing multiple different devices and services from diverse

ecosystems and could be run on single-board computers like Raspberry Pi. As such, the

Raspberry Pi 4 was used to run the home automation platform.

To demonstrate the IoT capabilities in a smart home environment, the IoT friendly messag-

ing protocol MQTT was used to enable the two sub-systems to communicate. The home

automation platform housed a Mosquitto MQTT broker and subscriber client, where the

subscriber client logged the user location data that was sent over the IoT network. This data

was used by the automation rule to switch Philips Hue lights on and off, based on the users’

proximity to them.

To acquire the users’ location in the house, the user tracking system, which was developed

and created in this thesis, consisted of individual tracking devices placed in different rooms

around the house. These tracker devices were built by using Raspberry Pi Zero W with a

user tracking Python script. This model of Raspberry Pi single-board computers could use

WIFI and Bluetooth and run a lightweight operating system. That operating system hosted

the Mosquitto MQTT service and ran the Python script responsible for collecting Bluetooth

data and publishing it through the MQTT publishing client.

Both of the sub-systems create the whole smart home IoT system that monitors and controls

smart home appliances. The configuration, automation and script files for both systems are

located on GitHub repository page [21].

39

7. References

[1] Research and Markets, “IoT Middleware Market - Growth, Trends, and Forecasts

(2020 - 2025),” September 2020. [Online]. Available:

https://www.researchandmarkets.com/reports/5174853/iot-middleware-market-

growth-trends-and. [Accessed 15 March 2021].

[2] Adroit Market Research, "Smart Home Automation Market," November 2020.

[Online]. Available: https://www.adroitmarketresearch.com/industry-reports/smart-

home-automation-market. [Accessed 10 December 2020].

[3] Home Assistant, “Integrations,” [Online]. Available: https://www.home-

assistant.io/integrations/. [Accessed 23 March 2021].

[4] A. Williams, “Home Assistant lets you automate your smart home without giving up

privacy,” 10 May 2018. [Online]. Available: https://www.the-

ambient.com/features/home-assistant-automation-privacy-582. [Accessed 31 March

2021].

[5] P. Schoutsen, “Perfect Home Automation,” 19 January 2016. [Online]. Available:

https://www.home-assistant.io/blog/2016/01/19/perfect-home-automation/.

[Accessed 31 March 2021].

[6] Home Assistant, “Documentation,” [Online]. Available: https://www.home-

assistant.io/docs/. [Accessed 31 March 2021].

[7] openHAB Foundation, “Introduction,” [Online]. Available:

https://www.openhab.org/docs/. [Accessed 31 March 2021].

[8] K. Kreuzer, “openHAB 2.0 and Eclipse SmartHome,” 16 June 2014. [Online].

Available: http://www.kaikreuzer.de/2014/06/16/openhab-20-and-eclipse-

smarthome/#ug. [Accessed 31 March 2021].

[9] openHAB Foundation, “Who We Are,” [Online]. Available:

https://www.openhab.org/about/who-we-are.html. [Accessed 31 March 2021].

[10] openHAB Foundation, “Textual Rules,” [Online]. Available:

https://www.openhab.org/docs/configuration/rules-dsl.html. [Accessed 31 March

2021].

[11] Apple Inc., “HomeKit,” [Online]. Available: https://developer.apple.com/homekit/.

[Accessed 17 April 2021].

[12] Apple Inc., “Home,” [Online]. Available: https://www.apple.com/ios/home/.

[Accessed 17 April 2021].

[13] J. Porter, “HomeKit might be fading, but Apple’s not giving up yet,” 28 October

2019. [Online]. Available: https://www.theverge.com/2019/10/28/20936292/apple-

homekit-hiring-engineers. [Accessed 17 April 2021].

[14] Arduino, “Introduction,” [Online]. Available:

https://www.arduino.cc/en/guide/introduction. [Accessed 20 April 2021].

[15] Signify Holding, “Explore Us,” [Online]. Available: https://www.philips-

hue.com/en-us/explore-hue/how-it-works. [Accessed 12 April 2021].

[16] openHAB Foundation, “Configuration Overview,” [Online]. Available:

https://www.openhab.org/docs/configuration/. [Accessed 27 April 2021].

[17] openHAB Foundation, “Add-Ons,” [Online]. Available:

https://www.openhab.org/addons/. [Accessed 27 April 2021].

40

[18] openHAB Foundation, “Things,” [Online]. Available:

https://www.openhab.org/docs/configuration/things.html. [Accessed 27 April 2021].

[19] openHAB Foundation, “Items,” [Online]. Available:

https://www.openhab.org/docs/configuration/items.html. [Accessed 27 April 2021].

[20] Raspberry Pi Foundation, “Raspberry Pi Zero W,” [Online]. Available:

https://www.raspberrypi.org/products/raspberry-pi-zero-w/. [Accessed 27 April

2021].

[21] E. Sinilaid, “Monitoring and controlling smart home appliances using IoT devices,”

5 May 2021. [Online]. Available: https://github.com/EnrihSinilaid/Monitoring-and-

controlling-smart-home-appliances-using-IoT-devices. [Accessed 5 May 2021].

41

Appendix

I. Rule for user location based automation

Figure 19. Rules first part, processing location data.

42

Figure 20. Rules second part, assigning rooms to users.

43

Figure 21. Rules third part, controlling rooms based on user locations.

44

II Custom user tracking script

Figure 22. Functions signal_handler and on_connection.

45

Figure 23. Functions guest_nearby and bluetooth_rssi.

46

Figure 24. First part of the main function.

47

Figure 25. Second part of the main function.

48

III License

I, Enrih Sinilaid

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright, and

1.2. make available to the public via the web environment of the University of Tartu, in-

cluding via the DSpace digital archives, under the Creative Commons licence CC BY NC

ND 3.0, which allows, by giving appropriate credit to the author, to reproduce, distribute

the work and communicate it to the public, and prohibits the creation of derivative works

and any commercial use of the work from 06.05.2021 until the expiry of the term of copy-

right,

“Monitoring and controlling smart home appliances using IoT devices”,

supervised by Chinmaya Kumar Dehury

2. I am aware of the fact that the author retains the rights specified in p. 1.

3. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-

tual property rights or rights arising from the personal data protection legislation.

Enrih Sinilaid

Tallinn, 06.05.2021

