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ML-TOSCA: ML pipeline modelling and orchestration using TOSCA

Abstract:
In today’s world, machine learning is increasingly involved in different areas. Moreover,
automating machine learning workflows through AutoML enables organizations to
develop and deploy machine learning solutions at scale rapidly. Additionally, leveraging
the power of cloud computing can provide even greater scalability and flexibility, allowing
us to efficiently process large datasets and cost-effectively train and implement complex
machine learning models. Undoubtedly, these technologies will play an essential role in
shaping the future across various industries. Despite many advantages, there is a lack
of widespread combined implementations of AutoML and cloud-based solutions. This
thesis describes a new AutoML integration approach to the TOSCA standard. TOSCA
is an open-source specification used to describe the topology of cloud applications and
services. Incorporating AutoML techniques into TOSCA enables users to automatically
generate optimized machine learning models with the help of cloud applications, which
can improve the speed and efficiency of model creation. The proposed approach is
implemented in the RADON ecosystem, allowing node and relationship types to be
created. The final solution allows users to create and join blocks to define a complete
machine learning pipeline structure.
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ML-TOSCA: ML torujuhtme modelleerimine ja orkestreerimine
TOSCA abil
Lühikokkuvõte:
Tänapäeva maailmas on masinõpe üha enam kaasatud erinevatesse valdkondadesse.
Lisaks võimaldab masinõppe töövoogude automatiseerimine AutoML-i kaudu organisat-
sioonidel kiiresti arendada ja juurutada masinõppe lahendusi. Lisaks võib pilvandmetööt-
luse võimsuse võimendamine pakkuda veelgi suuremat skaleeritavust ja paindlikkust,
võimaldades meil tõhusalt töödelda suuri andmestikke ning kulutõhusalt koolitada ja
rakendada keerulisi masinõppe mudeleid. Kahtlemata mängivad need tehnoloogiad olu-
list rolli tuleviku kujundamisel erinevates tööstusharudes. Hoolimata paljudest eelistest
puudub AutoML-i ja pilvepõhiste lahenduste laialdane kombineeritud rakendamine.
Käesolevas töös kirjeldatakse uut AutoML integratsiooni lähenemist TOSCA standardile.
TOSCA on avatud lähtekoodiga spetsifikatsioon, mida kasutatakse pilverakenduste ja
-teenuste topoloogia kirjeldamiseks. AutoML tehnikate lisamine TOSCA-sse võimaldab
kasutajatel automaatselt luua optimeeritud masinõppe mudeleid pilverakenduste abil,
mis võib parandada mudeli loomise kiirust ja tõhusust. Kavandatavat lähenemisviisi
rakendatakse RADONi ökosüsteemis, mis võimaldab luua sõlme- ja suhtetüüpe. Lõppla-
hendus võimaldab kasutajatel luua ja ühendada plokke, et määratleda täielik masinõppe
torujuhtme struktuur.

Võtmesõnad:
AutoML, TOSCA, ML-TOSCA, ML pipeline, Pipeline

CERCS: P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction
Artificial intelligence (AI) has advanced significantly over the past decade. It is utilized
more often in many applications, from self-driving cars and medical diagnosis to language
translation and phishing detection. It has the power to alter several sectors and transform
the way we live and work. Many organizations, including major IT companies and
smaller startups, are creating and utilizing AI models for various uses.

AI is also beginning to develop in a new direction called AutoML (Automated
Machine Learning). According to [21], AutoML can be defined as a combination of
automating machine learning processes such as data preprocessing, feature engineering,
model training, and evaluation. One of the advantages is that non-experts can apply
machine learning in their domains by saving money and speeding up workflow [38].

Cloud computing is a different trend that is also gaining popularity year after year.
Users can conveniently change, add, scale, and remove various resources on demand.
Without creating and managing their infrastructure, consumers may access and utilize
these resources whenever needed.

There are several approaches to integrating cloud computing and AutoML to create
robust, effective, and affordable machine learning systems. For example, you may use
the cloud to run your AutoML pipeline. This would entail storing data and model outputs
in cloud storage while using VMs (virtual machines) or containers to run AutoML
algorithms. As a result, you have more control over the pipeline and may alter it to suit
your unique requirements. It will also provide you greater freedom to increase your
resources on demand.

Nevertheless, speaking of automation, it is beneficial to have different versions of
various processes, including their combined implementation, to ensure efficient man-
agement and implementation. From a technical perspective, having different standalone
components [4] that can perform highly specialized tasks and communicate with each
other to achieve a larger objective is critical. This approach allows for efficient distribu-
tion of workload, where each component can be optimized for a specific task, rather than
trying to create a monolithic system that performs all functions in a single component.
Breaking down a more significant task into smaller specialized components makes man-
aging and maintaining the whole system easier. It necessitates a standard for all parts of
the architecture, ensuring adherence to technical rules when adding or connecting new
functionality and minimizing the risk of errors.

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
[30] is a standard for modeling the architecture of various services and cloud-based
applications in a platform-agnostic manner. It enables an orchestrator to quickly set up,
scale, deploy, configure, and manage cloud applications in a repeatable manner across
various environments. TOSCA defines reusable components, including their relationships,
infrastructure, and programming code [3], in a machine and human-readable format,
enabling efficient modeling and deployment of complex systems. It allows for greater
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efficiency and agility in cloud-based operations while reducing the risk of errors and
inconsistencies arising from manual processes.

Even though TOSCA provides a robust framework for modeling various services, it
may not cover specific domains such as data processing and machine learning. TOSCA’s
core blocks are abstract and can be used to model various applications. Therefore, this
work aims to contribute missing blocks for AutoML to complement TOSCA’s existing
capabilities. The author is confident that this acquisition will provide significant value to
many users by streamlining and speeding up tasks such as data cleaning, preprocessing,
training machine learning models, and evaluating them. However, modeling machine
learning blocks and data processing tasks in TOSCA can be complex due to their
sequential steps, dependencies between them, and the various approaches and tools that
require careful consideration.

Undoubtedly, similar solutions and tools already focus on AutoML pipeline creation,
such as Google Cloud AutoML, DataRobot, Dataiku, and H2O.ai. However, they have
several problems and difficulties, starting from the price and ending with vendor lock-in.
This work solves these problems and makes it possible to use this tool in the academic
and entrepreneurial fields.

1.1 Problem statement
The rise in demand for machine learning in cloud-based applications is impeded by the
necessity for additional standardization in creating, building, and deploying machine
learning models. TOSCA, one of the most prevalent standards in cloud-specific activities,
provides a vendor-agnostic and platform-independent means of describing cloud-based
applications and services. Through the utilization of TOSCA, machine learning models
can be integrated more seamlessly into cloud-based applications, ensuring superior
portability and interoperability across various cloud platforms and providers.

The problem addressed by this work is how to enable the use of AutoML in TOSCA-
compliant cloud applications by defining a standard for describing data preprocessing
and machine learning models and automating the processes for creating and deploying
them. The goal is to reduce the time and effort required to create, build and optimize
machine learning pipelines in TOSCA-compliant cloud applications while ensuring that
AutoML components are accurate, reliable, compatible, and reusable.

1.2 Thesis outline
This thesis consists of five more significant sections. First of all, Section 2 briefly intro-
duces automated machine learning and its various stages and use cases. The technologies
that implement AutoML are also discussed in this section. Section 3 delves deeper into
the foundations and principles of TOSCA by explaining its architecture and workflow.
It also highlights a crucial aspect of this thesis, a RADON project used to build cloud
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applications based on the TOSCA standard. After that, Section 4 will describe the thesis’s
practical part. It involves new technology architecture and technical implementation.
Section 5 will give an overview of the project setup, the ML-TOSCA practical imple-
mentation in an actual project, and the results achieved. Finally, Section 6 introduces
future work by identifying the missing parts and suggesting how they can be resolved.

Acronym Definition
AI Artificial Intelligence

API Application Programming Interface
AutoML Automated Machine Learning
CSAR Cloud Service Archive
CSV Comma-Separated Values
DAG Directed Acyclic Graph
NLP Natural Language Processing
ML Machine Learning

MLOps Machine Learning Operations
ModelOps Model Operations
TOSCA Topology and Orchestration Specification for Cloud Applications

VM Virtual Machine
YAML Yet Another Markup Language

Table 1. Acronyms and definitions

In order to enhance the clarity and brevity of this thesis, a number of acronyms will
be used to reference various technologies and concepts. By using these abbreviations
consistently, the readability and conciseness of this thesis can be improved, making it
easier for readers to understand the technical concepts presented. Please refer to Table 1
for a complete list of acronyms and their definitions.
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2 Background
This section briefly introduces the automated machine learning process with its main
stages and use cases. After that, the ML managing systems will be described. Finally,
this section will provide an overview of orchestration tools, including their architecture
and main concepts.

2.1 AutoML
Automated Machine Learning, or AutoML for short, is an area of artificial intelligence
that focuses on automating processes from data acquisition to model evaluation. This
is useful for non-experts who can build sufficiently powerful machine learning models
without technical knowledge, while real experts can use their time for more priority tasks
[18]. According to [27, 23, 38, 21] the AutoML pipeline consists of several stages that
are traversed sequentially. However, the author has chosen to derive six main stages:

• Data Collection - obtaining the data needed for the particular area. This may
be a user-supplied comma-separated values (CSV) file or requested data from an
external database.

• Data Preprocessing - cleanup and reformatting of data by removing or replacing
missing values, replacing categorical values with numeric values (which is also
known as data labelling), enlarging data by creating synthetic data.

• Feature Engineering - process of creating new features or transforming existing
ones into new ones, which in turn can improve the performance of machine learning
models. The best-known algorithms are encoding, normalization, scaling, and
feature extraction.

• Model Selection - once the data is prepared, the next important step is to select
the right model for the job. This is best done by understanding the problem
and assigning it to a specific type, such as classification, regression or clustering.
If desired, the user can specify hyperparameters for the model, which can also
improve the model’s performance.

• Model Training - training of the selected model based on the processed data.
Usually, during this process, the data is split into training and testing data so that
user can later understand how well the model works with the same data.

• Evaluation - to perform this step, the user must have a test data set with correct
answers. The goal is to give data to the model data and compare its prediction with
the actual results.
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AutoML involves a series of actions that can be customized to fit a given project’s
specific needs and goals. While core steps provided in a list are typically included,
some can be skipped or added. The nature of the project will determine the approach
and stages. For example, data visualization, model deployment, and monitoring are all
potential steps to be added to a pipeline. Ultimately, the goal is the process automation
of creating machine learning models, while the specific steps involved will depend on
the project’s specific requirements.

Automated machine learning also has its drawbacks. The user loses the freedom
of choice and becomes bound to a technology provided by a service. One of the
problems with AutoML is the need for more control over the system’s capabilities and
flexibility [23, 2]. It means not only that the choices can be minimal or some actions can
even be overlooked but also that the user needs more control and understanding of how
the steps are executed. In addition, there may be integration problems when the final
model is ready, but it can not be exported or interacted with other systems.

2.1.1 Use cases

It may not be clear why such systems are needed and whether they have any utility at
all. First of all, it should be noted that artificial intelligence is now penetrating more
and more into various fields. However, there is a shortage of professionals who could
develop AI.

AutoML is now used in the medical field [28] to make correct diagnoses or detect
various abnormalities on X-ray images. Of course, medical professionals do not relin-
quish full control to the machine, but AI is a useful and sometimes invaluable assistant
that can notice things that a human might not notice or even see.

Another application could be finance. The article [31] describes AutoML implemen-
tation in the area of stock price prediction. Instead of having to deal with and understand
the structure and algorithms of NLP (Natural Language Processing), users can leave all
the work to the model.

In summary, AI is applicable in many areas, if not all. However, various developments
can often run into money. This means that the company can not afford to develop
intelligence, as they do not know in absentia whether it will work well or not. In these
cases, the decision to use AutoML is optimal; therefore, all further development depends
on the data - namely, its quality and quantity.

2.2 Related work
Concerning automated processes connected with machine learning, the author decided
to look into existing orchestrators for this area. An orchestrator is a tool that manages
and coordinates the different components of a system to ensure that they work together
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efficiently. Some popular orchestrators for this area include Apache Airflow, Apache
Beam, Dask, Dagster, and Kedro, each with distinct features and benefits.

2.2.1 Managing machine learning systems

Managing machine learning systems has become more challenging and complex in recent
years. It involves not only model building and training but also deployment, versioning,
monitoring, and support [14, 40]. The model deployment to production requires much
time, while it could be spent developing or improving the model itself. In addition, it
is essential to ensure that models are reliable, accurate, and secure. In the developers’
community, new directions, such as MLOps, AIOps, and ModelOps, have appeared taken
from DevOps and applied to machine learning to eliminate this pain [36].

The paper [22] introduces the ModelOps (Model Operations) framework, a cloud-
based lifecycle management approach for building and deploying artificial intelligence
models. ModelOps focuses on managing AI and ML models throughout their lifecycle,
starting from model development and ending with its deployment. The main goal behind
that is to make sure that the developing process of models is flexible, best practices of
operational principles are applied, and final models are easy to deploy, test and monitor.
Another similar approach is MLOps (Machine Learning Operations) [35], which is being
used interconvertible. It is considered that ModelOps is more general, as it is not only
about machine learning models [36]. However, in our opinion, they represent the same
meaning.

AIOps is an approach to increasing the efficiency and effectiveness of various opera-
tions and services with the help of AI and ML techniques [11]. Described service will
help to predict the cost, quality, and error appearance. Thus, this solution is more about
optimizing processes using the received data. It has nothing to do with the manipulation
of various operations. However, when combined with MLOps, this will speed up the
model deployment time and make valuable predictions and tips.

2.2.2 Apache Airflow

Apache Airflow is an open source platform for creating, scheduling and monitoring
various pipelines and workflows [20]. Like other workflow managers, Airflow allows
the definition of a directed acyclic graph (DAG) in which each job or task is defined as
a node and the edges represent dependencies between them (see Figure 1). With this
approach, different tasks can be executed both sequentially and in parallel.

Airflow DAGs are defined in DAG files with Python code. In other words, it is a
script that defines a flow of executable functions in a predefined order. The predefined
structure consists of the following parts:

• Task operators - any work to be performed in a DAG is represented as an operator.
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Figure 1. Airflow pipelines defined as DAGs [20].

It also defines the type of a task - for example, it can be a Python function or a
SQL query.

• Dependencies - all tasks in a DAG are interconnected. These connections are
called dependencies, which define an execution order. They allow building complex
workflows and passing attributes and properties to each other.

• Scheduling - user can set up a scheduler that will execute tasks based on predefined
scheduling rules (e.g. specific time, API call).

It is worth noting that the users must write the functions by themselves. And this,
in turn, means that the user must have at least some minimal knowledge of Python
programming and be familiar with the Airflow API.

2.2.3 Apache Beam

Apache Beam is another open-source framework for building data processing pipelines.
Beam provides a software development kit (SDK), which allows building a pipeline
that is also a DAG [25]. Besides, using SDK allows execution pipelines on different
computing engines, which makes it flexible. The core concept is to define a sequence of
manipulations and transformations that will be applied to a data source.

Beams pipeline consists of PCollections and PTransforms. The first one is a dis-
tributed dataset that will be processed by the pipeline. PTransform is a function that
takes one or more PCollections, executes some preprocessing on the data and, as a result,
returns one or more PCollections. Simply, PTransform is a function that maps one
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PCollection to another. Additionally, Beam also provides the ability to write a custom
PTransform, which means that the users can create their own complex pipeline for a
specific task.

2.2.4 Dask

Dask is an open-source flexible parallel computing library [9]. All calculations and work
executions are described as a DAG, which is built on top of the Python dictionaries and
tuples. Dask’s main benefit is that it can distribute computational power across multiple
clusters. This allows the processing of larger datasets by splitting them into smaller
chunks.

1 # Numpy example
2 import numpy as np
3 a = np.random.normal(size = (1000, 10000))
4 b = np.random.normal(size = (10000, 10000))
5 answer = a.dot(b)
6

7 # Dask example
8 import dask.array as da
9 a = da.random.normal(size = (1000, 10000), chuncks = 1000)

10 b = da.random.normal(size = (10000, 10000), chuncks = 1000)
11 answer = a.dot(b).compute()

Figure 2. Numpy and Dask matrix multiplication example [9]

Dask also provides a high-level interface parallel of Pandas and Numpy packages.
Developer can write the same code with the similar syntax (see Figure 2), while in the
background are executed different data structures. Using Dask specific structures, user
does not have to take care of distribution of the computations, it all is done by the system.

2.2.5 Dagster

Dagster 1 is also an open-source data orchestrator. As well as others, Dagster constructs
acyclic graphs from solids and dependencies that as a result create a data pipeline. Solids
are self-contained units of computation and edges represent the dependencies between
solids. Such architecture makes sure that nodes will be executed in the correct order and
that the correct inputs are provided to each solid.

1https://docs.dagster.io/0.12.0/concepts
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1 from kedro.pipeline import node, pipeline
2

3 # First node
4 def return_greeting():
5 return "Hello"
6

7 return_greeting_node = node(
8 func=return_greeting, inputs=None, outputs="my_salutation"
9 )

10

11 # Second node
12 def join_statements(greeting):
13 return f"{greeting} Kedro!"
14

15 join_statements_node = node(
16 join_statements, inputs="my_salutation", outputs="my_message"
17 )
18

19 # Assemble nodes into a pipeline
20 greeting_pipeline = pipeline(
21 [return_greeting_node, join_statements_node]
22 )

Figure 3. Kedro pipeline comprised of two nodes [1]

Dagster also provides a web-tool, which provides a visualization of pipeline schemes
and executions. User can see and validate intermediate results, inputs and outputs of
solids. This is very convenient when pipeline becomes complex and some errors occur.
Given tool allows to execute each function separately and debug whole pipeline.

2.2.6 Kedro

Finally, Kedro [1] is another open-source Python framework for building modular,
scalable, and maintainable data pipelines. It provides a standardized method for building
data science code that helps improve code quality and reproducibility. Development
teams can use it to create complex pipelines that include multiple stages of data cleaning,
pre-processing, feature engineering, model training and evaluation.

One of the core concepts of Kedro is nodes. Nodes are units of a pipeline that perform
a specific task. Each node represents a function that takes input data and returns output
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data. Nodes can be chained together to form a pipeline. A pipeline is a collection of
nodes that describe the entire flow of data through the pipeline. The code implementation
is shown in Figure3. It is important to note that the pipeline executes the nodes in
the correct order depending on their dependencies. This means that the nodes can be
executed in a different order than the one in which they were passed.

Another core concept of Kedro is the data catalog. The data catalog is a registry of all
input and output data sources and their respective locations. It provides a standardized
way to manage data, which simplifies the development process. The data catalog also
ensures that data is easily accessible, versioned and documented.

Kedro also provides an integrated visualization tool Kedro-Viz 2. It provides a visual
representation of the pipeline structure, helping to better understand and debug it. The
tool provides an interactive directed graph, where the nodes are represented as circles
and the dependencies between them are represented as arrows. The user can click on
them to get information about the nodes and their inputs and outputs.

2https://github.com/kedro-org/kedro-viz
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3 TOSCA
This chapter introduces the specification of TOSCA and describes its technical aspects,
structure, and execution flow. In addition, a RADON project which is built on TOSCA,
is also described. Finally, there will be presented TOSCA alternatives.

3.1 Topology and Orchestration Specification for Cloud Applications
Topology and Orchestration Specification for Cloud Applications (TOSCA) is an open-
source standard that aims to enable the creation of cloud applications that can be easily
moved between different environments and to automate the process of deployment
and management [5]. The standard in question was developed by the Open Standards
for Cloud Incubator Group (OSCIG) under the Organization for the Advancement of
Structured Information Standards (OASIS).

This specification enables users to model and manage cloud-based applications (such
as IaaS, PaaS, FaaS and SaaS) - from provisioning to scaling resources - using a common
language for all tasks. It enables users to automate processes, which in turn saves
resources and time and generates fewer errors during the workflow.

For example, in FaaS-based (serverless) applications, TOSCA can be used to define
functions, languages, API endpoints, triggers and relationships between them. The user
can define a model that specifies which web resource the function can send requests to or
which database it should connect to. These specifications and information allow you to
automate the deployment process, making it many times faster and easier.

Another example is the implementation of TOSCA when modeling data-intensive
applications. [19]. The engineer must decide which storage and stream processing
components to use by ensuring communication between them. TOSCA is able to take
control of the properties and attributes required for the entire system, including cloud
resources and storage location. As in the previous example, the user wins for many
reasons, from simplicity and convenience to the ability to change the entire system
instantly.

The papers [12] and [13] describe data processing modeling and deployment using
TOSCA language. This standard has been adopted because it simplifies the deployment
and management of complex data pipeline applications. In addition, it enables users to
integrate with other cloud services and technologies effectively. The authors proposed
a TOSCA-based approach to model data-intensive applications as it demonstrated its
effectiveness in applying business requirements to cloud services.

It is also worth noting that TOSCA is a standard that is not tied to a specific language,
so it can be used with a variety of orchestration engines and cloud platforms. This feature
makes the process of deploying and managing cloud-based services more adaptable and
flexible. Despite the fact that the given specification has many advantages, AutoML,
which is described in Section 2.1, is not yet implemented in TOSCA. As mentioned
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earlier, TOSCA is capable today of describing the composition and orchestration of
various cloud technologies and services. However, if developers want to build, train, and
deploy a machine learning model to the cloud, they must do so manually. Consequently,
there is a gap in TOSCA, when it comes to fully automating the machine learning process.
This is an area where further research and development is needed to close the gap and
bring the benefits of AutoML to TOSCA users.

3.2 Structure
TOSCA defines a meta-model to describe the management and structure of services,
represented as Topology Template [32]. This is the main part where the user sets up
properties, requirements and actions of a service to be considered during the service
lifecycle. The template again consists of two parts: Relationship Templates and Node
Templates, which in combination result in a graph of nodes.

Node Templates describe and define the properties, attributes, actions, capabilities
and requirements of a service component. A node template is, in turn, an instance of a
Node Type [32, 30] that provides a persistent way to model components. In other words,
the Template is responsible for providing explicit values for attributes and properties,
while the Type describes those attributes and properties, which can also be reused in
multiple Templates.

The same is for the Relationship Template, where Template is an instance of Re-
lationship Type [32]. The main goal is to describe the relationship between the Node
Templates. For example, we can have two components web server and a database. For
them to communicate with each other, we need to define the relationship between them
by describing how and where they are connected.

There can be multiple relationship types such as HostedOn, ConnectsTo, AttachesTo,
RouteTo, DependsOn [30]. It is also possible to create a custom relationship for a specific
task. When developing the application, the user must take into account the fact that the
relationship types execute the nodes in a predefined order. When two node types are
connected, it also means that these node types have a matching capability.

3.3 Execution phases
The dependencies between nodes define the order of execution of relations and nodes in
TOSCA. Regarding relationships, they have their lifecycle and can go through various
execution phases parallel to the node execution order. For instance, a relationship can
only be executed after the target node has been created and configured. The execution
phases for nodes and relationships are shown in Figure 4.

Execution phases are essential to ensure that a TOSCA application’s deployment
flows reliably and predictably in provided order. By defining the order of operations,
TOSCA ensures that each step is executed precisely and that the dependencies between
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Figure 4. The order of execution phases for nodes (represented by the green blocks) and
relationships (represented by the red blocks)

nodes and relationships are appropriately managed. In addition, execution phases can be
extended or customized to meet specific deployment needs, making TOSCA a versatile
and adaptable standard for deploying complex applications.

3.4 Workflow
As described above, the architecture of TOSCA is built like a graph, consisting of nodes
and relationships between them. However, these components alone cannot interact and
function. The workflow process is described in topology [33]. It is part of a template that
can be parsed at TOSCA runtime to execute all services step by step.

Once a developer has created an application model and entered all the required data,
it can be executed. However, the question arises as to how it should be executed. It
should be noted that TOSCA uses YAML (Yet Another Markup Language) as the file
format in which all components are described [32]. It can also be customized to meet the
needs of a particular application. And, of course, the entire workflow process is described
there, including all processes and required steps to be started during deployment. The
workflows are executed through a TOSCA-compliant orchestration engine that manages
the execution of the tasks defined in the workflow.

The TOSCA standard provides a Cloud Service Archive (CSAR), a standardized
packaging format for cloud applications. It ensures that all necessary artifacts and
templates are available. When an application is executed, an orchestrator manages
and executes the application within a single environment [24]. CSAR archive contains
multiple files describing the workflow, organized in hierarchical subdirectories. A
mandatory subdirectory, TOSCA-Metadata [15], which should always exist within
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1 tosca_definitions_version: tosca_simple_yaml_1_3
2 imports:
3 - db.yaml
4 - web.yaml
5 topology_template:
6 node_templates:
7 database:
8 type: tosca.nodes.DB
9 properties:

10 db_name: postgres
11 db_user: admin
12 db_password: admin
13 web_app:
14 type: tosca.nodes.Web
15 properties:
16 app_name: web
17 requirements:
18 - database:
19 node: database
20 relationship: tosca.relationships.Uses

Figure 5. Example of a TOSCA file connecting a web application to a database

CSAR, describes information about the artifacts, including the path inside a container
and the execution file format.

In Figure 5 you can see a simple example that describes all the necessary information
for connecting a web application to the database. The script has imports that contains
information about the node types, which are contained in a separate file with all the
information about them. This script also has two node templates - database and web
application, the latter of which also has a relationship requirement to the database. This,
in turn, means that when the entire model is ready, the user only needs to run a single
script file that sets up and creates all the services automatically.

3.5 RADON
RADON 3 is a project focused on developing a DevOps framework that encompasses
all phases of building and deploying complex software in the cloud. In other words, the
goal of this project is to accelerate the process of various cloud application actions by

3https://radon-h2020.eu/
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providing RADON components. It is important to mention that OASIS TOSCA serves
as baseline modeling language [7] for describing RADON models.

Figure 6. Eclipse Winery web interface

A model-based approach is used in this project to setup and control distribution and
orchestration of modern cloud applications, where microservice architecture is commonly
used [10]. Here, TOSCA is used and acts as an orchestrator of cloud services and also
validates those components’ topology. That is, it turns out that RADON is a kind of
wrapper for TOSCA while giving the following benefits:

• Graphical Modeling Tool (GMT) - web-application (see Figures 6), which allows
users to model the TOSCA application instead of describing components and
their relationships manually. When the model is finalized, Eclipse Winery 4 (web-
application) allows users to export their models as CSAR files [16], which include
all necessary information to deploy cloud application.

• xOpera Orchestrator 5 - RADONS’ Ansible-focused lightweight open-source
orchestrator. It is responsible for executing scripts, including correct orders and
models, that are located in the above mentioned CSAR file.

• RADON Particles 6 - a repository which is hosted on GitHub [16]. This repository
consists of TOSCA blueprints, or, in other words, reusable components that are

4https://projects.eclipse.org/projects/soa.winery
5https://github.com/xlab-si/xopera-opera
6https://github.com/radon-h2020/radon-particles
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predefined by the organization. It enables users to use and combine them in order
to create a variety of cloud applications. It also is organized in a way so that it
fulfills the GMT requirements so that, for example, users can easily connect to an
Azure virtual machine and start a NGINX server in just a few clicks.

RADON also includes a verification tool [10] that checks whether the designed model
complies with the constraint sets (e.g., pattern violations, security, missing inputs or
attributes) before the deployment is executed. If the DevOps engineer violates constraints
during system modeling in GMT, the system notifies him. In addition, the engineer can
review an artifact generated during model creation and use it for troubleshooting by
reviewing the logs, which provide more detailed information about errors that occurred.

With these features, RADON also allows for the creation of custom components.
Since this project largely describes services related to DevOps, it simply lacks some
components that are also needed for software development. One of the missing areas is
machine learning blocks.

3.6 Alternatives
While TOSCA is a widely accepted standard for automating processes, other solutions
offer similar functionality. Among the most popular are Terraform7, Cloudify8, Puppet9,
Chef10, and Ansible11 [7]. Each of these technologies has its strengths and weaknesses,
so it is essential to understand how they compare to TOSCA.

Terraform uses a declarative approach to infrastructure as code, defining the desired
state of infrastructure and managing necessary changes automatically. Cloudify, built on
top of TOSCA, provides a higher-level abstraction than TOSCA and includes additional
features like support for multiple clouds and Kubernetes integration.

Puppet and Chef are configuration management tools that can be used for infras-
tructure automation using a procedural approach to configuration management. Finally,
Ansible is another popular configuration management tool that uses a declarative ap-
proach. It is designed to be lightweight but less powerful and extensible than TOSCA.

Overall, the decision to use TOSCA as a starting point for process automation was
based on several factors, including its status as a widely accepted standard and flexibility.
TOSCA can describe a wide range of services, not just cloud applications, making it
flexible. TOSCA also provides a high level of abstraction, so the user does not have
to dig deep into the details of the components. Finally, it can extend beyond a specific
technology.

7https://www.terraform.io/
8https://cloudify.co/
9https://www.puppet.com/

10https://www.chef.io/
11https://www.ansible.com/
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4 ML-TOSCA Methodology
This section provides a precise technical overview of all stages involved in the practical
work. It covers the algorithms, technologies, and ideas implemented throughout the
project and any difficulties encountered. Additionally, the section delves into the project’s
technology architecture and technical implementation, providing detailed insights into
the underlying system design and implementation. Finally, the author will outline the
project’s advantages, highlighting the key benefits that the project brings.

During the writing process for this thesis, the author used the Grammarly12 tool, an
online grammar checker and writing assistant. Grammarly helped identify and correct
grammatical, spelling, and punctuation errors and provided suggestions for improving
the clarity and coherence of writing. Also, during the thesis writing, ChatGPT13 was
used. This tool was used for text rephrasing and certain concept clarifications, mainly in
the background and TOSCA sections.

4.1 Research design
The work began with introducing the technology TOSCA, namely familiarizing with the
documentation and various articles on the subject. In parallel, the author began to solve
simple data science tasks, which are described below. Furthermore, ultimately, to ensure
that the author understands the working principle of TOSCA, several simple components
were created, connected, and performed the most specific functions.

Since the topic is directly related to machine learning, it was decided to solve four
tasks 14, two of them related to classification and the other two to regression. These tasks
clarified what transformations and data processing are repeated, including the actions
associated with the machine learning models, so that it becomes clear which components
these tasks can be replaced. The tasks were solved to get a clear indication of what
should facilitate and speed up this work.

The tasks were solved using the Python language. The reason was that it has a
vast collection of libraries and frameworks specifically designed for data science. Each
task imported the external libraries Pandas, XGBoost, and Scikit-Learn. These libraries
were chosen because they are among the most commonly used in data science and have
become industry-standard tools. The author decided that the creation of neural networks
would not be implemented in this project but would be left for further development. In
addition, the author has decided not to develop a component for data visualization, as
this is already a separate topic and needs to be studied separately.

12https://www.grammarly.com
13https://openai.com/blog/chatgpt
14https://github.com/chinmaya-dehury/TOSCA-ML
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4.1.1 Technology stack

This project aimed to create automated machine-learning components using the TOSCA
specification, an open standard for describing cloud services. Several tools and technolo-
gies were utilized to achieve this goal, including the Python programming language and
the Ansible orchestration engine, both of which were used to automate the deployment
and management of services. To facilitate automation and orchestration, XOpera was
installed, a cloud orchestration tool that supports the TOSCA specification. This tool
allowed automation of the deployment and management of services, ensuring they were
configured and optimized for specified use cases. For developing a particular service, it
was necessary, among other technologies, to install Docker 15, which in turn served as a
platform for hosting Eclipse Winery.

Throughout the project, were used the following versions of the tools: Python 3.8,
Ansible 2.12, XOpera 0.6.9, and Docker 20.10.16. The author found these tools reliable,
efficient and well-suited for the current project.

4.1.2 Data storage format

Before implementation, the author considered how to handle the intermediate data that
would be transmitted and read by different nodes. In this work, ’data’ refers to both the
input data and the trained model, which can be saved as a file and transmitted as data.
To ensure compatibility and ease of handling, the author decided to store all data in a
unified format using the pickle 16 library in Python. This way, whether the data is a file
or a data object, it can be saved and transmitted consistently.

Pickle is a module that can convert Python objects into a binary format that can be
saved as a file. The Pickle module can handle almost all Python objects, including lists,
dictionaries, functions, and classes. Of course, it is worth mentioning that these pickle
files can be reconstructed into the original objects.

Number of rows per file 100 000 1 000 000 10 000 000
CSV write time in seconds 0.823 8.625 81.819
Pickle write time in seconds 0.008 0.066 0.68
CSV read time in seconds 0.145 1.07 8.883
Pickle read time in seconds 0.007 0.052 0.502
CSV file size 10.2 MB 103 MB 1.04 GB
Pickle file size 4 MB 40 MB 400 MB

Table 2. Benchmarking results in CSV and Pickle files comparison

15https://docs.docker.com/get-started/overview/
16https://docs.python.org/3/library/pickle.html
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Below will be mentioned that also all CSV files will be converted to the Pickle format.
The reason was several factors that can be seen in Table 2. This experiment was carried
out by the author of the work 17. It can be seen that Pickle is better in all aspects, so the
author decided to read the CSV file only once, rewrite it into Pandas data frame object,
and save it as a Pickle file.

4.2 ML-TOSCA architectural foundations
After reviewing the projects mentioned in Section 4.1, the author concluded that these
projects could be classified into four major subgroups: Data Reading, Data Preprocessing,
Model Training, and Model Evaluation. This categorization was based on an analysis of
each project’s technical details and requirements, which revealed that they shared similar
characteristics and functionality. However, the main difficulty is their combination and
the ability to transfer data between the different stages of the machine learning workflow,
such as from Data Reading to Data Preprocessing, from Data Preprocessing to Model
Training, and from Model Training to Model Evaluation.

To get a complete picture, the author has created a diagram that visually shows and
explains which components exist and to which subgroups they belong. Figure 7 shows
that this architecture has a tree structure - each component has a parent component and
can also be a parent component for child components. Parent components allow for
the description of properties inherited by child components. At the same time, only the
components that are leaves of the tree (purple squares) are directly relevant for solving
machine learning tasks and can be used in conjunction with Eclipse Winery to create and
manage these tasks efficiently.

The task was to create autonomous and, at the same time, compatible nodes that do
not have to wait for the execution of a particular task. In this case, the block responsible
for creating and training the machine learning model does not have to wait until the data
is prepared. The block may already start preparing and creating the model and be ready
for the data to arrive at some point. In addition, it was necessary to figure out exactly
how the communication between the components would take place and how and which
nodes could be connected.

4.2.1 ML-TOSCA architecture

The main advantage of this project is that it is open for additions. Although the main
components have been described in Figure 7, they are more specific to the existing
solution. However, this project is open to more than just these nodes, which can be added
occasionally. It consists of abstract components on which the entire system is built.

17https://github.com/chinmaya-dehury/TOSCA-ML/blob/main/scripts/csv_pickle_benchmark.ipynb
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Figure 7. ML-TOSCA key hierarchy. The yellow rectangles represent parent components,
while the purple rectangles represent the final components or leaves.

By looking at Figure 8, it can be seen that, similarly to key hierarchy, all components
depend on some parent node. At the top level is the computational resource, which
executes the script on the machine. On top of that comes a virtual environment. This
component serves an important role, as it, in turn, provides a development environment,
delivering everything necessary for child components. It means that in the further
development of components, taking care of any required technologies or libraries will
not be necessary.

The following upcoming node types are unique and will be designed for specific
tasks. Each node is responsible for solving its concrete task and does not depend on its
neighbors. For example, the leftmost part of Figure 8 is responsible for reading the data
and does not depend on data splitting. Data can be read from the local machine or any
remote location. A data processing block follows the reading. It consists of a plugin
created to build up various preprocessing algorithms. The last block associated with the
data is responsible for splitting the data into subsets using various strategies commonly
employed in data science. Each of these strategies serves a specific purpose and can be
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Figure 8. ML-TOSCA architecture

tailored to the specific requirements of the downstream tasks.
The remaining two parts are responsible for machine learning models. The first

and the most complicated is a model creation module. Machine learning is divided
into machine learning algorithms and deep learning. The current solution has only a
"traditional" machine learning algorithms implementation, but there is a space for neural
networks. In turn, algorithms also have different variations of implementations. All these
parts are independent but can solve different problems in combination.

4.2.2 Environment

One of the most critical requirements for this project was to provide a seamless user
experience. From the user’s point of view, they should not have to download or install
anything additional when running a program or script. This requirement is essential
because it ensures that users can easily access and use the tool without encountering
technical barriers. To achieve this goal, creating a common platform or environment that
would automatically install and load the necessary dependencies to run the final program
was necessary.

Since all nodes are implemented with Python scripts, providing an environment that
supported Python in a particular version was essential while installing all necessary
libraries. Of course, one could rely on Python already being installed on the machine,
but this has several problems. First, Python may have an old or inappropriate version.
Second, the required libraries may have the wrong version or not be installed. However,
changing the version is also not the best solution since the user can use a specific version
for a specific project. Therefore, to address these challenges, ML-TOSCA supports the
creation of Conda-based 18 virtual environments, allowing users to efficiently manage the

18https://docs.conda.io/en/latest/
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required Python version and libraries needed for their specific project without interfering
with other Python projects that may require a different environment setup.

A Python virtual environment is a self-contained directory tree that contains a Python
installation and a set of packages and dependencies [26]. It allows developers to create
an isolated workspace with its own Python interpreter separate from the global Python
environment. This separation is practical when working with multiple projects that
require different versions of Python or third-party libraries. At the same time, Conda is
an open-source package and environment management system responsible for installing,
updating, and sharing software packages. In other words, Conda allows the creation
of Python virtual environments by specifying the Python version the user wants to use
[39]. The virtual environment created by Conda behaves similarly to a Python virtual
environment but is more potent because it also allows managing non-Python packages.

Therefore, the first step was to implement this type of node. As shown in Figure 7,
this node is separate from the machine learning block. The fact is that the environment
itself is applicable not only in data science but also in other fields, making it platform
agnostic. In addition to creating a virtual Python environment with Conda, adding other
environments for different technologies is possible. For instance, creating environments
for other programming languages such as R, Node.js, C/C++ and others should be
possible. As mentioned earlier, this approach allows the use of the same Python version
and the required versions of the libraries for all scripts. Therefore, this component is the
foundation for all other nodes. Each subsequent node must be connected to it.

4.2.3 Preprocessing

This part was one of the most difficult and, at the same time, crucial in this project. In
itself, the data processing means that the program receives, processes, and outputs the
processed data in the same format. However, the problem arises when the file to be
processed is enormous. Assuming that the processing consists of n different steps, the
file is loaded, processed, and overwritten each time. This is not the most optimal solution,
although the user may not feel the difference if the file being processed is small.

In this project, the data processing module comprises several autonomous blocks
that do not rely on each other. To ensure efficient data processing, it was necessary to
find a solution that would allow loading data only once and writing it only once. After
thorough research, it was concluded that the Pandas Dataframe 19 structure would be
the most suitable tool for data analysis in the Python ecosystem. Pandas is a widely
used library that offers a powerful function called pipe() 20, which can perform multiple
operations on a DataFrame object without creating temporary variables or modifying
the original DataFrame. This feature allows for a certain number of modifications to be

19https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
20https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.pipe.html
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made to the data without loading it several times, thus improving the efficiency of the
data processing module. The problem was how to combine these same node types and,
in addition, save the sequence arranged by the user.

Figure 9. ML-TOSCA data preprocessing schema. An incorrect solution is shown on the
left side, where the user can violate the sequence. At the same time, a solution is shown
on the right side that forces the user not to break the flow.

From such a description, it is emerging that there are too many responsibilities for
each node, but simultaneously, they are similar. That is, each node must be able to
perform its unique task related to data processing, but at the same time, it must be able to
understand the execution sequence and transfer and store data. Continuing this list, the
last component must understand that it is the last and has to create a pipe that collects
and runs all the functions. Hence, all these components must have a parent component
that should perform generalized tasks, such as reading and writing data and building the
correct order.

It was decided to create a basis component responsible for all the essential functions.
At the same time, all child nodes should directly depend on it and transfer the necessary
information related specifically to themselves. Also, looking more globally at this
solution eliminates the possibility of interrupting the chain of actions. Having such a
component, other components pass input data to one place, and the following components
know they will receive data from the same place. Thus, we exclude the possibility of
interrupting the chain and reading the processed data from several places, shown in
Figure 9. This node is also shown in Figure 7, called Pipeline, and belongs to the
Preprocessing parent component.

4.2.4 Model creation

The choice and creation of a machine learning model are crucial links for predictions.
Choosing a suitable model with the proper parameters increases the model’s accuracy
dramatically. The current work implemented two machine learning libraries - XGBoost
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and Scikit-learn. Each of those libraries has models for classification and regression
tasks.

Each model is unique and has parameters that may not be repeated with other models.
Therefore, in this case, it was unnecessary to find all models’ common functionalities and
attach them to a single block that provided some execution logic. However, the parent
component is still needed to describe similar properties inherent in each model. In this
case, the main difficulty was determining the format of the received data. The previous
node could create one final file or several (for example, training and testing), assuming
that the machine learning component should understand how to dispose of them.

4.2.5 Model evaluation

Moreover, finally, having a ready-made trained model, the user should be able to evaluate
it. There are various metrics for this. However, to evaluate and obtain any result, we
need to have data on which the prediction should be made. To be more precise, the data
should be in the same processed form as during training.

There were several difficulties with this implementation. First, it was necessary to
decide how to make it so that the same metrics could be applied to several models. For
example, if the user wants to know the accuracy, recall, and precision, then it is enough
to connect the models with only one block that would be responsible for the results.
In this implementation, a significant difference was that the sequence of metrics in the
final result was unimportant. Also, an essential integral part is the export of the results;
however, this will be described afterward in the technical description.

Another important part was the transmission of the location of the data that was used
to train the model. In data science, there is a concept of splitting data into training and
test data. It makes it possible to evaluate the model on new data and determine how well
it can generalize to new data. In a given project, passing the location of the training data,
the evaluation component must be able to find the data intended for the test.

4.3 Technical implementation
The last section gave brief but, at the same time, architectural explanations without
delving into technical details. This part will give a more detailed explanation of the
implementation of nodes and relationships. Namely, the workflow of the nodes, their life
cycle, properties, and attributes will be described, as well as an algorithm for transferring
data between nodes.

4.3.1 Conda environment

As mentioned above, to create a single environment, it was decided to use Conda, which
allows the creation of a Python environment of any version. Since the libraries used to
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require a minimum version of Python 3.8, the author decided to use the latest provided
by Conda.

The purpose of this node type is to directly create an environment if it does not exist
on the host machine. It is known that to create an environment in Conda, Anaconda
should be installed on the computer. As a property, it takes only possible environment
name, which by default is mltosca. Also, at the beginning of the work, the author decided
to install all kinds of libraries used in machine learning; however, they will not necessarily
be used in one blueprint. Therefore, it was decided to transfer this logic to nodes, which
directly need one or another library.

Another important task of this component is to create a unique name for the newly
created blueprint. The work is based on mutual communication between nodes. All the
needed data must be in the exact location for this. Data refers to the configuration files that
are created when creating any node. For this reason, it is vital to separate project data from
others without allowing them to overlap. It was decided to create a root folder containing
the environment’s name and the start time. For example, ~/mltosca/170323_11-50-39,
where the first part of the number until underscore represents the current data (in this case,
it is 17th of March 2023) and another part represents execution time (11:50:39). Such a
structure gives uniqueness since two blueprints cannot be launched simultaneously on
the host machine.

All other nodes in the exact blueprint must be associated with the environment
component. This means that other nodes must be connected to it using the HostedOn
relationship. This rule is also programmed; the finished script will not start throwing an
error if violated. It is also necessary so that all subsequent nodes know where to write
and where to read data. This realization is implemented using the project_location node
attribute, which is available to other components.

4.3.2 Data reading

The first step in data science is, of course, getting or reading data. In this project, two
nodes are implemented that read data. The difference lies in the format of the read file.
In one case, it is CSV, and in the other pickle.

Both components have similarities in important properties - they need to know the
file’s location to be read. Since both nodes are inherited from the same parent component,
it was decided to move this property there. The difference lies in the additional parameters
required to read the file. For example, the node responsible for reading the CSV also asks
the user for the delimiter and encoding of the file, which is shown in Figure 10. It can be
noticed that the properties are merged into a single parameter, which the Ansible script
will use as input. Ansible will run the Python script using the environment described in
the last section, using the same inputs. In its turn, Python firstly creates configuration.json
file; the name of the newly created file will be described there. The next step will be
splitting the input parameters and reading the content into a pickle file.
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1 tosca_definitions_version: tosca_simple_yaml_1_3
2 node_types:
3 mltosca.nodes.Reading.ReadCSV:
4 derived_from: mltosca.nodes.Reading
5 metadata:
6 targetNamespace: "mltosca.nodes.Reading"
7 abstract: "false"
8 final: "false"
9 attributes:

10 function_id:
11 type: string
12 default: { get_attribute: [ SELF, tosca_id ] }
13 parameters:
14 type: string
15 default: {concat: [{get_property: [SELF, delimiter]}
16 , "#_#"
17 , {get_property: [SELF, encoding]}]}
18 properties:
19 delimiter:
20 type: string
21 description: The character used to separate the values
22 default: ","
23 encoding:
24 type: string
25 description: The character encoding used in the CSV file
26 default: "UTF-8"

Figure 10. Example of a TOSCA file connecting a web application to a database

However, the question of where the configuration and read files are saved may arise.
Again, in the last section, it was described that the environment creates a unique name for
the root folder and passes it to all connected nodes, including the read node. In addition,
all nodes have the function_id parameter (see Figure 10), setting up a unique name for
it inside a blueprint. This parameter serves as a unique name for the folder in which
the created files of the read node will be stored. According to the previous example,
the newly created folder location will be ~/mltosca/170323_11-50-39/ReadingCSV_0_0,
which will contain two files - configuration.json and df.pkl.

It is also worth noting that the final file format will be a pickle. Again, referring to
Table 2, this format allows one to read and write data many times faster while winning
in the size of the saved file. In the case of a CSV, the file is read into the Pandas data
frame and saved as a Pickle. Moreover, if the transferred file is already a Pickle, then it
is copied to a new location.

Also, an important point used in each node - when creating a final file (for example,
df.pkl), a file with a different name is initially created, different from the name written
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into the configuration file. It is done to ensure that other nodes waiting for the file will
only read it after the whole data is written into it. Otherwise, the data writing process
into a file may only be halfway, but the next component starts reading it. This can lead to
various anomalies or missing data.

4.3.3 Preprocessing pipeline

Data processing is one of the largest and most complex families of nodes. As mentioned
in subsection 4.2.3 given solution should consist of one main block, to which all other
direct processing blocks will be attached. Before going to the more technical part, it is
worth noting that just like the previous node, this node must have a HostedOn relationship,
and so have a DependsOn relationship with the previous node. In this case, the previous
node was the data reading node. This means that we depend on data, and preprocessing
pipeline will not be executed before the data reading node is started.

Maintaining the correct order of operations is essential when building a data pre-
processing pipeline. For instance, if the user wants to transform data into a numerical
representation, it should be completed before any subsequent operations depend on it.
However, maintaining the correct order can be challenging, as discussed in subsection
4.2.3. One issue is knowing when the last node from a given pipeline was launched. One
possible solution is to call the callback function on the data file directly when creating
any processing node. This way, the processed file can be transferred to the next node for
further processing. Nevertheless, this approach may not be the most efficient.

Again, the correct order is implemented using a DependsOn relationship. It turns out
that by combining the necessary nodes for the user, the order of the called blocks can
be written into a file, where the function’s name from top to bottom describes the order.
In this case, it will be possible to reproduce the given queue, but it will be necessary to
comprehend how to understand that at some point, the pipeline has reached the end, and
it needs to run all the functions. The author thought that if it was possible to know the
number of functions in advance, the primary node could check the file into which the
correct order is written and verify whether the number of lines matches the number of
preprocessing nodes. This would provide an additional check to ensure that all functions
in the pipeline are executed in the correct order.

It was decided to do this with the help of a custom relationship called Hoste-
dOnPipeline. This was specifically designed to ensure that all those functions that
connect to the main pipeline write their function names to a separate file. This way, the
parent pipeline node can figure out how many nodes there will be before running the
DependsOn relationship. To do this, the pipeline itself counts the number of lines and
runs a script in the background to check the number of lines in the file describing the
correct order.

When the specified number of nodes is reached, the same script reads the names of
all functions from the file responsible for the queue while maintaining the sequence. In
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1 remove_columns-|-PassengerId,Name,Cabin,Ticket
2 replace_nan_values-|-Age-|-mean-|-None
3 remove_nan_rows
4 replace_categorical_values-|-Embarked
5 replace_categorical_values-|-Sex
6 shuffle_rows

Figure 11. Example of a data preprocessing order file

addition to the name, some functions have mandatory parameters passed in the file. All
parameters are separated by a special separator which can be seen in Figure 11. This
example shows that first will be executed remove_columns function, which takes one
argument. Secondly, will be executed replace_nan_values, which takes three arguments.

Figure 12. Example flowchart of the preprocessing stage.

After gathering all the information regarding the functions, they are collected in a
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single pipe. As mentioned above, this solution will run all functions simultaneously
and only once per data frame from the previous node. Following successful processing,
the data will be saved in the same way to a new file, which will be ready for further
processing or reading.

To better understand the preprocessing flow, take a look at Figure 12. The correct ex-
ecution order is provided with the numbers at each arrow’s end. Primarily, preprocessing
stages tell to parent node about their existence (the number from one to four). Next, the
same stages set up the correct order (the numbers from five to eight). Finally, the parent
node, which knows everything about stages, will execute them.

4.3.4 Data splitting

Before training a machine learning model on the prepared data, we must consider how to
evaluate it in the future. Usually, the data is divided into training and test data. There are
other strategies; for example, in addition, to testing data, evaluation data is also created
(hold-out method). This allows for fine-tuning the model while not checking the metrics
on the final test data, avoiding overfitting. Alternatively, an equally popular method,
K-Fold cross-validation, divides the dataset into k subsets. In this case, the model is
trained on k-1 subsets and evaluated on the remaining subset. This process is repeated k
times, averaging the performance metrics over the k runs.

In this project, only the first method was applied - data division into training and
testing. For this, one node was used, which asked the user for one property: the
percentage of the test data to the train data, which by default is 0.2. Specifically, this
node takes this argument and creates two files defined in the configuration file.

4.3.5 Model creation and training

Finally, when the data is processed and prepared, the machine learning models can start
training. Just like the others, these nodes must be connected to the environment and also
have a dependency on the previous node that passes the location of the configuration
file. It is worth mentioning once again that the task is to create components that are
independent of each other, which, in conjunction with each other, can solve problems.
Therefore, the configuration file is the only link between the various components, which
provides all the necessary information about the work accomplished.

First, by running the script, the model node will wait until the file for training is
ready. To do this, as in other components, an infinite loop is launched that checks
for the existence of a file every second. Once the file is ready, the script creates the
model specified by the user and the parameters that can be set for each model. The
author has tried to place certain restrictions; however, the primary responsibility for the
correctness of the parameters provided is the user’s responsibility. Thus, having received
the necessary file for training, the script separates a column from it, which the model
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must learn to predict. The user must also specify the name of the column in properties.
Finally, the model training starts.

At the end of the model training, the model is converted to pickle format and saved
to a file. Meanwhile, this node also keeps the file’s location used for training. This will
be necessary so that the node responsible for the evaluation can take the same processed
data but already a file intended for testing.

4.3.6 Trained model evaluation

Having a ready-trained model user should be able to evaluate it. This naturally requires
a model and data with the same appearance as the training data. The evaluation node
depends on the node responsible for creating the model and, like the others, must be
hosted on the environment node.

In general, there are a large number of metrics. Users must also consider that
some metrics are suitable for classification models, and some are only for comparing
regression models. In the ML-TOSCA project, are implemented eight metrics in total for
both situations (4 for classification and 4 for regression). However, given that this project
uses directed acyclic graph implementation, it can be assumed how many links need to
be laid if the user wants to combine four different models with four identical metrics
(four models and four metrics give in total 4x4 = 16 relationships). The author thought
that this solution in this situation is to create a parent component to which all metrics
will be attached. Similarly, a data processing pipeline was implemented.

Having a parent node reduces the number of relationships and allows more logical
group metrics, which is more important. That is, the user can group data depending on
the type of models and the selected metrics. Delving into more technical aspects, in this
case, the order of metrics is not essential, eliminating unnecessary connections between
them. It is enough to determine the total metrics using the HostedOn connection and run
the evaluation script.

To connect the metrics with the parent metric pipeline, a custom relationship was
used so that when they were connected, the used metrics were written to a file for storage.
That is, the task execution phase was programmed in such a way that the data of all
associations were first read, and only after that the main script was launched. It is
essential to mention that Ansible is used in launching the script itself (as in all other
notes). To launch any script, Ansible first creates a unique folder whose name is the
unique id of the node. Then, depending on the Python script being run, the necessary
libraries are downloaded to the environment if they are not present. Only after that, the
Python script is launched in the background not to slow down the entire orchestration.

Thus, the primary node responsible for the metrics and hosting the functions of
various metrics also connects with the models. This relationship is also custom and is
called DependsOnModel, inherited from DependsOn. When this relation is connected, a
script is also launched that writes the connected model name to the file and, necessarily,
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1 DecisionTreeClassifier_0_0#_#SplitTrainTest_0_0#_#Survived
2 RandomForestClassifier_0_0#_#SplitTrainTest_0_0#_#Survived
3 KNeighborsClassifier_0_0#_#SplitTrainTest_0_0#_#Survived

Figure 13. Example of a file storing model names, data folder location, and column for
the prediction

the name of the folder from where the model took data for training with the column name
that should be predicted. An example of the file structure is also shown in Figure 10. It
can be seen that specific characters (#_#) separate all three mandatory parameters.

Having all the mandatory information needed, the script, which was running in the
background, can start evaluating models. The program first reads the file with the models,
namely folder names where the models are located. After that, a configuration file is read
in each folder, which describes the full location of the models which will be uploaded. In
parallel, the data folder is loaded, where the file for testing is located. Then, one by one,
each model makes a prediction. The results obtained are compared in the user-specified
metrics algorithms, and the final results are written to separate files, where the file name
corresponds to the model name.

4.3.7 Result exporting

Working on data science projects, a programmer can look at the processed data at any
time, evaluate it from a professional point of view, or even send it to the client. In
addition, of course, the developer has the opportunity to save the trained model in order
to use it later. In the given project, it was also important to provide similar functionality.

Using ML-TOSCA, the user can export three things - data (downloaded, processed,
split) in the CSV format, machine learning models, and the results obtained during
model testing. To apply this functionality, export nodes must be connected to those
that produce the data or objects the user needs, whether a data processing pipeline or a
KNearestNeighbours node. These nodes will similarly run in the background and wait
for the necessary files to appear. The only required property the user must specify is the
exported file’s location.

4.4 Features and benefits
This work is unique in the TOSCA area. The uniqueness of ML-TOSCA lies in the used
technology but also the functionality provided. It has many advantages and can be helpful
in numerous aspects. Below is a list of all the comprehensive features implemented and
ready for execution.
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• Machine learning democratization - machine learning has become even closer
to everyone, depending on whether the user is a specialist. Offering a user-friendly
interface, anyone interested in data science can get started. The user should not get
bogged down in the technical details of the programming language or algorithm. It
is enough to understand the steps to achieve the final goal. The whole technical
part will be implemented within this technology.

• Time-saving -ML-TOSCA has the potential to save a significant amount of time
by simplifying the process of creating machine learning pipelines. Rather than
writing code from scratch, users can select and configure pre-built blocks using a
user-friendly interface. The modular design of the system and its drag-and-drop
interface help speed up development and reduce the time spent on repetitive tasks.

• Simplicity of use - This project provides a user-friendly tool for simplifying the
process of data preprocessing and building and training ML models. While a
learning curve may be associated with using the tool, it is designed to be intuitive
and easy for experts and non-experts. Users can quickly and easily build a complete
machine-learning pipeline using an intuitive graphical user interface.

• Modularity and reusability - speaking of the technical implementation, this work
is also notable for the fact that all components were developed in an interoperable
and reusable way. It allows us to build and supplement existing components rather
than starting from scratch each time. That is, adding new independent components
from each other is possible while not changing the existing ones. As a result, it
speeds up the software development process, enhances system functionality, and
improves code quality.

• Flexibility - based on the previous point, the more developers build components in
ML-TOSCA, the more tasks can be solved. It means this project is not restricted to
any specific technology or problem. The user, potentially, can solve any problem
that can be solved using a machine learning approach. It makes this project flexible
and platform agnostic.

• Process automation - eventually, the final benefit, which in one way or another
relates to all others, is the automation of all processes. Using ML-TOSCA, the
user does not have to write a single line of code. Each process that should be
executed is done automatically in the background. It saves significant time and
reduces error occurrence, ultimately leading to higher data quality and better model
performance.

TOSCA has many advantages. Nevertheless, it is worth noting that all the features
turn into advantages when the user has at least some idea of the world of machine learning
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and its algorithms. In other words, this tool becomes powerful in the hands of someone
with theoretical knowledge about ML but is not strong in its technical implementation.
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5 Demonstration of ML-TOSCA in action
In this section, the author will explain and show an implementation of ML-TOSCA nodes
and their relationship in the example of an actual project. For clarity, the project will
solve the classification problem, including all neccesary steps to train a machine learning
model. It will also explain the basic rules needed to run the entire application.

5.1 Project setup
Since this project is not part of the official repository at the time of the release of the
thesis, the first step is to download the project from the custom TOSCAML repository as
shown in Listing 1.

$ g i t c l o n e h t t p s : / / g i t h u b . com /TOSCA−ML/ t o s c a −ml−models . g i t

Listing 1. Command for cloning ML-TOSCA repository to local machine

The user can run the project in a docker container using the Listing 2 command. The
〈path_on_your_host〉 should be replaced with the full directory path where the project
was downloaded.

$ do ck e r run − i t −p 8080:8080 \
−e PUBLIC_HOSTNAME= l o c a l h o s t \
−e WINERY_FEATURE_RADON= t r u e \
−e WINERY_REPOSITORY_PROVIDER=yaml \
−v < p a t h _ o n _ y o u r _ h o s t > : / v a r / r e p o s i t o r y \
−u ` i d −u` \
o p e n t o s c a / radon −gmt

Listing 2. Command for executing a custom TOSCA model repository [8]

After executing the above commands, the user can open Winery GMT on the machine
where the container was launched. To do this, he must open any browser and navigate to
http://localhost:8080. A web interface opens to the user, allowing him to view and
try out all the node types, relationship types, blueprints, and other elements.

5.2 Classification project
In this section, the author will explain and show an implementation of ML-TOSCA nodes
and their relationship in the example of an actual project. It will also explain the basic
rules to run the application and cover results gained during the program execution. For
clarity, the project will solve the classification problem.
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5.2.1 Solution strategy for the Titanic classification problem

The Titanic dataset21 is a popular machine learning dataset that contains information about
the passengers on the Titanic’s voyage. The dataset includes passengers’ information,
demographics, ticket class, and whether or not they survived the disaster. A classification
problem with this dataset aims to predict whether a passenger survived or not based on
their attributes. It is a fundamental binary classification problem.

Before applying any machine learning algorithms to this problem, it needs to be
performed some data preprocessing steps. All applicable phases are shown below.

1. Removing unnecessary columns that do not provide useful information. As a rule,
these columns carry unique values repeated only once.

2. Filling in missing values. Multiple strategies can be applied, for example, speaking
of numbers filling empty values with the median or average of the entire column.

3. Converting categorical variables into numerical values. Applying this algorithm is
a good practice because many machine learning algorithms are designed to work
with numerical data.

4. Scaling the features. It ensures that all features contribute equally to the machine
learning model’s training process [34].

5. Shuffle whole dataset. Sometimes it can lead to the model not being able to
generalize well to unseen data if the dataset is not randomly ordered.

Once the data is preprocessed, we can split it into training and testing sets. After
that, machine-learning algorithms can be applied to train models on the training set.
Ultimately, model performance can be evaluated with test data using different metrics
such as accuracy, precision, recall, and F1 score. This flow can be applied to this project
to train the models, make predictions, and get results. The author’s task was to reproduce
these steps using his system.

5.2.2 Implementing the Titanic classification solution using ML-TOSCA

The same project can be solved with ML-TOSCA without writing a single line of code.
At the same time, there should still be a basic understanding of the algorithms used for
working with this data. This section will show the complete solution to this problem
which can be found in the project repository service template 22.

21https://www.kaggle.com/competitions/titanic/overview
22https://github.com/TOSCA-ML/tosca-ml-models/tree/master/servicetemplates/

mltosca.blueprints/titanic_classification_problem
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Figure 14. Setting up Conda environment connected with ReadCSV node type.

The first step is to create a new template service and add the first node from the
mltosca.nodes.Evaluation subgroup called Conda. After that, the user can drag the
ReadCsv node from the mltosca.nodes.Reading subgroup and connect them with the
mandatory HostedOn relationship as shown in Figure 14. It can also be noted that the
ReadCsv node type has three properties that the user should provide - delimiter, encoding,
and file path. In this example, author did not add any virtual machine, meaning this script
will be executed on a local machine (however, the user has this opportunity). Users can
download this topology and run it already, having such a setup.

In this example, the user has already configured the system to create Conda if it does
not exist and reads the CSV file. The next logical step is data processing. As mentioned
above, a processing pipeline node has been created to serve as the central processing unit.
The user must find and Pipeline node type under the mltosca.nodes.Reading subgroup
and drag it to the platform. This node must be hosted on Conda. Since processing cannot
logically start before data is read, the pipeline node must have a DependsOn relationship
with the ReadCsv node. The nodes directly responsible for the processing algorithms
will be hosted on the pipeline but already using a custom relationship HostedOnPipeline.
In addition, this correct execution order will be implemented again with the help of
DependsOn connection. A newly added preprocessing pipeline can be seen in Figure 15.

It may seem incomprehensible why the arrows go from right to left. However, the
name of the DependsOn dependency speaks for itself. If we have two nodes, A and B,
where B should be executed only after A, then B should depend on A. In other words, the
arrow should go from B to A. It is also worth clarifying that properties are also provided
to some nodes. For example, RemoveColumns has an input string of columns separated
by a comma we want to remove. ReplaceNanValues took a column name Age and method
mean. Finally, two node types ReplaceCategoricalValues take a column name as input.
In this case, it was Sex and Embarked columns.

Before training machine learning models, we need to divide the dataset into training
and testing. The split node SplitTrainTest is under the mltosca.nodes.Splitting section. It
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Figure 15. Adding preprocessing pipeline.

has only one property which is test_size. By default, this value is 0.2. Given node will
also be hosted on Conda and will have DependsOn relationship with Pipeline node type.
We could not split the data but directly pass the data to the models. However, thinking
ahead, we assume that we want to evaluate models in addition to training.

Finally, the user can train the models when the data is prepared. In this example, the
user can use two different libraries - Sklearn and XGBoost. To be more precise, the user
has to select classification models, which can be XGBoostClassifier, KNeighboursClas-
sifier, DecisionTreeClassifier, and RandomForestClassifier. All models have multiple
properties with default values except 1 - the column name to predict. In all other respects,
those nodes are similar to others.

The conclusive step is the evaluation of the models. Again, in a similar way as in
data preprocessing, a EvaluationPipeline is responsible for hosting evaluation metrics
on it. As well as others, it should be hosted on Conda, but it also should have a custom
relationship DependsOnModel with the models. In turn, metrics that should be hosted
on EvaluationPipeline also have a custom relationship HostedOnEvaluation. After
connecting all of those, the user will get a complete orchestration which will execute
all necessary scripts and produce the final result. The whole orchestration is shown in
Figure 16.

However, described orchestration can be modified further. Received results on each
step - data preparation, model training, and results evaluation can be exported to any
preferable location. For this action, the user has to add an export block to any node he is
interested in. Furthermore, the whole pipeline can be executed on a remote host. There
is also a separate node for this, where the user must specify all the necessary properties
to connect to the VM and, undoubtedly, connect it to the environment node.
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Figure 16. Final ML-TOSCA orchestration for the Titanic classification problem.

5.2.3 Analyzing xOpera’s execution flow on a Titanic problem

The last logical step is to run the resulting orchestration. We need to download the CSAR
archive and execute it using xOpera. As mentioned above, the ML-TOSCA folder is
created after launch. Inside it, a folder with the date and time of the launch will be
created with all the execution information. The user does not have to know how and
which order scripts were executed; however, it can be tracked in the command line from
which the CSAR was executed.

In order to better understand how it works, let us rely on the same orchestration
created in the last subsection for simplicity. The result of the execution of described
orchestration can be seen in Figure 17. It can be seen that each element was involved.
First, as expected, the node responsible for the environment was launched. Then, the
node ReadCSV reads the data, which will be subsequently processed and transferred to
the models for training.

The following preprocessing execution phase consists of multiple stages. Firstly, the
Pipeline node is deployed but does not execute any script. The following six lines show
stages that will be executed inside a pipeline. They write their function names in a file.
After that, the Pipeline node starts, which will read the previous file with function names
and know how many phases should be executed. The pipeline will run in the background
and wait until a file exists, showing the function names with the correct execution order.
The figure shows that those six execution phases will be executed later, but this time they
will write down the execution order. Similarly, an evaluation pipeline is executed later.

In other cases, which are left, such as data splitting and model creations, they are
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executed straight forward, one by one. The reason is that in other cases, the execution
order is not crucial. For example, it does not play any role if XGBClassifier will be
executed before RandomForestClassifier and visa versa.

5.3 Testing results
One of the challenges of testing technology is that specific characteristics can be difficult
to measure objectively. For example, it is not fair or even possible to test and compare the
speed. By speed, we mean the speed of writing the code and the speed of the execution.
At the same time, if ML-TOSCA is solving the same task that can be solved using any
programming language, it should also be possible to compare the intermediate and final
results.

We decided to compare the results generated during the Titanic classification project
solution. As each stage of the execution was storing its result, extracting and comparing
the outcomes with the results gained with the coding implementation was easy. The
data obtained after processing were identical except for the ordering. Regarding the data
splitting, it was also possible to check the size and the proportion of the train and test
datasets. The sizes of compared datasets were also identical.

Model Manual Code ML-TOSCA

Acc Prec Rec F1 Acc Prec Rec F1

KNeighboursClassifier 0.68 0.64 0.52 0.6 0.68 0.54 0.56 0.55
RandomForestClassifier 0.8 0.78 0.7 0.74 0.83 0.86 0.61 0.72
DecisionTreeClassifier 0.76 0.7 0.73 0.71 0.82 0.88 0.58 0.7

XGBClassifier 0.82 0.81 0.74 0.77 0.79 0.68 0.73 0.7

Table 3. Comparison of models performance (accuracy, precision, recall, and F1-score)
between Manual Code and ML-TOSCA

Machine learning models we were able to test only by comparing their predictions.
Undoubtedly, comparing results using the same random state could be better, but the
current ML-TOSCA solution does support it. Nonetheless, by looking at the outcomes,
it can be seen that the evaluation metrics results are near each other. The results can be
seen in Table 3. Thus, based on all the data obtained, it can be argued that ML-TOSCA
works and produces the same results as if the developer wrote the code from scratch.
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Figure 17. xOpera execution flow
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6 Future research directions
This project implemented a wide range of functions and features to provide a compre-
hensive solution to the problem at hand. However, due to the complexity and scope
of the project, some possible implementations were not included in the final product.
This section provides a more detailed description of the missing features that could be
implemented.

6.1 Feature Scaling
Feature scaling, also known as feature standardization [17], is a data preprocessing
technique that transforms the features of a data set to have a similar scale or range. It
involves scaling the features of a data set to a standard scale, such as so that they have a
mean of zero and a unit variance, or scaling them to a specific range, usually between 0
and 1 or -1 and 1. It is an essential technique in data science because it helps improve
the performance of machine learning algorithms [29, 6, 34].

An important point to note is that when feature scaling is performed on the entire
dataset before it is split into training and test datasets, the test set will contain information
about the mean and variance of the entire dataset. This, in turn, means that the model
may learn relationships between the features and the target variable that do not generalize
well to new, unseen data. By scaling the training and test data sets separately, we ensure
that the scaling parameters for each set are optimized independently and that the test set
remains completely independent of the training process.

For clarity, the entire data set was scaled before being split into train and test. The
model does not know how to scale data. This means that when the model receives new
data for predictions, it must scale it with different scaling parameters than the training
data, leading to potential problems with its performance.

In this project, all data preprocessing is done only once, and only those hosted on
the preprocessing pipeline node. Of course, the user can reuse the preprocessing after
the data has been split, but currently, the model or the parameters used to scale are not
transferred in any way, so this makes no sense. Nevertheless, it is integral to processing
and preparing the data for model training and prediction. This implies a separate major
work, where storing the algorithm with parameters for further test data processing must
be considered.

6.2 Incorporating an event-driven approach
Currently, our solution is using a data-event approach. This approach triggers events
when data is changed, and the software system responds accordingly. For example, when
data is processed, the model will know that and start training. Nevertheless, this process
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will happen only once during the script execution. In the future, an event-driven approach
needs to be implemented.

The event-driven technique implies that action will start after a specific event is
triggered, for example, a user button press or inserting additional data into the system.
This is necessary so that in the future, the model can make predictions and train in
parallel. Alternatively, after the data processing pipeline is configured, the user can add
data and be sure it will also be processed. That is, it will allow observing a particular
continuous integration when the system can be updated without stopping.

6.3 Visualization
Another critical component of data science that should have been implemented in this
project is data visualization. Data scientists can use various visualization techniques
to uncover hidden insights and trends that inform business decisions. By visually
representing data, researchers can quickly identify trends, anomalies, and outliers to
understand better the relationships and patterns within the data [37]. Data visualization
is also useful for testing hypotheses and validating assumptions. It allows developers and
researchers to uncover insights and patterns not readily apparent in the raw data.

Again, such an important component still needs to be implemented, as it was not
the primary goal of this work. Nevertheless, the author considers it an essential and
valuable component that should be considered in future implementation. It should be a
separate, standalone block that should have many different charts and, at the same time,
be intelligent enough to understand how and what data should be displayed.

6.4 Providing in-depth control over pipeline behavior
In the ML-TOSCA project, the user has a large selection of different properties for
configuring various nodes. The choice of one or another property can play an essential
role in the quality of the final data or the accuracy of the model. The more the developer
knows about them, the better result he can get.

Although the author of this work tried to add as many different properties as possible
to various objects, it is impossible to describe everything. It is a big job that requires
precision and attention to detail. Sometimes it needs to check if the specified parameters
are compatible, for example, to create and train a machine-learning model. Since
AutoML does not imply a deep understanding of all attributes, at the moment, having the
properties that are provided now, a scientist can train a good model already. However, if
a professional wants to use this tool, he may need some parameters slightly.

Thus, a potential future improvement could be revisiting and adding properties to
the various nodes. To do this, it will need to read the documentation of the corrected
technology and, following the rules, add them to the nodes.
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6.5 Cross-Platform Compatibility
This project has an environment block responsible for creating an independent platform
inside a system. Regardless, the current implementation only works on Linux, which
limits its accessibility to a broader audience. This is because the environment setup script
is only for Linux systems.

The solution to the problem consists of several changes consisting of multiple steps.
However, those changes are not global, but they should be tested. Since most of the
scripts are run through a virtual environment, then in this case, the operating system does
not play a role. However, the Anaconda installation script is already different. It means
that its location may be different. In addition, the folder structure may be different.

6.6 Workload distribution over multiple virtual machines
It must learn how to distribute work between several computers to get the most out of this
implementation. Currently, the project can run all work on a virtual machine. However,
distributing the load between several machines will help speed up the whole process and
correctly distribute the load. It can be assumed that model training requires GPU, but it
does not have to be during the data preprocessing.

The workload can be split and distributed over multiple virtual machines. It divides
work into more manageable units, which can be processed in parallel. This means that
the whole system’s efficiency will increase because each virtual machine can focus on its
allocated workload without being overwhelmed by the entire workload. Additionally,
workload distribution can help ensure the system is reliable and scalable because addi-
tional virtual machines can be added on demand. Furthermore, workload distribution can
help improve fault tolerance, enabling the system to continue functioning even if one or
more virtual machines fail.
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7 Conclusion
This thesis aimed to introduce automated machine learning concepts into the TOSCA
standard, focusing on developing independent and reusable components related to the
machine learning pipeline. The goal was to create a novel solution that automates time-
consuming tasks, such as data preprocessing and model design, enabling non-experts
to create and train AI models efficiently. By creating specific components for the ML
pipeline, this research has made it possible to integrate them with other TOSCA cloud
computing components (e.g., those created in the RADON project) to create a complete
machine learning application from data reading to model evaluation. This integration
was impossible before creating the independent and reusable components described in
this research.

During the research process, author encountered several challenges, such as inventing
a way to create versatile components, jobs execution in parallel, and optimizing the
machine learning pipeline. It was important not only to create the ability to connect
different blocks but also to do it as efficiently as possible in terms of speed and memory
used. In addition, as was mentioned, it was also mandatory to construct platform-agnostic
components allowing the user to decide where and how to use them. Despite facing
challenges, author overcame them by evaluating various technologies, different options
and testing the proposed approach before implementing them into the final solution.

The final version was tested on the classification and regression projects and gained
results were the same as when they were solved manually by writing a code. As a result,
an ML-TOSCA project can solve easy and middle-level tasks. However, even though
this project has already implemented most of the various algorithms, much work still
lies ahead. Author should consider implementing more cloud approaches to distribute
the load without losing speed. Nevertheless, the current solution is enough to create a
full-fledged machine learning pipeline.
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Appendix

I. Repository
All components, including relationship and node types, are available on the GitHub
repository at https://github.com/TOSCA-ML/tosca-ml-models.

54

https://github.com/TOSCA-ML/tosca-ml-models


II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Artjom Valdas,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

ML-TOSCA: ML pipeline modelling and orchestration using TOSCA,

supervised by Chinmaya Kumar Dehury and Pelle Jakovits.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Artjom Valdas
09/05/2023

55


	Introduction
	Problem statement
	Thesis outline

	Background
	AutoML
	Use cases

	Related work
	Managing machine learning systems
	Apache Airflow
	Apache Beam
	Dask
	Dagster
	Kedro


	TOSCA
	Topology and Orchestration Specification for Cloud Applications
	Structure
	Execution phases
	Workflow
	RADON
	Alternatives

	ML-TOSCA Methodology
	Research design
	Technology stack
	Data storage format

	ML-TOSCA architectural foundations
	ML-TOSCA architecture
	Environment
	Preprocessing
	Model creation
	Model evaluation

	Technical implementation
	Conda environment
	Data reading
	Preprocessing pipeline
	Data splitting
	Model creation and training
	Trained model evaluation
	Result exporting

	Features and benefits

	Demonstration of ML-TOSCA in action
	Project setup
	Classification project
	Solution strategy for the Titanic classification problem
	Implementing the Titanic classification solution using ML-TOSCA
	Analyzing xOpera's execution flow on a Titanic problem

	Testing results

	Future research directions
	Feature Scaling
	Incorporating an event-driven approach
	Visualization
	Providing in-depth control over pipeline behavior
	Cross-Platform Compatibility
	Workload distribution over multiple virtual machines

	Conclusion
	References
	Appendix
	I. Repository
	II. Licence


