
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Tek Raj Chhetri

Towards AI for cloud services reliability
using combined metrics

Master’s Thesis (30 ECTS)

Supervisor: Prof. Satish Narayana Srirama

Co-Supervisor: Chinmaya Dehury, PhD

Co-Supervisor: Artjom Lind, MSc

Tartu 2020

Towards AI for cloud services reliability using combined metrics

Abstract: With the emergence of cloud computing and the Quality of Services (QoS),
Compute Power, Performance, and Scalability it offers, the paradigm of computing has
shifted towards the cloud. Due to attractiveness cloud offers, today, more and more
businesses, research, and individuals are adopting cloud services. Even with the maturity
of the cloud, reliability is still a concern. The reason being the constant occurrence of
failure causes financial loss as well as a negative impact on its users as it directly affects
QoS. Further, the scale and heterogeneity make it more prone to failure, highlighting the
necessity for a robust solution to maintain the attractiveness and prevent financial loss.
By predicting failure before it could happen, we can improve the reliability. Artificial
Intelligence, now, has made significant progress, finding itself a place in all possible
areas. In our study we present artificial intelligence with a combined metrics approach to
improve the failure prediction. An experiment conducted with data recorded from more
than 100 cloud servers shows significant improvement in failure prediction with high
prediction accuracy, precision, and recall compared to state of the art studies.

Keywords: Cloud Computing, Artificial Intelligence, Failure Prediction, Reliability,
Fault-tolerance

CERCS:P170 Computer science, numerical analysis, systems, control

2

Kombineeritud mõõdikute lähenemine pilve töökindluse säilitamiseks
tehisintellekti abil
Lühikokkuvõte:

Pilvandmetöötluse ilmumisega ning sellega kaasneva teenuste kvaliteedi (QoS), arvu-
tusvõimsuse, jõudluse ja mastaapsusega on arvutustehnika paradigma nihkunud pilve
poole. Pilveteenuste atraktiivsuse tõttu üsna rohkem ettevõtteid, teadureid ja üksikuid
on võtnud neid kasutuselle, vaatamata selle peale, et pilve usaldusväärsus on endiselt
murettekitav. Pidevad läbikukkumised põhjustavad finantskahju ning mõjutavad negatiiv-
selt kasutajaid, selle tulemiks on üdine QoS langus. Lisaks, pilve ulatus ja heterogeensus
tõstab vastavalt tõrkekindlust, tuues esile huvi tugevama lahenduse vastu, selleks et,
säilitada atraktiivsus ja vältida rahalist kahju. Prognoosides ebaõnnestumist ennem, kui
see juhtuda võib, saavutame kõrgemat usaldusväärsust. Tehisintellekt on nüüd teinud
märkimisväärseid edusamme, leides endale koha kõigis võimalikes valdkondades. Antud
töö uurib tehisintellekti kombineeritud mõõdikute lähenemisviisi, selleks et parandada
rikke ennustamist. Katse on viidud läbi enam kui 100 pilveserveri salvestatud andmetega
ning näitab rikke prognoosimise olulist paranemist kõrge ennustusprotsessi täpsuse,
tabavust ning tagasikutsumist võrreldes tehnika taseme uuringutega.

Võtmesõnad: pilvandmetöötlus, tehisintellekt, rikete ennustamine, usaldusväärsus, rik-
ketolerants

CERCS:P170 Arvutiteadus, arvuline analüüs, süsteemid, juhtimine

3

Acknowledgements
I would first like to thank my supervisors Prof. Satish Narayana Srirama, Dr. Chinmaya
Dehury, and Artjom Lind for providing direction to the correct path and their continuous
support.

I would also like to thank the University of Tartu High-Performance Computing
(HPC) center, especially Sander Kuusemets and Anders Martoja for helping me with
access to the data.

I would also like to thank Professor Eero Vainikko who provided me an opportunity
to work as a Teaching Assistant for the Parallel Computing course that help broadens my
skills further and was very helpful while working on my thesis.

I would also like to thank Dr. Amnir Hadachi Intelligent Transportation Lab for
providing an opportunity to be a part of the research activities in the Lab that helped to
improve my technical and research skills.

I would also like to thank the University of Tartu and the Ministry of Foreign Affairs
(MFA) Estonia for the scholarship that helps to make my study smooth. Finally, to the
Archimedes Foundation for granting me with Kristjan Jaak scholarship for short term
visits to attend Summer School "Enabling Technologies for Industrial IoT - 2019" during
my studies.

4

Table of Contents
1 Introduction 7

1.1 Motivation . 8
1.2 Goal . 9
1.3 Contributions . 10
1.4 Outline . 10

2 State-of-the-art 11
2.1 Background . 11
2.2 Related Work . 12

2.2.1 Cloud VM Failure Prediction 12
2.2.2 Server Failure Prediction . 13
2.2.3 Task Failure Prediction . 14

2.3 Summary . 14

3 Methodology 15
3.1 Architecture . 15
3.2 Data Collection . 16
3.3 Preprocessing . 21
3.4 Hyperparameter Optimization . 22
3.5 Random Forest . 27
3.6 Gradient Boosting . 32
3.7 Recurrent Neural Network . 38
3.8 LSTM . 41
3.9 GRU . 44
3.10 Activation Function . 48

3.10.1 Sigmoid . 48
3.10.2 Softmax . 48
3.10.3 Hyperbolic Tangent Function (Tanh) 49
3.10.4 ReLu . 49

3.11 Loss Function . 49
3.12 Summary . 50

4 Experiment 51
4.1 Experimental Setup . 51
4.2 Random Forest . 52
4.3 Gradient Boosting . 54
4.4 LSTM . 56
4.5 GRU . 57
4.6 Summary . 57

5

5 Results 59
5.1 Summary . 62

6 Conclusion and Future work 63

References 73

Appendix 76
I. List of Acronyms . 76
II. List of Notations . 76
III. Gradient Boosting Calculation . 77
IV. Source Code . 80

7 Licence 81

6

1 Introduction
Cloud computing is a model for delivering information services with the flexible use
of virtual servers, massive scalability, and management services [1]. The popularity of
cloud is due to increasing demand in diverse domains, cost-effectiveness with pay-as-
you-go or subscription-based service model for on-demand access to IT resources [2],
[3]. The other reason is the increase in productivity by reducing the number of chores
required to be done by the IT teams [4]. It has been widely adopted by individuals,
both private and public institutions and has emerged as the backbone of the modern
economy [2]. Moreover, in recent years, new latency aware computing paradigm like fog
computing, edge computing has evolved to meet real-time requirement [5]. Even with
these computing paradigms like fog and edge computing, the cloud stays at the top of
the hierarchy, highlighting the importance and new opportunities for the cloud.

Cloud today offers infrastructure support via IaaS (Infrastructure as a Service), a
platform for software deployment via PaaS (Platform as a Service) and also software
services via SaaS (Software as a Service). The application and importance of cloud
computing today has grown remarkably. Cloud today is used to support smart city
construction [6], smart manufacturing [7], enterprise business [8], scalable data analysis
[9], [10], healthcare [11], [12]. The use-case of the cloud is increasing with the increase
in technological advancement. Furthermore, it is forecasted to have around 500 Billion
public cloud vendor revenue by 20261. The major portion of this revenue goes to PaaS
and IaaS 298.4 and 126 Billion respectively.

The attractiveness of the cloud is because of its reliability, low cost with pay-as-you-
go, scalability, ease of programmability, high-performance dynamic resource provision-
ing [13, 14]. But with the scale, heterogeneity, and distributed nature of the cloud, failure
is imminent [14], [15], [16]. The study has shown that a system with 100,000 processors
experiences a failure every couple of minutes [16]. Though failure causes the system to
breakdown, the distributed nature of the cloud, it only suffers from partial failure [14].
Such a failure can have a substantial financial loss and degradation of performance [13],
[17].

Failure prediction is a mechanism that allows predicting the failure before it happens.
It improves reliability. Higher reliability reduces loss like a financial loss. Therefore it
is critical to have a failure prediction mechanism to avoid such a loss. Moreover, the
study suggests that failure prediction is useful even if imperfect prediction and with
limited precision [18]. For example, if only 50% is correctly predicted and remaining
are incorrectly predicted, then it can at least save from 50% of the loss than not having
anything.

The failure in the cloud can occur due to various reasons like hardware failure or
1Wikibon Research Cloud Computing (2015-2025) https://wikibon.com/wp-content/uploads/

Wikibon-BGracely-Cloud-Computing-Nov-20152.pdf

7

https://wikibon.com/wp-content/uploads/Wikibon-BGracely-Cloud-Computing-Nov-20152.pdf
https://wikibon.com/wp-content/uploads/Wikibon-BGracely-Cloud-Computing-Nov-20152.pdf

software failure. Based on the fault-tolerance measure taken, it can be divided into
two categories: Reactive Fault Tolerance and Proactive Fault Tolerance [19]. Figure 1
shows the categorization of fault tolerance technique based on steps taken to handle the
fault. Reactive fault tolerance techniques are applied when failure has occurred while in
proactive fault tolerance, earlier prediction of failure is made before it happens [19], [20].
The failure prediction, therefore, is a part of the proactive fault-tolerance technique.

Today, techniques and algorithms that have stemmed from the field of machine
learning have indeed became a powerful tool for the analysis of complex and broad
data, successfully assisting scientists in numerous breakthroughs of various areas of
science and technology [21]. It allows computers to solve problems that before seemed
to be unsolvable by computational processes alone[22]. It has resulted in state-of-the-art
performance for many practical problems, especially in areas involving high-dimensional
unstructured data such as computer vision, speech, and natural language processing
[23]. Even with such advancement, still, the rule-based approach applying tools like
Prometheus is used2 for monitoring and earlier failure warning. This rule-based approach
lacks robustness. It is not competent in detecting and learning patterns like artificial
intelligence [24]. This article focuses on using artificial intelligence techniques to
improve the reliability of cloud services by improving proactive fault-tolerance. Further,
in the subsections of this chapter, we will discuss our motivation towards this work, goal
and our contribution subsequently in subsections 1.1, 1.2 and 1.3.

1.1 Motivation
With the increase in the adoption of cloud computing more by businesses [47], there
endures the challenge of providing scalable and reliable services. Efforts have been put
into improving the performance, reliability, and scalability concern [48]. Reliability is
one of the primary concerns and critical features in cloud computing, making a direct
impact on QoS [16]. Therefore, in our study, we address the issue of reliability. Further
due to the increase in ubiquitous computing the need for fault tolerance has increased
giving rise to interest in the area of fault tolerance [25]. This concern of fault tolerance
with the growth of ubiquitous computing is a motivating factor for us to find an approach
to improve reliability making earlier failure prediction.

Several studies have been conducted in the area of failure prediction; however, a
limited number of the conducted studies are focused on server failure prediction. It is our
first motivation toward this study. The second motivation comes from the metric used.
Earlier studies, as in Section 2, show the different parameters and their capability for use
in failure prediction. However, the conducted previous studies fail to use the combined
metrics that could improve the failure prediction. The combined metrics here mean the
use of the hard drive attributes along with other metrics like CPU utilization, Memory

2https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

8

Figure 1. Classification of Fault-tolerance techniques

utilization, etc.
The artificial intelligence undoubtedly has made massive progress in recent years. It’s

capability of learning patterns from data makes it different from traditional approaches
like a rule-based approach. Even with the advancement in artificial intelligence, a
traditional rule-based tool like Prometheus [26] is still in use for monitoring failure.
The third motivation is from the progress in the area of artificial intelligence in recent
years. We, therefore, would make use of artificial intelligence taking advantage of its
advancement to make failure prediction robust.

Finally, the availability of the data itself is a motivation for us.

1.2 Goal
Earlier failure prediction is vital to improve reliability because it allows us to take
proactive action. The level of reliability, thus, depends on the accuracy of correctly
predicting the failure. Due to this, there always has been emphasis put into improving the
accuracy of correctly predicting failure. Therefore, the goal of this study is to improve
reliability by improving the accuracy of correctly predicting failure with a combined
metrics approach and artificial intelligence technique.

9

1.3 Contributions
To keep on maintaining the cloud popularity in the industry by providing reliable service
and to save financial loss due to failure, this study proposes the robust failure prediction
mechanism. The main contribution of this work can be summarized as follows:

• This study makes combined use of Self-Monitoring, Analysis and Reporting
Technology (SMART) metrics along with other parameters like CPU utilization,
Network Overhead, Memory utilization, Disk utilization to make failure prediction
robust. SMART is used for monitoring the status of the hard drive.

• A data science approach using machine learning and deep learning is taken to
overcome the disadvantage of rule-based failure prediction.

• A comprehensive evaluation of multiple techniques like RandomForestClassifier,
GradientBoostingClassifier, LSTM (Long Short Term Memory), GRU (Gated
Recurrent Unit) is performed.

• In contrast to some studies, this study makes use of real data from more than 100
cloud servers.

1.4 Outline
In this chapter, we had a brief introduction about cloud computing importance in the
current era, the necessity of fault tolerance, and how artificial intelligence can help.
In the next chapter that is Chapter 2 the discussion is focused on the background of
fault tolerance and state-of-the-art in fault tolerance. In Chapter 3, we summarize our
approach to the failure prediction problem. In this chapter, we presented the discussion on
data collection and pre-processing, hyperparameter optimization techniques, algorithms
used, activation, and loss functions. In a similar manner Chapter 4 summarizes how the
experiment was conducted and discussion of result in Chapter 5. Finally, in Chapter 6
we provide the concluding statement and the future direction to this work.

10

2 State-of-the-art
In this section, we focus our discussion on related works done in the area of failure
prediction in the cloud domain in Section 2.2. But before moving to our discussion
to related works, we also have presented background discussion on Fault tolerance
describing how the necessity of fault tolerance evolved and varied over time in Section
2.1.

2.1 Background
A fault is the manifestation of unexpected behavior, and fault tolerance is a mechanism
that masks or restores the expected behavior of a system following the occurrence of
faults [27]. In other words, fault tolerance is the ability of a system to continue performing
its intended function despite faults [25]. Fault-tolerance is a mechanism that helps to
maintain high reliability. Reliability which is the function of time t gives the probability
that the system operates without failure in the interval [0, t], given that the system
was performing correctly at time 0 [25]. Today the use of computers is everywhere
like in a business, mission, and safety-critical applications. Depending on where it is
implemented, the consequences can be devastating. For example, if we consider the
safety-critical implementations of the computers, any occurrence of the fault involves
loss of life. For the case of business, the occurrence of the fault makes a direct impact on
the business as it involves cost and time.

From the earlier days, failure always has been a concern. People were taking small
measures for handling the occurrence of the fault. The focus was very less in the direction
of fault tolerance. It is World War II after which fault tolerance gained momentum [25].
The use of the electronic equipment in war and the occurrence of failure gave the
realization for the need for fail-safe systems. Further was fueled by the "space race"
leading to the initiation of different projects related to fault tolerance [25].

Similarly, from the beginning of the distributed computing (DC) era that occurred
around the mid-1970s, fault tolerance has been touted as one of the main advantages of
shifting the computer system design from the centralized structure into a more distributed
structure [28]. This is because of the nature of the distributed systems. Distributed
systems consist of multiple connected computers (systems) coordinating with each other.
Because of their distributed nature, they do not suffer complete failure like a centralized
system. Suppose a non-distributed system, any occurrence of the failure affects the whole
system. But this is not the case for a distributed system because the distributed system is
not a single computer rather a collection of computers connected via network. Though
the system does not experience complete shutdown, it, however, is affected in terms of
capacity and performance.

In recent years, the interest in fault tolerance has been further boosted by the ongoing
shift from the traditional desk-top information processing paradigm, in which a single

11

user engages a single device for a specialized purpose, to ubiquitous computing in which
many small, inexpensive networked processing devices are engaged simultaneously and
distributed at all scales throughout everyday life [25]. Cloud computing is one of them.
It is a distributed computing that allows the pay-per-go model for use of services like
infrastructure, platform. Today cloud computing has support for different sectors like
business, research, academia, and has emerged as a backbone of the economy [2]. Even
though the distributed nature of the cloud, it does not occur complete failure but the
constant occurrence of the failure is not desirable as the loss involves money. Moreover,
the layered architecture of the cloud failure in one layer impacts the above layers.

There are different strategies used based on the type of fault in the cloud computing
environment. The techniques like self-healing, preemptive migration, system rejuve-
nation for proactive fault tolerance technique and check-pointing, replication, and job
migration for reactive case [29]. However, there has been a change in dealing with fault
and new research direction with artificial intelligence is being explored as described in
Section 2. Further, a rule-based tools like Prometheus4, Nagios5 are used for monitoring
the cloud infrastructures.

2.2 Related Work
From the background, we have seen how the need for fault tolerance evolved and changed
over-time. In this section, we present a brief survey of recent works in failure prediction
in the domain of cloud computing.

2.2.1 Cloud VM Failure Prediction

Meenakumari et al. [30] use the dynamic threshold approach for earlier VM failure
prediction using CPU utilization, CPU usage, bandwidth, temperature and memory as
metrics. This study poses advantages over earlier studies that take a proactive approach
which requires failure to be predictable. This study is not using the machine learning
approach as our study.

Alkasem et al. [31] in his study present a case study of Virtual Machine (VM) failure
to start-up using machine learning (Naive Bayes Classifier) and Apache Spark Streaming.
The metrics CPU Utilization, Memory Usage, Network Overhead, IO Storage usage
is considered for this study. This study, though, makes use of the machine learning
approach but fails to use the SMART, hard drive metrics in a combined manner like our
study.

Qasem et. al. [32] uses A Fuzzy min-max Neural Network classification approach is
proposed to predict virtual machine failure. This study uses CPU utilization, memory
utilization, job capacity, and CPU temperature resource utilization metrics. Along with
Fuzzy min-max Neural Network KNN is used in case of overlapped hyper box, to classify
overlapping. The study, however, is conducted with simulated data from cloudsim. Liu

12

et. al. [33] uses Recurrent Neural Network model to improve the reactive hard-drive
fault-tolerance techniques for the cloud storage systems using SMART attributes.

2.2.2 Server Failure Prediction

Mohammed et al. [34] in his study applied multiple machine learning algorithms KNN,
SVM, RF, CART, LDA and evaluated them on accuracy of predicting HPC system
failure. In this study, the authors consider the following sources of failure; Hardware,
Software, Human Error, Network, and Undetermined [35]. Unlike our study, this study
takes human error and other undetermined errors into account. Using such, we cannot
say if the system failed actually or there was human intervention.

Xu et. al. [36] predicted the disk error using a ranking based machine learning
approach. The early prediction allowed migration of VM to a healthy node thereby
improving the service availability of Microsoft Azure. However, this study is limited to
only using disk information.

Lai et al. [37] in his study predict whether a server fails within 60 days using hard
drive data collected from SLAC Accelerator Laboratory and maintained failure logs over
10 years. The authors also introduced time_since_prev_failure that represents the time
since the previous failure and KNN and 16 days sliding window-based KNN for making
a prediction. This study is only based on hard disk data unlike ours.

Das et. al. [18] in his study uses LSTM to predict the failing node so that the
computation from the failure node could be migrated to the healthy nodes. The author
makes use of the data from Cray XC30, Cray XE6, Cray XC40, Cray XC40/XC30. This
study, unlike other studies, uses the error phrases from the system log. While Tehrani
et. al. [38] using SVM and metrics temperature, CPU, RAM, and bandwidth utilization
make failure prediction. The study clearly lacks the benefit of other attributes like hard
drive information as in our study.

The study by Chigurupati et al. [39] focuses on predicting hardware failure combining
the machine learning approach using communication failure information, predicting
failure 5 minutes ahead. The study is limited to using only communication failure.

Ganguly et al. [40] predict the failure in cloud systems using a two-stage ensemble
model, Decision Tree, and Logistic Regression, using SMART data and windows perfor-
mance counter3. Similar to it, Lima et al. [41] predicts hard drive failure using LSTM.
This study only considers hard disk failure predictions.

Using Linear Regression and SVM with Gaussian kernel, Adamu et al. [42] stud-
ied and analyzed NERSC data collected from CFDR. The performance evaluation is
performed using K-folds cross-validation. The author presents the prediction of Disk,
DIMM (dual in-line memory module), CPU, and Other failures separately in the bar
graph representation. It is not clear what is the scope of other failures and no network

3https://docs.microsoft.com/en-us/windows/win32/perfctrs/performance-counters-portal

13

information is used as it is also one of the reasons for failure.

2.2.3 Task Failure Prediction

Shetty et al. [43] conducted a study using the Google cluster dataset for resource usage by
the task and failure prediction using the XGboost classifier. Similarly, Jassas et al. [44]
also uses the Google cluster trace data for analyzing job failure in the cloud computing
environment. As opposed to our study, these studies are focusing on the job or task
failure.

Bala et al. [45] conducted a study for proactive fault tolerance by predicting the task
failures for Scientific Workflow applications using the machine learning approach. This
study makes use of algorithms like Naive Bayes, Random Forest, Logistic Regression,
and Artificial Neural Networks. This study though uses the machine learning approach
for proactive failure prediction but is limited to task failure prediction.

Rosa et al.[46] conducted studies about job failure prediction using metrics like CPU
utilization, Memory utilization, Disk utilization, and data from Google cluster traces. It
makes use of y Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA), and Logistic Regression (LR) approach. Similar to other task failure studies, it is
also focused on the failure of the task only.

Gao et al. [47] studies a multi-layer Bidirectional Long Short Term Memory (Bi-
LSTM) approach to identify tasks and job failures in the cloud. Gao et al. also makes
use of Google cluster trace data for his study. This study makes use of the deep learning
approach but is focused on task and job failure.

2.3 Summary
In this chapter, we first introduced with background information on fault tolerance. Then
we discussed the current state-of-the-art in failure prediction in the cloud computing
domain. We also saw the different approaches used to answer the failure prediction issue
in related works 2.2. Finally, we saw what is new in our studies compared to the current
state-of-the-art. In the next chapter, we shall see our approach to the problem of failure
prediction.

14

3 Methodology
For a problem, multiple approaches are leading to achieve the same solution. In this
section, we describe our path to solve the problem of predicting failure. The discussion
involves details about data collection and selected algorithms. We first begin our discus-
sion with system architecture in Section 3.1 and proceed with how we collected the data,
need to collect data in Section 3.2, thereby moving our discussion to data processing in
Section 3.3. In Section 3.4 we discuss about hyperparameter optimization and its require-
ments in detail. Section 3.5 involves the detailed discussion of our first algorithm that
we have selected for our study and Section 3.6 for another algorithm Gradient Boosting.
We then move forward with our discussion of the deep learning-based methods that we
have used in our study. The deep-learning methods we have selected for our study are
based on RNN, hence Section 3.7 is dedicated to the discussion of the Recurrent Neural
Network. Then in Section 3.8, we describe the first deep-learning-based method Long
Short Term Memory (LSTM) that we have used in our study and the other method called
Gated Recurrent Unit (GRU) in Section 3.9. Finally, we conclude this section with the
discussion of the Activation Functions in Section 3.10.

3.1 Architecture
Figure 2 shows the architecture of the proposed work. We first begin with data collection.
The data collection involves downloading the data that is monitored by Prometheus4.
Prometheus is an open-source monitoring and alerting toolkit backed by a rule-based
engine [26]. The downloaded data is then converted into CSV format which acts as input
data. The preprocessed input CSV data is then split into train and test data. Using the test
data, we train our model with the selected algorithm: Random Forest, Gradient Boosting,
Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU). We then evaluate
our model with the test data. The process of training and testing is performed separately
for each algorithm. The evaluation of the model is performed with evaluation metrics
like Accuracy, Precision, Recall, and F1 Score. Finally, the evaluated result from each of
the algorithm is then compared among the proposed method as well as with other state
of the art methods.

4 https://prometheus.io/docs/introduction/overview/

15

Figure 2. Architecture

3.2 Data Collection
Today large IT distributed infrastructure use different tools for monitoring. Some of the
tools available today for monitoring are Nagios5, Prometheus4, Ganglia6, Collected7.
The purpose of using monitoring tools like Prometheus, Nagios is to know the available

5https://www.nagios.org/
6https://developer.nvidia.com/ganglia-monitoring-system
7https://collectd.org/

16

status of the monitored system like how much load system is currently having and further
to support operations like alerting, debugging [48]. The cloud infrastructures that we
consider for our study are monitored using monitoring tool Prometheus4. This monitoring
provides the state of the technological environment [26]. This valuable information that
is logged by the Prometheus can be used for improving proactive fault-tolerance by
leveraging artificial intelligence techniques.

An artificial intelligence approach assumes learning the patterns from the data,
therefore data is essential in any artificial intelligence approach. Without data, it is
impossible to apply these artificial intelligence-based techniques to solve real-world
problems. Therefore the data collection forms an essential component of such approach.
Moreover, the quality of data has a direct impact on the accuracy of the result [49]. For
example, if we consider medical areas like radiology, clinical trial [50], where today,
machine learning approaches are used then one could only imagine the disaster that
would be caused by the use of poorly collected data. The quality of data can only be
achieved with a good understanding of the tools used for monitoring, the monitored
environment, and the attributes to be collected. For example, let us consider the CPU
utilization and smart metric SMART_198. Now if we just have the value 70 for CPU
utilization and 5 for SMART_198 we cannot say how good the data is. The reason is
that we are unaware of how and what tools are used for data collection. Further, the
information about the collected attribute is not provided. We can determine the quality
of data only when we have information about the collected attribute, used tools, and the
monitored environment.

The failure dataset available is minimal. Among the available dataset, most of the data
are related to job failure like Google Cluster8. While the other available data SMART9

mostly contains the hard disk related failure. The lack of availability of data as per our
requirement, we are required to collect the data by ourselves.

Prometheus logs a wide range of metrics. But not all recorded parameters can be
used in every study. The selection of the metrics should be made based on its suitability,
according to the study. It requires a review of the available metrics and their impact.
Based on the detailed study of the available metrics and in-depth analysis of their
effect on the system, careful selection of the metrics shown in Table 1 is made. The
choice of the metrics CPU Utilization, Memory Utilization, Network Overhead, IO
Utilization, Bits Read, Bits Write is based on its proven capacity in failure prediction
from existing research like [30], [31], [32], [37], [38]. Similarly, SMART metrics are
based on comparable such studies as [40], [40], [41]. Further, Mashhadi et al. [51]
provide a detailed description of different SMART attributes.

8https://github.com/google/cluster-data
9https://www.backblaze.com/b2/hard-drive-test-data.htmldownloading-the-raw-hard-drive-test-data

17

SN Metrics Description
1 CPU Utilization Host CPU Usage in %.
2 Memory Utilization Memory Usage in bytes
3 Network Overhead Network Usage in bytes
4 IO Utilization IO Usage in time
5 Bits Read Data written out from disk in bytes
6 Bits Write Data written into disk in bytes
7 Smart 188 Command Time out
8 Smart 197 Current Pending Sector Count
9 Smart 198 Uncorrectable Sector Count
10 Smart 9 Power-On hours
11 Smart 1 Read Error Rate
12 Smart 5 Reallocated Sectors Count
13 Smart 187 Reported Uncorrectable Errors
14 Smart 7 Seek Error Rate
15 Smart 3 Spin Up Time
16 Smart 4 Start/Stop Count
17 Smart 194 Temperature
18 Smart 199 UltraDMA CRC Error Count

Table 1. Selected Metrics for the Study

The CPU utilization in our study represents how much the host CPU is utilized
represented in percentage. In other terms, it represents how much load CPU is having. It
is calculated on per node based on the current load on each CPU. For example, if there
is A CPU load on a node which is having B cores then it is calculated as (A/B)× 100.
However, memory utilization and network overhead both represented in bytes gives
information about how much memory is used in bytes and how much network usage
is. The memory utilization likewise is calculated using the total available memory and
available free memory information and the network overhead using information receive
and transmitted over the network. In calculating the memory utilization, we do the
difference operation between total memory and available free memory. While in the case
of the network overhead, we sum both receive and transmit information. The remaining
metrics can be obtained using Prometheus without needing to do any calculation. The
IO utilization also referred as disk IO utilization gives information on utilization of the
disk for IO operations and this utilization is calculated based on IO time in seconds. The
other metric Bits Read and Bits Write tells us how much data is going in and out of the
disk. The smart metrics tell us the status of the hard drive represented by value range 1
to 253. But most of the vendor uses the normalized representation, and it was the case

18

for us. The detailed description of the used SMART attributes are given below 10,11,12,13.

• Smart 188: This attribute is also called Command Time out and it represents the
interrupted or aborted operations numbers due to disk timeout.

• Smart 197: This SMART attribute Smart 197 or Current Pending Sector Count
provides the information about the unstable pending sector waiting to be remapped
to spare area.

• Smart 198: It is also called Uncorrectable Sector Count or Off-line Uncorrectable
Sector Count. It gives the information about Uncorrectable error count detected
during the SMART scan. These are the errors that occurred when reading/writing.

• Smart 9: This Power-On hours SMART attribute gives the total time the drive is
powered on or lifetime hours drive is power on.

• Smart 1: It gives the information about the error occurred while reading data from
disk. It is also called Read Error Rate.

• Smart 5: This SMART attribute Reallocated Sectors Count gives information
about a number of retired blocks since leaving the factory or grown defect count.

• Smart 187: It is also called Reported Uncorrectable Errors which gives informa-
tion about the number of errors that could not be corrected using hardware error
correction codes (ECC).

• Smart 7: This SMART attribute is also called Seek Error Rate. It measures the
error that occurred during the positioning of the disk head while reading/writing.

• Smart 3: This SMART attribute is also called Spin-Up Time. It is a time needed
by spindle to spin-up to full revolutions per minute (RPM). RPM measures how
many times that disc spins in a minute.

• Smart 4: This Start/Stop Count or SMART 4 provides information about the
estimated remaining life, based on the number of spin-up/spin-down cycles.

10Intel Solid-State Drive Data Center for SATA SMART Attributes https://www.intel.com/
content/dam/support/us/en/documents/solid-state-drives/Intel_SSD_Smart_Attrib_for_
SATA.PDF

11List of S.M.A.R.T. attributes http://www.cropel.com/library/smart-attribute-list.aspx
12TN-FD-40: 5200 SSD SMART Implementation Introduction https://www.micron.com/-/

media/documents/products/technical-note/solid-state-storage/tnfd40_5200_ssd_smart_
implementation.pdf

13Hard Disk Sentinel Help - S.M.A.R.T. attribute list https://www.hdsentinel.com/help/en/56_
attrib.html

19

https://www.intel.com/content/dam/support/us/en/documents/solid-state-drives/Intel_SSD_Smart_Attrib_for_SATA.PDF
https://www.intel.com/content/dam/support/us/en/documents/solid-state-drives/Intel_SSD_Smart_Attrib_for_SATA.PDF
https://www.intel.com/content/dam/support/us/en/documents/solid-state-drives/Intel_SSD_Smart_Attrib_for_SATA.PDF
http://www.cropel.com/library/smart-attribute-list.aspx
https://www.micron.com/-/media/documents/products/technical-note/solid-state-storage/tnfd40_5200_ssd_smart_implementation.pdf
https://www.micron.com/-/media/documents/products/technical-note/solid-state-storage/tnfd40_5200_ssd_smart_implementation.pdf
https://www.micron.com/-/media/documents/products/technical-note/solid-state-storage/tnfd40_5200_ssd_smart_implementation.pdf
https://www.hdsentinel.com/help/en/56_attrib.html
https://www.hdsentinel.com/help/en/56_attrib.html

• Smart 199: It is also called UltraDMA CRC Error Count and it gives Frame
Information Structure (FIS) cyclic redundancy check (CRC) error.

• Smart 194: It gives information about disk temperature.

Once everything is final, the next task is to download the data. The data downloading
process of monitored infrastructure by Prometheus can be represented by Figure 3. The
downloaded data is saved into the target format for data-science, tabular form [24] as
a CSV file. As shown in Figure 3, we use the python script to download the data from
Prometheus. Prometheus allows the query of the metrics logged by it via HTTP API14.
The python script responsible for downloading the data makes use of HTTP API to query
the data from Prometheus. For each query made Prometheus returns the data in a JSON
shown in Figure 4. In the sample data, Figure 4, to anonymize data the details cluster,
department, instance original information is not present. Though Prometheus allows the
query of the metrics collectively, the query is made individually. It is done to avoid the
failure that occurs due to timeout and Prometheus maximum resolution of 11000 points
per time-series. The individual result of the query is combined based on timestamp. For
the easiness, the data header is formatted according to the metrics used as in Table 1.
Finally, the data is saved in the CSV format.

Prometheus is used for real-time monitoring of infrastructures to alert based on the
rules specified. It also allows the data retention up to the duration as defined in the
settings. It was 30 days for our case. It means we can have access to only 30 days of data.
For our study, therefore, we recorded one-month data within an interval of 30 minutes.
The recorded data is if size 986.2MB.

Figure 3. Prometheus Monitoring and Data Downloading

14https://prometheus.io/docs/prometheus/latest/querying/api/

20

Figure 4. Sample Data of Prometheus Query

3.3 Preprocessing
The real-world data is not clean; it is incomplete, inconsistent, and noisy [52]. The data
directly obtained from the real-world is, therefore, of not the quality. The quality of
data, however, has a direct impact on the result. So, it becomes necessary to preprocess
the data. The main objective of the preprocessing is to improve the quality of the data.
Therefore improving the quality of data, we are indirectly contributing to the more
desirable result. It involves performing one of the following tasks; Data Cleaning, Data
Integration, Data transformation, Data reduction, Data discretization [43].

To make the data following the need for our study and improve quality, we also
perform the data preprocessing. Some preprocessing, like target label generation, is
performed during the time data is downloaded. Since we are doing supervised learning,
we require a target label to train our model. However, the original data lacks this target
label. So we use Target label generator algorithm 1 to generate the required target label
for our study. Similar approaches have been followed in other studies like [53]. The
failure characteristics from the studies like [18], [44] show high resource consumption.
Moreover, the hardware comes with the device criteria that might lead to potential
failure15,16. We use this information to define the failure criteria using Algorithm 1. For
example, let us consider the metrics CPU utilization, smart_198. Studies like [18], [44]
have shown a high correlation with the occurrence of failure and resource consumption.

15https://wiki.unraid.net/Understanding_SMART_Reports
16https://www.backblaze.com/blog/hard-drive-smart-stats/

21

Further, the hardware manufacturer also defines the breaking point for the particular
hardware. If we consider the case of the hard disk then we can obtain this information
from the SMART metrics. Now, say we set CPU utilization value to 100 and smart_198
to 30 as threshold value than providing this information in Algorithm 1 we can get the
target label that tells us whether it is a failure or not. However, unlike this example, we
in our study pass similar information about all the selected metrics shown in Table 1 to
the Algorithm 1 to generate the target label.

Like any other data which generally consists of missing information, our data also
contain a missing value. The missing values are incompatible with working. To make
it compatible working with and fixing the missing value, we use a scikit-learn package.
Scikit-Learn is a machine learning library in Python that provides implementations
of classification, Regression, Clustering, Preprocessing, dimensionality reduction, and
Model Selection algorithms17. One strategy to work with missing values it to discard the
row or column with missing values. However, in doing so, we might lose the meaningful
information. For example, a row contains a missing value. If we use the deletion strategy,
then we should delete the entire row. For one missing value, we are removing the entire
row. It is not ideal as we see that we are losing the other useful information present
in that row. To avoid such a situation, we use the Scikit-Learn Imputation technique
SimpleImputer. The SimpleImputer provides mean, median, most frequent, constant
imputation strategy18. We use the mean imputation strategy, which is also the default
strategy18. The value in our data is not uniform. Different metrics have different value
range. It creates a problem, and our model tends to be biased. To deal with this issue
and make all the values in the same range, we use Scikit-Learn StandardScalar. It
Standardizes features by removing the mean and scaling to unit variance19.

3.4 Hyperparameter Optimization
By default, the machine learning algorithms come with a predefined value of hyperpa-
rameters. It can be considered as input configurations for the algorithm. This preset
value of hyperparameters is not suitable for all the tasks. So, we change the value of
these hyperparameters based on our experiment to improve the accuracy of the result.
But it is complicated because it is often a nonintuitive, time-consuming, and systematic
trial-and-error process [54]. Further, difficulty is exacerbated because hyperparameters
must be set manually before training can even begin and expertise in parameter tuning
can only be achieved from experience with data and data sets, diligence, hard work, and
just plain practice [54]. We, therefore, use the hyperparameter optimization techniques
to find the suitable hyperparameter configuration.

17https://scikit-learn.org/stable/index.html
18https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
19https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

22

Algorithm 1: Target Label Generator algorithm
Data: ipData← input data without target label in dictionary format
Result: Data with target label

1 data← ipData;
2 targetValue← Initialize with an empty List;
3 resultdata← Copy of data;
4 N← len(data);
5 for i=0 to N do
6 whatLabel = [cpu_utilization[i] > CPU_UTILIZATION_THRESHOLD,

memory_utilization[i] > MEMORY_UTILIZATION_THRESHOLD,
network_overhead[i] > NETWORK_OVERHEAD_THRESHOLD,
io_utilization[i] > IO_UTILIZATION_THRESHOLD, bits_outputted[i] >
BITSOUTPUTTED_THRESHOLD, bits_inputted[i] >
BITSINPUTTED_THRESHOLD, smart_188[i] <
SMART188_THRESHOLD, smart_197[i] < SMART197_THRESHOLD,
smart_198[i] < SMART198_THRESHOLD, smart_9[i] <
SMART9_THRESHOLD, smart_1[i] < SMART1_THRESHOLD,
smart_5[i] < SMART5_THRESHOLD, smart_187[i] <
SMART187_THRESHOLD, smart_7[i] < SMART7_THRESHOLD,
smart_3[i] < SMART3_THRESHOLD, smart_4[i] <
SMART4_THRESHOLD, smart_194[i] > SMART194_THRESHOLD,
smart_199[i] < SMART199_THRESHOLD];

7 if True in whatLabel then
8 AppendTotargetV alue(1)
9 else

10 AppendTotargetV alue(0)
11 end
12 end
13 resultdata← add targetValue to new target column;
14 return resultdata;

23

Let A be any machine learning or deep learning algorithm with hyperparameters
λ1,λ2,...,λn. Then the hyperparameter optimization (or search) is the process of find-
ing the optimal value of hyperparameters that yields better result by minimizing the
validation loss [55], [56] [57]. Under k-fold cross-validation, with training data Dtrain

and validation data Dtest the hyperparameter optimization for learning algorithm A with
hyperparameter λ, represented by Aλ, minimizes the validation loss as Equation 1 [55].

f(λ) =
1

k

k∑
i=1

L(Aλ, Di
train, D

i
test) (1)

where,
f(λ) represents the validation loss minimizing function

K represents the number of cross-validation folds

L(Aλ, Di
train, D

i
test) represents validation loss

The hyperparameters can be an integer or a categorical value. It depends on the
algorithm. Furthermore, the hyperparameter of the two algorithms need not necessarily
be the same, though sometimes there can be common attributes. There are different
techniques for hyperparameter optimization like Grid Search, Random Search, Bayesian
optimization [57].

Moreover, today, machine learning itself and hyperparameter optimization is moving
towards automatic process [55] [58] [59] with the availability of the frameworks Optuna
[60]. Similarly, Scikit-Learn also provides a library for automatic hyperparameter
configuration [61], [62]. Despite it, we have selected Grid Search as a choice for
hyperparameter optimization. It is because of the simplicity that Grid Search offers and
is also the reason for it prevailing as state of the art despite decades of research into
global optimization [63].

GridSearchCV is one of the hyperparameter tuning (optimizing) methods that Scikit-
Learn offers. It performs an exhaustive search over the specified parameters grid along
with cross-validation. For each combination, it conducts the cross-validation and selects
the one with the highest accuracy as the final result for the model. The working of the
GridSearchCV is shown in Figure 6. The GridSearchCV consists of the following key
components [64]. The official documentation20 provides detailed information on all
available parameters.

• Search grid: The search grid is also be referred to as the parameter grid. It is
a dictionary representation of the set of hyperparameters. The combination of

20https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

24

these hyperparameters will be used in GridSearchCV to find the best one that will
maximize the performance of the model. Figure 5 shows an example Random
Forest search grid.

Figure 5. Example Search Grid

• Estimators: It is used to implement the Scikit-Learn estimator. The estimators
are the machine learning models we are trying to optimize. It could be a classifier
or regressor.

• Cross-validation: Cross-Validation which belongs to the family of Monte Carlo
methods is a data resampling method to assess the generalization ability of predic-
tive models and to prevent overfitting [65]. It evaluates and compares the learning
algorithm by dividing the data into two segments; training and validation data [66].
Figure 7 shows the K-Fold cross-validation. The data is divided into k disjoint
folds of approximately equal size [65], [67]. The fold here means subsets. One
important thing about K-Fold cross-validation is that no two test sets overlap [65].
Each fold is then used once as validation and remaining k-1 fold as the training by
the machine learning model [67]. The accuracy is then calculated by averaging the
accuracy of the K folds.

25

Figure 6. GridSearchCV

Figure 7. K Fold cross-validation (K=10)

26

In our study, to make the suitable selection of the hyperparameters, we also make
use of the hyperparameter optimization. The Scikit-Learn Grid Search CV was used
for the hyperparameter optimization in our study. It performs the Grid Search as well
as the K-Fold cross-validation. For our experiment, we use the three K-Fold cross-
validations with the Grid Search. Table 2 shows Random Forest Grid Search search grid
for hyperparameter optimization used in our study. Similarly, Table 3 shows the Grid
Search search grid used in our study for hyperparameter optimization for the Gradient
boosting algorithm.

Parameter Name Value

n_estimators [100,200,300,500]

max_features [’auto’,’log2’,’sqrt’]

criterion [’gini’,’entropy’]

min_samples_split [3,5,8,9,10,30,50]

Table 2. Random Forest Hyperparameter

Parameter Name Value

loss [’exponential’,’deviance’]

learning_rate [0.001,0.01,0.0001]

max_features [2, 3,5,7]

min_samples_split [3, 4, 5,7,9]

n_estimators [100,200,300,500]

Table 3. Gradient Boosting Hyperparameter

3.5 Random Forest
Of the many available machine learning algorithms, the random forest has outstanding
practical performance and is widely used [68]. Because of its robustness, it is used in
different application areas like for Classification of Neuroimaging Data in Alzheimer’s
Disease [69], Land Cover Classification [70], Stock Prediction [71], Remote sensing like
Global Burned Area Classification [72], Assessment of Carbon Stocks [73]. Because

27

of the advantages it posses, we in our study have selected it as one of the methods for
failure prediction.

Random Forest is a classifier consisting of a collection of tree structured classifiers
{h(x, θk), k = 1, ...} where the {θk} are independent identically distributed random
vectors and each tree casts a unit vote for the most popular class at input x [74]. It
is an ensemble learning method for classification and regression. It makes use of the
randomized decision tree during the training. It is similar to the bagged decision tree;
however, it differs in feature use while learning in each recursive step of decision trees
described as follows21.

• Randomly select F features out of all P given features.

• Find the best split among these features.

The value of F varies for regression and classification. It is P
3

in case of regression and√
(P) for classification [68]. The best split is selected by optimizing the Classification

and Regression Trees (CART) split criterion, based on the so-called Gini impurity
(for classification) or the prediction squared error (for regression) [68], [75]. As we
are performing the classification task, we will limit our discussion on classification.
Gini impurity measures how often a randomly chosen element from the set would be
incorrectly labeled if it was randomly labeled according to the distribution of labels in
the subset 22. While entropy is the expected number of bits needed to encode a randomly
drawn value of random variable 23. CART constructs binary trees using the feature and
threshold that yield the largest information gain at each node24. By default, Scikit-Learn
uses Gini as the split measure. It also, however, provides an option to choose Entropy as
the split measure. Information gain is calculated using either Entropy or Gini based on
the split measure used. Depending on the value of Information Gain, the split of the tree
is performed. The Gini Impurity25, Entropy25 can be calculated following the Equation 2
and Equation 3 respectively. Similarly, Equation 421 can be used to calculate Information
gain for Gini based split and Equation 521 for Entropy-based split.

Gini = 1−
n∑
i=1

p2i (2)

Entropy = −
n∑
i=1

pi log2 pi (3)

21Ensemble methods, Meelis Kull, University of Tartu https://drive.google.com/file/d/
1vgXQcperDN8dqKYIrmV0kH3VDhHXs-pK/view

22https://www.cs.purdue.edu/homes/ninghui/courses/Fall18/handouts/07_dtree.pdf
23https://people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf
24https://scikit-learn.org/stable/modules/tree.htmltree
25https://cs.anu.edu.au/courses/comp3420/mining/data-mining-05.pdf

28

https://drive.google.com/file/d/1vgXQcperDN8dqKYIrmV0kH3VDhHXs-pK/view
https://drive.google.com/file/d/1vgXQcperDN8dqKYIrmV0kH3VDhHXs-pK/view

IG = Ginip −
SizeTL ×GiniTL + SizeTR ×GiniTR

Sizep
(4)

IG = Entropyp −
SizeTL × EntropyTL + SizeTR × EntropyTR

Sizep
(5)

Figure 8. Sample Tree

For example, if we consider the tree shown in Figure 8, then selecting the best split is
decided based on the information gain value, whichever the split metric Gini or Entropy
is chosen. Table 4 shows the Information Gain calculation for Tree A using both Gini
and Entropy. Likewise, Table 5 shows the calculation of Information Gain for Tree B.
Based on the calculated information gain value, Random Forest, would choose Tree B
for the split as it has got higher information gain for both Gini and Entropy. We have
shown both Gini and Entropy-based calculations. But in the implementation, either one
of them is used.

Gini Entropy

Ginip = 1− ((20
40
)2 + (20

40
)2) = 0.5 Entropyp = −20

40
log2(

20
40
)− 20

40
log2(

20
40
) = 1

GiniTL = 1− ((15
20
)2 + (5

20
)2) = 0.375 EntropyTL = −15

20
log2(

15
20
)− 5

20
log2(

5
20
) = 0.811

GiniTR = 1− ((5
20
)2 + (15

20
)2) = 0.375 EntropyTR = − 5

20
log2(

5
20
)− 15

20
log2(

15
20
) = 0.811

IG = 0.5− 20×0.375+20×0.375
40

= 0.125 IG = 1− 20×0.811+20×0.811
40

= 0.189

Table 4. Information Gain for Tree A

29

Gini Entropy

Ginip = 1− ((20
40
)2 + (20

40
)2) = 0.5 Entropyp = −20

40
log2(

20
40
)− 20

40
log2(

20
40
) = 1

GiniTL = 1− ((10
10
)2 + 0) = 0 EntropyTL = −10

10
log2(

10
10
)− 0 = 0

GiniTR = 1− ((10
30
)2 + (20

30
)2) = 0.444 EntropyTR = −10

30
log2(

10
30
)− 20

30
log2(

20
30
) = 0.918

IG = 0.5− 20×0+30×0.44
40

= 0.167 IG = 1− 10×0+30×0.918
40

= 0.315

Table 5. Information Gain for Tree B

The Scikit-Learn implementation, however, differs little from the original Random
Forest as proposed by Breiman. Scikit-Learn implementation of Random Forest combines
classifiers by averaging their probabilistic prediction, instead of letting each classifier
vote for a single class 26. It is done to improve accuracy and control over-fitting [68].

The Random Forest implementation in our study is performed by making use of
the Scikit-Learn library. The Random Forest is implemented using the K-Fold cross-
validation technique to prevent over-fitting along with hyperparameter optimization using
Grid Search. To perform this task we make use of the Scikit-Learn GridSearchCV method
that does both Grid Search and K-Fold cross-validation. Figure 9 shows the architecture
of the Random Forest algorithm used in our study. The preprocessed input data is first
split into training and testing data. The split training data is used for training the Random
Forest algorithm and the testing data is used for evaluating the trained model or algorithm.
The input training data is further split into train and test set and passed to the Random
Forest algorithm for each fold of the K-Fold cross-validation. Further, the hyperparameter
optimization is performed by the Grid Search technique using hyperparameters shown in
Table 2. The final result obtained from it is then evaluated for the result. The evaluation
is performed using the testing data. Based on the evaluation with the testing data, we
record the Precision, Recall Accuracy, and F1 Score as a final result of our algorithm.
The detailed implementation of Random Forest architecture is discussed in Random
Forest experiment Section 4.2.

26https://scikit-learn.org/stable/modules/ensemble.htmlforest

30

Figure 9. Random Forest Architecture

31

3.6 Gradient Boosting
The Gradient Boosting machine, another tree-based ensemble method, is the next tech-
nique that we adopted for our study. Like Random Forest, it is also one of the robust
and competition-winning algorithm [76], [77]. It is used in sentiment analysis [78],
predicting delay in flight [79], in medical areas like Predicting RNA-Protein Interactions
[80], automatic electroencephalogram (EEG) state recognition that helps in neurological
detection [81].

Gradient boosting is an algorithm from the boosting family. The boosting family of
algorithms consists of Adaptive Boosting (AdaBoost), Gradient Boosting (GBM), and
XGBoost (eXtreme Gradient Boost). The main principle of the boosting based algorithm
is to combine the weak learner such that in the end, it forms a strong learner. The
combination of the weak learner is performed using the majority vote of every prediction
of the weak learner, weighted averaging [78]. For example, in the case of the AdaBoost,
it uses a simple averaging technique.

Gradient boosting, one of the members of the boosting algorithm works on the boost-
ing principle by shifting focus towards problematic observations that were difficult to
predict in previous iterations and performing an ensemble of weak learners, typically
decision trees [76], [77]. It can be applied to both classification and regression problems.
Due to the nature of our study, we focus our discussion of Gradient boosting for classi-
fication. The model is built iteratively. Each new model is dependent on the previous
model. One of the important aspects of the gradient boosting algorithm is that it consists
of the differentiable loss function. Figure 10 shows an example of gradient boosting
algorithm. Gradient boosting involves three main components [76], [77].

• Loss Function: It is used to specify how the loss is to be optimized. It varies based
on the problem; classification and regression. Even for classification, multiple loss
functions are supported but the default deviance which is negative log-likelihood
loss27, 28.

• Weak Learner: Decision trees are used as a weak learner in gradient boosting to
make predictions.

• Additive model: Trees are added sequentially on each iteration. It is based on
the weak learner and it is used to minimize the loss using the gradient descent
algorithm.

27https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
28https://scikit-learn.org/stable/modules/ensemble.htmlgradient-boosting

32

Figure 10. Example visualization of Gradient boosting

The detailed steps for the Gradient boosting classification for the data {xi, yi}i = 1...n
can be stated as follows [76], [77].

• First, we initialize the model with Equation 6 to calculate the log odds. Based on
the log odds we calculate the probability of prediction.

f0(x) = argminγ

n∑
i=1

L(yi, γ) (6)

• Then for each m:1 to M, we do the following. This is where the tree construction
takes place.

– We then calculate the Pseudo Residuals using the equation 7, where we
calculate the derivative of the loss function with respect to the log odds of
the prediction for i=1,2,...N.

rim = −[∂L(yi, f(xi))
∂f(xi)

]f=fm−1 (7)

– After that, we fit a regression tree to the targets rim and label with the region
Rjm, for each j=1,2,..,Jm and compute γ using Equation 8. Here, we calculate

33

the output value for the new tree represented by γ. This value is then used to
calculate the new log odds and the prediction.

γjm = argminγ
∑

xi∈Rjm

L(yi, fm−1(xi) + γ) (8)

– We then calculate the new prediction and make update, which is based on the
previous prediction using Equation 9.

fm(x) = fm−1(x) +

jm∑
j=1

γjmI(x ∈ Rjm) (9)

• Finally, we output the result, f̂(x) = fM(x), once the stopping criteria are reached.

The architecture of the implemented Gradient Boosting algorithm in our study is
shown in Figure 11. Similar to the random forest, the gradient boosting algorithm in
our study is also implemented using the Scikit-Learn library using the K-Fold cross-
validation technique for preventing over-fitting and hyperparameter optimization using
Grid Search. In the case of Gradient boosting, like Random Forest, the prepossessed
input data is split into training and testing data. The training data is then passed to
the Gradient boosting algorithm along with the hyperparameter shown in Table 3. The
training data, however, is further split into train and test data for each fold of the K-Fold
cross-validation. On each fold, the algorithm is trained with the split train data of that
particular fold and evaluated using split test data of the same fold for accuracy. The
final result obtained after grid search and K-Fold cross-validation using Scikit-Learn
GridSearchCV is then evaluated with test data. Based on the evaluation with the testing
data, we record the Precision, Recall Accuracy, and F1 Score as a final result of our
algorithm. The detailed implementation of Gradient Boosting architecture is discussed
in Gradient Boosting experiment Section 4.3.

34

Figure 11. Gradient Boosting Architecture

One of the important task in Gradient boosting algorithm is the construction of the
tree and calculation of the γ based on which new log odds and the prediction probability
is calculated. Consider an example dataset, shown in Table 6 where we apply the above

35

algorithm. For the first iteration, we obtain the following tree and γ Figure 12 which
can be used for calculation of log-odd using F0(x) and further the prediction probability.
Similarly, for the second iteration, we have Figure 13. Based on the earlier tree and value
of Fn(x), we calculate the new log-odds for second iteration F2(x) as shown in Figure 14.
This structure of the tree increases with the increase in a number of iteration. The detail
steps of calculation are shown in the Appendix Section 6.

Server smart_198 smart_3 Fail?

A 19 9 Yes

B 100 98 No

B 61 9 Yes

Table 6. Example Data-set for Gradient Boosting

Figure 12. Gradient Boosting Tree for iteration 1

36

Figure 13. Gradient Boosting Tree for iteration 2

37

Figure 14. Gradient Boosting F2(x)

3.7 Recurrent Neural Network
Deep learning over the years has been shown to outperform previous state-of-the-art
machine learning techniques [82]. Due to its performance, it is today used to solve
some of the complex tasks in different areas like computer vision, autonomous systems,
climate analysis [83]. In our study, we also make use of recurrent neural networks-based
deep learning techniques.

Neural networks make assumptions of data independence and it breaks in case of
the sequential data [84]. This is because in the sequential data there is a dependency on
the current state with the previous state. For example, consider the following sentence
"the dog is black". Here the order of appearance that is a sequence of the word is
important. Such kinds of problems involve text, speech, time series where there is a
dependency of state t on the t-1 state. Using the normal neural network, which acts like a
mapping function, where a single input is associated with a single output [85], we cannot
guarantee it for the correct prediction. Further, if we take the case of the time-series

38

data for weather forecasting. The information from the previous weeks or months or
even years is important for prediction. With the standard neural network also referred
as feed-forward neural network, it is impossible to take such temporal conditions into
account [86]. A recurrent neural network is (RNN) the special neural network that is
designed to overcome such a problem of standard neural networks.

RNN incorporates new design architecture to solve the problem of neural networks. It
incorporates the dependence by having a hidden state, or memory, that holds the essence
of what has been seen so far [84]. Figure 15 shows the simple RNN architecture and its
consecutive unfolded states over the sequence. The U, V, and W are the weight metrics
initialized randomly or with a distribution such as normal or Gaussian distribution [85]
and are shared among all the states. U is the input weight, W the recurrence weight, and
V the output weight. It is because in RNN the same function is applied over and over
in a recurrent manner. The states of the RNN can be mathematically represented with
Equations 10, 11 [87].

ht = tanh(W × ht−1 + U × xt + bh) (10)

yt = softmax(V × ht + bv) (11)

The ht in the above equations represents hidden vector h at time t, xt input at time
t, nonlinear function tanh, and the output vector yt obtained by application softmax
activation function. The tanh nonlinearity helps tackle the issue of vanishing gradient. It
is because tanh has very slow decay of the second derivative to zero and that helps keep
the gradients in the linear region of the activation function [84]. The tanh determines the
final value of the current memory ht and the output yt and maps the result value from
several equations in a range of 0-1 [85]. The bh and bv represents the bias.

The RNN also offers two variations; stacked and bidirectional RNN. The stacked
RNN helps to build the multilayer RNN. This stacked RNN solves the issue of not being
able to learn properly due to not having enough layers. The other is bidirectional which
offers the two-loop working in both directions and is useful for language modeling where
both preceding and succeeding words have meaning [88]. Figure 16 shows stacked
and bidirectional RNN respectively. Further RNN supports different combinations;
one-to-one, many-to-one, many-to-many (sequence-to-sequence) models [88].

39

Figure 15. Simple Recurrent Neural Network

Figure 16. Stacked RNN (Left) Bidirectional RNN (Right)

The RNN is trained using Backpropagation through time algorithm where the network
is unfolded for a certain number of steps over time [88]. The RNN however, suffers from
the problem of vanishing and exploding gradient. The vanishing and exploding gradient
issue occurs when |W| < 1 and |W| > 1 or eigenvalue ρ < 1 and ρ > 1 respectively for the
scalar and matrix representation of the weight W [88]. When the accumulation of the
gradient grows large such that it goes out of range, we call this problem as the exploding

40

gradient. This makes the weights to be NaN so that it can no longer be updated. And
when the gradient decays over time and becomes very small it is overshadowed by the
recent gradient making it unable to look back and remember the history efficiently. This
is one of the common issues and difficult to detect as the training will still work and the
network will produce valid outputs [88].

3.8 LSTM
RNN suffers from the problem of exploding and vanishing gradient for long-term de-
pendency. RNN is only focused on learning but not selectively forgetting [86]. It is
required to remember only important things and forget things that are not important.
Further, it also helps memory optimization. Long-short-term-memory (LSTM) to solve
this problem of RNN introduced new architecture with additional computational units. It
is also a drop-in replacement of Simple RNN, meaning the simple RNN can be replaced
with LSTM without any side effects, generally yielding better results [84]. The additional
computational units involve the gates and explicit state named cell state represented by
Ct. The cell state Ct is a memory that is used to hold the information. The introduced
gates are input gate, output gate, and forget gate. Figure 17 shows the LSTM architecture.
Similarly, the computational steps involved in the LSTM is given by the Equations 12 -
17 [87].

Figure 17. LSTM cell

41

ft = σ(Wxfxt +Whfht−1 + bf) (12)

it = σ(Wxixt +Whiht−1 + bi) (13)

ot = σ(Wxoxt +Whoht−1 + bo) (14)

Ct = ft � Ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (15)

ht = ot � tanh(Ct) (16)

Output(yt) = softmax(Uht) (17)

where in the Equations 12 - 17,

• i is the Input gate

• f is Forget gate

• o is Output gate

• C is Cell state

• x represents input

• h represents the hidden state

• W represnts the weights

• b is the bias

• x∗ for weight W is the input-to-hidden layer and ∗ represents f ,i,o

• h∗ for weight W is the hidden-to-hidden layer and ∗ represents f ,i,o

• � is element wise multiplication

• t is the time

• U is the hidden-to-output layer weights

The cell state Ct is also referred to as memory state as it stores the information. The
information in Ct can be explicitly written or removed so that it stays constant if no
outside interference [88]. It is the most important state. It is responsible for the handling
the dependencies by remembering and for the actual output [88]. What information to
keep and remove is controlled by the gates based on the value of the sigmoid function.
The sigmoid function returns either 0 or 1. The 0 value means information is no longer
required or can be removed. The same case with the opposite relation holds for the value
1. The sigmoid always returns positive values 0 to 1 but we also need to allow negative

42

values. For this, we make use of hyperbolic tangent tanh activation in Ct which returns
the value within range -1 to 1 allowing symmetry and better performance [86], [87].

The LSTM has three gates namely forgot, input, and output gate. These gates in the
LSTM controls the amount of information flow through the current layer to the next
layer and also what to remember and forget. The forget gate as the name suggests forgets
the information. It is used to remove the information from the cell state. The input xt
multiplied with weight Wxf and previous hidden state ht−1 with weight Whf are summed
together and sent to the sigmoid function. The sigmoid then returns either 0 or 1 value
based on which the forget gate takes the action whether to remove or not. The next is the
input gate where we pass everything the same sigmoid function to the forgot gate with
the parameter changed. It is also modulated by the sigmoid value. Based on the value of
the sigmoid, it updates or stores the new value to the cell state. The output gate, which
again is controlled by the sigmoid function decides what value to take from the cell state
to give it as an output. This value is then used to get the hidden state along with Ct as
shown in Equation 16. The hidden state value is then used with the softmax function to
get the result using Equation 17.

The implemented LSTM architecture in our study is shown in Figure 18. Our LSTM
implementation consists of the 8 LSTM layers and 6 Dense layers followed by one input
and one output layer. The implemented LSTM layer consists of the 2048 hidden units
and the Dense layer consist of 1024 units. Further, each LSTM layer incorporates the
activation function ReLU, dropout layer, and L2 regularization for the kernel regularizer.
Like other algorithms, LSTM is trained with split training data and tested with the test
data. The training data from the input layer passes through each layer until it reaches
the final output layer. The output layer is a sigmoid activated dense layer with 1 hidden
unit. Similar to Random Forest and Gradient boosting, LSTM is also evaluated against
Accuracy, Precision, Recall, and F1 Score. Further, the detailed implementation of
LSTM architecture is discussed in LSTM experiment Section 4.4.

43

Figure 18. Implemented LSTM Architecture

3.9 GRU
Gated Recurrent Unit (GRU) is another RNN based model that is designed to combat the
long-term dependency issue like LSTM. It is a variant of LSTM introduced in 2014 by
Cho et al. [89]. LSTM requires updating a lot of parameters in every iteration during
the backpropagation phase, increasing the training time [87]. This is primarily because
of the presence of many gates and states. GRU was designed keeping this in mind to
simplify this complexity of LSTM. So we could call GRU a simplified version of LSTM.

44

The simplification is achieved by reducing the number of gates and states. GRU cell
has only two gates namely reset and update gate and one hidden state. Figure 19 shows
the architecture of GRU. Similarly, the computational steps involved in GRU forward
propagation is given by the Equations 18 - 21 [87]. In the backward propagation, the
derivative of loss is calculated with respect to all weights using gradient descent and
updated [87]. It is done to minimize the loss.

zt = σ(Wxzxt +Whzht−1 + bz) (18)

rt = σ(Wxrxt +Whrht−1 + br) (19)

ht = (1− zt) � ht−1 + zt � tanh(Wxhxt +Whh(rt � ht−1) + bh) (20)

Output(yt) = softmax(Uht) (21)

where in the Equations 18 - 21,

• x represents input

• h represents the hidden state

• o represents output

• W represnts the weights

• b is the bias

• x∗ for weight W is the input-to-hidden layer and ∗ represents z,r

• h∗ for weight W is the hidden-to-hidden layer and ∗ represents z,r

• � is element wise multiplication

• z is update gate

• r is reset gate

• U is the hidden-to-output layer weights

45

Figure 19. GRU cell

The reset gate r which is sigmoid function of sum of the product of Wxr, xt and
Whr, ht−1 is similar to LSTM forget gate. It decides the degree to which the content
of the previous output to be preserved based on the value of the sigmoid function. The
sigmoid like in LSTM controls the gate in GRU. However, the reset gate is not enough to
determine the right output with enough accuracy, considering both short and long-term
dependencies so an update gate has been added to increase expressivity [86]. The update
gate z is also the sigmoid of sum of the product of Wxz, xt and Whz, ht−1. The update
step decides based on the sigmoid function value what information to take forward to
the next step. The complement of update gate zt while updating the hidden state helps
to avoid the new gate as shown in Equation 20. After the calculation of the ht, the final
result is obtained by applying a softmax activation function as in Equation 21.

GRU, a simplified version of LSTM is also the drop-in replacement for the simple
RNN [84]. GRU does not have persistent cells for storage like in the case of LSTM. In
terms of the performance, studies have shown both GRU and LSTM to have a comparable
performance [84], [86]. GRU due to its simplified structure speeds up the training process.
However, given enough data an LSTM’s greater expressive power may lead to better
results [84].

The implemented architecture of GRU in our study is shown in Figure 20. The
implementation of GRU like LSTM consists of 8 GRU layers and 6 Dense layers. Each
of the GRU layers incorporates the activation function ReLU, dropout layer, and L2
regularization for the kernel regularizer. Similar to other algorithms we train our GRU
model with training data that will be passed through each layer until it reaches the final

46

output layer. The output layer is also a dense layer with 1 hidden unit and activated by
the activation function Sigmoid. The use of different activation functions is described in
Section 3.10. The activation function, dropout layer, and the regularization are used to
prevent over-fitting. The output of each previous layer acts as the input to the next layer.
Similar to Random Forest, Gradient boosting, and LSTM, GRU is also evaluated against
Accuracy, Precision, Recall, and F1 Score. Further, the detailed implementation of GRU
architecture is discussed in GRU experiment Section 4.5.

Figure 20. Implemented GRU Architecture

47

3.10 Activation Function
Deep learning algorithms are multi-level representation learning techniques that allow
simple non-linear modules to transform representations from the raw input into the
higher levels of abstract representations, with many of these transformations producing
learned complex functions [90]. It is inspired by the human brain and works similarly by
activating the neurons. Based on which neuron is activated the necessary steps are taken
in the algorithm. How the neurons are activated is controlled by a function called an
activation function. An activation function, also known as a transfer function is also used
to introduce non-linearity [87]. It is necessary to apply an activation function to learn
the complex patterns from data. The activation function adds the non-linearity, which
without activation function resembles linear regression [87]. There are over 20 activation
functions [90] but we shall only discuss the ones relevant to our study.

3.10.1 Sigmoid

Sigmoid is one of the most commonly used activation function. It is also referred to
as a logistic function or squashing function [90]. It gives the probability value within
the rage of 0-1. It is used in the output layer for making a prediction in the case
of binary classification. Further, the sigmoid is differentiable, meaning that we can
find the slope of the curve at any two points and monotonic, which implies it is either
entirely non-increasing or non-decreasing [87]. Equation 22 is used in Sigmoid activation
function [87]. The Sigmoid, however, suffers major drawbacks which include sharp
damp gradients during back-propagation from deeper hidden layers to the input layers,
gradient saturation, slow convergence and non-zero centred output thereby causing the
gradient updates to propagate in different directions [90]. The other variants of Sigmoid
include Hard Sigmoid, Sigmoid-Weighted Linear Units, Sigmoid-Weighted Linear Units,
Derivative of Sigmoid-Weighted Linear Units, and Nwankpa et al. provide detailed
description [90].

f(x) =
1

1 + e−x
(22)

3.10.2 Softmax

The softmax activation function is the generalization of the Sigmoid [87]. It is represented
by Equation 23 and also gives the probability [87]. It is like Sigmoid used in the final
layer for making a prediction in case of the multi-class classification.

f(xi) =
ei∑
j e

xj
(23)

48

3.10.3 Hyperbolic Tangent Function (Tanh)

The hyperbolic tangent function is a smoother non-linear activation function [91] that is
centered around 0 with the value ranging from -1 to 1. Tanh also resembles the S-shaped
curve like sigmoid and is differentiable and monotonic [87]. The tanh like sigmoid does
not solve the problem of vanishing gradient and also produce dead neuron as it can only
attain gradient of 1 when input is 0 [90]. The main advantage provided by the function
which is represented by Equation 24 is that it produces zero centred output thereby aiding
the back-propagation process [90].

f(x) =
ex − e−x

ex + e−x
(24)

3.10.4 ReLu

ReLU eliminates the problem vanishing gradient problem of sigmoid and Tanh and is
used in the hidden layer of the networks [90]. It is the most popular non-linear function is
the rectified linear unit (ReLU), which is simply the half-wave rectifier [91] represented
by Equation 25 [87]. ReLU typically learns much faster in networks with many layers,
allowing training of a deep supervised network without unsupervised pre-training [91]. It
outputs the value from 0 to infinity range. From the Equation 25 it is clear that anything
negative will be turned to zero, meaning the neuron will be dead. This snag for being
zero for all negative values is a problem called dying ReLU [87]. The other variants
of ReLU are Leaky ReLU and Exponential linear unit (ELU), which solves this dying
ReLU problem by introducing a small negative slope [87].

f(x) =

{
0 x < 0
x x > 0

= max(0, x) (25)

3.11 Loss Function
In this section, we will discuss the essence of the loss function. Like other discussions,
in this section also we will only focus on the one related to our study. The loss function
discussed in this section is used in our deep learning model.

Loss functions are another essential building block of neural networks, and they
measure the difference between our predictions and reality [92]. Therefore, we always
try to minimize the loss function to the best possible lowest value. In other words, we
would like to find minimum points in loss functions called global minima especially
while creating neural networks [92]. Different types of loss functions are available and
they are used depending on the nature of the problem. For example mean square error
(MSE) used for a regression problem, cross-entropy for classification problems.

49

The cross-entropy loss function for the true label y and predicted label ŷ is defined
as in Equation 26 [93]. Further for binary classification problems, it is also called
Bernoulli’s negative log-likelihood and Binary cross-entropy [92]. It is represented by
Equation 27. And in the case of the multiclass classification, it can be generalized as
shown in Equation 28.

loss(ŷ, y) = −
n∑
i=1

yilog(ŷi) (26)

loss(ŷ, y) = − 1

n

n∑
i=1

(yilog(ŷ + (1− yi)log(1− ŷi) (27)

where,

• n is the number of iterations.

• yi is the actual value and for binary classification it is 0,1

• ŷi is the predicted probability P(y=1 or 0 | x = xi)

loss(ŷ, y) = −
m∑
i=1

n∑
j=1

yijlog(ŷij) (28)

3.12 Summary
In this chapter, we introduced the approach taken for implementation. We first introduced
the architecture. Thereafter, the data collection describing steps and tools used for
data collections and what data was collected. Moving on we also saw how data was
preprocessed and the need for it. After that, we presented the selected algorithms for
our study. We then discussed why such selection was made and how the algorithm
works in detail. Moreover, we also showed how an algorithm can be optimized using a
hyperparameter optimization technique. We then end this chapter with a discussion of
activation function and loss function. In the next chapter, we shall see how the experiment
was performed.

50

4 Experiment
This section describes the detailed implementation of the model and the experimentation.
The experimental setup is first described in Section 4.1, including all the details of the
tools as well as the system configuration. Further, we discuss how the experiment was
performed with Random Forest in Section 4.2, Gradient Boosting Classifier in Section
4.3, LSTM in Section 4.4 and GRU in Section 4.5, with all the details including the
hyperparameters used, training performed.

4.1 Experimental Setup
One of the most time-consuming processes in a machine learning-based algorithm is
training. The time of the training depends on algorithm implementation, data size,
training strategy, and computing power. The training process benefits with higher
computational power. In short, it can be said that the higher the computation power
faster the training. This is the reason for performing training by using the services from
the High-Performance Computing centers, Cloud providers like AWS, Google Cloud
platform utilizing their high computation power. Realizing this, we selected the system
with high computational power that we could make use of. The System used in our
study consist of 62 GB of Random Access Memory (RAM) with 16 core Intel i7 3.8
GHz processor. Further, the system is equipped with two Nvidia RTX 2080 Ti Graphics
Processing Unit (GPU). The GPU is having 4352 CUDA cores with 11 GB GDDR6
Standard Memory and it supports the Base Clock 1350 MHz for CUDA cores and 14
Gbps memory speed and 616 GB/sec memory bandwidth 29.

The machine learning-based algorithms can be implemented in multiple languages.
In our study, we selected Python as the choice of our programming language. The
selection of Python as the programming language is based on the simplicity as well as the
popularity of the language in the area of data science. The other reason is the availability
of the python-support of popular machine learning and deep learning frameworks and
libraries like Tensorflow, Keras, Scikit-Learn.

Scikit-Learn a python based open-source machine learning library is selected for the
implementation of Random Forest and Gradient Boosting Classifier. Scikit-Learn version
0.22 is used in our study. Similarly, for the implementation of the deep learning algorithm
LSTM and RNN, we selected an open-source deep learning framework TensorFlow
version 2. Tensorflow which makes use of the Keras as high-level neural network API
for building and training deep learning models30 uses the available GPU with no code
changes31. Nvidia provides a C++ based library TensorRT to facilitates high-performance

29https://www.nvidia.com/en-eu/geforce/graphics-cards/rtx-2080-ti/
30https://www.tensorflow.org/guide/keras
31https://www.tensorflow.org/guide/gpus

51

inference on NVIDIA graphics processing units (GPUs)32. It is used to optimize and
accelerate the dep learning training process. Moreover, TensorFlow has it integrated 32.
So, in order to make full utilization of the available GPU and to optimize and accelerate
the deep learning training process, we also use TensorRT. The TensorRT version 6.0.1
was used in our study. Furthermore, TensorRT requires CUDA, a parallel programming
platform. So to facilitate the TensorRT, we installed CUDA Version 10.0.130.

Further, the preprocessed input data in our study is split into the train and test. During
the experiment, we tried different combinations of train and test data like 55%:45%,
70%:30%, and 80%:20% before 60%:40%. The experimentation with the different
combinations is because of not getting satisfying results. However, we only recorded
the result from the 60%:40% split of training and testing data as it was giving the best
result for us as discussed in Section 5. Moreover, studies [94] also have shown 60%:40%
split to be better. This was based on the similar kinds of observations that were made in
studies like [33], [45], [39] where the reported result is from only one combination of
train and test split. Following similar patterns, we recorded the best result only in our
study. The training data in a later section of our discussion shall mean the split 60% of
training data and test data shall refer to the 40% test data.

4.2 Random Forest
This section describes how the implementation of the Random Forest algorithm was
made in our study. Random Forest can be used for both regression and classification. In
our study, we use the classification version of it. The implementation of the algorithm is
based on the Scikit-Learn library which provides an implementation of different machine
learning libraries. The detailed implementation architecture of the Random Forest used
in our study is shown in Figure 9. We first begin the experiment by providing the input
data. The input data here is the pre-processed training data that has been separated to
train the algorithm.

The next step before beginning the training is to set the hyperparameters. Random
Forest and other machine learning algorithms come with input parameters called hy-
perparameters. The hyperparameters also come with a fixed set of values. This means
in an experiment if we do not set any hyperparameters, the default one will be used.
Information regarding the hyperparameters of Random Forest used in our experiment can
be found from the official documentation 33. The hyperparameters are altered according
to the need of the experiment.

The selected hyperparameters for our study are shown in Table 2. Similarly, Table
7 shows the default value for our selected hyperparameters. To tune the algorithm for

32 https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
33 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

52

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

maximum accuracy, we set selected hyperparameters with the list of values as in Table
2. The selection of the hyperparameters is made based on the experience. Scikit-Learn
GridSearchCV has inbuilt support to it and can be passed as an input parameter.

Parameter Name Value

n_estimators 100

max_features ’auto’

criterion ’gini’

min_samples_split 2

Table 7. Random Forest Default Hyperparameter value

Once we have the set of hyperparameters to tune, the next step is to select the strategy
for tuning the hyperparameters. This means among available techniques like Grid Search,
Random Search, Bayesian optimization [57] which one to use to find a suitable set of
hyperparameters for our experiment. In our experiment, we selected Grid Search as it is
simple and does an exhaustive search.

Over-fitting is one of the major problems in machine learning. And if it is not dealt
with properly then we cannot achieve the desired result. So we use the K-Fold cross-
validation technique. It is used to control over-fitting. In the K-Fold cross-validation, K is
the number of folds and is defined at the beginning of the experiment (training process).
In our study, we set the value of K to 3. The selection of the value of K in our research is
based on the trail and experiment. Scikit-Learn offers a method GridSearchCV34 that
is capable of performing hyperparameter tuning using grid search and also the K-Fold
cross-validation at the same time. We, in our implementation, make use of the same
GridSearchCV method from Scikit-Learn Library.

The training in machine learning is a time-consuming task. Moreover, with the use of
grid-search, which performs an exhaustive search with all hyperparameters, it makes the
process of training slower. The use of parallelization can, however, improve the process.
Further, the system is available for the experiment suitable for doing this kind of task. To
take advantage of available hardware and speed up the training process, we use joblib
with a value set to 12 in our implementation. Joblib is a set of tools to provide lightweight
pipelining in Python providing services like transparent disk-caching of functions and
lazy re-evaluation and easy simple parallel computing35.

34https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html

35https://joblib.readthedocs.io/en/latest/

53

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

The random state helps to maintain the replicability of the result. In our experiment,
we have set the random state to be 42. It was passed as an input parameter to the
algorithm Random Forest. With everything set, we then train our algorithm. Once the
training process is complete, we test the trained model with the remaining 40% test data
which is discussed in Section 5. Table 8 shows the tuned value of hyperparameters with
which we obtain the best result for our experiment.

Parameter Name Value

n_estimators 300

max_features ’auto’

criterion ’gini’

min_samples_split 8

Table 8. Tuned Random Forest Hyperparameter value

4.3 Gradient Boosting
The next algorithm that we used in our study is the Gradient Boosting algorithm. In
our implementation, we use the GradientBoostingClassifier27 which is the classification
implementation of the Gradient Boosting algorithm. The implementation like Random
Forest is based on the Scikit-Learn library. Figure 11 implemented architecture of
Gradient Boosting algorithm.

Like Random Forest, we begin first with input training data. But before moving to
the process of training we do other necessary setups. We begin by setting the list of the
hyperparameters that will be used to tune the algorithm. Table 9 shows the default value
of the hyperparameters that we have considered in our study. Similarly, Table 3 shows
the list of values that were selected for tuning our gradient boosting algorithm.

The hyperparameter learning rate is very important because it determines how learn-
ing should take replace that is the steps in learning. The selection of the list values here
makes a difference and can either be achieved with experience, trial, and experiment or
from the study of established research. In our case, it was an experience that proved to
be helpful. Further, the loss hyperparameter is used for the optimization of loss and is
discussed in detail in Gradient Boosting methodology Section 3.6.

54

Parameter Name Value

loss deviance

learning_rate 0.1

max_features None

min_samples_split 2

n_estimators 100

Table 9. Gradient Boosting Hyperparameter Default Value

The next step after hyperparameter is to select a technique for hyperparameter
optimization. Following the notion of Random Forest, we use the Grid Search technique
to select the best hyperparameters from the given search grid. Moreover, similar to
Random Forest, we also adopted the K-Fold cross-validation technique that helps to
control over-fitting with the value of K being 3. The number likewise to Random Forest
is selected based on trial and experiment. The implementation of K-Fold cross-validation
and grid search was made using GridSearchCV.

We then set the random state for value for the algorithm and pipelining through joblib
to make the training process faster and to take benefit of available hardware. The random
state was set to 42 and joblib value to 12. With these things set, we train our algorithm
with the training data. Once the training is complete, we then evaluate with remaining
40% test data. Table 10 shows the value of the tuned hyperparameter with which we
were able to obtain the best result for a Gradient Boosting algorithm in our study.

Parameter Name Value

loss deviance

learning_rate 0.01

max_features 5

min_samples_split 3

n_estimators 500

Table 10. Gradient Boosting Hyperparameter Tuned value

55

4.4 LSTM
In this section, we will discuss the first deep-learning-based algorithm LSTM that we
used in our study. Like any other machine learning algorithm, we first begin by reading
the input data and thereby proceeding to further steps. Since we are working on time
series data and LSTM which is specifically designed to work with time series varies than
classical machine learning algorithms like Random Forest, Gradient Boosting Machine,
and so on. The input has to be passed in the N×T×D form where N represents the
number of samples, T represents time shift window and D is the features. In our study,
we use the 10 as the time stamp window. The number of input features D was set
dynamically to take it from input data. It was set to a second value that was returned by
the shape method of the data-frame. N was set to the total length of the input data minus
the T. The data is then pre-processed to standardize and handle the missing value.

The pre-processed input is then passed to the model. The input that is passed to the
input layer of the LSTM model is of the shape T, D. Our LSTM implementation consists
of the 8 LSTM layers and 6 Dense layers followed by one input and one output layer.
Figure 18 shows the implemented architecture of the LSTM. The LSTM consists of
the 2048 hidden units and the Dense layer consist of 1024 units. Further, each LSTM
layer incorporates the activation function ReLU, dropout of 0.5, and L2 regularization
for the kernel regularizer with the regularization value of 0.1. Some of the popular deep
learning architectures SigAlexNet, ZFNet, VGGNet, SegNet, GoogleNet, SqueezeNet,
ResNet, ResNeXt, MobileNets also uses the activation function ReLU for hidden layer
[90] because of its robustness against vanishing gradient problem. The same is the reason
for us selecting ReLU as an activation function.

Over-fitting is one of the major problems in both machine learning and deep learning.
Even in our experiment phase, we experienced very high over-fitting resulting in us
taking appropriate actions. To take appropriate actions to handle we introduced dropout.
The dropout acts as a switch turning off the neurons based on the provided dropout value.
It is very important because dropout is a proven technique to reduce over-fitting [95].
We also introduced the regularization. The regularization helps to control the model by
penalizing it. Further, we also make use of the early stopping to control the over-fitting
by using a custom callback. Early Stopping monitors the particular metrics that have
been said to monitor and stops the training once the model starts over-fitting. Taking
these approaches, we were able to avoid over-fitting in our experiment. Further, we use
binary crossentropy as the loss function.

Another important thing is the learning rate. It is the one that decides how much step
to take forward in the process of learning. The learning rate is very important because if
it is too small then it gets stuck into the local minima. And if it is too higher there will be
divergence, both of the situations we would like to avoid. This is because the accuracy
of the model depends on how well we learn and the learning rate helps to do so. The
fixed learning rate can be set to the model and train with it. This process of setting a

56

fixed learning rate is not good because it does not take account of the changing situations
like increasing or decreasing the loss. We, therefore, would prefer to have something
adaptive. In our implementation, we make use of one such adaptive learning rate method
Adam with learning rate schedules. We also implemented the learning rate scheduler
with the InverseTimeDecay with an initial learning rate 0.001, decay steps 2000, decay
rate 1, and staircase False to apply decay in a continuous fashion. The learning rate
scheduler callback is called after every epoch and reduces the learning rate to the smaller
value. This allows large weight changes at the beginning of the learning process and
small changes or fine-tuning toward the end of the learning process [96].

The batch size of 556 and the epoch of 430 was used for training the model. Though
TensorFlow makes use of the available GPU, it does not make use of it efficiently unless
instructed to do so. By efficiency, we mean the distribution of the load. For example,
if you have got multiple GPUs then TensorFlow does not make use of the multiple
GPUs in a distributed manner unless instructed otherwise. So to take advantage of the
available GPUs in an efficient manner, we use the distributed training strategy. Tensor-
Flow provides different distributed training strategies like MultiWorkerMirroredStrategy,
TPUStrategy, CentralStorageStrategy, MirroredStrategy36. These strategies are meant
to be used based on the placement of GPUs or TPUs. In our case, both the GPUs are
present in a single machine and therefore the supporting distributed training strategy
MirroredStrategy was used. MirroredStrategy is a synchronous distributed training that
creates replica per GPU and communicates using efficient all-reduce algorithms36.

4.5 GRU
In this section, we discuss the implementation of the second deep-learning algorithm
GRU. Figure 20 shows the implemented GRU model in our study. The implementation
design of LSTM and GRU is the same as the LSTM unit replaced with GRU. One of
the reasons for using GRU along with LSTM as they are both intended for solving the
same types of problems is to evaluate their performance as claimed by the studies [84].
Because of this our GRU implementation consists of the same settings as in LSTM
implementation. Further, we follow the exact same steps in training and testing of GRU
as LSTM.

4.6 Summary
To summarize this chapter, we saw the experimental setup and how the experiment was
performed. We presented the programming language, the library used, and also the
description of the computational capacity. Further, in the experiment to particular algo-
rithms, we also discussed the selection of hyperparameters, training strategy, measures

36https://www.tensorflow.org/guide/distributed_training

57

to control the over-fitting. In the next chapter, we shall discuss the results.

58

5 Results
It is by human nature that we always want things better. This quest for better results
is one of the reasons for innovation. It is the same reason for the existence of multiple
variants of the same technique. For example, let’s take one of the popular algorithms
used today in autonomous vehicles for tracking and position estimation. The algorithm is
the Kalman Filter. There exist different modifications of this algorithm namely Kalman
Filter, Unscented Kalman Filter, Extended Kalman Filter. The improvement to the initial
version of the algorithm is the reason for multiple versions of the same algorithm. This
brings to one of the most important questions, how do we determine what result is better
and what is not? Why do we care about it? What result is better and what is not is
determined using certain metrics and those metrics are generally called evaluation metrics.
The reason we use evaluation metrics to evaluate our algorithm is to understand how good
the algorithm is performing and how well it will perform in a similar unseen scenario.
Therefore, correct use of model evaluation is vital in academic machine learning research
as well as in many industrial settings [97].

There are different evaluation metrics available and its use-case varies depending
on the nature of the problem. For example, we use different metrics for regression and
classification problems. Our work of failure prediction belongs to the classification
category. So we select the classification related evaluation metrics. Accuracy is one of
the most commonly used evaluation metrics for the classification task and is one of our
evaluation metrics. The other selected evaluation metrics for our work are precision,
recall, and F1 score. Accuracy can sometimes be misleading in case of imbalance data
[98], [99]. Therefore, for our work, we have selected multiple evaluation metrics.

Accuracy is the measure of overall correct predictions. It can be calculated using the
Equation 29 [100]. Precision is defined as True Positive (TP) divided by the sum of TP
and FP. It is represented by Equation 30 [100]. It is a measure of a model’s exactness
and a higher precision value for a classifier is an indication of a good classifier [98].
The recall is True Positives divided by the sum of True Positives and False Negatives,
represented by Equation 31 [100]. It is also called sensitivity, or true positive rate. It
assesses the effectiveness of the classifier on the positive/minority by measuring the
accuracy of positive cases [98]. Further, to understand the balance between precision and
recall, we have also taken the F1 Score. F1 Score is the harmonic mean of both precision
and recall [101] and is given by the Equation 32.

Accuracy =
TP + TN

TP + TN + FP + FN
(29)

precision =
TP

TP + FP
(30)

recall =
TP

TP + FN
(31)

59

F1Score = 2× precision× recall
precision+ recall

(32)

True positive (TP) means that the model predicts positive and the actual value was the
same. Similarly, for True Negative (TN), the negative prediction by the model matches
the actual value. False-positive (FP) means the model predicts positive but the actual
values are negative and the reverse is true in the case of False-negative (FN).

To access the quality we evaluated our work first against accuracy . For more
evaluation of our work, we also make a comparison with other similar works. Figure 21
shows the accuracy of our implemented Random Forest, Gradient Boosting, LSTM, and
GRU algorithm and its comparison with other studies. From the figure, we can see a very
good result from all our implemented algorithms, with Random Forest giving the best.
Moreover, the comparison with other similar works [15], [31], [18] and [34] also shows
our work to be better.

Accuracy can sometimes be misleading [98], [99] and to not fall in the trap of it we
further make an evaluation using precision and recall showed by Figure 22. Some studies
like [18] also makes multiple metrics like accuracy, recall for evaluation. Similar to
accuracy, we also compare the recall to our study. Results from the precision and recall
show that our accuracy is not misleading as we have higher precision and recall with all
of our implementations. Ideally, this is what we want, high precision and recall [102].

Similarly, we move further in the evaluation of our work, and finally, we evaluated it
against the F1 Score which measures the balance between precision and recall. And like
accuracy and recall, we also compare it with other studies [37]. Like the results from
other evaluation metrics, it also gives very good results shown in Figure 23. The high
value of the F1 Score shows that our result of precision and recall is balanced and further
comparison also shows our result to be better.

Figure 21. Comparison of Accuracy

60

Figure 22. Comparison of Precision and Recall

Figure 23. Comparison of F1 Score

61

5.1 Summary
In this chapter, we presented results from our work and also made a comparison with some
relevant state-of-the-art. Moreover, we also discussed the evaluation metric selection and
its importance. In the next chapter, we shall see what can be done further to improve this
study.

62

6 Conclusion and Future work
This study investigates the prediction of failure using the combined metrics approach
using both classical machine learning and deep learning approach. In this study, we
studied and analyzed the metrics that are critical to failure prediction and further made an
analysis on it to make early failure prediction. We implemented and tested four different
algorithms Random Forest, Gradient Boosting, LSTM, and GRU. Based on our research,
the following are the key findings of our study.

• The first is the metrics itself. We made a detailed study of different available
metrics and a careful selection from the available metrics as shown in Table 1. The
selected metrics have a high impact on the failure which we also have demonstrated
by the result.

• We from our study have demonstrated the advantages of using metrics in a com-
bined manner for failure prediction. The use of the combined metrics is tested by
implementing different algorithms and the result is validated against similar such
studies without using combined metrics.

• Further, we also demonstrated the advantage of using the artificial-intelligence-
based technique for making failure prediction unlike rule-based tools like Prometheus.

However, despite the advantages we showed, we find some limitations to our study
which in our view could have made the failure prediction more robust. The following are
the limitations observed in our study.

• The first limitation was the amount of data available. We were fortunate to have
the data with all the metrics available as per our requirement. However, we could
only collect the data for a month. If we had more data then our deep learning
models could have learned much better. It is because the more data we give to the
deep learning algorithms the better it can learn. This is the reason we expect our
deep learning algorithms to have less accuracy compared to a classical machine
learning approach.

• The second limitation is also related to the data. Unfortunately, the data we have did
not consist of the failure record. Therefore, we had to prepare the failure condition
following the hardware specification and based on earlier studies. The failure
can occur at any time and it necessarily may not occur following the hardware
specification. The lack of the failure record we consider to be limited.

Machine learning-based algorithms benefit from more information. With the use of
the combined metrics, we provide an algorithm with more information that it can learn
from. Because of this algorithm will perform better than having less information. We

63

have demonstrated by the experiment the advantages of providing more information to
the algorithm. However, the lack of data and failure record is the limitation we consider
for this study. A future improvement to this study would be to use a similar approach
with more data and failure information.

64

References
[1] D. Sullivan, “The definitive guide to cloud computing,” Real Time Nexus, no. 1,

pp. 4–11, 2010.

[2] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, B. Varghese,
E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto, et al., “A manifesto for future
generation cloud computing: Research directions for the next decade,” ACM
computing surveys (CSUR), vol. 51, no. 5, pp. 1–38, 2018.

[3] K. Chandrasekaran, Essentials of cloud computing. Chapman and Hall/CRC,
2014.

[4] S. Kunal, A. Saha, and R. Amin, “An overview of cloud-fog computing: Architec-
tures, applications with security challenges,” Security and Privacy, vol. 2, no. 4,
p. e72, 2019.

[5] J. K. Z. N. C. T. U. Chuck Byers (IIC staff), Ron Zahavi (Microsoft), “The edge
computing advantage,” 2019.

[6] D. Jiang, “The construction of smart city information system based on the internet
of things and cloud computing,” Computer Communications, vol. 150, pp. 158–
166, 2020.

[7] T. Xia, W. Zhang, W. Chiu, and C. Jing, “Using cloud computing integrated archi-
tecture to improve delivery committed rate in smart manufacturing,” Enterprise
Information Systems, pp. 1–20, 2020.

[8] H. Saini, A. Upadhyaya, and M. K. Khandelwal, “Benefits of cloud computing for
business enterprises: A review,” Available at SSRN 3463631, 2019.

[9] M. Szczerba, M. S. Wiewiórka, M. J. Okoniewski, and H. Rybiński, “Scalable
cloud-based data analysis software systems for big data from next generation
sequencing,” in Big Data Analysis: New Algorithms for a New Society, pp. 263–
283, Springer, 2016.

[10] B. Langmead and A. Nellore, “Cloud computing for genomic data analysis and
collaboration,” Nature Reviews Genetics, vol. 19, no. 4, p. 208, 2018.

[11] M. Doheir, A. S. H. Basari, B. Hussin, N. M. Yaacob, S. S. A. Al-Shami, et al.,
“The new conceptual cloud computing modelling for improving healthcare man-
agement in health organizations,” International Journal of Advanced Science and
Technology 351-362, vol. 28, no. 1, pp. 351–362, 2019.

65

[12] Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, R. Liu, Z. Pang, and M. J.
Deen, “A novel cloud-based framework for the elderly healthcare services using
digital twin,” IEEE Access, vol. 7, pp. 49088–49101, 2019.

[13] S. Prathiba and S. Sowvarnica, “Survey of failures and fault tolerance in cloud,”
in 2017 2nd International Conference on Computing and Communications Tech-
nologies (ICCCT), pp. 169–172, Feb 2017.

[14] P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,” Journal
of King Saud University-Computer and Information Sciences, 2018.

[15] T. Islam and D. Manivannan, “Facs: Toward a fault-tolerant cloud scheduler
leveraging long short-term memory network,” in 2019 6th IEEE International
Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom),
pp. 1–6, IEEE, 2019.

[16] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy efficiency in cloud
computing systems: Survey and taxonomy,” Journal of Network and Computer
Applications, vol. 74, pp. 66–85, 2016.

[17] M. Alshayeji, M. Al-Rousan, E. Yossef, and H. Ellethy, “A study on fault tolerance
mechanisms in cloud computing,” Int J Comput Electr Eng, vol. 10, pp. 574–538,
2018.

[18] A. Das, F. Mueller, C. Siegel, and A. Vishnu, “Desh: deep learning for system
health prediction of lead times to failure in hpc,” in Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
pp. 40–51, 2018.

[19] H. Agarwal and A. Sharma, “A comprehensive survey of fault tolerance techniques
in cloud computing,” in 2015 International Conference on Computing and Network
Communications (CoCoNet), pp. 408–413, IEEE, 2015.

[20] S. Talwani and I. Chana, “Fault tolerance techniques for scientific applications in
cloud,” in 2017 2nd International Conference on Telecommunication and Networks
(TEL-NET), pp. 1–5, IEEE, 2017.

[21] G. Louppe, “Understanding random forests: From theory to practice,” arXiv
preprint arXiv:1407.7502v3, 2015.

[22] T. Ropinski, D. Archambault, M. Chen, R. Maciejewski, K. Mueller, A. Telea,
and M. Wattenberg, “How do recent machine learning advances impact the data
visualization research agenda?,” IEEE VIS Panel. Phoenix, 2017.

66

[23] D. Ramachandram and G. W. Taylor, “Deep multimodal learning: A survey on
recent advances and trends,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 96–108, 2017.

[24] G. Öttl, “Analyze prometheus metrics like a data
scientist.” https://promcon.io/2017-munich/slides/
analyze-prometheus-metrics-like-a-data-scientist.pdf, 2020. [On-
line; accessed 26-March-2020].

[25] E. Dubrova, Fault-tolerant design. Springer, 2013.

[26] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.

[27] S. Ghosh, Distributed Systems, 2nd Edition. Chapman and Hall/CRC, 2014.

[28] K. Kim, “Issues insufficiently resolved in century 20 in the fault-tolerant dis-
tributed computing field,” in Proceedings 19th IEEE Symposium on Reliable
Distributed Systems SRDS-2000, pp. 106–115, IEEE, 2000.

[29] M. Hasan and M. S. Goraya, “Fault tolerance in cloud computing environment: A
systematic survey,” Computers in Industry, vol. 99, pp. 156–172, 2018.

[30] J. Meenakumari, “Virtual machine (vm) earlier failure prediction algorithm,”
International Journal of Applied Engineering Research, vol. 12, no. 20, pp. 9285–
9289, 2017.

[31] A. Alkasem, H. Liu, D. Zuo, and B. Algarash, “Cloud computing: a model
construct of real-time monitoring for big dataset analytics using apache spark,” in
Journal of Physics: Conference Series, vol. 933, p. 012018, IOP Publishing, 2018.

[32] G. M. Qasem and B. Madhu, “Proactive fault tolerance in cloud data centers for
performance efficiency,” Int J Pure Appl Math, vol. 117, no. 22, pp. 325–329,
2017.

[33] D. Liu, B. Wang, P. Li, R. J. Stones, T. G. Marbach, G. Wang, X. Liu, and
Z. Li, “Predicting hard drive failures for cloud storage systems,” in Algorithms
and Architectures for Parallel Processing (S. Wen, A. Zomaya, and L. T. Yang,
eds.), (Cham), pp. 373–388, Springer International Publishing, 2020.

[34] B. Mohammed, I. Awan, H. Ugail, and M. Younas, “Failure prediction using
machine learning in a virtualised hpc system and application,” Cluster Computing,
vol. 22, no. 2, pp. 471–485, 2019.

67

https://promcon.io/2017-munich/slides/analyze-prometheus-metrics-like-a-data-scientist.pdf
https://promcon.io/2017-munich/slides/analyze-prometheus-metrics-like-a-data-scientist.pdf

[35] B. Schroeder and G. Gibson, “A large-scale study of failures in high-performance
computing systems,” IEEE transactions on Dependable and Secure Computing,
vol. 7, no. 4, pp. 337–350, 2009.

[36] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li, K. Jiang, W. Zhang, J.-G.
Lou, et al., “Improving service availability of cloud systems by predicting disk
error,” in 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18),
pp. 481–494, 2018.

[37] B. Lai, “Predicting server failures with machine learning,” tech. rep., SLAC
National Accelerator Lab., Menlo Park, CA (United States), 2018.

[38] A. Fadaei Tehrani and F. Safi-Esfahani, “A threshold sensitive failure prediction
method using support vector machine,” Multiagent and Grid Systems, vol. 13,
no. 2, pp. 97–111, 2017.

[39] A. Chigurupati, R. Thibaux, and N. Lassar, “Predicting hardware failure using
machine learning,” in 2016 Annual Reliability and Maintainability Symposium
(RAMS), pp. 1–6, IEEE, 2016.

[40] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards, and A. Miguel, “A
practical approach to hard disk failure prediction in cloud platforms: Big data
model for failure management in datacenters,” in 2016 IEEE Second International
Conference on Big Data Computing Service and Applications (BigDataService),
pp. 105–116, March 2016.

[41] F. D. d. S. Lima, G. M. R. Amaral, L. G. d. M. Leite, J. P. P. Gomes, and
J. d. C. Machado, “Predicting failures in hard drives with lstm networks,” in 2017
Brazilian Conference on Intelligent Systems (BRACIS), pp. 222–227, 2017.

[42] H. Adamu, B. Mohammed, A. B. Maina, A. Cullen, H. Ugail, and I. Awan,
“An approach to failure prediction in a cloud based environment,” in 2017 IEEE
5th International Conference on Future Internet of Things and Cloud (FiCloud),
pp. 191–197, Aug 2017.

[43] J. Shetty, R. Sajjan, and G. Shobha, “Task resource usage analysis and failure
prediction in cloud,” in 2019 9th International Conference on Cloud Computing,
Data Science & Engineering (Confluence), pp. 342–348, IEEE, 2019.

[44] M. Jassas and Q. H. Mahmoud, “Failure analysis and characterization of schedul-
ing jobs in google cluster trace,” in IECON 2018-44th Annual Conference of the
IEEE Industrial Electronics Society, pp. 3102–3107, IEEE, 2018.

68

[45] A. Bala and I. Chana, “Intelligent failure prediction models for scientific work-
flows,” Expert Systems with Applications, vol. 42, no. 3, pp. 980–989, 2015.

[46] A. Rosa, L. Y. Chen, and W. Binder, “Predicting and mitigating jobs failures in
big data clusters,” in 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pp. 221–230, IEEE, 2015.

[47] J. Gao, H. Wang, and H. Shen, “Task failure prediction in cloud data centers using
deep learning,” in 2019 IEEE International Conference on Big Data (Big Data),
pp. 1111–1116, IEEE, 2019.

[48] B. Brazil, Prometheus: Up Running. O’Reilly Media, Inc., 2018.

[49] Y. Kim, J. Woo, J. Lee, and J. S. Shin, “High-quality data collection for machine
learning using block chain,” Journal of the Korea Institute of Information and
Communication Engineering, vol. 23, no. 1, pp. 13–19, 2019.

[50] Z. Obermeyer and E. J. Emanuel, “Predicting the future—big data, machine
learning, and clinical medicine,” The New England journal of medicine, vol. 375,
no. 13, p. 1216, 2016.

[51] A. R. Mashhadi, W. Cade, and S. Behdad, “Moving towards real-time data-driven
quality monitoring: A case study of hard disk drives,” Procedia Manufacturing,
vol. 26, pp. 1107–1115, 2018.

[52] H. Yang, “Data preprocessing,” 2018.

[53] G. M. Qasem and B. Madhu, “A classification approach for proactive fault tol-
erance in cloud data centers,” International Journal of Applied Engineering Re-
search, vol. 13, no. 22, pp. 15762–15765, 2018.

[54] D. Paper, Hands-on Scikit-Learn for Machine Learning Applications: Data Sci-
ence Fundamentals with Python. Apress, 2019.

[55] F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond manual tuning of hyperpa-
rameters,” KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 329–337, 2015.

[56] M. Claesen and B. De Moor, “Hyperparameter search in machine learning,” arXiv
preprint arXiv:1502.02127, 2015.

[57] M. Feurer and F. Hutter, Hyperparameter Optimization, pp. 3–33. Cham: Springer
International Publishing, 2019.

[58] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown, “Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 826–830, 2017.

69

[59] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated Machine Learning. Springer,
2019.

[60] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631, 2019.

[61] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic hyper-
parameter configuration for scikit-learn,” in ICML workshop on AutoML, vol. 9,
Citeseer, 2014.

[62] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, “Hyperopt: a
python library for model selection and hyperparameter optimization,” Computa-
tional Science & Discovery, vol. 8, no. 1, p. 014008, 2015.

[63] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
Journal of machine learning research, vol. 13, no. Feb, pp. 281–305, 2012.

[64] G. Ranjan, A. K. Verma, and S. Radhika, “K-nearest neighbors and grid search
cv based real time fault monitoring system for industries,” in 2019 IEEE 5th
International Conference for Convergence in Technology (I2CT), pp. 1–5, IEEE,
2019.

[65] D. Berrar, “Cross-validation,” Encyclopedia of Bioinformatics and Computational
Biology, pp. 542–545, 2019.

[66] C.-V. P. REFAEILZADEH, L. Tang, and L. HUAN, “Arizona state university
encyclopedia of database systems,” 2009.

[67] T.-T. Wong, “Performance evaluation of classification algorithms by k-fold and
leave-one-out cross validation,” Pattern Recognition, vol. 48, no. 9, pp. 2839–2846,
2015.

[68] E. Scornet, G. Biau, J.-P. Vert, et al., “Consistency of random forests,” The Annals
of Statistics, vol. 43, no. 4, pp. 1716–1741, 2015.

[69] A. Sarica, A. Cerasa, and A. Quattrone, “Random forest algorithm for the clas-
sification of neuroimaging data in alzheimer’s disease: A systematic review,”
Frontiers in aging neuroscience, vol. 9, p. 329, 2017.

[70] A. D. Kulkarni and B. Lowe, “Random forest algorithm for land cover classifica-
tion,” 2016.

70

[71] L. Khaidem, S. Saha, and S. R. Dey, “Predicting the direction of stock market
prices using random forest,” arXiv preprint arXiv:1605.00003, 2016.

[72] R. Ramo and E. Chuvieco, “Developing a random forest algorithm for modis
global burned area classification,” Remote Sensing, vol. 9, no. 11, p. 1193, 2017.

[73] J. Kim and S. Grunwald, “Assessment of carbon stocks in the topsoil using random
forest and remote sensing images,” Journal of environmental quality, vol. 45, no. 6,
pp. 1910–1918, 2016.

[74] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[75] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, no. 2,
pp. 197–227, 2016.

[76] P. Dangeti, Statistics for Machine Learning. Packt Publishing, 2017.

[77] P. D. A. Y. Allen Yu, Claire Chung, Numerical Computing with Python. Packt
Publishing, 2018.

[78] V. Athanasiou and M. Maragoudakis, “A novel, gradient boosting framework for
sentiment analysis in languages where nlp resources are not plentiful: a case study
for modern greek,” Algorithms, vol. 10, no. 1, p. 34, 2017.

[79] N. Chakrabarty, T. Kundu, S. Dandapat, A. Sarkar, and D. K. Kole, “Flight arrival
delay prediction using gradient boosting classifier,” in Emerging Technologies in
Data Mining and Information Security, pp. 651–659, Springer, 2019.

[80] D. S. Jain, S. R. Gupte, and R. Aduri, “A data driven model for predicting rna-
protein interactions based on gradient boosting machine,” Scientific reports, vol. 8,
no. 1, pp. 1–10, 2018.

[81] X. Wang, G. Gong, and N. Li, “Automated recognition of epileptic eeg states
using a combination of symlet wavelet processing, gradient boosting machine,
and grid search optimizer,” Sensors, vol. 19, no. 2, p. 219, 2019.

[82] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learn-
ing for computer vision: A brief review,” Computational intelligence and neuro-
science, vol. 2018, 2018.

[83] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh,
M. Matheson, J. Deslippe, M. Fatica, et al., “Exascale deep learning for climate
analytics,” in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 649–660, IEEE, 2018.

71

[84] A. G. Sujit Pal, Deep Learning with Keras. Packt Publishing, 2017.

[85] S. Kostadinov, Recurrent Neural Networks with Python Quick Start Guide. Packt
Publishing, 2018.

[86] S. G. B. Armando Fandango, Rajalingappaa, Python: Advanced Guide to Artificial
Intelligence. Packt Publishing, 2018.

[87] S. Ravichandiran, Hands-On Deep Learning Algorithms with Python. Packt
Publishing, 2019.

[88] I. Vasilev, Advanced Deep Learning with Python. Packt Publishing, 2019.

[89] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[90] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” arXiv preprint
arXiv:1811.03378, 2018.

[91] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[92] J. D. Smith, Hands-On Artificial Intelligence for Beginners. Packt Publishing,
2018.

[93] N. P. G. T. L. A. Iffat Zafar, Richard Burton, Hands-On Convolutional Neural
Networks with TensorFlow. Packt Publishing, 2018.

[94] B. Rai, “Feature selection and predictive modeling of housing data using random
forest,” International Journal of Industrial and Systems Engineering, vol. 11,
no. 4, p. 5, 2017.

[95] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in
recurrent neural networks,” in Advances in neural information processing systems,
pp. 1019–1027, 2016.

[96] H. E.-A. M. Hamdy, Deep Learning Pipeline: Building a Deep Learning Model
with TensorFlow. Apress, 2019.

[97] S. Raschka, “Model evaluation, model selection, and algorithm selection in ma-
chine learning,” arXiv preprint arXiv:1811.12808, 2018.

[98] J. Akosa, “Predictive accuracy: a misleading performance measure for highly
imbalanced data,” in Proceedings of the SAS Global Forum, pp. 2–5, 2017.

72

[99] M. Hossin and M. Sulaiman, “A review on evaluation metrics for data classification
evaluations,” International Journal of Data Mining & Knowledge Management
Process, vol. 5, no. 2, p. 1, 2015.

[100] G. Bonaccorso, Machine Learning Algorithms. Packt Publishing, 2018.

[101] J. Capellman, Hands-On Machine Learning with ML.NET. Packt Publishing,
2020.

[102] A. F. Ankit Jain, Amita Kapoor, TensorFlow Machine Learning Projects. Packt
Publishing, 2019.

[103] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”
Annals of statistics, pp. 1189–1232, 2001.

73

List of Tables
1 Selected Metrics for the Study . 18
2 Random Forest Hyperparameter . 27
3 Gradient Boosting Hyperparameter . 27
4 Information Gain for Tree A . 29
5 Information Gain for Tree B . 30
6 Example Data-set for Gradient Boosting 36
7 Random Forest Default Hyperparameter value 53
8 Tuned Random Forest Hyperparameter value 54
9 Gradient Boosting Hyperparameter Default Value 55
10 Gradient Boosting Hyperparameter Tuned value 55
11 Residual . 77
12 New Log odds and prediction probability for Iteration 1 78
13 New Residual for Iteration 2 . 79

List of Figures
1 Classification of Fault-tolerance techniques 9
2 Architecture . 16
3 Prometheus Monitoring and Data Downloading 20
4 Sample Data of Prometheus Query . 21
5 Example Search Grid . 25
6 GridSearchCV . 26
7 K Fold cross-validation (K=10) . 26
8 Sample Tree . 29
9 Random Forest Architecture . 31
10 Example visualization of Gradient boosting 33
11 Gradient Boosting Architecture . 35
12 Gradient Boosting Tree for iteration 1 36
13 Gradient Boosting Tree for iteration 2 37
14 Gradient Boosting F2(x) . 38
15 Simple Recurrent Neural Network . 40
16 Stacked RNN (Left) Bidirectional RNN (Right) 40
17 LSTM cell . 41
18 Implemented LSTM Architecture . 44
19 GRU cell . 46
20 Implemented GRU Architecture . 47
21 Comparison of Accuracy . 60
22 Comparison of Precision and Recall 61

74

23 Comparison of F1 Score . 61
24 Fitting regression tree . 78
25 F1(x) for new log odd calculation . 79
26 F2(x) for log odd calculation for iteration 2 80

75

Appendix

I. List of Acronyms
VM Virtual Machine

KNN K Nearest Neighbor

SVM Support Virtual Machine

RF Random Forest

CART Classification and Regression Trees

LDA Linear Discriminant Analysis

HPC High Performance Computing

SMART Self-Monitoring, Analysis and Reporting technology

NERSC National Energy Research Scientific Computing Center

CFDR Computer Failure Data Repository

LSTM Long Short-Term Memory

II. List of Notations

Notation Meaning

λ Hyperparameter

∂ Mathematical Derivative

γ Output value

� Element wise multiplication

ˆ Predicted

76

III. Gradient Boosting Calculation
In this section, we shall see in detail the application of the gradient boosting algorithm
with an example data-set 6. We are going to use the simplified formulae. Stammer37

explains simplification steps in detail and Friedman et. al provides details of the math
involved in this algorithm [103], which can be referred for details. The details of the
algorithms are also described in Section 3.6. We, therefore, in this, only focus on
calculation. Further, we assumed the learning rate of 0.1.

As stated in the algorithm we first have to calculate the initial prediction and assign
it. The calculation of the prediction is based on the log odds, so we calculate log odd and
obtain its value as 0.69. And since it is our first step, F0(x) also becomes the same i.e.
0.69.

logodd = loge(2/1) = 0.69 (33)

Next, we calculate the initial prediction based on the log odds value, and using the
calculated initial prediction probability P0 = 0.67, the residual shown in Table 11.

predictionprobability(P) =
elogodd

1 + elogodd
(34)

Server smart_198 smart_3 Fail? Residual

A 19 9 Yes 0.335

B 100 98 No -0.665

B 61 9 Yes 0.335

Table 11. Residual

We then follow the fit-regression step for constructing the tree and mark the label
Figure 24. Afterward, we calculate the γ value for the respective label. γ can be
calculated as the sum of residual divided by sum of P(1-P).

γ11 =
0.335

(1− .67)× 0.67
= 1.51 (35)

γ12 =
−0.665 + 0.335

(1− .67)× 0.67 + (1− .67)× 0.67
= −0.7462 (36)

37Gradient Boost Classification Details StatQuest

77

https://www.youtube.com/watch?v=StWY5QWMXCw

Figure 24. Fitting regression tree

We run our data through tree to find the appropriate value of γ and calculate the new
log-odds F1(x) = F0(x)+learning rate × γ.

Server smart_198 smart_3 Fail? Residual Logodd1 P1

A 19 9 Yes 0.335 0.69 + 0.1× .51 = 0.84 0.6984

B 100 98 No -0.665 0.69 + 0.1× 0.7462 = 0.61538 0.6491

B 61 9 Yes 0.335 0.69 + 0.1× 0.7462 = 0.61538 0.6491

Table 12. New Log odds and prediction probability for Iteration 1

For the next iteration, we follow the same. First, we begin with the calculation of the

78

Figure 25. F1(x) for new log odd calculation

residual which is observed minus predicted. We already have the previous prediction from
iteration 1 and the observed value provided in the original data-set. Upon calculation, we
get the following residual Table 13.

Residual

0.3016

-0.6491

0.3509

Table 13. New Residual for Iteration 2

We follow the repeated procedure of fitting the regression tree 26, followed by a
calculation of γ. The calculation yields 1.4318 and -0.6546 respectively for γ11 and γ12
. Further using the constructed tree Figure 26 and the calculated γ, we calculate new
log-odds again running though this new tree and using the previously calculated F1(x)
and the respective prediction. This new calculation of log-odd follows F2(x) shown
in Figure 14. This process of calculation and update of the value is repeated until the
stopping criteria defined by hyperparameter is reached.

79

Figure 26. F2(x) for log odd calculation for iteration 2

IV. Source Code
The source code and trained model for this study is located in repository https://
bitbucket.org/tekrajchhetri/cloud-resources-failure-prediction/.The ac-
cess to the repository could be granted upon sending an email to tekrajchhetri@gmail.com.

80

https://bitbucket.org/tekrajchhetri/cloud-resources-failure-prediction/
https://bitbucket.org/tekrajchhetri/cloud-resources-failure-prediction/

7 Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Tek Raj Chhetri,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Towards AI for cloud services reliability using combined metrics,

supervised by Prof. Satish Narayana, Dr. Chinmaya Dehury and Artjom
Lind.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Tek Raj Chhetri
15/05/2020

81

	Introduction
	Motivation
	Goal
	Contributions
	Outline

	State-of-the-art
	Background
	Related Work
	Cloud VM Failure Prediction
	Server Failure Prediction
	Task Failure Prediction

	Summary

	Methodology
	Architecture
	Data Collection
	Preprocessing
	Hyperparameter Optimization
	Random Forest
	Gradient Boosting
	Recurrent Neural Network
	LSTM
	GRU
	Activation Function
	Sigmoid
	Softmax
	Hyperbolic Tangent Function (Tanh)
	ReLu

	Loss Function
	Summary

	Experiment
	Experimental Setup
	Random Forest
	Gradient Boosting
	LSTM
	GRU
	Summary

	Results
	Summary

	Conclusion and Future work
	References
	Appendix
	I. List of Acronyms
	II. List of Notations
	III. Gradient Boosting Calculation
	IV. Source Code

	Licence

