One to many send/receive (with statically determined partners)

In this implementation we demonstrate the one to many send receive pattern wherein a single
sender sends a message to several different partner services, where the addresses of these partner
services are assumed to be given as deployment-time information. A typical example of this
pattern is requesting quotes from an a priori known set of suppliers.

There are three constraints on the implementation of the pattern.

1. Specify that a certain specified number of receivers actually receive the message and
respond. E.g. requests are sent to 3 suppliers but only 2 responses are required.

2. Specify that the necessary number of responses is achieved within a timeout period. E.g. if
the required number of responses has not been received within the time limit it may be
necessary to send requests to another set of suppliers.

3. Check, after processing has completed, whether a success condition has been met. E.qg. if
the process timed out and all the required responses have not been received the application
may still be able to proceed with a smaller number.

Modeling the constraints

Number of receivers

To provide the ability to define how many responses are required a while loop is created that loops
until the required number of responses is received.

The responses are collected in a pick activity where each possible responder is itemized and at
each iteration through the while loop if a message has been received it is processed.

<while name="while-1" condition="bpws:getVariableData('counter')> 2">
<pick name="pick-1">
<onMessage partnerLink="rcvrl"
portType="tns:BasicCallback"
operation="onResult" variable="rcvd1">
<assign name="rcvd1Update">
<C0py>
<from expression="bpws:getVariableData('counter’)+1"></from>
<to variable="counter"/>
</copy>
<C0py>
<from expression="concat(bpws:getVariableData('content’),” - *, bpws:getVariableData(‘rcvdl’,
"payload’,’/tns:BasicResponse/tns:result’))"></from>
<to variable="content"/>
</copy>
</assign>
</onMessage>
<onMessage partnerLink="rcvr2"

</onMessage>
<onMessage partnerLink="rcvr3"

</onMessage>
</pick>
</while>

A problem encountered with the Oracle BPEL implementation (version 2.1.2) is that the pick
activity will select one of the available messages and discard the rest. This seems to point to a bug
in this version of the Oracle BPEL engine.

Timeout

To provide the ability to stop collecting responses after some period of time, the while loop is
contained within a scope activity that has an “on alarm”. If the alarm is triggered an exception
(simply called “timeoutName” in this example) is thrown to be caught in the outer scope. The
exception allows the process to exit the while/pick loop before it has finished.

<scope name="outerScope">
<faultHandlers>
<catch faultName="tns:timeoutName" faultVariable="timeoutFaultVar">
<assign name="updateTimeout">
<C0py>
<from expression="concat(bpws:getVariableData('content’), - Timed out —)">
</from>
<to variable="content"/>
</copy>
</assign>
</catch>
</faultHandlers>
<flow name="sendReceiveFlow">
<scope name="innerReceiveScope">
<eventHandlers>
<onAlarm for="PT10S"">
<sequence>
<throw name="throw-1" faultName="tns:timeoutName"
faultVariable="timeoutFaultVar"/>
</sequence>
</onAlarm>
</eventHandlers>
<while name="while-1" condition="bpws:getVariableData('counter')> 2">
<pick name="pick-1">

</pick>
</while>
</scope>
</flow>
</scope>

The exception is caught in the outer scope and in this example the handler updates the content
variable to note that the process did time out.

In this sample code, two nested scopes are used to capture the timeout and the interruption that it
causes. However, it is possible to merge these two scopes into a single one as shown in the BPEL
sample code provided for the “One-to-many-send pattern with dynamically determined partners”
available on the www.serviceinteraction.com web site.

Success condition

A switch activity after the conclusion of the outer scope allows the process to check if enough
responses have been received and to take whatever actions are necessary. In this example, if at
least one message has been received the process is considered successful .

<switch name="successCondition">
<case condition="bpws:getVariableData('counter’) >=1">

<assign name="success">
<C0py>
<from expression="concat(bpws:getVariableData(’content’), “: counter =",
ora:getContentAsString(bpws:getVariableData(’counter”)),
’- SUCCESS')">
</from>
<to variable="output" part="payload" query="/tns:MultiSendReceiveResponse/tns:result"/>
</copy>
</assign>
</case>
<otherwise>
<assign name="failure">
<copy>
<from expression="concat(bpws:getVariableData(’content’), : counter =",
ora:getContentAsString(bpws:getVariableData(’counter”)),
’- FAILURE")">
</from>
<to variable="output" part="payload" query="/tns:MultiSendReceiveResponse/tns:result"/>
</copy>
</assign>
</otherwise>
</switch>

The MultiSendReceive process in ORACLE BPEL

The overall process flow is shown in figures 1 and 2. Figure 1 shows the flow activity that invokes
the Basic (provider) services while also starting the receive responses activities in parallel, the
scope containing the while loop and the pick activities is shown in detail.

sendReceiveFlow

initiate {rovrl) initiate (rovrz)

@8-
B

onResuﬁfrcvrl) onResuﬁfrcer) onResul(rcvrS)
P P — P —
Y% [} a
| assign | [Lassign | [Lassign |
revdlUpdate revdzUpdate revd3Update
N - @v

Figure 1The receive responses activities in detail

Figure 2 gives an overall view of the MultiSendReceive process where it is easier to see the
parallel invocations of the receivers and the activities that collect their responses.

¢s5a00.0d3 AMLEIYPUSLLY Y

i

initiate (client)

|

sendReceiveFlow

sadoasy adodsiming

! !

|
& = B

initiate (rovel) initiate (rowr2) initiate (roved)

successCondition

| |
| =
e e

SUCCESS failure

onResult (client)

|
)
i

0 0 1]

A pd- 15-

Figure 2 The overall MultiSendReceive process

Figure 3 shows the initiation of the process in the Oracle BPEL console.

/A Oracle BPEL Console ¥2.1.2 - Microsoft Internet Exp

JFi\e Edit View Fawvorites Tools Help

| dmpack + = - 8| | & | S [A | GaFavortes @iveda | = (D

j @Gﬂ

JAddFESS I@ http:fflocalhost: 9700/BPELCansale /default/displayProcess. jsprprocessId=MultisendR eceivetrevisionTag=1.0

ORACLE" BPEL Console

Dashboard I BPEL Processes T

BPEL Process:
| Statistics:

Manage BPEL Domain | Logout | Support

Instances T Activities

MultiSendReceive Yersion: 1.0 Lifecycle: Active

0 Open Instances | 1 Complete Instances

| Testing this BPEL Process

B

% About this BPEL Process

% MultiSendReceive 1.0 Initiates three instances of the -Basic- service and gathers the responses. The process is structured around an

= outer scope that contains four elements. Three of the elements each invoke a separate instance of the -Basic- service. The last
elernent is an inner scope which contains the parts that receive responses. The responses are received in a while/pick construct. The

% pick collects each response and updates the content and counter variables. The while loop iterates until the maximum required number

2 of responses are collected (two in this case). The inner scope has a timeout to throw a fault if responses are not received within the

= time {10 seconds in this example). The outer scope catches the fault and updates the content variable. after the while loop
terminates and the inner scope is exited the switch evaluates the success condition, which is that at least one response has been

.g received. - If several responses arrive at the pick simultaneously, only one is selected and the others are discarded. The discarded

2 responses are not retained for processing in the next iteration of the while loop. This behaviour is determined by the implementation of
the Orabpel engine.

5

2 Initiating a test instance |[HTML Form vl
To create a new 'test' instance of this BPEL Process, fill this form and click on the 'Post XML Message' button.

] MultiSendReceiveRequest input fiest1 0

g

" save as default input
" Add optional message header properties

[Perform stress test

Post XML Message

Help:#ML Scherna Twpe Formats

=

Logged ta domain: default

Oracle BPEL Console v2.1.2

&

,7 ’7 ’7 E Lacal intranet v

Figure 3 Initiating the process in the ORACLE BPEL Console

