
1

Similarity of Business Process Models:
Metrics and Evaluation

Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Käärik, Jan Mendling

Abstract—It is common for large and complex organizations to maintain repositories of business process models in order to document
and to continuously improve their operations. Given such a repository, this paper deals with the problem of retrieving those process
models in the repository that most closely resemble a given process model or fragment thereof. The paper presents three similarity
metrics that can be used to answer such queries: (i) label matching similarity that compares the labels attached to process model
elements; (ii) structural similarity that compares element labels as well as the topology of process models; and (iii) behavioral similarity
that compares element labels as well as causal relations captured in the process model. These similarity metrics are experimentally
evaluated in terms of precision and recall, and in terms of correlation of the metrics with respect to human judgement. The experimental
results show that all three metrics yield comparable results, with structural similarity slightly outperforming the other two metrics. Also,
all three metrics outperform traditional search engines when it comes to searching through a repository for similar business process
models.

Index Terms—I.5.3 [Pattern Recognition]: Clustering - Similarity measures. H.3.3 [Information Storage And Retrieval]: Information
Search and Retrieval Retrieval models,Relevance feedback.

F

1 INTRODUCTION

MANY organizations have built over time reposi-
tories of business process models that serve as

a knowledge base for their ongoing business process
management efforts. Such repositories may contain hun-
dreds or even thousands of business process models. For
example, we have access to a repository of the Dutch
local governments council containing nearly 500 process
models. This is a small number compared to the size of
process model repositories maintained in multi-national
companies, which typically contain several thousand
models [1]. The SAP reference model repository, which
we use in this paper for experimental purposes, contains
604 process models.

The management and use of large process model
repositories requires effective search techniques. For ex-
ample, before adding a new process model to a reposi-
tory, one needs to check that a similar model does not
already exist in order to prevent duplication. Similarly,
in the context of company mergers, process analysts
need to identify common or similar business processes

• R. Dijkman is with the School of Industrial Engineering, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands.
E-mail: r.m.dijkman@tue.nl

• M. Dumas and R. Käärik are with the Institute of Computer Science,
University of Tartu, J Liivi 2, 50409 Tartu, Estonia.
E-mail: marlon.dumas@ut.ee, reinak@ut.ee

• B. van Dongen is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands.
E-mail: b.f.v.dongen@tue.nl

• J. Mendling is with the Institute of Information Systems, Humboldt-
University Berlin, Spandauer Straße 1, 10178 Berlin, Germany.
E-mail: contact@mendling.com

between the merged companies in order to analyze their
overlap and to identify areas for consolidation. These
tasks require users to retrieve process models based on
their similarity with respect to a given “search model”.
We use the term process model similarity query to refer to
such search queries over process model repositories.

One may argue that traditional search engines can
be used to index and to search business process model
repositories. However, traditional search engines are
based on keyword search and text similarity. They are
clearly useful in situations where a user is looking for a
model that contains an activity with a certain keyword in
its label. On the other hand, it is unclear how far search
engines are also appropriate for process model similarity
queries, since they do not take into account the structure
and behavioral semantics of process models.

This paper studies three similarity metrics designed to
answer process model similarity queries. The first metric
is a label-based one. It exploits the fact that process
models are composed of labeled nodes. The metric starts
by calculating an optimal matching between the nodes
in the process models by comparing their labels. Based
on this matching, a similarity score is calculated taking
into account the overall size of the models. The second
metric is structural. It uses existing techniques for graph
comparison based on graph-edit distance [2]. This metric
takes into account both the node labels and the topology
of the process models. The third metric is behavioral.
It takes into account the behavioral semantics of pro-
cess models, specifically, the causal relations between
activities in a process model. These causal relations are
represented in the form of a causal footprint [3].

The paper is an extended and revised version of our
earlier work [4] in which we introduced the behavioral

2

similarity notion and we evaluated it using a dataset
consisting of 50 pairs of models. In this paper, we
propose two other notions of process model similarity
and we present a more extensive evaluation using a
traditional search engine as a baseline for comparison.
The evaluation is done in two ways: firstly using the
classical notions of precision and recall, and secondly by
calculating statistical correlations between the similarity
scores given by each metric, and those given by human
experts. The evaluation results show that similarity met-
rics that take into account the structure and behavior of
process models outperform search engines at answering
process model similarity queries.

The remainder of the paper is structured as follows.
Section 2 presents the notation used to represent busi-
ness process models. Section 3, 4 and 5 present the label-
based, structure-based and behavior-based similarity
metrics respectively. Section 6 presents the experimental
evaluation. Finally, sections 7 and 8 present related work
and conclusions.

2 PRELIMINARIES

This section introduces notations and notions used in
the rest of the paper. Firstly, the section introduces
the Event-driven Process Chain (EPC) notation [5] for
business process modeling. Secondly, it introduces the
notion of causal footprint [3], which provides an abstract
representation of the behavior of a business process
model. Causal footprints will be used in section 5 in
order to define the behavioral similarity metrics. Thirdly,
the section defines two similarity metrics for comparing
pairs of labels. The process model similarity metrics
studied in the paper rely on these similarity metrics in
order to compare process model elements.

2.1 Process Modeling and EPCs
Numerous notations compete in the business process
modeling space, including UML Activity Diagrams, the
Business Process Modeling Notation (BPMN), Event-
driven Process Chains (EPCs), Workflow nets, and the
Business Process Execution Language (BPEL) – the latter
one being intended for executable specification rather
than modeling. In this paper, we use EPCs as a process
modeling notation. Firstly, EPCs are representative of
other process modeling notations insofar as they include
the most common constructs found in other notations.
Secondly, EPCs have been used in industrial practice
for almost two decades. As a result, many large process
model repositories are available as EPCs. In particular,
the repository we use in our experiments is composed
of EPCs. Still, we do not compromise on generality: the
label similarity metrics defined in this paper is indepen-
dent from the specific process modeling notation used,
while the structural similarity metrics can be applied
to any graph-based process modeling notation and the
behavioral similarity metrics works for any notation
that can be mapped to causal footprints. There exist

��

�������	

��
���
�����

�������

�����

��

�����

������

��������

�

���������

��������

�����

�������

�����	

�������

��	���

��
���

������

 ���

!���
���

"�����
��

#��

Fig. 1. Example EPC

mappings from EPCs and from Workflow nets to causal
footprints, and mappings exist from BPMN and from
BPEL to Workflow nets.

The EPC notation is a graph-based language for docu-
menting the temporal and logical dependencies between
functions and events in an organization. An EPC consist
of functions, events and connectors that can be con-
nected by arcs. Functions represent activities that can
be performed in an organization. A function has exactly
one incoming and one outgoing arc. Events represent
the pre-conditions (what must have occurred before a
function can be performed) and post-conditions (what
has occurred after a function has been performed) of
functions. An event can have no incoming arcs and one
outgoing arc, in which case we call it a start event, one
incoming arc and no outgoing arcs, in which case we call
it an end event, or one incoming and one outgoing arc.
Connectors represent logical decision points. Connectors
can either have one incoming arc and multiple outgoing
arcs, in which case we call it a split, or multiple incoming
arcs and one outgoing arcs, in which case we call it a join.
There are three types of connectors: AND (denoted ∧),
OR (denoted ∨) and XOR (denoted ×). Figure 1 shows
an example of a business process in the EPC notation
describing how received goods are transferred to the
warehouse and the respective invoice is verified. We
define an EPC as follows.

Definition 1 (EPC). An EPC is a tuple (F,E,C, l, A) and
Ω a set of text labels, in which:

- F is a finite set of functions;
- E is a finite set of events;
- C is a finite set of connectors;
- l : (F ∪E → Ω)∪ (C → {and, xor, or}) labels functions

and events with text and connectors with types;
- A ⊆ (F ∪ E ∪ C)× (F ∪ E ∪ C) is the set of arcs.

An EPC is syntactically correct if and only if it contains
at least one function and has strict alternation of events
and functions on each path of arcs from start to end.

3

Informally, the behavior of an EPC can be described
as follows. Start events can occur from the start of the
process. Other events and functions can occur when
their incoming arc is enabled. When they occur their
outgoing arc (if any) is enabled. Connectors can be used
to create more advanced behavior. An AND-split enables
all outgoing arcs when its incoming arc is enabled.
Similarly, an XOR-split enables one outgoing arc and an
OR-split enables one or more outgoing arcs. An AND-
join waits for all its incoming arcs to be enabled, before
enabling its outgoing arc. Similarly, an XOR-join waits
for one of its incoming arcs and an OR-join waits for all
incoming arcs that can be enabled (which is non-trivial
from a formal point of view [6], [7]).

Using these semantics, we can describe the behavior of
the example EPC in Figure 1. Initially, this EPC waits for
a ‘delivery notice’ and ‘goods’. When both these events
have occurred, the subsequent AND-join enables its
outgoing arc and therewith the ‘receive goods’ function
can occur. (We also say that the function’s pre-condition
in terms of the events that precede it is satisfied.) After
the function has been performed, an AND-split causes
both the ‘invoice’ and ‘goods receipt’ events to occur.
(We also say that the post-condition of the function,
namely that an ‘invoice’ and a ‘goods receipt’ notice is
produced, is satisfied.) The EPC continues in this way
until it completes.

In the remainder of this paper we will use the notions
of path and connector chain to discuss the relations
between events and functions.

Definition 2 (Paths and Connector Chains). Let
(F,E,C, l, A) be an EPC and N = F ∪ E ∪ C be the set
of nodes of that EPC. For each node n ∈ N , we define path
a ↪→ b refers to the existence of a sequence of EPC nodes
n1, . . . , nk ∈ N with a = n1 and b = nk such that for
all i ∈ 1, . . . , k holds: (n1, n2), (n2, n3), . . . , (nk−1, nk) ∈ A.
This includes the empty path of length zero, i.e., for any node
a : a ↪→ a. Let M ⊆ N be a set of nodes and a 6= b ∈ N
be two nodes. A path containing only n2, . . . , nk−1 ∈ M ,
denoted a

M
↪→ b is called a restricted path. This includes the

empty restricted path, i.e., a
M
↪→ b if (a, b) ∈ A. The path

restricted to the set of connectors, denoted a
C
↪→ b, is called a

connector chain.

2.2 Causal Footprint of an EPC

A causality graph is a set of activities and conditions on
when those activities can occur. Its intended use is as
a formal semantics that approximates the behavior of a
business process, in which case we also refer to it as the
causal footprint of that process. One of the advantages
that causal footprints have over other formal semantics
(e.g. semantics in terms of a state-space or a trace-set) is
that causal footprints remain relatively small, while other
formal representations are combinatorially large or even
infinite when used to represent the behavior of business

process models [8]. This makes causal footprints more
practical for use in algorithms for which a response is
required in a matter of milliseconds (i.e. search algo-
rithms). Note, however, that a causal footprint is an
approximation of the behavior of a business process,
making it suitable only for use in algorithms that do
not require an exact representation of behavior.

A causality graph represents behavior between a set
of activities by means of two relationships, namely look-
back and look-ahead links. For a look-ahead link from an
activity to a (non-empty) set of activities, we say that the
execution that activity leads to the execution of at least
one of the activities in the set. I.e. if (a,B) is a look-ahead
link, then any execution of a is followed by the execution
of some b ∈ B. Furthermore, for a look-back link from a
(non-empty) set of activities to an activity, we say that
the execution of the activity is preceded by the execution
of at least one of the activities in the set. I.e. if (A, b) is
a look-back link, then any execution of b is preceded by
the execution of some a ∈ A.

Definition 3 (Causality Graph). A causality graph is a
tuple (A,Llb, Lla), in which:

- A is a finite set of activities;
- Llb ⊆ (P(A)×A) is a set of look-back links1;
- Lla ⊆ (A× P(A)) is a set of look-ahead links.

A causality graph is a causal footprint of an EPC if and
only if it is consistent with the behavior of that EPC.

Definition 4 (Causal Footprint of an EPC). Let P =
(F,E,C, l, A) be an EPC, G = (F,Llb, Lla) be a causality
graph over the functions of P , and W ⊆ F ∗ be the set of
possible orders in which functions from P can be performed.
G is a causal footprint of PC if and only if:

1) For all (a,B) ∈ Lla holds that for each σ ∈ W with
n = |σ|, such that there is a 0 ≤ i ≤ n−1 with σ[i] = a,
there is a j : i < j ≤ n− 1, such that σ[j] ∈ B,

2) For all (A, b) ∈ Llb holds that for each σ ∈ W with
n = |σ|, such that there is a 0 ≤ i ≤ n − 1 with
σ[i] = b, there is a j : 0 ≤ j < i, such that σ[j] ∈ A,

For example, a possible causal footprint for the EPC
from figure 1 has look-ahead link (‘Receive Goods’,
{‘Verify Invoice’, ‘Transfer to Warehouse’}) and look-
back links ({‘Receive Goods’}, ‘Verify Invoice’) and
({‘Receive Goods’}, ‘Transfer to Warehouse’). This ex-
ample illustrates that causal footprints are an approx-
imation of the behavior of an EPC, because there are
multiple EPCs that have the same causal footprint (for
example, the EPC that can be derived from figure 1 by
transforming the AND-split in an XOR-split). Also, there
are multiple possible causal footprints for this EPC.

We refer to [3] for an algorithm to compute a causal
footprint of an EPC.

1. With P(A), we denote the powerset of A, where ∅ 6∈ P(A).

4

��������	

���
�
	�����	

��������

��������	

���
�
	

�������
��

��������	

���
�
��	�����	

��������

��������	��	

��	�������	

����	�����	

���
�
�

������
��	��	

��	�������	

����	
���
�

������
��	��	

��	�������	

����	
���
�

���

��������	

������
��	

�������
��

������
��	

����	��	

�������	�����	

��	����	����

��������	

�������	

������
��

��������	

�������	

����
���

���

��������	

���
�
	
�	

������
����

����
�
	
����	

���	��������

����
�
	
�	

�������

�

���

��
���
���
�
	

����

�������
��

�	

�	

�	

� � ! �! �!!

� "

� # �!" �!# �!$ �!%

�! �

� "

� !

�

�!

�!! �!"

Fig. 2. Customer Inquiry and Customer Inquiry and Quotation Processing EPCs.

2.3 Similarity of Process Model Elements

When comparing business process models it is not re-
alistic to assume that their elements (nodes) are only
equivalent if they have exactly the same label. Figure 2 is
an example in point: functions “Customer inquiry pro-
cessing” and “Client inquiry query processing” would be
considered as practically identical by a process modeler,
although they have different labels. Therefore, as a basis
for measuring the similarity between business process
models, we must be able to measure the similarity
between their elements.

We consider three ways of measuring similarity be-
tween elements of different process models:

1) Syntactic similarity, where we consider only the
syntax of the labels,

2) Semantic similarity, where we abstract from the
syntax and look at the semantics of the words
within the labels, and

3) Contextual similarity, where we do not only con-
sider the labels of the elements themselves, but the
context in which these elements occur.

All these metrics (as described below) result in a similar-
ity score between 0 and 1, where 0 indicates no similarity
and 1 indicates identical elements. Hence, it is trivial to
combine all metrics to obtain a weighted similarity score.

We experimented with other metrics for determining
the similarity of process model elements, inspired by
the work of Ehrig, Koschmider and Oberweis [9] and
we also experimented with different parameters for the
metrics presented below. However, we obtained the best
results for the metrics and parameters explained below.
A comparison is presented in [10].

2.3.1 Syntactic Similarity

Given two labels (e.g. the labels of functions and/or
events in an EPC), the syntactic similarity metrics returns
the degree of similarity as measured by the string-edit
distance. The string-edit distance [11] is the number of
atomic string operations necessary to get from one string
to another. These atomic string operation include: re-
moving a character, inserting a character or substituting
a character for another.

Definition 5 (Syntactic similarity). Let (E1, F1, C1, l1, A1)
and (E2, F2, C2, l2, A2) be two disjoint EPCs. Furthermore let
n1 ∈ F1 ∪E1 ∪C1 and n2 ∈ F2 ∪E2 ∪C2 be two nodes from
those EPCs and let l1(n1) and l2(n2) be the two strings that
represent the labels of those nodes, i.e. we can calculate their
length, denoted |l1(n1)| and |l2(n2)|, and their edit distance,
denoted ed(l1(n1), l2(n2)). We define the syntactic similarity
of EPC nodes n1 and n2 as follows:

syn(n1, n2) = 1− ed(l1(n1), l2(n2))
max(|l1(n1)|, |l2(n2)|)

For example, the syntactic similarity between the
events e12 and e21 from figure 2 with labels “Customer
inquiry about product” and “Customer inquiries about
product” from figure 1 is 1 − 3

30 = 0.90, because the
edit distance is 3 (“inquiries” becomes “inquiry” by
substituting the ‘y’ with a ‘i’ and inserting an ‘e’ and an
‘s’). For comparing function labels we disregard special
symbols, such as newline, brackets and quotes and we
change all characters to lower-case.

2.3.2 Semantic Similarity
Given two labels, their semantic similarity score is the
degree of similarity, based on equivalence between the
words they consist of. We assume an exact match is
preferred over a match on synonyms. Accordingly words
that are identical are given an equivalence score of 1,
while words that are synonymous are given an equiva-
lence score of 0.75 (see justification below). Hence, the
semantic similarity score is defined as follows.

Definition 6 (Semantic similarity). Let (E1, F1, C1, l1, A1)
and (E2, F2, C2, l2, A2) be two disjoint EPCs. Furthermore let
n1 ∈ F1 ∪E1 ∪C1 and n2 ∈ F2 ∪E2 ∪C2 be two nodes from
those EPCs and let w1 = l1(n1) and w2 = l2(n2) be the
labels of those nodes (and assume that w1 and w2 are sets
of words, i.e. we denote the number of words by |w1| and
|w2| and we can use standard set operators). We define the
semantic similarity of EPC nodes n1 and n2 as follows:

sem(n1, n2) =

1.0 · |w1 ∩ w2|+ 0.75 ·
∑

s∈w1\w2
t∈w2\w1

synonym(s, t)

max(|w1|, |w2|)
Where synonym is a function that returns 1 if the given
words are synonyms and 0 if they are not.

5

For example, consider the functions f11 and
f21 from figure 2 with labels “Customer inquiry
processing” and “Client inquiry query processing”.
These labels which consist of the collections of
words w1 =[“Customer”,“inquiry”,“processing”]
and w2 =[“Client”, “inquiry”, “query”, “processing”],
respectively. We only need to consider a synonym
mapping between w1 \ w2 = [“Customer”] and w2 \ w1

= [“Client”,“query”]. We consider “Customer” and
“Client” synonymous and “Customer” and “query” not
synonymous. Therefore, the semantic similarity between
w1 and w2 equals
sem(w1, w2) = 1.0·2+0.75·(1+0)

4 ≈ 0.69.
When determining equivalence between words, we

disregard special symbols, and we change all characters
to lower-case. Furthermore, we skip frequently occurring
words, such as “a”, “an” and “for” and we stem words
using Porter’s stemming algorithm [12]. Stemming re-
duces words to their stem form. For example, “stem-
ming”, “stemmed” and “stemmer” all become “stem”.

We selected the 0.75 weight factor for synonyms ex-
perimentally. Specifically, we manually compared 210
function pairs taken from the SAP Reference Model and
for each pair, we determined if their labels matched or
not according to our own judgement. We then calculated
the semantic similarity score using different synonymy
weight factors (0, 0.25, 0.5, 0.75 and 1). For each possible
synonymy weight factor, we sorted the pairs accord-
ing to their calculated similarity score, and checked if
those pairs that we had manually identified as being
“semantically equivalent” appeared at the top of the list.
Using the synonymy weight factor of 0.75, led to 90%
of the pairs that we manually tagged as semantically
equivalent appearing at the top of the list.

2.3.3 Contextual Similarity

The two metrics defined above focus on the similarity
of two process model elements. We now define a third
similarity metric that, when determining the similarity
of two model elements, also takes the model elements
that precede and succeed them into account. Such a
similarity metric is especially useful for EPCs, because in
EPCs functions are always preceded and succeeded by
events. Thus, when comparing two functions, the contex-
tual similarity metric takes the surrounding events into
account. Another process modeling technique for which
contextual similarity is particularly useful is Petri nets,
because in Petri nets ‘transitions’ are always preceded
and succeeded by places (and vice versa).

We refer to preceding model elements as the input
context and to succeeding model elements as the output
context of another model element.

Definition 7 (Input and output context). Let
(E,F,C, l, A) be an EPC. For a node n ∈ F ∪ E, we
define the input context nin = {n′ ∈ F ∪ E | n′ C

↪→ n} and
the output context nout = {n′ ∈ F ∪ E | n

C
↪→ n′}

To determine the contextual similarity between ele-
ments of a business process model, we need a mapping
between the elements in their input and output contexts.
Such a mapping is in itself based on a similarity metric,
for example one of the metrics from section 2.3.1 or 2.3.2,
and is called an equivalence mapping as defined below.

Definition 8 (Equivalence Mapping). Let L1, L2 be two
disjoint sets. Furthermore, let s : L1 × L2 → [0..1] be a
similarity function such that for all l1 ∈ L1 and l2 ∈ L2:
s(l1, l2) = s(l2, l1). A partial injective mapping Ms : L1 9
L2 is an equivalence mapping, if and only if for all l1 ∈ L1

and l2 ∈ L2: M(l1) = l2 implies that s(l1, l2) > 0.
An optimal equivalence mapping Mopt

s : L1 9 L2 is
an equivalence mapping, such that for all other equivalence
mappings M holds that∑

(l1,l2)∈Mopt
s

s(l1, l2) ≥
∑

(l1,l2)∈Ms
s(l1, l2).

For example, in figure 2 we can develop an equiva-
lence mapping between {e12} and {e21, e22}, using syn-
tactic similarity (syn) as a similarity function. Msyn =
{(e12, e22)} is a possible equivalence mapping, because
syn(e12, e22) ≈ 0.24. Mopt

syn = {(e12, e21)} is the optimal
equivalence mapping, because syn(e12, e21) = 0.90. The
only other possible mapping is the empty mapping.

Now, we use the concept of equivalence mappings to
determine the contextual similarity between functions.

Definition 9 (Contextual Similarity). Let
(E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint
EPCs. Let n1 ∈ F1 and n2 ∈ F2 be two functions and let
Sim be one of the similarity functions from section 2.3.1
or 2.3.2. Furthermore, let Moptin

Sim : nin
1 9 nin

2 and
Moptout

Sim : nout
1 9 bout

2 be two optimal equivalence mappings
between the input and output contexts of n1 and n2

respectively. We define the contextual similarity as follows:

con(n1, n2) =
|Moptin

Sim |
2 ·

√
|nin

1 | ·
√
|nin

2 |
+

|Moptout
Sim |

2 ·
√
|nout

1 | ·
√
|nout

2 |

In the remainder of this paper, we use Sim(n1, n2) to
denote the similarity value between two elements of a
model. Any of the symmetric similarity functions above
(syn, sem or con) can be substituted for this, as well as
any (weighted) combination thereof, as long as the sum
of weights is 1.

3 LABEL MATCHING SIMILARITY

The first similarity measure we study, namely label match-
ing similarity, is based on pairwise comparisons of node
labels. It is obtained by calculating an optimal equiv-
alence mapping between the nodes of the two process
models being compared. The label matching similarity
score is the sum of the label similarity scores of the
matched pairs of nodes. To obtain a score between 0 and
1, we divide the sum by the total number of nodes.

Definition 10 (Label Matching Similarity). Let P1 =
(F1, E1, C1, l1, A1) and P2 = (F2, E2, C2, l2, A2) be two
EPCs and let Sim be a function that assigns a similarity score

6

to a pair of functions/events. Let Mopt
Sim : (F1 9 F2)∪ (E1 9

E2) be an optimal equivalence mapping derived from Sim. The
label matching similarity between P1 and P2 is:

simlbm(P1, P2) =
2 · Σ(n,m)∈Mopt

Sim
Sim(n, m)

|F1|+ |F2|+ |E1|+ |E2|
The label matching similarity metrics is parameterized

by the similarity metrics used to compare pairs of labels.
We can use the semantic or syntactic similarity notions
defined in Section 2.3, or a weighted average of them.
Note that we can not use the context similarity metrics,
because this latter is only defined for pairs of functions,
while here we need to compare functions and events.

We further parameterize the label matching similarity
metrics with a threshold between 0 and 1. When calcu-
lating an optimal equivalence mapping, we only allow
two nodes to be included in the equivalence mapping
if their similarity is above the threshold. With respect to
Definition 8, this means that instead of enforcing that
s(l1, l2) > 0, we enforce that s(l1, l2) ≥ threshold.

As an example, consider the EPCs from Figure 2. The
optimal equivalence mapping between these EPCs is
denoted by the two-way arrows with the = symbol on
them. Assuming that we use syntactic equivalence (syn)
to determine the similarity between the functions and
events, and that we use a threshold of 0.5, the similar-
ity score of the elements included in the equivalence
mapping is: syn(e12, e21) = 0.90, syn(f11, f21) ≈ 0.58
and syn(e13, e23) = 1.00. The remaining elements are
not included in the equivalence mapping because the
syntactic similarity score between all other possible pairs
of elements in this example is less than 0.5. Hence, the
label matching similarity between these two EPCs is:

2 · Σ(n,m)∈Mopt
syn

syn(n, m)

|F1|+ |F2|+ |E1|+ |E2|
=

2 · (0.90 + 0.58 + 1.00)
3 + 1 + 4 + 6

≈ 0.35

The problem of finding an optimal equivalence map-
ping can be reduced to the linear assignment prob-
lem [13] as follows. We define a new graph in which
the set of nodes is the union of the set of functions in
the two EPCs. In this graph, an edge exists between
each function in the first EPC and each function in the
second EPC. Each edge is assigned a weight equal to
the similarity score between the labels of the functions
that it connects. If the similarity between two functions
is below the threshold, we assign a weight of zero to
the edge linking these functions, so that even if they are
matched, this pair of functions will not contribute to the
overall similarity score. Coming back to the example in
Figure 2, an edge is defined between f11 and each of
the three functions in the first EPC. The edge (f11, f21)
is given a weight of 0.58, while the edges (f12, f21) and
(f13, f21) are given a weight of zero because the syntactic
similarity scores between these pairs of functions are
below the threshold (which we assume is 0.5).

By following this procedure, we obtain a complete
weighted bipartite graph over the set of functions in

the EPCs being compared. The problem of finding an
optimal equivalence mapping is then reduced to that of
finding a maximum-weight matching over this bipartite
graph, so that every node in the smaller side of the
bipartite graph is matched with exactly one node in the
other side. This problem can be solved using the Hun-
garian method or Jonker & Volgenant’s algorithm [13]. In
our experiments, we used an implementation of Jonker
& Volgenant’s algorithm. In the working example, the
algorithm will naturally match f11, with f21 and no other
function pairs.

We then apply the same procedure to find an optimal
equivalence mapping between the events in one EPC and
those in the second. The union of the two optimal equiv-
alence mappings (the one over functions and the one
over events) is then calculated, and the label matching
similarity score is calculated as per Definition 10.

4 STRUCTURAL SIMILARITY

The second similarity metric we study is a similarity
metric over the structure of EPCs, by considering an EPC
as a labeled graph. If we consider an EPC as a graph,
then its functions, events and connectors are nodes of the
graph and the arcs are edges of the graph. In the case
of functions and events, their labels become the labels
of the corresponding nodes. In the case of connectors,
the type of a connector (and, xor, or) becomes the label
of the node corresponding to this connector. We can
then assign a similarity score to two EPCs by computing
their graph-edit distance [2]. The graph edit distance
between two graphs is the minimal number of graph edit
operations that is necessary to get from one graph to the
other. Different graph edit operations can be taken into
account. We take into account: node deletion or insertion,
node substitution (a node is a graph is mapped to a
node in the other graph with a different label), and edge
deletion or insertion.

Like the label matching similarity, graph-edit distance
is obtained by first computing a mapping between the
EPC nodes and subsequently computing the optimal
graph-edit distance. This score is computed as follows.

• We consider two mapped nodes ‘substituted’. Their
distance is one minus the similarity of their labels,
because this value represents the effort necessary to
substitute one node (or rather its label) for the other.

• We consider an unmapped node either deleted or
inserted.

• If there is an edge between two nodes in one graph,
then we consider that edge to exist in the other
graph if and only if the nodes are mapped to nodes
in the other graph and there is an edge between
the mapped nodes. Otherwise, we consider the edge
deleted or inserted.

Definition 11 (Graph Edit Distance). Let P1 =
(F1, E1, C1, l1, A1) and P2 = (F2, E2, C2, l2, A2) be two
EPCs. Let N1 = F1 ∪ E1 ∪ C1 be the nodes of P1 and
N2 = F2 ∪ E2 ∪ C2 be the nodes of P2 and let Sim

7

be one of the similarity metrics from subsection 2.3. Let
M : (F1 9 F2) ∪ (E1 9 E2) ∪ (C1 9 C2) be a partial
injective mapping that maps functions, events and connectors.

Let n ∈ N1∪N2 be a node. n is substituted if and only if n ∈
dom(M) or n ∈ cod(M). sb is the set of all substituted nodes.
n is inserted or deleted if and only if it is not substituted. sn
is the set of all inserted and deleted nodes.

Let (n, m) ∈ A1 be an edge. (n, m) is inserted in or deleted
from P1 if and only if there do not exist mappings (n, n′) ∈ M
and (m,m′) ∈ M and edge (n′,m′) ∈ A2. Edges that are
inserted in or deleted from P2 are defined similarly. se is the
set of all inserted or deleted edges.

The distance induced by the mapping is defined as:

|sn|+ |se|+ 2 · Σ(n,m)∈M1− (Sim(n, m))

The graph edit distance is the minimal possible distance
induced by a mapping between the two processes.

As an example, consider the EPCs from figure 2.
Assuming that we use syntactic equivalence (syn) to
determine the similarity between functions and events,
the distance of the mapping that is displayed in the
figure is: 12+16+2 ·(1−0.90+1−0.58+1−1.00) ≈ 29, 04

The graph edit distance similarity is computed as one
minus the average of the fraction of inserted or deleted
nodes, the fraction of inserted of deleted edges and the
average distance of substituted nodes.

Definition 12 (Graph Edit Distance Similarity). Let P1 =
(F1, E1, C1, l1, A1) and P2 = (F2, E2, C2, l2, A2) be two
EPCs. Let N1 = F1 ∪ E1 ∪ C1 be the nodes of P1 and
N2 = F2 ∪E2 ∪C2 be the nodes of P2 and let Sim be one of
the similarity metrics from subsection 2.3.

Furthermore, let M : (F1 9 F2)∪(E1 9 E2)∪(C1 9 C2)
be a mapping that induces the graph edit distance between the
two processes and let sn and se be defined as in definition 11.
We define the graph edit distance similarity as:

simged(P1, P2) = 1− {snv, sev, sbv}

Where:
snv = |sn|

|N1|+|N2|
sev = |se|

|A1|+|A2|

sbv = 2·Σ(n,m)∈M1−Sim(n,m)

|N1|+|N2|−|sn|

Instead of using a plain average of the three compo-
nents, we can use a weighted average. Another possible
variation is to ignore certain nodes of an EPC. We ignore
nodes by removing them from the EPC and replacing
paths through ignored nodes by direct arcs.

Definition 13 (Node abstraction). Let P = (F,E,C, l, A)
be an EPC, let N = F ∪ E ∪ C be its nodes, Ω be the set
of all possible labels and let I ⊆ N be the subset of nodes
to ignore. The EPC in which the nodes from I are ignored is
the EPC P ′ = (F − I, E − I, C − I, l − (I × Ω), A′), where
A′ = {(a, b)|a, b ∈ (N − I), a

I
↪→ b, a 6= b}.

For example, when using graph edit distance similar-
ity on figure 2, all arcs are inserted or deleted, leading to

the maximal edit distance with respect to arcs. However,
there are indirect arcs from e21 to f21 and from f21 to
e23. Therefore, one could argue that the edit distance is
too high (and therefore the edit distance similarity too
low) and that insertion and deletion of connector nodes
can lead to incorrect similarity measurements. This issue
can be addressed by ignoring all connector nodes, but
of course that would mean that connector nodes are not
considered in the similarity metric at all.

Note that the result of ignoring nodes in an EPC does
not necessarily lead to a well-formed EPC. For example,
in the result there can be direct arcs from functions to
functions and from events to events. Furthermore, this
way of ignoring nodes can lead to functions and events
with multiple incoming and outgoing arcs. All of this is
not allowed in a well-formed EPC

5 BEHAVIORAL SIMILARITY

The third similarity metric we study is a similarity metric
over the behavior of EPCs. The benefit of using behav-
ioral similarity over structural similarity is illustrated
by the issue that is addressed at the end of section 4,
namely that indirect relations via the inserted or deleted
connectors are not considered in structural similarity,
while they are relevant. In behavioral similarity indirect
relations are considered. For example in the behavior of
the EPCs from figure 2 there is a direct relation between
event e21 and function f21 (i.e. e21 is in the look-back
link of f21), while there is only an indirect relation in
their structure, which is ignored in structural similarity
and leads to a lower structural similarity score.

We compute the behavioral similarity of two EPCs,
by computing their distance in the document vector
space [14] that can be constructed from their causal
footprints. We use a document vector space model of
the causal footprints of the EPCs, rather than of the EPCs
themselves, to incorporate an approximation of behavior
in the similarity metric. We have to use an approximation
or behavior rather than the actual behavior (as it can, for
example, be defined in terms of a state transition system
or a set of traces), because the computational complexity
of computing the actual behavior of an EPC is NP-
complete and leads to large, possibly infinite, results.
The computation of causal footprints is also expensive,
but the comparison between causal footprints can be
done efficiently since it involves comparing two lists.
Therefore, footprint calculation can be done when the
EPC is added to that collection and when it is modified.
This does not have to affect the search time of a search
algorithm that is defined based on the similarity metric
explained in this section.

A document vector space consists of [14]:
• a collection of documents (two EPCs in our case);
• a set of index terms according to which the docu-

ments are indexed; and
• an index vector for each document that assigns a

weight to each index term.

8

This leaves us to define how index terms and index vectors
are established in our case.

We derive the index terms from the sets of functions,
look-ahead links and look-back links of the causal foot-
prints. However, where traditionally index terms are the
same for all documents, they can differ for two EPCs.
In particular we use EPC functions as index terms, but
we want to consider that EPC function labels can differ
while still representing the same function. For example,
the function labels “enter client information” and “enter
client’s information” differ with respect to their labels,
but could still be considered the same function. There-
fore, we use the match between the functions from the
two EPCs (as it can be computed using the metrics from
the previous sections) as input for determining the index
terms and index vectors. We then determine the set of
index terms as follows.

Definition 14. Let P1 and P2 be two EPCs with causal
footprints G1 = (F1, Llb,1, Lla,1) and G2 = (F2, Llb,2, Lla,2)
and let M : F1 9 F2 be a partial injective mapping that
associates similar functions. We define the set of index terms
as: Θ = M∪(F1−dom(M))∪Llb,1∪Lla,1∪(F2−cod(M))∪
Llb,2 ∪ Lla,2. In the remainder we consider the sequence of
index terms λ|Θ|.

For example, for figure 2 the set of index terms is
{(f11, f12), f12, f13, ({f11}, f13), (f11, {f13})}.

We determine the index vector for each EPC by as-
signing a weight to each index term. An index term can
either be a mapped function, an unmapped function or
a (look-ahead or look-back) link and we use different
formulae to determine the weight for different types
of terms. There are many possible ways in which the
formulae can be defined. For example, we can simply as-
sign a mapped function the weight 1 and an unmapped
function the weight 0, but we can also assign a mapped
function a weight that represents the quality of the
mapping. However, the approach to determine the best
way of assigning the weights is to propose a formula for
assigning weights and experimentally establish whether
that formula performs better than the previous ones.
After experimentation, we got the best results when
assigning weights as follows. (More information about
the experiments that we used can be found in section 6.)

• We assign an unmapped function the weight 0.
• We assign a mapped function a weight that repre-

sents the similarity with the function to which it is
mapped, using one of the similarity functions from
section 2.3.

• We assign a link with a weight that exponentially
decreases with the number of nodes in the link,
using the rationale that links with fewer nodes are
more informative than links with more nodes.

Using these principles, we define the index vectors of
the EPCs as follows.

Definition 15. Let P1 and P2 be two EPCs with causal
footprints G1 = (F1, Llb,1, Lla,1) and G2 = (F2, Llb,2, Lla,2),

let M : F1 9 F2 be a partial injective mapping that associates
similar functions, let λ|Θ| be a sequence of index terms as
defined in definition 14 and let Sim be one of the formulae
from subsection 2.3 that determines the label similarity of
two mapped functions. We define the index vectors, −→g1 =
(g1,1, g1,2, . . . g1,|Θ|) and −→g2 = (g2,1, g2,2, . . . g2,|Θ|) for the
two EPCs, such that for each index term λj , for 1 ≤ j ≤ |Θ|
and for each i ∈ {1, 2} holds that:

gi,j =



Sim(f, f ′) if ∃(f, f ′) ∈ M
such that λj = f ∨ λj = f ′

Sim(f,f ′)
2|fs|−1 if ∃(fs, f) ∈ Llb,i

such that λj = (fs, f)
and (∃(f, f ′) ∈ M ∨ ∃(f ′, f) ∈ M)

Sim(f,f ′)
2|fs|−1 if ∃(f, fs) ∈ Lla,i

such that λj = (f, fs)
and (∃(f, f ′) ∈ M ∨ ∃(f ′, f) ∈ M)

0 otherwise

For example, if we use semantic label similarity
to compute similarity of node pairs, then the index
vector for the rightmost EPC from figure 2 assigns
sem((f11, f12)) ≈ 0.69 to index term (f11, f12) and 0 to
the other index terms.

Finally we can compute the behavioral similarity of
the two EPCs, based on their causal footprints, using
the cosine of the angle between their index vectors
(which is a commonly accepted means for computing
the similarity of two vectors [14]) as follows.

Definition 16. Let E1 and E2 be two EPCs with index
vectors −→g1 and −→g1 as defined in definition 15. We define their
causal footprint similarity, denoted simcf(E1, E2), as:

simcf(E1, E2) =
−→g1 ×−→g2

|−→g1 | · |−→g2 |

6 EMPIRICAL EVALUATION

There are different ways to evaluate the performance of
the metrics that we discussed above. We use two forms
of evaluation. Firstly, we consider traditional precision
and recall measures that have been extensively used
in information retrieval. In this way, we can relate the
results to this body of knowledge. In this part of the
evaluation, the precision and recall obtained using a
search engine serves as a benchmark. Secondly, we are
interested in the practical value of the similarity metrics.
Accordingly, we investigate how close the metrics ap-
proximate human judgement of process model similarity.
This is achieved by calculating the statistical correlation
between the similarity scores yielded by each of the met-
rics, and a similarity score assigned by process modelers.
Here, the human judgement is the benchmark.

6.1 Precision and Recall

To compute the precision and recall of our metrics, we
applied them to the SAP reference model. This is a

9

collection of 604 business process models (described as
EPCs) that represent the business processes supported
by the SAP enterprise system. We randomly extracted
100 business process models from this collection and
tagged them as the “document models” for our ex-
periments. From the 100 documents we then randomly
extracted 10 models. These models became the “search
query models”, after adapting them as follows.

• Search models 1 and 2 were left unchanged.
• Search models 3 and 4 were adapted by changing

the labels of the functions and the events of the
original models into different labels that, to a per-
son, mean the same (e.g. change ‘evaluated receipt
settlement’ into ‘carry out invoicing arrangement’.)

• Search models 5 and 6 were adapted by taking a
subgraph of the original model.

• Search models 7 and 8 were adapted by changing
the connectors of the original model into connectors
of different types.

• Search models 9 and 10 were adapted by re-ordering
the functions and events in the model.

We made these adaptations to be able to check
whether the properties above affect the precision and
recall performance of the metrics.

We manually determined the relevance for each of
the 1000 possible (“search query model”, “document
model”) pairs. We then applied each of the metrics de-
fined in this paper to perform a process model similarity
query for each of the 10 search models. In other words,
each of the search models was compared with each of the
1000 document models and the results were ranked from
highest to lowest similarity score. The implementation
of the proposed metrics can be found in the “similarity
plugin” of the ProM process mining and analysis frame-
work.2

We also used a traditional search engine (the Indri
search engine [15]) to answer these same queries. For
each search and for each document model, we derived
a file containing the list of function and event labels
appearing in that model. We then loaded the document
models into the search engine, and submitted each of
the search models as a query, ranking the results from
highest score to lowest score.

Figure 3 shows the average precision and recall
scores across all the queries in the recall intervals
[0 . . . 0.05〉, [0.05 . . . 0.15〉, [0.15 . . . 0.25〉, . . . , [0.95 . . . 1.0〉.
This graph shows that on average, the metrics from this
paper perform better in terms of precision and recall
for process model similarity queries.

Figure 4 shows the average precision for each of the
search query models and each of the three metrics. The
average precision for a given query is the average of the
precision scores obtained after each relevant document
model is found [16]. The graph show that the metrics de-
fined in this paper outperform traditional search engines
when: (i) the search query model is a subgraph of the

2. Available at: http://prom.sourceforge.net.

document models it is meant to match (search models 5
and 6); or (ii) the search query model and the document
models it is meant to match, only differ in the types of
connectors employed (search models 7 and 8).

A concise representation of the overall performance
of the metrics, expressed as the mean average precision
over all 10 search queries, is listed in table 1.

Looking more closely at the results gives an indication
as to why the metrics in this paper perform better when
the search query model is a subgraph of a document
model. Traditional search algorithms rank a document
(model) higher when a term from the search query
(model) appears more often. However, the metrics in this
paper rank a document model higher when a term (or
rather a function or event) from the document model
appears in a frequency that is closer to the frequency
with which it appears in the search query model. For
example, for search query model 1 the document model
that was identical to the search query model was only the
fifth hit in the traditional search algorithm, while it was
the first hit both in the structural similarity metric and
in the behavioral similarity metric. This effect is stronger
in subgraph search query models. For example, suppose
that a search query model is about billing clients and that
it only has a single function “bill client”. Also, suppose
that there are two document models: one that is about
negotiating a contract agreement, which contains the
functions “negotiate with client”, “send draft to client”
and “send final offer to client”; and one that is about
billing a client for received goods, which contains the
functions “ship goods” and “bill client”. A traditional
search algorithm would rank the first document model
higher, because the terms from the search query model
appear more frequently in that document model. The
search metrics from this paper would rank the second
document model higher, because there is a better match
between functions in that document model.

We now consider the effects of varying the parameters
of the proposed similarity metrics. The label matching
similarity metric is parameterized by a threshold. Two
elements are matched only if the similarity of their labels
is above the threshold. Furthermore, the similarity of
two labels can be determined using syntactic similarity
or semantic similarity as explained in Section 2.3. The
average precision of the label matching technique shown
in Figures 3 and Figure 4 are those obtained using
syntactic similarity only and using a threshold of 0.5. We
tested the label matching technique using other thresh-
olds and using a combination of syntactic and semantic
similarity (giving equal weight to the syntactic and the
semantic similarity). The results of these tests are shown
in Figure 5. This graph plots the mean average precision
of different variants of the label matching technique.
The horizontal axis corresponds to different values of
the threshold. One curve corresponds plots the results
using string-edit distance, while the second curve plots
the results using both syntactic and semantic matching.

10

���

�

�

���

���

���

� ��� ��� ��� ��� �

�
��
��
��
�
�

	��
��

�	
��
�	����	

�
�	����� ��
����

��������
����� ��
����

�	

����
����� ��
����

Fig. 3. Precision-recall curve (precisions are averaged across all 10 queries)

���

�

���

�
�
�
�
��
�
�
��
�
�
�	
��

�
��

�

�

���

���

���

� � � � 	 �
 � � ��

�
�
�
�
��
�
�
��
�
�
�	
��

�
��

�

����
���
������

�
�����
����

���
����� �������

�������������� �������

�
������������ �������

Fig. 4. Average precision per search query model

The graph shows that the mean average precision of
the label matching technique varies little for thresholds
below 0.75. For higher thresholds, the performance of the
technique degrades rapidly. Indeed, past the 0.75 thresh-
old, the technique will match two labels only if they
are identical or almost identical, and most approximate
matches are discarded. The graph also shows of the use
of semantic similarity does not improve the precision
of the technique, nor does it significantly degrade it.
We acknowledge that these results are dependent on
the type of process models being compared: In process
repositories where the event and function labels are
standardized – e.g. based on the process classification
framework of the American Productivity and Quality
Center3 – the use of approximate label matching might
be less crucial than in scenarios where significant varia-
tions in terminology exist.

3. http://www.apqc.org/

���

���

�
�
�
�
��
�
�
��
�
�
�	
��

�
��

�

����	
��
�
���

����	
��
�	������ 	���

�

���

���

� ��� ��� ��� ��� �

�
�
�
�
��
�
�
��
�
�
�	
��

�
��

�

������
��

����	
��
�	������ 	���

Fig. 5. Mean avg. precision of label matching variants

Graph edit distance similarity on the other hand has
three parameters: the weight given to edge deletion or
insertion (eweight), the weight given to node deletions
or insertion (vweight), and the weight given to substitu-

11

tion of a node. We tested all combinations of values of
these three parameters between 0 and 1 in steps of 0.1 –
i.e. (0, 0, 0), (0, 0, 1), (0, 0, 0.2), . . . (0, 0.1, 0), (0, 0.2, 0), etc.
For each combination, we measured the mean average
precision across the 10 search queries. After analyzing
the results, we discovered a correlation between the
parameter values: the best results are obtained when
the ratio (vweight + eweight)/sweight is between 0.2
and 0.8, with an optimum occurring when this ratio is
between 0.4 and 0.5. In other words, the best settings
are those where substitutions are given twice the weight
of insertions and deletions. This trend is shown in the
scatter plot in Figure 6. Each point in the scatter plot
represents one combination of parameter values. The
y-coordinate of a point is given by the mean average
precision obtained for the combination of values in
question, while the x-coordinate is given by the ratio
(vweight + eweight)/sweight.4 The recall and mean aver-
age precision results for the structural similarity metrics
previously shown in Figures 3 and 4 are those obtained
with vweight = 0.1, sweight = 0.8andeweight = 0.2.

���

���

�

�
�
�
�
��
��
��
�
�
�	
��

�
��

�

�

���

���

� � �� �� ��

�
�
�
�
��
��
��
�
�
�	
��

�
��

�

����
������ �������� ����������� �����

Fig. 6. Mean avg. precision of graph matching variants

6.2 Correlation with Human Judgment
The metrics from this paper can not only be applied to
search process repositories, but also to directly measure
the degree of similarity between a given pair of pro-
cess models. The degree of similarity can be used to
determine whether a match of a document model to a
search query model is a viable match in the sense that
the document model is worth considering at all (and not
just the best match in a collection of document models).
For example, if the metrics are used to search for a sales
process that would be suitable to do business with, the
result should not just be the “best” match in a collection,
but also a viable match, in the sense that the process
should be suitable to do business with.

To determine whether the metrics are fit to determine
the viability of a match, we manually compared 1000
pairs of EPCs and assigned to each pair a similarity score
on a 1 to 7 Likert scale.5 We subsequently calculated

4. Combinations for which sweight is zero are not shown since the
denominator of the ratio is then zero.

5. These EPCs were the same ones that were used in the preci-
sion/recall experiments.

TABLE 1
Overall performance of the metrics

Search Label Structural Behavioral
Engine Similarity Similarity Similarity

Mean
Average 0.76 0.80 0.83 0.80
Precision
Pearson

Correlation 0.03 0.72 0.72 0.73
Coefficient

the statistical correlation between the similarity scores
produced by each of the three similarity metrics, and
the human judgment (on a 1 to 7 Likert scale). The
idea is that if there is a strong correlation between
human judgment and the (similarity) scores produced by
a metric, then the metric can be used to replace human
judgment in order to make statements like: “these two
process models are similar.”

Table 1 displays the correlations of the metrics with
human judgment, using the Pearson correlation coeffi-
cient. All correlations were found to be significant. The
table shows that there is a strong correlation between hu-
man judgment and both structural and behavioral simi-
larity, but that there is virtually no correlation between
human judgment and the search engine score. This can
be explained, because a search engine score is not meant
to represent “similarity”, but rather to determine the best
possible match (irrespective of whether that match is a
viable match.)

7 RELATED WORK

In this section we discuss related work in two areas.
First, we focus on the usage of structured data to im-
prove retrieval of process models. Second, we relate
our contribution to previous work that addresses the
problem of measuring similarity of behavior.

Different models have been developed to exploit struc-
ture in text for information retrieval (see [17]) and some
of these concepts have been applied to process mod-
els. One example is the process query language (PQL)
proposed in [18] which uses a structured description
of a process in terms of OWL classes and attributes.
Yet, in contrast to our work, the behavioral aspect of
a process is not considered. The same holds for other
query approaches such as business process query lan-
guage (BPQL) by [19] or BPMN-Q by [20]. These query
languages have in common that they return processes
based on match/non-match. A ranking in terms of sim-
ilarity is not considered.

Existing work on determining a degree of similarity
between process models is rather scarce, even though
related topics like process model integration are well
researched (see [21], [22], [23], [24], [25]). Also closely
related are different notions of behavioral equivalence
such as trace equivalence and bisimulation. While trace

12

equivalence is based on a simple comparison of the
sets of completed execution traces, bisimulation notions
are stricter since they consider the points in time when
decisions are taken, e.g., weak bisimulation equivalence
is stricter than trace equivalence. A thorough overview
of behavioral equivalence notions is presented in [26].
The strict ‘true or false’ nature of these comparison
techniques has been criticized in [27] as not appropriate
for various application scenarios in the field of business
process management. In addition, existing techniques
for behavioral equivalence checking are mainly based
on state-space analysis, which is computationally ex-
pensive: even the restricted class of 1-safe Petri nets
require exponential space for most equivalence notions
[28]. In our work, we avoid state space calculation by
using causal footprints [29] as the basis for comparison.
Since causal footprints capture constraints instead of
the state space, this approach relates to constraint-based
or property-based approaches to process modeling and
verification [30], [31], [32].

The particular contribution of our paper is that it
presents and validates a collection of similarity metrics.
Most proposed business process similarity metrics either
remain unvalidated, and do not take into account label
similarity (by assuming that equivalent tasks have equiv-
alent labels) nor behavioral similarity – focusing instead
on structural similarity. Some work with all these feature
has, though, been conducted for state charts and finite
state automata. Nejati et al. [33] propose a similarity met-
ric for computing the similarity of statecharts. It takes
differences between labels of states into account and
considers behavioral similarity, using approximations of
bi-similarity as well as the nested structure of states in a
statechart. Because of this latter feature, their technique
is specific to statecharts. Their technique is validated
using three pairs of statechart specifications of telecom-
munication services. The focus of their evaluation is not
to determine the precision/recall of the technique as a
search technique, but rather as a technique for merging
pairs of statecharts. Wombacher [34] also empirically val-
idates a number of metrics for measuring the similarity
of workflows. His work focuses on workflows mod-
eled using Finite State Automata and uses a validation
by comparison with human judgement. Unfortunately,
the approaches studied by Wombacher cannot be di-
rectly used for process models. Even though reachability
graphs (which are basically automata) can be derived
from process models, these can potentially be infinite or
at least exponential in size of the process model [8]. Also,
the evaluation conducted by Wombacher is not based
on measures of precision or recall, but rather on the
ability of different methods to reproduce the judgement
of human experts based on 23 queries with a small
number of possible solutions per query.

Other previous work deals with the comparison of
business process models that are captured in notations
similar to EPCs or BPMN. Li, Reichert and Wom-
backer [35] propose a structural approach to determine

the similarity between business process models. Their
approach first determines ’atomic’ differences between
business process models and subsequently groups these
differences using patterns that they have defined in
earlier work [36]. They then compute a similarity value
based on the grouped differences. Their structural algo-
rithm, therefore, clearly differs from ours. However, in
their paper, they do not provide a validation of their
algorithm, so it is not possible to compare their per-
formance to ours. In a similar vein, Minor, Tartakovski
and Bergmann [37] use graph edit distance to find an
appropriate changed business process model in case a
running business process model needs to be changed.
As a result it does not consider differences between
task labels, while our algorithm takes it into account.
Lu and Sadiq [38] introduce an algorithm for measuring
similarity of process variants, based on process model
fragments. It is targeted towards querying collections of
process model variants for variants with certain features.
These features can cover other aspects than tasks and
their relations, such as use of resources and timing
characteristics. Madhusudan, Zhao and Marshall [39]
introduce a structural metric, which they call similarity
flooding for workflow. It is based on the similarity
flooding algorithm [40] that is introduced from the area
of matching database schemas. The algorithm defines an
initial mapping based on label similarity and then iter-
atively refines that mapping until a fixpoint is reached.
It can deal with differences in task labels. However, it
is not validated. Nor does it consider behavioral sim-
ilarity (The original algorithm, however, is extensively
validated.) In their work, Van der Aalst, Medeiros and
Weijters [27] calculate a degree of behavioral similarity
for measuring the fitness of a set of event logs relative to
a process model. This degree helps to optimize the match
between model and log in the area of process mining (see
[41], [42]). Finally, there is work by Ehrig, Koschmider
and Oberweis [43]. The authors match activity labels
based on structural and semantic properties, among
others using WordNet synonyms [44]. While this is close
to our semantic match, it has not been validated.

Table 2 summarizes features of related research in
comparison to the work reported in this paper. As can
be seen, our paper provides a consolidation of different
approaches to similarity calculation and a respective
validation.

8 CONCLUSION

In this paper we presented three parameterized similar-
ity metrics between business process models:

1) label matching similarity metrics that measure sim-
ilarity based on words in the labels of business
process model elements;

2) structural similarity metric metrics that measure
similarity based on the labels of business process
model elements, as well as the relations between
these elements; and

13

TABLE 2
Overview of Related Work

Comparison between Label Similarity Structural Similarity Behavioral Similarity Validation
this paper process models

√ √ √ √

Nejati et al. [33] state charts
√ √ √ √

Wombacher [34] finite state machines
√ √ √ √

Li et al. [35] process models x
√

x x
Minor et al. [37] process models x

√
x x

Lu and Sadiq [38] process models x
√

x x
Madhusudan et al. [39] process models

√ √
x x

Van der Aalst et al. [27] log and process model
√

x
√

x
Ehrig et al. [43] process models

√ √
x x

3) behavior similarity metrics that measure similarity
based on the intended behavior of process models.

We experimentally evaluated these metrics by determin-
ing their precision and recall and their correlation with
human judgement of similarity. We also compared the
performance of these metrics with that of a traditional
search engine with respect to the problem of process
model similarity search.

We determined the precision and recall of the metrics
by applying them to a collection of 100 business process
models, using 10 business process models as ‘search
queries’. The search queries were obtained by taking
10 business process models from the collection and
modifying those models in predefined manner (e.g.: by
taking a sub-graph, or by replacing words in the labels
by synonyms) to study the effect of certain properties
of search models on the performance of each metric.
These experiments showed that the structural similarity
metric outperforms the others. Also, all three metrics that
we defined outperform a traditional search engine for
process model similarity queries. This was expected as
the proposed metrics use knowledge of the structure and
intended behavior of business process models. There is
evidence that the metrics from this paper in particular
perform better if the ‘search query’ is a subgraph of
one (or more) of the business process models in the
collection and if the ‘search query’ only differs from
the document models it should match in the types of
connectors employed.

We determined the correlation between the metrics
and human judgement of similarity, by applying the
metrics to a collection of 1000 pairs of business process
models, for which we obtained human judgement of
similarity beforehand. Correlation between the metrics
and human judgement was strong and significant. There
was no correlation between the relevance score obtained
from the Indri search engine and human judgement.

Therefore, experimental evaluation lead to the conclu-
sion that the similarity metrics defined in this paper have
benefits over metrics from traditional search engines,
both when using them to search a collection of business
process models and when using them to determine the
similarity between two business process models.

However, to be able to use the metrics to search a
collection of business process models, work still has to

be done. So far we have focused on developing the
metrics, rather than efficient algorithms. The algorithms
that we used to do the experimental evaluation linearly
went through the collection of business process models
to find the most relevant match. For 1000 comparisons
(10 ‘search queries’ times 100 models) this would take
several minutes, which is not acceptable for practical
search. Therefore, as future work we aim to develop
efficient algorithms for searching collections of business
processes for similar business processes.

Another direction for future work is to use the metrics
that are defined above to determine optimal mappings
between the activities of two similar business processes
(the functions and events of two similar EPCs). This re-
quires that we allow mapping between sets of activities,
rather than single activities, because a set of activities
in one process may match with a set of activities in
the other process. Preliminary research even showed
that this is common when the two processes have been
developed independent of each other.

ACKNOWLEDGMENTS

The research that led to this paper is partly funded by the
Beta Research School for Operations Management and
Logistics at TU Eindhoven, and by the Estonian Centre
of Excellence in Computer Science.

REFERENCES
[1] M. Rosemann, “Potential pitfalls of process modeling: part a,”

Business Process Management Journal, vol. 12, no. 2, pp. 249–254,
2006.

[2] H. Bunke and K. Shearer, “A graph distance metric based on the
maximal common subgraph,” Pattern Recognition Letters, vol. 19,
pp. 255–259, 1998.

[3] B. Dongen, J. Mendling, and W. Aalst, “Structural Patterns for
Soundness of Business Process Models,” in Proceedings of the 10th
IEEE EDOC Conference (EDOC). IEEE, 2006, pp. 116–128.

[4] B. F. van Dongen, R. M. Dijkman, and J. Mendling, “Measuring
similarity between business process models,” in Proceedings of
the 20th International Conference on Advanced Information Systems
Engineering (CAiSE), ser. LNCS, vol. 5074. Springer, 2008, pp.
450–464.

[5] G. Keller, M. Nüttgens, and A. Scheer, “Semantische Process-
modellierung auf der Grundlage Ereignisgesteuerter Processket-
ten (EPK),” Veröffentlichungen des Instituts für Wirtschaftsinfor-
matik, Heft 89 (in German), University of Saarland, Saarbrücken,
1992.

[6] E. Kindler, “On the semantics of EPCs: Resolving the vicious
circle.” Data & Knowledge Engineering, vol. 56, no. 1, pp. 23–40,
2006.

14

[7] J. Mendling, Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness, ser.
Lecture Notes in Business Information Processing. Springer, 2008,
vol. 6.

[8] A. Valmari, “The state explosion problem.” in Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, held in Dagstuhl, September 1996, ser.
Lecture Notes in Computer Science, W. Reisig and G. Rozenberg,
Eds., vol. 1491. Springer, 1998, pp. 429–528.

[9] M. Ehrig, A. Koschmider, and A. Oberweis, “Measuring similarity
between semantic business process models,” in APCCM ’07: Pro-
ceedings of the fourth Asia-Pacific conference on Comceptual modelling.
Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., 2007, pp. 71–80.

[10] B. van Dongen, R. Dijkman, J. Mendling, and W. van der Aalst,
“Detection of similarity between business process models,” Eind-
hoven University of Technology, BETA Technical Report, 2007.

[11] I. Levenshtein, “Binary code capable of correcting deletions, inser-
tions and reversals,” Cybernetics and Control Theory, vol. 10, no. 8,
pp. 707–710, 1966.

[12] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[13] R. Jonker and A. Volgenant, “A shortest augmenting path algo-
rithm for dense and sparse linear assignment problems,” Comput-
ing, vol. 38, pp. 325–340, 1987.

[14] G. Salton, A. Wong, and C. Yang, “A vector space model for
automatic indexing,” Communications of the ACM, vol. 18, no. 11,
pp. 613–620, 1975.

[15] D. Metzler and W. Croft, “Combining the language model and
inference network approaches to retrieval,” Information Processing
and Management, vol. 40, no. 5, pp. 735–750, 2004.

[16] C. Buckley and E. M. Voorhees, “Evaluating evaluation measure
stability,” in Proceedings of the 23rd annual international ACM SIGIR
conference. New York, NY, USA: ACM, 2000, pp. 33–40.

[17] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
ACM Press / Addison-Wesley, 1999.

[18] M. Klein and A. Bernstein, “Towards high-precision service re-
trieval,” IEEE Internet Computing, vol. 8, no. 1, pp. 30–36, 2004.

[19] M. Momotko and K. Subieta, “Process query language: A way to
make workflow processes more flexible.” in Advances in Databases
and Information Systems, 8th East European Conference, ADBIS
2004, Budapest, Hungary, September 22-25, 2004, Proceesing, ser.
Lecture Notes in Computer Science, G. Gottlob, A. Benczúr, and
J. Demetrovics, Eds., vol. 3255. Springer, 2004, pp. 306–321.

[20] A. Awad, G. Decker, and M. Weske, “Efficient compliance check-
ing using bpmn-q and temporal logic,” in Proc. of the 6th Inter-
national Conference on Business Process Management, ser. Lecture
Notes in Computer Science, M. Dumas, M. Reichert, and M.-C.
Shan, Eds., vol. 5240. Springer, 2008, pp. 326–341.

[21] G. Preuner, S. Conrad, and M. Schrefl, “View integration of behav-
ior in object-oriented databases.” Data & Knowledge Engineering,
vol. 36, no. 2, pp. 153–183, 2001.

[22] T. Basten and W. Aalst, “Inheritance of Behavior,” Journal of Logic
and Algebraic Programming, vol. 47, no. 2, pp. 47–145, 2001.

[23] G. Grossmann, Y. Ren, M. Schrefl, and M. Stumptner, “Behavior
based integration of composite business processes.” in Business
Process Management, 3rd International Conference, BPM 2005, Nancy,
France, September 5-8, 2005, Proceedings, ser. Lecture Notes in
Computer Science, W. van der Aalst, B. Benatallah, F. Casati, and
F. Curbera, Eds., vol. 3649. Springer, 2005, pp. 186–204.

[24] V. Pankratius and W. Stucky, “A formal foundation for workflow
composition, workflow view definition, and workflow normal-
ization based on petri nets,” in Conceptual Modelling 2005, Second
Asia-Pacific Conference on Conceptual Modelling (APCCM2005), New-
castle, NSW, Australia, January/February 2005, ser. CRPIT, S. Hart-
mann and M. Stumptner, Eds., vol. 43. Australian Computer
Society, 2005.

[25] J. Mendling and C. Simon, “Business Process Design by View
Integration,” in Proceedings of BPM Workshops 2006, ser. Lecture
Notes in Computer Science, J. Eder and S. Dustdar, Eds., vol.
4103. Vienna, Austria: Springer-Verlag, 2006, pp. 55–64.

[26] R. J. van Glabbeek and U. Goltz, “Refinement of actions and
equivalence notions for concurrent systems,” Acta Inf., vol. 37,
no. 4/5, pp. 229–327, 2001.

[27] W. Aalst, A. Medeiros, and A. Weijters, “Process Equivalence:
Comparing two process models based on observed behavior,” in
Proceedings of BPM 2006, ser. Lecture Notes in Computer Science,

S. Dustdar, J. Fiadeiro, , and A. Sheth, Eds., vol. 4102. Vienna,
Austria: Springer-Verlag, 2006, pp. 129–144.

[28] J. Esparza, “Decidability and complexity of petri net problems - an
introduction,” in Lectures on Petri Nets I: Basic Models, Advances in
Petri Nets, the volumes are based on the Advanced Course on Petri Nets,
held in Dagstuhl, September 1996, ser. Lecture Notes in Computer
Science, W. Reisig and G. Rozenberg, Eds., vol. 1491. Springer,
1998, pp. 374–428.

[29] B. Dongen, J. Mendling, and W. Aalst, “Structural Patterns for
Soundness of Business Process Models,” in Proceedings of the
10th IEEE International Enterprise Distributed Object Computing
Conference (EDOC’06). Hong Kong, China: IEEE, 2006, pp. 116–
128.

[30] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, New York,
1991.

[31] H. Eertink, W. Janssen, P. Oude Luttighuis, W. Teeuw, and C. Vis-
sers, “A business process design language,” in World Congress on
Formal Methods, ser. Lecture Notes in Computer Science, J. Wing,
J. Woodcock, and J. Davies, Eds., vol. 1708. Springer, 1999, pp.
76–95.

[32] M. Pesic, M. Schonenberg, N. Sidorova, and W. van der Aalst,
“Constraint-based workflow models: Change made easy,” in
On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS, OTM Confederated International Confer-
ences CoopIS, DOA, ODBASE, GADA, and IS 2007, Vilamoura,
Portugal, November 25-30, 2007, Proceedings, Part I, ser. Lecture
Notes in Computer Science, R. Meersman and Z. Tari, Eds., vol.
4803. Springer, 2007, pp. 77–94.

[33] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and merging of statecharts specifications,” in 29th
International Conference on Software Engineering (ICSE 2007), 2007,
pp. 54–63.

[34] A. Wombacher, “Evaluation of technical measures for workflow
similarity based on a pilot study,” in Proc. 14th Int’l Conf. on
Cooperative Information Systems (CoopIS’06), ser. LNCS, vol. 4275.
Berlin: Springer, 2006, pp. 255–272.

[35] C. Li, M. U. Reichert, and A. Wombacher, “On measuring pro-
cess model similarity based on high-level change operations,”
http://eprints.eemcs.utwente.nl/11574/, Centre for Telematics
and Information Technology, University of Twente, Enschede,
Technical Report TR-CTIT-07-89, December 2007.

[36] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - enhancing flexibility in process-aware
information systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–
466, 2008.

[37] M. Minor, A. Tartakovski, and R. Bergmann, “Representation
and structure-based similarity assessment for agile workflows,”
in 7th International Conference on Case-Based Reasoning, ser. LNAI,
R. Weber and M. Richter, Eds., vol. 4626. Heidelberg, Germany:
Springer, 2007, pp. 224–238.

[38] R. Lu and S. Sadiq, “On the discovery of preferred work practice
through business process variants,” in Conceptual Modeling - ER
2007, ser. LNCS, vol. 4801. Heidelberg, Germany: Springer, 2007,
pp. 165–180.

[39] T. Madhusudan, L. Zhao, and B. Marshall, “A case-based reason-
ing framework for workflow model management,” Data Knowl-
edge Engineering, vol. 50, no. 1, pp. 87–115, 2004.

[40] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A
versatile graph matching algorithm and its application to schema
matching,” in International Conference on Data Engineering. Los
Alamitos, CA, USA: IEEE Computer Society, 2002, pp. 117–128.

[41] G. Greco, A. Guzzo, G. Manco, and D. Saccà, “Mining and
reasoning on workflows,” IEEE Trans. Knowl. Data Eng., vol. 17,
no. 4, pp. 519–534, 2005.

[42] W. Aalst, H. Reijers, A. Weijters, B. Dongen, A. Medeiros, M. Song,
and H. Verbeek, “Business process mining: An industrial appli-
cation,” Information Systems, vol. 32, no. 5, pp. 713–732, 2007.

[43] M. Ehrig, A. Koschmider, and A. Oberweis, “Measuring simi-
larity between semantic business process models,” in Conceptual
Modelling 2007, Proceedings of the Fourth Asia-Pacific Conference on
Conceptual Modelling (APCCM 2007), J. Roddick and A. Hinze,
Eds., vol. 67. Ballarat, Victoria, Australia: Australian Computer
Science Communications, 2007, pp. 71–80.

[44] G. Miller, “Wordnet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, 1995.

