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Abstract 
Interaction topologies in service-oriented systems are 
usually classified into two styles: choreographies and 
orchestrations. In a choreography, services interact in a 
peer-to-peer manner and no service plays a privileged 
role. In contrast, interactions in an orchestration occur 
between one particular service, the orchestrator, and a 
number of subordinated services. Each of these topologies 
has its trade-offs. This paper considers the problem of 
migrating a service-oriented system from a choreography 
style to an orchestration style. Specifically, the paper 
presents a tool chain for synthesising orchestrators from 
choreographies. Choreographies are initially represented 
as communicating state machines. Based on this 
representation, an algorithm is presented that synthesises 
the behaviour of an orchestrator, which is also represented 
as a state machine. Concurrent regions are then identified 
in the synthesised state machine to obtain a more compact 
representation in the form of a Petri net. Finally, it is 
shown how the resulting Petri nets can be transformed 
into notations supported by commercial tools, such as the 
Business Process Modelling Notation (BPMN).. 
Keywords:  service composition, choreography, 
orchestration, Petri nets, BPMN. 

1 Introduction 
A Service-Oriented Architecture (SOA) is a software 
architecture where the basic elements are services, 
meaning entities offer some functionality to other entities, 
which themselves can be services. At the implementation 
level, an SOA manifests itself in the form of a collection 
of software services that exist at certain endpoints and 
exchange messages according to certain contracts. A 
software service is called a Web Service (WS) if it 
applies Web standards such as eXtensible Markup 
Language (XML), Web Service Description Language 
(WSDL), and/or SOAP. 

A typical approach to design an SOA is to identify 
basic services and then to compose them into larger 
services, or conversely, to identify larger services and to 
then decompose them into smaller services. In either case, 
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the cornerstone for SOA design is the definition of 
compositions of services. This work is concerned with 
how these compositions of services are modelled, and 
specifically, how different perspectives for modelling 
such compositions of services can be reconciled. 

Depending on their interaction topology, service 
compositions are usually classified into two styles: 
choreographies and orchestrations (Peltz 2003). In a 
choreography, no service plays a privileged role (peer-to-
peer topology), whereas in an orchestration, interactions 
occur between one particular service, the orchestrator, 
and a number of other subordinated services (hub-and-
spoke topology). For example, Figure 1 illustrates a 
business-to-business choreography involving a buyer, a 
supplier and a shipper, while Figure 2 shows the 
corresponding orchestration. 

 

buyer

shipper

supplier

 
Figure 1: Choreographed composition 

 

 
Figure 2: Orchestrated composition 

The choice between a choreographed and an 
orchestrated service composition approach may be driven 
by a number of factors, often of an organisational nature. 
With reference to the above example, it may be that 
initially, the supplier deals with a single shipper for all 
orders. The buyer interacts with the supplier in order to 
agree on the purchase order and to pay for the goods, but 
when it comes to delivery issues, the buyer needs to 
interact directly with the shipper. Subsequently, the 
supplier may decide that in order to provide a more 
uniform customer experience and to closely monitor the 
performance of its shippers, it is desirable to have a single 



point of interaction with the customer (the ‘orchestrator’ 
in Figure 2). This orchestrator would handle interactions 
related to the purchase order, payment and also delivery. 
Having done that, it becomes possible to introduce 
additional value-added services in the orchestrator, such 
as providing the buyer with the possibility to choose 
between making a single payment for the goods and for 
the delivery, or making separate payments, or choosing 
between different delivery modes. 

From the technical perspective, this change in 
topology requires that an orchestrator is developed and 
deployed and that all the interactions between the services 
in the composition be channelled through the 
orchestrator. This paper provides a technique to automate 
the development of such an orchestrator from a given 
choreography.  

Choreographies are initially represented using Finite 
State Machines (FSMs). Based on this representation, an 
algorithm is presented that synthesises the behaviour of 
an orchestrator, which is also represented as a state 
machine. The synthesised state machine may be rather 
large and unreadable, because the interactions that an 
orchestrator needs to manage tend to occur in any order 
or in parallel, and this parallelism leads to state explosion. 

Accordingly, concurrent regions are identified in the 
synthesised state machine in order to obtain a more 
compact representation in the form of a Petri net. This is 
achieved using existing results from the field of theory of 
regions (Cortadella, Kishinevsky et al. 1998). The paper 
then shows how the resulting Petri nets can be 
transformed into notations supported by commercial 
tools, such as the Business Process Modelling Notation 
(BPMN) (Object Management Group 2008). The result is 
a skeleton of an orchestrator. This skeleton can be 
extended and refined using existing business process 
modelling tools and used as a basis to generate code in 
executable languages such as the Business Process 
Execution Language (BPEL).  

The entire tool chain for orchestrator synthesis is 
depicted in Figure 3. The specific contributions of the 
paper are: (i) a technique for synthesising orchestrators 
from choreography specifications using state machines as 
a specification language, and (ii) a technique for 
transforming Petri nets into BPMN diagrams. The tool 
chain, starting from a choreography specified as FSMs, 
has been implemented and tested on a number of 
scenarios with varying degrees of complexity. 

 

 
Figure 3: Composition viewpoints bridged by 

orchestrator synthesis with state machines 

The rest of the paper is structured as follows. Section 2 
provides some background on service behaviour 
modelling. Section 3 presents the proposed orchestrator 
synthesis algorithm. Section 4 shows how Petri nets 
representing the resulting orchestrator can be transformed 
into BPMN diagrams. Section 5 describes the validation 

of the approach and Section 6 discusses related work. 
Conclusions are drawn in Section 7. 

2 Background: Modelling service behaviour 
Choreographies can be described as a set of interface 
FSMs, where an interface FSM defines both the message 
exchanges in which a given participant can engage, and 
their message control-flow dependencies. 

In an environment where messages can be buffered 
and transmission is not instantaneous, unbounded queues 
can be problematic for compatibility verification (Bultan, 
Su et al. 2006). Reasoning with protocols can be 
simplified by either bounding the queue length (Berardi, 
Calvanese et al. 2005), or removing queues entirely 
(Benatallah, Casati et al. 2006). 

An assumption sometimes taken (Yellin and Strom 
1997; Benatallah, Casati et al. 2006) is an environment 
where message transmission is instantaneous, meaning 
the FSMs of the sender and receiver for any given 
interaction advance in synchrony. While this assumption 
is not in line with some communication protocols which 
support asynchronous message transfer, it appears 
solutions developed under the assumption of synchronous 
messaging may be transposable to asynchronous 
environments as referred to in Section 6. Thus, we make 
this assumption of synchronicity to simplify orchestrator 
synthesis. 

Having made this assumption about the 
communication medium, we also need to adopt a 
language for capturing service behaviour. Languages 
such as BPMN and BPEL could be used to for this 
purpose. However, these languages are complex in terms 
of the number of constructs they support, hindering their 
suitability as a basis for reasoning about service 
behaviour. Also, these languages are meant for capturing 
service-oriented business processes rather than capturing 
the behaviour that one service exposes to other services. 
For example, both languages allow one to capture internal 
actions and decisions that a service-oriented process 
makes during its execution. However, when capturing 
service behaviour for orchestrator synthesis purposes, we 
are only interested in capturing the externally visible 
behaviour that each service exposes.  

In light of this, we adopt FSMs as the language for 
capturing service behaviour. This choice is in line with 
previous work on component and service behaviour 
specification (Yellin and Strom 1997; Benatallah, Casati 
et al. 2006; Berardi, Calvanese et al. 2005). Accordingly, 
a choreography is captured as a collection of 
communicating state machines. This design choice is 
further justified in Section 6. 

Specifically, we rely on the notion of interface FSM, 
which is essentially an FSM where the transitions are 
labelled with communication actions – either sending or 
receiving a message. To ensure protocols describe only 
external behaviour, the FSMs we deal with are 
deterministic, meaning that every state is labelled, and for 
any given state there are no two outgoing transitions with 
exactly the same label. In order to deterministically 
model choices based on message content, we use Boolean 
guards expressed in terms of message content. For 
example to capture the requirement that depending on the 
content of a message of type OrderResponse, the FSM 



should follow one transition or another, we append 
expressions like [processed=true] and [processed=false] 
to the message type. Hence, one transition could be 
labelled with ‘OrderResponse[processed=true]’ and 
another with ‘OrderResponse[processed=false]’. 

The orchestrators synthesised by the algorithm 
presented later in the paper, typically perform message 
forwarding, and we found that representing a message 
forwarding action as separate receive and send transitions 
leads to cumbersome models. To simplify the 
specification of orchestrators, message exchanges are 
represented as a quadruplet Exchange = (pfrom : Party, 
pto : Party, msg : MessageType, forwarding : Boolean). 
This tuple specifies the initial sender of the message, the 
final recipient of the message, the type of the message, 
and whether the message is directly exchanged between 
the two parties or it is received from one party (by the 
orchestrator) and forwarded to the other. 

Formally, an interface FSM is a tuple (S, s0, E, δ) 
where: 

• S is a set of states. A state is labelled with an 
identifier in the case of an elementary state, or a 
tuple, possibly with other nested tuples, in the case 
of a composite state derived during the merging of 
tw or more other interface FSMs. o 

• s0 א S is the initial state. 
• E is a set of message exchanges specified as 

quadruplets, as previously discussed. 
• δ : S × E → S  is a transition function to connect 

states via message exchanges. 
A behavioural interface is defined as a combination 

of an interface FSM and the set of parties the FSM 
represents, the pair (P : {Party}, sm : FSM). Normally, 
the set of parties P of a behavioural interface will contain 
only one element, because a behavioural interface 
represents the behaviour that one party exposes to one or 
several parties. But in the case of an orchestrator service, 
the behavioural interface represents the aggregated 
behaviour of multiple subordinated services and P will 
contain multiple parties. For convenience, we will use the 
term orchestrator interface, as shorthand to refer to the 
behavioural interface of an orchestrator service. 

Behavioural interfaces of the choreography 
participants in our working example are shown in Figures 
4 to 6.. These interfaces are based on the Voluntary Inter-
industry Commerce Standard (VICS) for order 
management (GS1 US 2007). 

 

 
Figure 4: Behavioural interface of the buyer 

 

 
Figure 5: Behavioural interface of the supplier 

 

 
Figure 6: Behavioural interface of the shipper 

3 Orchestrator synthesis 
The goal of orchestrator synthesis is to generate a 
behaviourally compatible message forwarding service 
capable of intercepting messages within a given 
choreography. In this paper, we propose a synthesis  
algorithm which merges interface FSMs from any 
number of parties in a choreography to produce an 
orchestrator. The algorithm comprises three main 
functions and makes use of the following auxiliary 
functions: 

• For any ordered list L, enqueue(L, n) adds n to the 
end of L, and dequeue(L) removes the first 
element from the front of L. If n is a list, each 
element is added in order to the end of L. 

• For a message exchange e, fromParty(e), 
toParty(e), msg(e), forwarding(e), retrieve the 
corresponding components. 

• For a state machine sm, states(sm) returns all 
states, initialState(sm) the initial state, and 
finalStates(sm) the set of final states, which is 
derivable by finding all states having no outgoing 
transitions. 

• For a composite state c, s1(c) and s2(c) return the 
two contained states. 

• For a transition t, exchange(t) returns the message 
exchange, and source(t) and target(t) the source 
and target states respectively. 

For better logic clarity, δ is also characterised as a set 
of Transition objects, each composed of a message 
exchange, one source and one target state. Also, 
unordered sets are denoted by {} and ordered lists by []. 

 
 



3.1 Synthesis of multiple interfaces 
Our algorithm is capable of synthesising any number of 
behavioural interfaces forming a choreography into a 
single orchestrator interface. The approach used is to 
fully merge two of the input interfaces, then merge the 
result with a third interface, and so on in pairs, until all 
input interfaces have been synthesised into the 
orchestrator. This high level processing of taking all input 
interfaces and synthesising the orchestrator is performed 
by Function 1, synthesise(), and is visualised in Figure 7. 
If a deadlock condition is detected while synthesising any 
interface pair, synthesise() immediately indicates 
synthesis is not possible. 
 

Function: synthes  ise
Input: Iall : [Interface] 
Output: Interface ڂ Deadlock 
Preconditions: |Iall| ≥ 2 
Variables: synthesised : Interface ڂ Deadlock 
begin 
 synthesised ؔ synthesiseInterfacePair( 

dequeue(Iall), dequeue(Iall)) 
 if synthesised is Deadlock 
  return synthesised 
 end if 
 while Iall ≠ [] 
  synthesised ؔ synthesiseInterfacePair( 

synthesised, dequeue(Iall)) 
  if synthesised is Deadlock 
   return synthesised 
  end if 
 end while 
 return synthesised 
end 

Function 1: synthesise() 

Input interfaces must be ordered according to the role 
of each interface in the choreography. It is assumed only 
one interface FSM can send a message from the initial 
state – the others start their execution by receiving a 
message. In the case of the choreography involving a 
buyer, a supplier and a shipper, the buyer would start the 
choreography. The two interfaces exchanging the first 
message must be the first two in the input list to ensure 
the synthesised orchestrator interface captures the 
choreography from start to end. Subsequent interfaces in 
the list must appear in the order they come into the 
choreography. The effect of this ordering on the working 
example is shown in Figure 7. 

 

buyer

shipper

buyer, supplier, shipper

buyer, supplier

or1

3
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Figure 7: Synthesis of interface pairs showing the 

ordering of the input list 

3.2 Synthesis of an interface pair 
A pair of interfaces can be completely merged by 
Function 2, synthesiseInterfacePair(), depicted in 
Figure 8. This function synchronously traverses the two 
input interfaces to build the orchestrator interface by 
performing a breadth-first search of the two input FSMs, 
and combining the lists of parties represented by both 
interfaces. The input FSMs are searched in synchrony by 
looking at state pairs where a state pair is composed of a 
state from each FSM. Merging a pair of interfaces is 
realised with a visitor pattern (Palsberg and Jay 1998) to 
perform the breadth-first search. 

 
Figure 8: Overview of synthesiseInterfacePair() 

The root node for performing a breadth first search is 
the composite state derived from the two initial states of 
input FSMs. This state is the initial state of the 
synthesised FSM, and is placed in a queue of states to be 
processed. Only composite states are placed in this queue, 



and each time one is dealt with, it is placed into a pool of 
states which have already been processed. Each state is 
visited only once. Synthesis of the input pair is complete 
when all states have been visited and the queue of states 
to visit is empty. 

After the initial state has been removed from the 
queue, another function attempts to find pairs of message 
exchanges that can occur between the two input FSMs. A 
match is apparent when both FSMs can synchronously 
exchange a message and advance to their next respective 
states. 

As seen in Function 3, transitionPairings() explores 
which messages can be sent or received from the states 
currently being processed from each input FSM, and 
attempts to find matches. If a match is found, the pair of 

transitions is added as a tuple to a set of pairings. If a 
match for a transition is not found, it is added to a tuple 
with the other element empty, representing that the 
interaction cannot yet be orchestrated, which is a normal 
situation if the party with which this transition should be 
paired has not yet been dealt with. A tuple indicating that 
a transition could not be matched is only added to the set 
of pairings if the exchange is orchestrated, or is related to 
an interface not yet considered for orchestrator synthesis. 
Otherwise, the inability to match a given transition with 
at least one other transition means that one party can send 
a message while the other is not in a state to receive it, or 
vice-versa. In some cases, if there is no other way to 
progress to a new pair of states from the current pair of 
states, this situation indicates a deadlock. 

 
Function: synthes InterfacePair ise
Input: ia = (Pa, sm  {Sa, s0_a, Ea, δa}) : Interface, ib = (Pb, smb = {Sb, s0_b, Eb, δb}) : Interface a =
Output: Interfa ڂ   ce  Deadlock
Preconditions: ׊s א Sb , s is ElementaryState 
Variables: s0_m , scurrent , snew , stoAdd : CompositeState 
StoVisit : [CompositeState], Svisited : {CompositeState} 
smm = {Sm, s0_m, Em, δm} : FSM 
ta_mustSynthesise : {Transition}, tb_mustSynthesise : {Transition} 
enew : Exchange 
TPall : {(Transition, Transition)} 
begin 
 s0_m := (s0_a, b)  s0_
 states(sm ؔm)  {s0_m} 
 enqueue(Sto , s0Visit _m) 
 Pknown ؔ Pa ڂ b  P
 ta_mustSynthesise  {t δa ; e | fromParty(e) known ; toParty(e) known ; forwarding(e)  ؔ  א P א exchange(t) א P א ൓ • t}
 tb_mustSynthesise ؔ {t א δb ; e א exchange(t) | fromParty(e) א Pknown ; toParty(e) א Pknown ; ൓forwarding(e) • t} 
 while StoV ≠ {} isit 
  scurrent dequeu (StoVisit) := e
  Svisited ؔ Svisited ڂ {scurrent} 
  TPall = transitionPairings(ia, s1(scurrent), ib, s2(scurrent)) 
  for each (ta ) in Pall , tb  T
   if ta ≠ NULL ٿ tb ≠ NULL 
    snew (target(ta), target(tb)) ؔ 
    enew (fromParty(exchange(ta)), toParty(exchange(ta)), msg(exchange(ta)), true) ؔ 
   else if ta NULL  = 
    snew  (s1(scurrent), target(tb)) ؔ
    enew  exchange(tb) ؔ
   else 
    snew  (target(ta), s2(scurrent)) ؔ
    enew ؔ exchange(ta) 
   end if 
   sta (sm ) ؔ states(smtes m m) ڂ {snew} 
   exchang (sm ) ؔ exchanges(smm) ڂ {enew} es m
   tm ؔ tm ڂ {( rent, enew) → s w} scur ne
   ta_mustS hesise a_mustS thesise ynt  t yn  {ta} ؔ \
   tb_mustS sise ؔ b_must thesise \  ynthe  t Syn  {tb}
   if snew ב Svisited ٿ snew ב StoVisit ٿ ൓(s1(snew) א finalStates(sma) ٿ s2(snew) א finalStates(smb)) 
    enqueue(StoVisit, snew) 
   end if 
  end for 
 end while 
 if ta_mustSynthesise ≠ {} ڀ tb_mustSynthesise ≠ {} 
  return Deadlock 
 end if 
 return Interface(Pa ڂ Pb, smm) 
end 

Function 2: synthesiseInterfacePair() 



Function: transitionPairings 
Input: ia = (Pa, sma = (Sa, s0_a, Ea, δa)) : Interface, 
sa : State, ib = (Pb, smb = (Sb, s0_b, Eb, δb)) : Interface, 
sb : ElementarySta  te
Output: {(Transition, Transition)} 
Preconditions: sa א Sa; sb א Sb 
Variables: Tpairs : {(Transition, Transition)} 
Tout_a , Tout_b , Tdone_a , Tdone_b : {Transition} 
Pknown : {Party} 
begin 
 Tout_a  {t  Ta | source(t) = sa} ؔ א
 Tout_b ؔ {t א Tb | source(t) = sb} 
 for each ta in Tout_a 
  for each tb in out_b  T
   if exchan a) = exchange(tb) ge(t
    Tpairs ؔ pairs ڂ { a, tb)}  T (t
    Tdone_a done_a a} ؔ T t} ڂ
    Tdone_b ؔ Tdone_b ڂ {tb} 
   end if 
  end or f
 end for 
 Pknown ؔ a ڂ Pb P  
 for each a in Tou t t_a 
  if ta ב Tdone_a ٿ (fromParty(exchange(ta)) ב known ڀ  P

toParty(exchange(ta)) ב Pknown) ڀ 
forwarding(exchange(ta)) 

   Tpairs := Tpairs ڂ {(ta, NULL)} 
  end if 
 end for 
 for each b in Tou   t t_b
  if tb ב Tdone_b ٿ (fromParty(exchange(tb)) ב known ڀ  P

toParty(exchange(tb)) ב Pknown) ڀ 
forwarding(exchange(tb)) 

   Tpairs ؔ Tpairs ڂ {(NULL, tb)} 
  end if 
 end for 
 return Tpairs 
end 

Function 3: transitionPairings() 

With respect to the working example, when merging 
the pair of behavioural interfaces (buyer, supplier), and 
when the pair of states being processed is (buyer 4, 
supplier 4) the message exchange (supplier → buyer, 
Invoice, false) is not added to the pairings as it is known 
this exchange cannot yet occur with the supplier, since 
the supplier first needs to send a ShippingRequest to the 
shipper. Therefore, for the state (buyer 4, supplier 4) the 
pairing function only returns the tuple (NULL, 
(supplier → shipper, ShippingRequest, false)) indicating 
one non-orchestrated interaction be added to the 
orchestrator interface. 

If it occurs that the set of message exchange pairings is 
empty, then there are no messages that can be 
synchronously exchanged in the respective states of the 
composite state being processed. Therefore, deadlock is 
declared and orchestrator synthesis is terminated. The 
partially synthesised orchestrator could also be preserved 
if desired. If message exchange pairings are found, they 
are added to the orchestrator interface, such that matching 
exchange pairs are added as orchestrated exchanges, 
where forwarding=true, and others as non-orchestrated 
exchanges, where forwarding=false. Based on the result 
of pairing message exchanges, a new message transition 

is added to the synthesised FSM along with a composite 
state representative of the synchronous advancement 
performed. This new composite state is then queued for 
processing, but only if the state has not already been 
processed or queued for processing, and is not final. 
Synthesis of the two input FSMs is complete once both 
have been completely traversed. 

With respect to the working example, the composite 
state (buyer 4, supplier 4) causes the pairing function to 
return (NULL, (supplier → shipper, ShippingRequest, 
false)). The non-orchestrated interaction is added to the 
orchestrator and the next state leading on from 
(buyer 4, supplier 4) is computed. This next state will 
involve the same buyer state (buyer 4) since the first 
element of the pairing tuple is NULL, and will involve 
the next supplier state (supplier 5). The state 
(buyer 4, supplier 5) is then added to the queue of states 
to visit. 

The product of synthesising the buyer and supplier 
interfaces is shown in Figure 9, where each state (buyer x, 
supplier y) is shortened to (bx, sy). All interactions 
involving the buyer and supplier are orchestrated since 
these parties are fully represented in the orchestrator. 
Before the shipper is processed, it is not possible to know 
whether its interface FSM is compatible with that of the 
other services in the choreography, so interactions 
involving the shipper remain non-orchestrated. 

Finally, synthesise() processes the shipper interface 
and the interface where P = {buyer, supplier} to produce 
the complete orchestrator P = {buyer, supplier, shipper}. 

 

 
Figure 9: Result of merging the buyer and 

supplier interfaces 

The synthesiseInterfacePair function performs a depth-
first search over a graph whose nodes represent pairs of 
state – one state from each interface being synthesised. 
Each of these ‘state pairs’ is visited at most once. 
Similarly, every pair of transitions (one transition from 
each of the original state machines) is visited at most 
once. Thus the wost-complexity of the algorithm is 
O(N1*N2 + E1*E2) where N1 and N2 are the number of 
states in each of the two interfaces, and E1 and E2 are the 
number of transitions. 

 



3.3 Deadlock detection Petri nets provide a graphical language capable of 
expressing concurrent interactions, and consist of place 
nodes, transition nodes, and directed arcs. They have 
been used for high level workflow management (van der 
Aalst 1998) and on a more detailed level for modelling 
process behaviour (Hinz, Schmidt et al. 2005). 

The synthesis algorithm detects deadlock within 
synthesiseInterfacePair() by identifying non-synthesised 
transitions in both input interfaces which block 
synchronous advancement and cause any transition to not 
be added to the synthesis product. With respect to our 
working example, let’s try to synthesise the interface pair 
from Figure 9 and Figure 10. The set of known parties for 
this synthesis is {buyer, supplier, shipper} meaning the 
synthesised product captures the combined behaviour of 
these three parties, and therefore all interactions between 
these three parties must be captured as orchestrated 
interactions in the synthesised interface. 

4.1 State machines to Petri nets 
We leverage the theory of regions (Cortadella, 
Kishinevsky et al. 1998) to identify regions of 
concurrency in FSMs, and replace these regions with 
their concurrent equivalents. The techniques derived from 
this theory are implemented in the Petrify tool 
(Cortadella, Kishinevsky et al. 1997). By reusing this 
tool, we can transform  interface FSMs into free-choice 
Petri nets with concurrency. 

 

 

A Petri net is said to be free-choice if and only if for 
every two transitions, if they share any input place, they 
share all input places (Chrzastowski-Wachtel, Benatallah 
et al. 2003). We enforce this restriction to prevent mixing 
of choice and synchronisation, which is difficult to 
represent in a higher level modelling language. Once 
orchestrators are represented as Petri nets, logic is easier 
to read, but the model clarity can be further improved for 
business users or developers if displayed in a recognised 
modelling language such as BPMN or BPEL. We 
identified value-adding augmentation as a potential use of 
orchestrators, so we developed a technique to translate 
Petri nets into BPMN diagrams, so value can be added at 
a business level by altering the logic in the diagrams. 

Figure 10: Shipper interface with an interaction 
causing deadlock 

The synthesis algorithm proceeds normally until the 
shipper attempts to send a DeliveryNotice to the supplier 
(the interaction highlighted in Figure 10). At this stage, 
the supplier’s behaviour is already fully captured in the 
interface with which the shipper’s interface is being 
merged (the interface shown in Figure 9), and it is known 
that the supplier can never be in a state where it can 
receive a message of type DeliveryNotice. Prior to 
attempting synthesis of the interfaces in Figure 9 and 
Figure 10, this troublesome transition in the shipper’s 
interface is earmarked as being a ‘must synthesise’ 
transition because it is non-orchestrated and involves only 
synthesised parties. Since the transition cannot be 
traversed during the synthesis, it remains marked as ‘must 
synthesise’, along with any subsequent, unreachable 
transitions and other untraversed transitions from the 
interface in Figure 9. Deadlock is therefore detected if 
any ‘must synthesise’ transition cannot be synthesised. 

4.2 Petri nets to BPMN 
We developed a set of rules to transform Petri nets into 
BPMN diagrams. These rules are summarised in 
Figure 11, where each rule identifies a pattern in the 
graph to be replaced by the output specified in the rule. 
Dependencies between rules are introduced in order to 
reduce the complexity of pattern definitions. An overview 
of the rule patterns and outputs is presented in Figure 12, 
taking snippets from an extended version of our working 
example. 

The rules are only concerned with the logic inside the 
BPMN pool artefact representing the orchestrator. Other 
pools and connecting message flows are not generated by 
the rules as they do not affect the control-flow logic. 

 

4 Orchestrator modelling 
Synthesised orchestrators provide the grounding for 
migrating choreographies to orchestrations, which can 
then be augmented with additional functionality, such as 
lower-level multi-party message adaptation, or higher-
level value-adding. 

While state machines provide a practical bridge 
between the two service composition viewpoints, they are 
not very readable or maintainable due to state explosion, 
a drawback encountered where multiple messages may be 
exchanged in any order. In such a scenario, each possible 
sequence of message exchanges must be explicitly 
represented, leading to verbose FSMs, which although 
executable, are not easily maintainable. 

 
Figure 11: Rules and their dependencies

 



 
Figure 12: Petri net to BPMN transformation rules 

 

We chose to model all message interactions with 
BPMN tasks without any BPMN message event elements 
to reduce the repetition that is prevalent with message 
forwarding, where a message is sent immediately after it 
is received. Tasks are therefore used for modelling 
message receiving, sending, and forwarding. The 
example cases in Figure 12 consider only orchestrated 
interactions which forward messages, but the rules are 
equally applicable to Petri nets describing interactions of 
individual parties, such as the buyer or the supplier. In 
such instances, tasks are for sending and receiving only. 

5 Validation 
We developed tooling to validate the synthesis algorithm 
and rule-based transformations. Utilising the Eclipse 
Modelling Framework (EMF) we created a graphical 
editor to design interface FSMs, which were used by an 
implementation of the algorithm to produce models 
readable in the same editor. We extracted around two 
dozen sample choreographies from two industry 
standards for business-to-business interactions, namely 
the XML Common business Library (xCBL) (xCBL.org 
2000) and the Voluntary Inter-industry Commerce 
Standard (VICS) (GS1 US 2007). The examples had 
between two and four participants, arranged in different 
topologies and with varying numbers of states and 
transitions per interface FSM. By altering the FSMs of 
choreography participants, we also generated sample 
choreographies with deadlocks that the tool was able to 
detect. 

We noticed state machine orchestrators involving four 
parties became very verbose, as pairs of services may 
interact independently, thereby confirming the value of 
representing orchestrators in a higher-level language such 
as BPMN. 

The tool for transforming Petri nets into BPMN 
diagrams utilises ProM (van Dongen, de Medeiros et al. 
2005), a framework for process mining and analysis, 

which provides a Petri net object model and an API for 
invoking the Petrify tool. BPMN diagrams are created 
through API and then imported into the BPMN modeller 
included in the SOA Tools Platform Project1. 

We tested an implementation of the transformation 
rules using the collection of choreographies mentioned 
above, and successfully automated the generation of 
correct BPMN diagrams for orchestrators, and for 
individual choreography participants. 

6 Related work 
The language for service behaviour modelling 

proposed in this paper is directly inspired from work in 
the area of behaviour specification for software 
components and services (Yellin and Strom 1997; 
Benatallah, Casati et al. 2006). Our assumption of 
synchronous communication is also inspired from this 
prior work. Although this assumption may be seen as 
inapplicable in some cases, it has been shown that under 
some conditions, it is possible to transpose results 
obtained under the synchronous communication 
assumption to an asynchronous communication medium 
(Yellin and Strom 1997; Bultan, Su et al. 2006).  

Standard notations for specifying orchestrations and 
choreographies include BPMN and BPEL. BPMN is 
intended for modelling business processes involving 
human tasks and/or automated tasks. Automated tasks in 
BPMN are typically delegated to external services. A 
BPMN model that includes only service tasks is 
essentially an orchestration. BPMN has also been shown 
to be suitable for modelling choreographies (Decker and 
Barros 2008). BPEL on the other hand, is primarily 
intended to model orchestrations. However, it is also 
possible to use BPEL for specifying business protocols 
(an alternative term for designating behavioural 
interfaces), and extensions to BPEL have been proposed 
                                                           
1 http://www.eclipse.org/stp/ 



to make it usable for capturing choreographies (Decker, 
Kopp et al. 2007).  

Both BPMN and BPEL can be translated to Petri nets 
using existing techniques. A transformation from BPEL 
to state machines is implemented by the WS-Engineer 
toolset (Howard, Emmerich et al. 2007). We are not 
aware of direct transformations from BPMN to state 
machines, but transformations exist from BPMN to Petri 
nets (Dijkman, Dumas et al. 2008), which under certain 
assumptions can then be expanded into state machines. 

A transformation from FSMs to BPEL has also been 
proposed (Zhao, Bryant et al. 2005), however this 
transformation does not attempt to identify concurrent 
regions in the FSM in order to obtain a simpler BPEL 
process definition. Instead, the generated BPEL process 
definitions are fully sequential (no ‘parallel flow’ 
activities). Thus, if the original FSM is complex due to 
concurrent message exchanges being represented as 
interleaved sequences of message exchanges, the 
resulting BPEL process definitions will mirror this 
complexity. 

In this paper, we use techniques from the theory of 
regions (Cortadella, Kishinevsky et al. 1998) to transform 
state machines to Petri nets. We then show how these 
Petri nets can be transformed to BPMN diagrams. Once a 
BPMN diagram is obtained, other existing techniques can 
be applied to transform these diagrams into BPEL for 
implementation purposes (Ouyang, Dumas et al. 2008). 

The work presented in this paper can also be related 
to work on controllability analysis of service protocols 
(Lohmann et al. 2008). Controllability analysis is 
concerned with the following question: given a service 
protocol P, is there a partner protocol P' such that the 
choreography consisting of P and P' possesses certain 
characteristics such as proper termination? Meanwhile, in 
our work we take a choreography as a starting point, and 
we derive an orchestrator that is able to interact with all 
the existing parties in the choreography in order to 
mediate between all their interactions. 

7 Conclusion 
We have presented a tool chain for synthesising the 
behaviour of an orchestrator from a service choreography. 
This tool chain effectively provides a basis for altering 
the topology of a service-oriented system composed of 
services that engage in long-running conversations with 
one another.  

The tool chain starts with the assumption that 
choreographies are represented as communicating FSMs, 
and that the communication medium is synchronous. We 
argued that state machines provide a suitable starting 
point for this tool chain, pointing out that, under 
reasonable assumptions, it is possible to transform 
choreographies specified using standard languages such 
as BPMN and BPEL into FSMs. We also argued that the 
assumption of synchronous communication provides a 
suitable basis for studying the problem of synthesising 
orchestrators from choreographies. Nonetheless, it would 
be interesting in future work to study the implications of 
relaxing this assumption. 

At the core of the proposed tool chain lies an 
algorithm that takes as input a choreography captured as a 
collection of inter-connected FSMs, and synthesises an 

orchestrator, also captured as an FSM. Acknowledging 
that FSMs do not provide a suitable basis for capturing 
orchestrator interfaces, the tool chain reuses an existing 
technique to transform the synthesised FSM into a Petri 
net. We then provide a rules-based transformation from 
Petri nets to BPMN, thus enabling orchestrator synthesis 
from choreographies using standard notations. 

The proposed tool chain, including the algorithm for 
orchestrator synthesis and the transformation from Petri 
nets to BPMN, has been implemented and tested against 
choreographies extracted from industry standards. 

As discussed in Section 1, orchestrators provide a 
single entry point into a service composition, and as such, 
they can facilitate the introduction of added value into a 
service composition. In particular, orchestrators can act as 
single points of payment or as entry points for tracking a 
service composition. A direction for future work is to 
study the organisational implications and the 
opportunities opened by the possibility of changing the 
topology of a service composition from a choreographed 
style to an orchestrated style. 
Acknowledgment: This work was partly funded by an 
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