
Synthesis of Orchestrators from Service Choreographies

Stephen McIlvenna1, Marlon Dumas2,1, Moe Thandar Wynn1

1Faculty of Science and Technology, Queensland University of Technology
GPO Box 2434, Brisbane, Queensland 4001, Australia

{s.mcilvenna, m.wynn}@qut.edu.au

2Institute of Computer Science, University of Tartu, Estonia
marlon.dumas@ut.ee

Abstract
Interaction topologies in service-oriented systems are
usually classified into two styles: choreographies and
orchestrations. In a choreography, services interact in a
peer-to-peer manner and no service plays a privileged
role. In contrast, interactions in an orchestration occur
between one particular service, the orchestrator, and a
number of subordinated services. Each of these topologies
has its trade-offs. This paper considers the problem of
migrating a service-oriented system from a choreography
style to an orchestration style. Specifically, the paper
presents a tool chain for synthesising orchestrators from
choreographies. Choreographies are initially represented
as communicating state machines. Based on this
representation, an algorithm is presented that synthesises
the behaviour of an orchestrator, which is also represented
as a state machine. Concurrent regions are then identified
in the synthesised state machine to obtain a more compact
representation in the form of a Petri net. Finally, it is
shown how the resulting Petri nets can be transformed
into notations supported by commercial tools, such as the
Business Process Modelling Notation (BPMN)..
Keywords: service composition, choreography,
orchestration, Petri nets, BPMN.

1 Introduction
A Service-Oriented Architecture (SOA) is a software
architecture where the basic elements are services,
meaning entities offer some functionality to other entities,
which themselves can be services. At the implementation
level, an SOA manifests itself in the form of a collection
of software services that exist at certain endpoints and
exchange messages according to certain contracts. A
software service is called a Web Service (WS) if it
applies Web standards such as eXtensible Markup
Language (XML), Web Service Description Language
(WSDL), and/or SOAP.

A typical approach to design an SOA is to identify
basic services and then to compose them into larger
services, or conversely, to identify larger services and to
then decompose them into smaller services. In either case,

Copyright © 2009, Australian Computer Society, Inc. This paper
appeared at the Sixth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2009), Wellington, New Zealand, January
2009. Conferences in Research and Practice in Information
Technology, Vol. 96. Markus Kirchberg and Sebastian Link, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

the cornerstone for SOA design is the definition of
compositions of services. This work is concerned with
how these compositions of services are modelled, and
specifically, how different perspectives for modelling
such compositions of services can be reconciled.

Depending on their interaction topology, service
compositions are usually classified into two styles:
choreographies and orchestrations (Peltz 2003). In a
choreography, no service plays a privileged role (peer-to-
peer topology), whereas in an orchestration, interactions
occur between one particular service, the orchestrator,
and a number of other subordinated services (hub-and-
spoke topology). For example, Figure 1 illustrates a
business-to-business choreography involving a buyer, a
supplier and a shipper, while Figure 2 shows the
corresponding orchestration.

buyer

shipper

supplier

Figure 1: Choreographed composition

Figure 2: Orchestrated composition

The choice between a choreographed and an
orchestrated service composition approach may be driven
by a number of factors, often of an organisational nature.
With reference to the above example, it may be that
initially, the supplier deals with a single shipper for all
orders. The buyer interacts with the supplier in order to
agree on the purchase order and to pay for the goods, but
when it comes to delivery issues, the buyer needs to
interact directly with the shipper. Subsequently, the
supplier may decide that in order to provide a more
uniform customer experience and to closely monitor the
performance of its shippers, it is desirable to have a single

point of interaction with the customer (the ‘orchestrator’
in Figure 2). This orchestrator would handle interactions
related to the purchase order, payment and also delivery.
Having done that, it becomes possible to introduce
additional value-added services in the orchestrator, such
as providing the buyer with the possibility to choose
between making a single payment for the goods and for
the delivery, or making separate payments, or choosing
between different delivery modes.

From the technical perspective, this change in
topology requires that an orchestrator is developed and
deployed and that all the interactions between the services
in the composition be channelled through the
orchestrator. This paper provides a technique to automate
the development of such an orchestrator from a given
choreography.

Choreographies are initially represented using Finite
State Machines (FSMs). Based on this representation, an
algorithm is presented that synthesises the behaviour of
an orchestrator, which is also represented as a state
machine. The synthesised state machine may be rather
large and unreadable, because the interactions that an
orchestrator needs to manage tend to occur in any order
or in parallel, and this parallelism leads to state explosion.

Accordingly, concurrent regions are identified in the
synthesised state machine in order to obtain a more
compact representation in the form of a Petri net. This is
achieved using existing results from the field of theory of
regions (Cortadella, Kishinevsky et al. 1998). The paper
then shows how the resulting Petri nets can be
transformed into notations supported by commercial
tools, such as the Business Process Modelling Notation
(BPMN) (Object Management Group 2008). The result is
a skeleton of an orchestrator. This skeleton can be
extended and refined using existing business process
modelling tools and used as a basis to generate code in
executable languages such as the Business Process
Execution Language (BPEL).

The entire tool chain for orchestrator synthesis is
depicted in Figure 3. The specific contributions of the
paper are: (i) a technique for synthesising orchestrators
from choreography specifications using state machines as
a specification language, and (ii) a technique for
transforming Petri nets into BPMN diagrams. The tool
chain, starting from a choreography specified as FSMs,
has been implemented and tested on a number of
scenarios with varying degrees of complexity.

Figure 3: Composition viewpoints bridged by

orchestrator synthesis with state machines

The rest of the paper is structured as follows. Section 2
provides some background on service behaviour
modelling. Section 3 presents the proposed orchestrator
synthesis algorithm. Section 4 shows how Petri nets
representing the resulting orchestrator can be transformed
into BPMN diagrams. Section 5 describes the validation

of the approach and Section 6 discusses related work.
Conclusions are drawn in Section 7.

2 Background: Modelling service behaviour
Choreographies can be described as a set of interface
FSMs, where an interface FSM defines both the message
exchanges in which a given participant can engage, and
their message control-flow dependencies.

In an environment where messages can be buffered
and transmission is not instantaneous, unbounded queues
can be problematic for compatibility verification (Bultan,
Su et al. 2006). Reasoning with protocols can be
simplified by either bounding the queue length (Berardi,
Calvanese et al. 2005), or removing queues entirely
(Benatallah, Casati et al. 2006).

An assumption sometimes taken (Yellin and Strom
1997; Benatallah, Casati et al. 2006) is an environment
where message transmission is instantaneous, meaning
the FSMs of the sender and receiver for any given
interaction advance in synchrony. While this assumption
is not in line with some communication protocols which
support asynchronous message transfer, it appears
solutions developed under the assumption of synchronous
messaging may be transposable to asynchronous
environments as referred to in Section 6. Thus, we make
this assumption of synchronicity to simplify orchestrator
synthesis.

Having made this assumption about the
communication medium, we also need to adopt a
language for capturing service behaviour. Languages
such as BPMN and BPEL could be used to for this
purpose. However, these languages are complex in terms
of the number of constructs they support, hindering their
suitability as a basis for reasoning about service
behaviour. Also, these languages are meant for capturing
service-oriented business processes rather than capturing
the behaviour that one service exposes to other services.
For example, both languages allow one to capture internal
actions and decisions that a service-oriented process
makes during its execution. However, when capturing
service behaviour for orchestrator synthesis purposes, we
are only interested in capturing the externally visible
behaviour that each service exposes.

In light of this, we adopt FSMs as the language for
capturing service behaviour. This choice is in line with
previous work on component and service behaviour
specification (Yellin and Strom 1997; Benatallah, Casati
et al. 2006; Berardi, Calvanese et al. 2005). Accordingly,
a choreography is captured as a collection of
communicating state machines. This design choice is
further justified in Section 6.

Specifically, we rely on the notion of interface FSM,
which is essentially an FSM where the transitions are
labelled with communication actions – either sending or
receiving a message. To ensure protocols describe only
external behaviour, the FSMs we deal with are
deterministic, meaning that every state is labelled, and for
any given state there are no two outgoing transitions with
exactly the same label. In order to deterministically
model choices based on message content, we use Boolean
guards expressed in terms of message content. For
example to capture the requirement that depending on the
content of a message of type OrderResponse, the FSM

should follow one transition or another, we append
expressions like [processed=true] and [processed=false]
to the message type. Hence, one transition could be
labelled with ‘OrderResponse[processed=true]’ and
another with ‘OrderResponse[processed=false]’.

The orchestrators synthesised by the algorithm
presented later in the paper, typically perform message
forwarding, and we found that representing a message
forwarding action as separate receive and send transitions
leads to cumbersome models. To simplify the
specification of orchestrators, message exchanges are
represented as a quadruplet Exchange = (pfrom : Party,
pto : Party, msg : MessageType, forwarding : Boolean).
This tuple specifies the initial sender of the message, the
final recipient of the message, the type of the message,
and whether the message is directly exchanged between
the two parties or it is received from one party (by the
orchestrator) and forwarded to the other.

Formally, an interface FSM is a tuple (S, s0, E, δ)
where:

• S is a set of states. A state is labelled with an
identifier in the case of an elementary state, or a
tuple, possibly with other nested tuples, in the case
of a composite state derived during the merging of
tw or more other interface FSMs. o

• s0 א S is the initial state.
• E is a set of message exchanges specified as

quadruplets, as previously discussed.
• δ : S × E → S is a transition function to connect

states via message exchanges.
A behavioural interface is defined as a combination

of an interface FSM and the set of parties the FSM
represents, the pair (P : {Party}, sm : FSM). Normally,
the set of parties P of a behavioural interface will contain
only one element, because a behavioural interface
represents the behaviour that one party exposes to one or
several parties. But in the case of an orchestrator service,
the behavioural interface represents the aggregated
behaviour of multiple subordinated services and P will
contain multiple parties. For convenience, we will use the
term orchestrator interface, as shorthand to refer to the
behavioural interface of an orchestrator service.

Behavioural interfaces of the choreography
participants in our working example are shown in Figures
4 to 6.. These interfaces are based on the Voluntary Inter-
industry Commerce Standard (VICS) for order
management (GS1 US 2007).

Figure 4: Behavioural interface of the buyer

Figure 5: Behavioural interface of the supplier

Figure 6: Behavioural interface of the shipper

3 Orchestrator synthesis
The goal of orchestrator synthesis is to generate a
behaviourally compatible message forwarding service
capable of intercepting messages within a given
choreography. In this paper, we propose a synthesis
algorithm which merges interface FSMs from any
number of parties in a choreography to produce an
orchestrator. The algorithm comprises three main
functions and makes use of the following auxiliary
functions:

• For any ordered list L, enqueue(L, n) adds n to the
end of L, and dequeue(L) removes the first
element from the front of L. If n is a list, each
element is added in order to the end of L.

• For a message exchange e, fromParty(e),
toParty(e), msg(e), forwarding(e), retrieve the
corresponding components.

• For a state machine sm, states(sm) returns all
states, initialState(sm) the initial state, and
finalStates(sm) the set of final states, which is
derivable by finding all states having no outgoing
transitions.

• For a composite state c, s1(c) and s2(c) return the
two contained states.

• For a transition t, exchange(t) returns the message
exchange, and source(t) and target(t) the source
and target states respectively.

For better logic clarity, δ is also characterised as a set
of Transition objects, each composed of a message
exchange, one source and one target state. Also,
unordered sets are denoted by {} and ordered lists by [].

3.1 Synthesis of multiple interfaces
Our algorithm is capable of synthesising any number of
behavioural interfaces forming a choreography into a
single orchestrator interface. The approach used is to
fully merge two of the input interfaces, then merge the
result with a third interface, and so on in pairs, until all
input interfaces have been synthesised into the
orchestrator. This high level processing of taking all input
interfaces and synthesising the orchestrator is performed
by Function 1, synthesise(), and is visualised in Figure 7.
If a deadlock condition is detected while synthesising any
interface pair, synthesise() immediately indicates
synthesis is not possible.

Function: synthes ise
Input: Iall : [Interface]
Output: Interface ڂ Deadlock
Preconditions: |Iall| ≥ 2
Variables: synthesised : Interface ڂ Deadlock
begin
 synthesised ؔ synthesiseInterfacePair(

dequeue(Iall), dequeue(Iall))
 if synthesised is Deadlock
 return synthesised
 end if
 while Iall ≠ []
 synthesised ؔ synthesiseInterfacePair(

synthesised, dequeue(Iall))
 if synthesised is Deadlock
 return synthesised
 end if
 end while
 return synthesised
end

Function 1: synthesise()

Input interfaces must be ordered according to the role
of each interface in the choreography. It is assumed only
one interface FSM can send a message from the initial
state – the others start their execution by receiving a
message. In the case of the choreography involving a
buyer, a supplier and a shipper, the buyer would start the
choreography. The two interfaces exchanging the first
message must be the first two in the input list to ensure
the synthesised orchestrator interface captures the
choreography from start to end. Subsequent interfaces in
the list must appear in the order they come into the
choreography. The effect of this ordering on the working
example is shown in Figure 7.

buyer

shipper

buyer, supplier, shipper

buyer, supplier

or1

3

2
supplier

or1 2

Figure 7: Synthesis of interface pairs showing the

ordering of the input list

3.2 Synthesis of an interface pair
A pair of interfaces can be completely merged by
Function 2, synthesiseInterfacePair(), depicted in
Figure 8. This function synchronously traverses the two
input interfaces to build the orchestrator interface by
performing a breadth-first search of the two input FSMs,
and combining the lists of parties represented by both
interfaces. The input FSMs are searched in synchrony by
looking at state pairs where a state pair is composed of a
state from each FSM. Merging a pair of interfaces is
realised with a visitor pattern (Palsberg and Jay 1998) to
perform the breadth-first search.

Figure 8: Overview of synthesiseInterfacePair()

The root node for performing a breadth first search is
the composite state derived from the two initial states of
input FSMs. This state is the initial state of the
synthesised FSM, and is placed in a queue of states to be
processed. Only composite states are placed in this queue,

and each time one is dealt with, it is placed into a pool of
states which have already been processed. Each state is
visited only once. Synthesis of the input pair is complete
when all states have been visited and the queue of states
to visit is empty.

After the initial state has been removed from the
queue, another function attempts to find pairs of message
exchanges that can occur between the two input FSMs. A
match is apparent when both FSMs can synchronously
exchange a message and advance to their next respective
states.

As seen in Function 3, transitionPairings() explores
which messages can be sent or received from the states
currently being processed from each input FSM, and
attempts to find matches. If a match is found, the pair of

transitions is added as a tuple to a set of pairings. If a
match for a transition is not found, it is added to a tuple
with the other element empty, representing that the
interaction cannot yet be orchestrated, which is a normal
situation if the party with which this transition should be
paired has not yet been dealt with. A tuple indicating that
a transition could not be matched is only added to the set
of pairings if the exchange is orchestrated, or is related to
an interface not yet considered for orchestrator synthesis.
Otherwise, the inability to match a given transition with
at least one other transition means that one party can send
a message while the other is not in a state to receive it, or
vice-versa. In some cases, if there is no other way to
progress to a new pair of states from the current pair of
states, this situation indicates a deadlock.

Function: synthes InterfacePair ise
Input: ia = (Pa, sm {Sa, s0_a, Ea, δa}) : Interface, ib = (Pb, smb = {Sb, s0_b, Eb, δb}) : Interface a =
Output: Interfa ڂ ce Deadlock
Preconditions: ׊s א Sb , s is ElementaryState
Variables: s0_m , scurrent , snew , stoAdd : CompositeState
StoVisit : [CompositeState], Svisited : {CompositeState}
smm = {Sm, s0_m, Em, δm} : FSM
ta_mustSynthesise : {Transition}, tb_mustSynthesise : {Transition}
enew : Exchange
TPall : {(Transition, Transition)}
begin
 s0_m := (s0_a, b) s0_
 states(sm ؔm) {s0_m}
 enqueue(Sto , s0Visit _m)
 Pknown ؔ Pa ڂ b P
 ta_mustSynthesise {t δa ; e | fromParty(e) known ; toParty(e) known ; forwarding(e) ؔ א P א exchange(t) א P א ൓ • t}
 tb_mustSynthesise ؔ {t א δb ; e א exchange(t) | fromParty(e) א Pknown ; toParty(e) א Pknown ; ൓forwarding(e) • t}
 while StoV ≠ {} isit
 scurrent dequeu (StoVisit) := e
 Svisited ؔ Svisited ڂ {scurrent}
 TPall = transitionPairings(ia, s1(scurrent), ib, s2(scurrent))
 for each (ta) in Pall , tb T
 if ta ≠ NULL ٿ tb ≠ NULL
 snew (target(ta), target(tb)) ؔ
 enew (fromParty(exchange(ta)), toParty(exchange(ta)), msg(exchange(ta)), true) ؔ
 else if ta NULL =
 snew (s1(scurrent), target(tb)) ؔ
 enew exchange(tb) ؔ
 else
 snew (target(ta), s2(scurrent)) ؔ
 enew ؔ exchange(ta)
 end if
 sta (sm) ؔ states(smtes m m) ڂ {snew}
 exchang (sm) ؔ exchanges(smm) ڂ {enew} es m
 tm ؔ tm ڂ {(rent, enew) → s w} scur ne
 ta_mustS hesise a_mustS thesise ynt t yn {ta} ؔ \
 tb_mustS sise ؔ b_must thesise \ ynthe t Syn {tb}
 if snew ב Svisited ٿ snew ב StoVisit ٿ ൓(s1(snew) א finalStates(sma) ٿ s2(snew) א finalStates(smb))
 enqueue(StoVisit, snew)
 end if
 end for
 end while
 if ta_mustSynthesise ≠ {} ڀ tb_mustSynthesise ≠ {}
 return Deadlock
 end if
 return Interface(Pa ڂ Pb, smm)
end

Function 2: synthesiseInterfacePair()

Function: transitionPairings
Input: ia = (Pa, sma = (Sa, s0_a, Ea, δa)) : Interface,
sa : State, ib = (Pb, smb = (Sb, s0_b, Eb, δb)) : Interface,
sb : ElementarySta te
Output: {(Transition, Transition)}
Preconditions: sa א Sa; sb א Sb
Variables: Tpairs : {(Transition, Transition)}
Tout_a , Tout_b , Tdone_a , Tdone_b : {Transition}
Pknown : {Party}
begin
 Tout_a {t Ta | source(t) = sa} ؔ א
 Tout_b ؔ {t א Tb | source(t) = sb}
 for each ta in Tout_a
 for each tb in out_b T
 if exchan a) = exchange(tb) ge(t
 Tpairs ؔ pairs ڂ { a, tb)} T (t
 Tdone_a done_a a} ؔ T t} ڂ
 Tdone_b ؔ Tdone_b ڂ {tb}
 end if
 end or f
 end for
 Pknown ؔ a ڂ Pb P
 for each a in Tou t t_a
 if ta ב Tdone_a ٿ (fromParty(exchange(ta)) ב known ڀ P

toParty(exchange(ta)) ב Pknown) ڀ
forwarding(exchange(ta))

 Tpairs := Tpairs ڂ {(ta, NULL)}
 end if
 end for
 for each b in Tou t t_b
 if tb ב Tdone_b ٿ (fromParty(exchange(tb)) ב known ڀ P

toParty(exchange(tb)) ב Pknown) ڀ
forwarding(exchange(tb))

 Tpairs ؔ Tpairs ڂ {(NULL, tb)}
 end if
 end for
 return Tpairs
end

Function 3: transitionPairings()

With respect to the working example, when merging
the pair of behavioural interfaces (buyer, supplier), and
when the pair of states being processed is (buyer 4,
supplier 4) the message exchange (supplier → buyer,
Invoice, false) is not added to the pairings as it is known
this exchange cannot yet occur with the supplier, since
the supplier first needs to send a ShippingRequest to the
shipper. Therefore, for the state (buyer 4, supplier 4) the
pairing function only returns the tuple (NULL,
(supplier → shipper, ShippingRequest, false)) indicating
one non-orchestrated interaction be added to the
orchestrator interface.

If it occurs that the set of message exchange pairings is
empty, then there are no messages that can be
synchronously exchanged in the respective states of the
composite state being processed. Therefore, deadlock is
declared and orchestrator synthesis is terminated. The
partially synthesised orchestrator could also be preserved
if desired. If message exchange pairings are found, they
are added to the orchestrator interface, such that matching
exchange pairs are added as orchestrated exchanges,
where forwarding=true, and others as non-orchestrated
exchanges, where forwarding=false. Based on the result
of pairing message exchanges, a new message transition

is added to the synthesised FSM along with a composite
state representative of the synchronous advancement
performed. This new composite state is then queued for
processing, but only if the state has not already been
processed or queued for processing, and is not final.
Synthesis of the two input FSMs is complete once both
have been completely traversed.

With respect to the working example, the composite
state (buyer 4, supplier 4) causes the pairing function to
return (NULL, (supplier → shipper, ShippingRequest,
false)). The non-orchestrated interaction is added to the
orchestrator and the next state leading on from
(buyer 4, supplier 4) is computed. This next state will
involve the same buyer state (buyer 4) since the first
element of the pairing tuple is NULL, and will involve
the next supplier state (supplier 5). The state
(buyer 4, supplier 5) is then added to the queue of states
to visit.

The product of synthesising the buyer and supplier
interfaces is shown in Figure 9, where each state (buyer x,
supplier y) is shortened to (bx, sy). All interactions
involving the buyer and supplier are orchestrated since
these parties are fully represented in the orchestrator.
Before the shipper is processed, it is not possible to know
whether its interface FSM is compatible with that of the
other services in the choreography, so interactions
involving the shipper remain non-orchestrated.

Finally, synthesise() processes the shipper interface
and the interface where P = {buyer, supplier} to produce
the complete orchestrator P = {buyer, supplier, shipper}.

Figure 9: Result of merging the buyer and

supplier interfaces

The synthesiseInterfacePair function performs a depth-
first search over a graph whose nodes represent pairs of
state – one state from each interface being synthesised.
Each of these ‘state pairs’ is visited at most once.
Similarly, every pair of transitions (one transition from
each of the original state machines) is visited at most
once. Thus the wost-complexity of the algorithm is
O(N1*N2 + E1*E2) where N1 and N2 are the number of
states in each of the two interfaces, and E1 and E2 are the
number of transitions.

3.3 Deadlock detection Petri nets provide a graphical language capable of
expressing concurrent interactions, and consist of place
nodes, transition nodes, and directed arcs. They have
been used for high level workflow management (van der
Aalst 1998) and on a more detailed level for modelling
process behaviour (Hinz, Schmidt et al. 2005).

The synthesis algorithm detects deadlock within
synthesiseInterfacePair() by identifying non-synthesised
transitions in both input interfaces which block
synchronous advancement and cause any transition to not
be added to the synthesis product. With respect to our
working example, let’s try to synthesise the interface pair
from Figure 9 and Figure 10. The set of known parties for
this synthesis is {buyer, supplier, shipper} meaning the
synthesised product captures the combined behaviour of
these three parties, and therefore all interactions between
these three parties must be captured as orchestrated
interactions in the synthesised interface.

4.1 State machines to Petri nets
We leverage the theory of regions (Cortadella,
Kishinevsky et al. 1998) to identify regions of
concurrency in FSMs, and replace these regions with
their concurrent equivalents. The techniques derived from
this theory are implemented in the Petrify tool
(Cortadella, Kishinevsky et al. 1997). By reusing this
tool, we can transform interface FSMs into free-choice
Petri nets with concurrency.

A Petri net is said to be free-choice if and only if for
every two transitions, if they share any input place, they
share all input places (Chrzastowski-Wachtel, Benatallah
et al. 2003). We enforce this restriction to prevent mixing
of choice and synchronisation, which is difficult to
represent in a higher level modelling language. Once
orchestrators are represented as Petri nets, logic is easier
to read, but the model clarity can be further improved for
business users or developers if displayed in a recognised
modelling language such as BPMN or BPEL. We
identified value-adding augmentation as a potential use of
orchestrators, so we developed a technique to translate
Petri nets into BPMN diagrams, so value can be added at
a business level by altering the logic in the diagrams.

Figure 10: Shipper interface with an interaction
causing deadlock

The synthesis algorithm proceeds normally until the
shipper attempts to send a DeliveryNotice to the supplier
(the interaction highlighted in Figure 10). At this stage,
the supplier’s behaviour is already fully captured in the
interface with which the shipper’s interface is being
merged (the interface shown in Figure 9), and it is known
that the supplier can never be in a state where it can
receive a message of type DeliveryNotice. Prior to
attempting synthesis of the interfaces in Figure 9 and
Figure 10, this troublesome transition in the shipper’s
interface is earmarked as being a ‘must synthesise’
transition because it is non-orchestrated and involves only
synthesised parties. Since the transition cannot be
traversed during the synthesis, it remains marked as ‘must
synthesise’, along with any subsequent, unreachable
transitions and other untraversed transitions from the
interface in Figure 9. Deadlock is therefore detected if
any ‘must synthesise’ transition cannot be synthesised.

4.2 Petri nets to BPMN
We developed a set of rules to transform Petri nets into
BPMN diagrams. These rules are summarised in
Figure 11, where each rule identifies a pattern in the
graph to be replaced by the output specified in the rule.
Dependencies between rules are introduced in order to
reduce the complexity of pattern definitions. An overview
of the rule patterns and outputs is presented in Figure 12,
taking snippets from an extended version of our working
example.

The rules are only concerned with the logic inside the
BPMN pool artefact representing the orchestrator. Other
pools and connecting message flows are not generated by
the rules as they do not affect the control-flow logic.

4 Orchestrator modelling
Synthesised orchestrators provide the grounding for
migrating choreographies to orchestrations, which can
then be augmented with additional functionality, such as
lower-level multi-party message adaptation, or higher-
level value-adding.

While state machines provide a practical bridge
between the two service composition viewpoints, they are
not very readable or maintainable due to state explosion,
a drawback encountered where multiple messages may be
exchanged in any order. In such a scenario, each possible
sequence of message exchanges must be explicitly
represented, leading to verbose FSMs, which although
executable, are not easily maintainable.

Figure 11: Rules and their dependencies

Figure 12: Petri net to BPMN transformation rules

We chose to model all message interactions with
BPMN tasks without any BPMN message event elements
to reduce the repetition that is prevalent with message
forwarding, where a message is sent immediately after it
is received. Tasks are therefore used for modelling
message receiving, sending, and forwarding. The
example cases in Figure 12 consider only orchestrated
interactions which forward messages, but the rules are
equally applicable to Petri nets describing interactions of
individual parties, such as the buyer or the supplier. In
such instances, tasks are for sending and receiving only.

5 Validation
We developed tooling to validate the synthesis algorithm
and rule-based transformations. Utilising the Eclipse
Modelling Framework (EMF) we created a graphical
editor to design interface FSMs, which were used by an
implementation of the algorithm to produce models
readable in the same editor. We extracted around two
dozen sample choreographies from two industry
standards for business-to-business interactions, namely
the XML Common business Library (xCBL) (xCBL.org
2000) and the Voluntary Inter-industry Commerce
Standard (VICS) (GS1 US 2007). The examples had
between two and four participants, arranged in different
topologies and with varying numbers of states and
transitions per interface FSM. By altering the FSMs of
choreography participants, we also generated sample
choreographies with deadlocks that the tool was able to
detect.

We noticed state machine orchestrators involving four
parties became very verbose, as pairs of services may
interact independently, thereby confirming the value of
representing orchestrators in a higher-level language such
as BPMN.

The tool for transforming Petri nets into BPMN
diagrams utilises ProM (van Dongen, de Medeiros et al.
2005), a framework for process mining and analysis,

which provides a Petri net object model and an API for
invoking the Petrify tool. BPMN diagrams are created
through API and then imported into the BPMN modeller
included in the SOA Tools Platform Project1.

We tested an implementation of the transformation
rules using the collection of choreographies mentioned
above, and successfully automated the generation of
correct BPMN diagrams for orchestrators, and for
individual choreography participants.

6 Related work
The language for service behaviour modelling

proposed in this paper is directly inspired from work in
the area of behaviour specification for software
components and services (Yellin and Strom 1997;
Benatallah, Casati et al. 2006). Our assumption of
synchronous communication is also inspired from this
prior work. Although this assumption may be seen as
inapplicable in some cases, it has been shown that under
some conditions, it is possible to transpose results
obtained under the synchronous communication
assumption to an asynchronous communication medium
(Yellin and Strom 1997; Bultan, Su et al. 2006).

Standard notations for specifying orchestrations and
choreographies include BPMN and BPEL. BPMN is
intended for modelling business processes involving
human tasks and/or automated tasks. Automated tasks in
BPMN are typically delegated to external services. A
BPMN model that includes only service tasks is
essentially an orchestration. BPMN has also been shown
to be suitable for modelling choreographies (Decker and
Barros 2008). BPEL on the other hand, is primarily
intended to model orchestrations. However, it is also
possible to use BPEL for specifying business protocols
(an alternative term for designating behavioural
interfaces), and extensions to BPEL have been proposed

1 http://www.eclipse.org/stp/

to make it usable for capturing choreographies (Decker,
Kopp et al. 2007).

Both BPMN and BPEL can be translated to Petri nets
using existing techniques. A transformation from BPEL
to state machines is implemented by the WS-Engineer
toolset (Howard, Emmerich et al. 2007). We are not
aware of direct transformations from BPMN to state
machines, but transformations exist from BPMN to Petri
nets (Dijkman, Dumas et al. 2008), which under certain
assumptions can then be expanded into state machines.

A transformation from FSMs to BPEL has also been
proposed (Zhao, Bryant et al. 2005), however this
transformation does not attempt to identify concurrent
regions in the FSM in order to obtain a simpler BPEL
process definition. Instead, the generated BPEL process
definitions are fully sequential (no ‘parallel flow’
activities). Thus, if the original FSM is complex due to
concurrent message exchanges being represented as
interleaved sequences of message exchanges, the
resulting BPEL process definitions will mirror this
complexity.

In this paper, we use techniques from the theory of
regions (Cortadella, Kishinevsky et al. 1998) to transform
state machines to Petri nets. We then show how these
Petri nets can be transformed to BPMN diagrams. Once a
BPMN diagram is obtained, other existing techniques can
be applied to transform these diagrams into BPEL for
implementation purposes (Ouyang, Dumas et al. 2008).

The work presented in this paper can also be related
to work on controllability analysis of service protocols
(Lohmann et al. 2008). Controllability analysis is
concerned with the following question: given a service
protocol P, is there a partner protocol P' such that the
choreography consisting of P and P' possesses certain
characteristics such as proper termination? Meanwhile, in
our work we take a choreography as a starting point, and
we derive an orchestrator that is able to interact with all
the existing parties in the choreography in order to
mediate between all their interactions.

7 Conclusion
We have presented a tool chain for synthesising the
behaviour of an orchestrator from a service choreography.
This tool chain effectively provides a basis for altering
the topology of a service-oriented system composed of
services that engage in long-running conversations with
one another.

The tool chain starts with the assumption that
choreographies are represented as communicating FSMs,
and that the communication medium is synchronous. We
argued that state machines provide a suitable starting
point for this tool chain, pointing out that, under
reasonable assumptions, it is possible to transform
choreographies specified using standard languages such
as BPMN and BPEL into FSMs. We also argued that the
assumption of synchronous communication provides a
suitable basis for studying the problem of synthesising
orchestrators from choreographies. Nonetheless, it would
be interesting in future work to study the implications of
relaxing this assumption.

At the core of the proposed tool chain lies an
algorithm that takes as input a choreography captured as a
collection of inter-connected FSMs, and synthesises an

orchestrator, also captured as an FSM. Acknowledging
that FSMs do not provide a suitable basis for capturing
orchestrator interfaces, the tool chain reuses an existing
technique to transform the synthesised FSM into a Petri
net. We then provide a rules-based transformation from
Petri nets to BPMN, thus enabling orchestrator synthesis
from choreographies using standard notations.

The proposed tool chain, including the algorithm for
orchestrator synthesis and the transformation from Petri
nets to BPMN, has been implemented and tested against
choreographies extracted from industry standards.

As discussed in Section 1, orchestrators provide a
single entry point into a service composition, and as such,
they can facilitate the introduction of added value into a
service composition. In particular, orchestrators can act as
single points of payment or as entry points for tracking a
service composition. A direction for future work is to
study the organisational implications and the
opportunities opened by the possibility of changing the
topology of a service composition from a choreographed
style to an orchestrated style.
Acknowledgment: This work was partly funded by an
ARC Linkage Project (LP0669244) co-sponsored by SAP
and Queensland Government.

8 References
Benatallah, B., Casati, F., et al. (2006): Representing,

analysing and managing web service protocols. Data
Knowledge Engineering 58(3):327-357.

Berardi, D., Calvanese, D., De Giacomo, G., Hull, R. and
Mecella, M. (2005): Automatic composition of
transition-based semantic web services with
messaging. Proc. 31st VLDB Conference, Trondheim,
Norway, 613-624, VLDB Endowment.

Bultan, T., Su, J., et al. (2006): Analyzing conversations
of web services. IEEE Internet Computing 10(1):
18-25.

Chrzastowski-Wachtel, P., Benatallah, B., Hamadi, R.,
O’Dell, M. and Susanto, A. (2003): A top-down Petri
net-based approach for dynamic workflow modeling.
Proc. Business Process Management 2003,
Eindhoven, The Netherlands, 336-353, Springer-
Verlag.

Cortadella, J., Kishinevsky, M., Kondratyev, A. Lavagno,
L. and Yakovlev, A. (1997): Petrify: A tool for
manipulating concurrent specifications and synthesis
of asynchronous controllers. IEICE Transactions on
Information and Systems: 3(E80-D):315-325.

Cortadella, J., Kishinevsky, M., et al. (1998): Deriving
Petri nets from finite transition systems. IEEE
Transactions on Computers 47(8): 859-882.

Decker, G. and Barros, A. (2008): Interaction Modeling
using BPMN. In Business Process Management
Workshops, Lecture Notes in Computer Science,
4928:208-219, Springer-Verlag, Germany.

Decker, G., Kopp, O., Leymann, F. and Weske, M.
(2007): BPEL4Chor: Extending BPEL for modeling
choreographies. Proc. International Conference on
Web Services, Salt Lake City, Utah, USA, 296-303,
IEEE.

Dijkman, R. M., Dumas, M. and Ouyang, C. (2008):
Semantics and analysis of business process models in
BPMN. Information and Software Technology, To
appear.

GS1 US: Voluntary Interindustry Commerce Standard
(VICS), http://www.uc-
council.org/ean_ucc_system/stnds_and_tech/vics_edi.
html. Accessed 18 October 2007.

Hinz, S., Schmidt, K. and Stahl, C. (2005): Transforming
BPEL to Petri nets. Proc. International Conference on
Business Process Management, Nancy, France, 220–
235, Springer-Verlag.

Howard, F., Emmerich, W., Kramer, J., Magee, J.,
Rosenbalum, D. and Uchitel, S. (2007): Model
checking service compositions under resource
constraints. Proc. ESEC/FSE’07. Cavtat near
Dubrovnik, Croatia, 225-234, ACM.

Lohmann, N., Massuthe, P., Stahl, C. and Weinberg, D.
(2008): Analyzing interacting WS-BPEL processes
using flexible model generation. Data Knowledge
Engineering 64(1):38–54.

OASIS (2007): Web Services Business Process Execution
Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.
Accessed 4 February 2008.

Object Management Group (2008): Business Process
Modeling Notation, v1.1,
http://www.omg.org/docs/formal/08-01-17.pdf.
Accessed 24 March 2008.

Ouyang, C., Dumas, M., ter Hofstede, A. H. M., van der
Aalst, W. M. P. (2008): Pattern-based translation of
BPMN process models to BPEL web services.
International Journal of Web Services Research
5(1):42-61.

Palsberg, J. and Jay, C. (1998): The essence of the visitor
pattern. Proc. 22nd IEEE International Computer
Software and Applications Conference, Vienna,
Austria, 9-15, IEEE.

Peltz, C. (2003): Web services orchestration and
choreography. IEEE Computer 36(10):46-52.

van der Aalst, W. M. P. (1998): The application of Petri
nets to workflow management. Journal of Circuits,
Systems and Computers 8(1):21-66.

van Dongen, B., de Medeiros, A., Verbeek, H., Weijters,
A., and van der Aalst, W. (2005): The ProM
framework: A New Era in Process Mining Tool
Support. Proc. 26th International Conference on
Application and Theory of Petri Nets (ATPN), Miami,
Florida, 444-454, Springer-Verlag.

xCBL.org (2003): XML Common Business Library,
http://www.xcbl.org/xcbl40/documentation.shtml.
Accessed 12 September 2007.

Yellin, D. M. and Strom, R. E. (1997): Protocol
specifications and component adaptors. ACM
Transactions on Programming Languages and
Systems 19(2):292-333.

Zhao, W., Bryant, B.R., Cao, F., Bhattacharya, K. and
Hauser, R. (2005): Transforming Business Process
Models: Enabling Programming at a Higher Level.
Proc. IEEE International Conference on Services
Computing (SCC), Orlando, FL, USA, 173-180.
IEEE.

	1 Introduction
	2 Background: Modelling service behaviour
	3 Orchestrator synthesis
	3.1 Synthesis of multiple interfaces
	3.2 Synthesis of an interface pair
	3.3 Deadlock detection

	4 Orchestrator modelling
	4.1 State machines to Petri nets
	4.2 Petri nets to BPMN

	5 Validation
	6 Related work
	7 Conclusion
	8 References

