
Stage-based Discovery of Business Process Models from

Event Logs

Hoang Nguyena,b, Marlon Dumasc, Arthur H.M. ter Hofstedeb, Marcello La
Rosaa, Fabrizio Maria Maggic

aUniversity of Melbourne, Australia
bQueensland University of Technology, Australia

cUniversity of Tartu, Estonia

Abstract

An automated process discovery technique generates a process model from
an event log recording the execution of a business process. For it to be useful,
the generated process model should be as simple as possible, while accurately
capturing the behavior recorded in, and implied by, the event log. Most
existing automated process discovery techniques generate flat process models.
When confronted to large event logs, these approaches lead to overly complex
or inaccurate process models. An alternative is to apply a divide-and-conquer
approach by decomposing the process into stages and discovering one model
per stage. It turns out, however, that existing divide-and-conquer process
discovery approaches often produce less accurate models than flat discovery
techniques, when applied to real-life event logs. This article proposes an
automated method to identify business process stages from an event log and
an automated technique to discover process models based on a given stage-
based process decomposition. An experimental evaluation shows that: (i)
relative to existing automated process decomposition methods in the field of
process mining, the proposed method leads to stage-based decompositions
that are closer to decompositions derived by human experts; and (ii) the
proposed stage-based process discovery technique outperforms existing flat
and divide-and-conquer discovery techniques with respect to well-accepted
measures of accuracy and achieves comparable results in terms of model

Email addresses: hoang.nguyen1@unimelb.edu.au (Hoang Nguyen),
marlon.dumas@ut.ee (Marlon Dumas), a.terhofstede@qut.edu.au (Arthur H.M. ter
Hofstede), marcello.larosa@unimelb.edu.au (Marcello La Rosa), f.m.maggi@ut.ee
(Fabrizio Maria Maggi)

Preprint submitted to Information Systems May 7, 2019

complexity.

Keywords: Process mining, automated process discovery, modularity.

1. Introduction

Modern organizations generally execute their business processes on top
of process-aware information systems, such as Enterprise Resource Planning
(ERP) systems, Customer Relationship Management (CRM) systems, and
Business Process Management Systems (BPMS), among others [1]. These
systems record a wealth of events that occur during the execution of the pro-
cesses they support, including events signaling the creation and completion
of business process instances (herein called cases) and the start and comple-
tion of activities within each case. These event records can be extracted and
pre-processed to produce business process event logs [2]. A business process
event log consists of a set of traces, each trace consisting of the sequence
of event records produced by the execution of one case. Each event record
captures relevant data about the execution of a given activity in the process.

Process mining is a family of techniques to extract insights and knowledge
from business process event logs [2]. Among other things, process mining
techniques allow us to automatically discover a business process model from
an event log – an operation known as automated process discovery. For it to
be useful, an automatically discovered process model must accurately reflect
the behavior recorded in or implied by the log. Specifically, the process model
should recognize (i.e. parse) as much as possible the behavior in the event
log, while not allowing too much behavior that has not been observed in the
log. The former property is called fitness while the latter is called precision.
At the same time, the model should be as simple as possible, a property
usually quantified via complexity measures.

Traditional automated process discovery techniques are designed to pro-
duce a single “flat” process model from an event log. Examples of such
techniques include the Heuristics Miner [3], the Inductive Miner [4] and Fod-
ina (FO) [5]. When applied to real-life logs, these techniques produce overly
large and complex process models, oftentimes with either low fitness or low
precision [6]. For example, when applied to the event log of the 2012 Business
Process Intelligence Challenge (BPI12) [7] – an event log of a loan origination
process at a bank – the Inductive Miner produces a process model with a
precision below 0.1. After applying a filtering step to simplify the event log
and hyper-parameter optimization to find the best settings of the Inductive

2

Miner on this log, the precision raises to 0.77, which is relatively low for a
simplified event log of a well-scoped and well-defined process.

A natural approach to tackle these weaknesses is to apply a divide-and-
conquer approach. A divide-and-conquer automated discovery technique
starts by decomposing a log into a set of sublogs, then discovers one pro-
cess model per sublog, and finally merges the resulting process models into
a single one [8, 9, 10]. But while existing divide-and-conquer approaches
speed-up the execution time of automated process discovery compared to
flat discovery techniques, it turns out that they often have a negative im-
pact on the quality of the resulting model, both in terms of accuracy and
simplicity. For example, if we apply the Decomposed Process Miner [10] to
the aforementioned BPI12 log, the precision is less than 0.1 on the unfiltered
event log, and it only raises to 0.35 on the filtered one. A similar observation
can be made about the divide-and-conquer approach proposed in [8].

Inspired by previous studies on the benefits of modularity in process mod-
eling [11], this article argues that in order to enhance the quality of process
models produced by a divide-and-conquer approach, we need to decompose
the process in a way that maximizes modularity. To develop this argument,
the article proposes: (i) an automated method to identify stages from an
event log based on a modularity measure; and (ii) an automated technique
to discover a process model from an event log based on a given decomposition
of the activities in the event log into stages. The article then reports on an
experimental evaluation designed to test two hypotheses: (i) relative to exist-
ing automated process decomposition methods in the field of process mining,
the proposed stage-based decomposition method identifies stages that are
closer to decompositions derived by human experts; and (ii) the proposed
stage-based process discovery technique (namely the Staged Process Miner)
outperforms existing flat and divide-and-conquer discovery techniques with
respect to well-accepted measures of accuracy (fitness and precision) while
achieving comparable results in terms of model complexity.

This article is an extension of a previous conference paper [12]. The con-
ference paper introduced the method for identifying stages from an event log
and evaluated the first hypothesis postulated above, namely that automated
decompositions that maximize modularity are closer to human expert de-
compositions compared to automated decompositions that do not take into
account modularity. This article extends this previous result by presenting an
automated process discovery technique based on a given stage decomposition
and validating the second of the above hypotheses.

The rest of the paper is organized as follows. Section 2 introduces existing

3

automated process discovery techniques. Section 3 outlines the stage decom-
position method while Section 4 presents the stage-based process discovery
technique. Next, Section 5 discusses an empirical evaluation of the entire
approach. Finally, Section 6 concludes the paper and spells out directions
for future work.

2. Related Work

Process discovery techniques available in the literature can be classified
into techniques that produce flat process models and techniques that gener-
ate decomposed models. The Alpha Miner [13] is one of the earliest tech-
niques falling in the first group. The Alpha Miner has several limitations,
e.g. it cannot deal with short loops, non-local relations and noise. To over-
come these limitations, the Heuristics Miner was proposed in [3]. The main
idea of the Heuristics Miner is to use a set of heuristics to deal with noisy
data. Recent improvements of the Heuristics Miner include Fodina [5] and
the Structured Miner [14]. Fodina enhances the Heuristics Miner with im-
proved causal reasoning and more robust capability to deal with noise and
duplicate activities. The Structured Miner is an extension of the Heuristics
Miner, which tries to fix unsound constructions in the output of the Heuris-
tics Miner and to convert the resulting process model into a block-structured
process model.1 However, Structured Miner uses a best-effort approach and
it sometimes produces non-block-structured and unsound models (as Fodina
does). Inductive Miner [4] is an automated process discovery technique that
produces exclusively block-structured process models and hence guarantees
soundness, sometimes at the expense of precision as discussed above. Other
techniques such as the Genetic Miner [15], the Evolutionary Tree Miner [16],
and the ILP Miner [17] also produce flat models. However, they suffer from
long execution times when applied to large and complex event logs.

One of the earliest approaches that produces decomposed models (also
known as divide-and-conquer approaches) is the region-based process discov-
ery technique [8]. This technique applies graph cuts to a transition system
built from the event log, and then recursively discovers a Petri net for each
subgraph. Other techniques that produce decomposed models are presented

1A block-structured process model is a process model such that every split gateway has
a unique corresponding join gateway and vice-versa. A block-structured process models
can be represented as a tree where the internal nodes are operators such as Sequence,
XOR, AND, and Loop and the leaves correspond to activities of the process.

4

in [18, 19]. The technique proposed in [18] is based on passages that can
be used to localize and decompose the discovery problem into smaller prob-
lems. In [19], the authors propose an approach that employs approximate
functional and inclusion dependency discovery techniques in order to elicit
a process-subprocess hierarchy. Recently, the problem of divide-and-conquer
process discovery has been formalized [9] and validated with a specific im-
plementation in the Decomposed Miner [10]. As shown in the experimental
evaluation reported later in this article, the Decomposed Miner (DM) pro-
duces relatively imprecise process models (i.e. process models with high levels
of additional behavior) and unsound models, when applied to real-life logs.

In addition to the aforementioned decomposed process discovery ap-
proaches, there are other automated process discovery techniques that use
trace clustering to discover a collection of process models from an event
log, such that each discovered model describes a subset of the traces in the
log [20, 21, 22]. Also, approaches exist in the literature that tackle the op-
posite problem of discovering one single process model from collections of
logs. These approaches can be classified into two main categories: the ones
that merge the logs before mining (e.g. [23, 24]) and the ones that merge
the process models obtained by mining the logs separately (e.g. [25, 26]). In
this article, we address the problem of discovering one single process model
that describes the behavior of one single event log, as opposed to discovering
multiple models that describe the behavior of different subsets of the log or
discovering one single model from a collection of logs.

3. Stage Decomposition Method

The proposed method for extracting stages from an event log proceeds in
two steps. In the first step, we construct a weighted graph from the event log
capturing the directly-follows relation between activities in the process. In
the second step, we split the nodes in the graph (i.e. the activities) into stages
with the aim of maximizing a modularity measure. Below we introduce each
of these two steps in detail.

3.1. From Event Log to Directly-Follows Graph

Our approach takes as input an event log defined as follows.

Definition 1 (Event Logs). Given a set of events E, an event log EL is
a multiset of cases C, where a case c ∈ C is a sequence of events, i.e.
c = 〈e1, e2, . . . , en〉, with ei ∈ E, 1 ≤ i ≤ n. Each event is associated with an

5

activity label a ∈ A, which refers to an activity performed within a process.
We retrieve the activity label and the case of an event with functions act :
E → A and case : E → C.

Given a set of activity labels A = {A,B,C,D,E, F,G,H, U}, a possi-
ble log EL is given in Table 1. This log contains 9 distinct traces, where
each distinct trace is called a trace variant. Each variant has a number of
occurrences in the log.

Variant Trace Occurrences

1 ABCUEF 10

2 ADUG 10

3 ABEFADUG 4

4 ACDUG 1

5 ABUG 1

6 ABDUG 1

7 ADUH 2

8 ADUHE 1

9 ADUGF 1

10 ADUK 1

Table 1: Example event log

A process graph is a directed graph in which nodes represent activities and
edges represent directly-follows relations between activities. For example, if
activity b occurs after activity a in a case, the graph contains a node a,
a node b and a directed edge from a to b. In addition, edges carry weights
representing the frequency of the directly-follows relation between two related
activities in the log.

Definition 2 (Process Graph). A process graph of an event log EL=(E,
ET , A, C, time, act, type, case) is a graph GEL = (VEL, FEL,WEL), where:

• VEL is a set of nodes, each representing an activity, i.e. VEL = A.

• FEL is a set of directed edges, each representing the directly-follows
relation between two activities based on events. Activity a2 directly
follows activity a1 if there is a case in which the event e2 of a2 follows
the event e1 of a1 without any other events in-between, i.e. e1 is in a

6

direct sequence with e2. Event e1 is in a direct sequence with e2, denoted
e1 −→ e2, iff e1 ∈ E ∧ e2 ∈ E ∧ e1 6= e2 ∧ case(e1) = case(e2) ∧ e1 .E

e2∧@e3 ∈ E[e3 6= e1∧e3 6= e2∧case(e3) = case(e1)∧e1 .E e3∧e3 .E e2].
Thus, FEL = {(a1, a2) ∈ VEL×VEL|∃e1, e2 ∈ E[act(e1) = a1∧ act(e2) =
a2 ∧ e1 −→ e2]}.

• WEL is a function that assigns a weight to an edge, WEL: FEL →
IN+

0 . The weight of an edge connecting node a1 to node a2, denoted
WEL(a1, a2), is the frequency of the directly-follows relation between a1

and a2 in the log, i.e. WEL(a1, a2) = |{(e1, e2) ∈ E × E|act(e1) =
a1 ∧ act(e2) = a2 ∧ e1 −→ e2}|.

The process graph constructed above has a set of start nodes called
firstacts containing the first activities of all cases, and a set of end nodes
called lastacts containing the last activities of all cases, i.e. firstacts(VEL) =
{a ∈ VEL|∃e ∈ E: [act(e) = a ∧ @e′ ∈ E|e′ −→ e]}, and lastacts(VEL) = {a ∈
VEL|∃e ∈ E: [act(e) = a ∧ @e′ ∈ E|e −→ e′]}.

From a process graph, we can derive a corresponding directly-follows
graph, which has only one source node i and one sink node o.

Definition 3 (Directly-Follows Graph - DFG). The DFG of a process
graph GEL = (VEL, FEL,WEL) is a graph FL(GEL) = (V FLG

EL , FFLG
EL ,WFLG

EL),
where:

• V FLG
EL = VEL ∪ {i, o}, {i, o} ∩ VEL = ∅.

• FFLG
EL = FEL ∪ {(i, x)|x ∈ firstacts(VEL)} ∪ {(x, o)|x ∈ lastacts(VEL)}

• WFLG
EL (a1, a2) =


WEL(a1, a2) if a1 6= i ∧ a2 6= o

|{e ∈ E|act(e) = a2 ∧ [@e′ ∈ E|e′ −→ e]}| if a1 = i

|{e ∈ E|act(e) = a1 ∧ [@e′ ∈ E|e −→ e′]}| if a2 = o

Figure 1 illustrates a DFG constructed from the example log in Table 1.

3.2. Stage Decomposition and Quality Measure

Given a DFG , we seek to partition it into a sequence of fragments (which
we will call stages), each consisting of a subset of the nodes in the DFG , such
that the stages correspond to quasi-SESE (single entry single exit) fragments
of the DFG . Here, a quasi-SESE fragment is one that has an identifiable

7

16

21

1

1910

1

1

4

1

1

10

1

10 18

31

14

4

32

1

11

17

21

A

36

B

16

C

11

U

32

E

15

F

15

D

21

G

18

H

3

K

1

Figure 1: DFG created from the event log in Table 1 using the Disco tool.

entry node and an identifiable exit node, such that the entry node has a
high inflow and the exit node has a high outflow, where the inflow (outflow)
of a node is defined as the total weight of its incoming (outgoing) arcs.
The entry and the exit nodes, which connect consecutive stages, are called
milestones. By identifiable, we mean that the entry and the exit nodes are the
main connection points between a stage and its preceding and/or succeeding
stages. There may be arcs going from a node in one stage directly to a node
in another stage, but these arcs should have a low weight relative to the
milestones.

Figure 1 shows an example DFG created from the log in Table 1 with

8

U as the milestone node. We aim at developing a method to extract a list
of stages from a DFG called a stage decomposition as shown in Figure 2,
where stages are non-overlapping sets of nodes with one node playing as
the milestone. The main flow of the process goes from the source node (i)
through stages and milestone nodes to the sink node (o). There are also
minor flows connecting stages and bypassing the milestone nodes.

Milestone Milestone
Activities Activities Activities

i o

Stage 1 Stage 2 Stage 3

Figure 2: Stage decomposition (arrow lines represent the main flow)

In order to measure the quality of a stage decomposition, we reuse a mea-
sure of modularity [27] previously proposed for detecting community struc-
tures in social networks. A community structure is characterized by a high
density of edges within a community and a low number of edges connecting
different communities. The higher the modularity is, the more a network ex-
hibits a community structure. Intuitively, this is a key property we seek in a
stage-based decomposition of a process. A stage-based decomposition should
be such that the density of connections between nodes inside a stage is high
relative to the density of connections between nodes across stages. Note that
despite having been developed in the field of social networks, the measure
of modularity in [27] does not make any assumption on the semantics of the
arcs in the graph. In particular, it does not assume that the edges in the
graph correspond to social relations.

We slightly adapt the modularity measure in [27] to make it applica-
ble to weighted and directed graphs, which are characteristics of DFGs.
Concretely, let S be a stage decomposition extracted from a DFG based
on an event log EL, and Si ∈ S, where i = 1 . . . |S|, be a stage. Let
WFLG

EL (Si, Sj) be the total weight of edges connecting Si to Sj (excluding

self-loops), WFLG
EL (Si, Sj) =

∑
a1∈Si,a2∈Sj ,a1 6=a2

WFLG
EL (a1, a2). Let W T be the total weight

9

of all edges in the graph excluding self-loops, W T =
∑

a1,a2∈V
FLG
EL ,a1 6=a2

WFLG
EL (a1, a2). Self-

loops are excluded in this definition because they should have a neutral effect
on modularity. Indeed, the chosen notion of modularity captures the propor-
tion of connections between two nodes inside a module (i.e. stage) relative to
the connections between two nodes located in different modules. A self-loop
does not involve two nodes and hence should not affect the modularity.

53

v v v

Si Sj Si Sj

0

(a) Before split

53

v v v

Si Sj Si Sj

0

(b) After split

Figure 3: Division of the milestone node for computing modularity

Let W
FL′G
EL (Si, Sj) be the total weight of edges connecting Si to Sj in the

modular graph. The modularity of a stage decomposition S is computed as
follows.

Q =

|S|∑
i=1

(Ei − A2
i), (1)

where Ei =
W

FL′G
EL (Si,Si)

WT is the fraction of edges that connect nodes within

stage Si and Ai =

|S|∑
j=1

W
FL′G
EL (Sj ,Si)

WT is the fraction of edges that connect to
stage Si, including those within stage Si and those from other stages.

A minor technical issue arises from the fact that a milestone node effec-
tively belong to two stages, since milestone nodes are the boundary between
successive stages. Hence, before computing the modularity of a stage decom-
position, we duplicate each milestone node into two consecutive nodes. The
arc connecting these two nodes is given a weight of zero, in order not to affect
the modularity. The modularity measure is then computed on the adjusted
DFG obtained after duplicating the milestones in the stage decomposition.

A stage decomposition may end up being too fragmented. In the worst-
case, each fragment could consist of only two connected activities. To avoid
over-fragmentation, we introduce a parameter, namely theminimum stage

10

size, corresponding to the smallest number of activities in any given stage.
In this way, the user can tune the granularity of the stages.

3.3. Stage Decomposition Algorithm

Given an event log, we seek to find a stage decomposition with high
modularity. To this end, we propose a method that starts from the DFG
constructed from the log, and recursively decomposes it into sets of nodes
using the notion of min-cut as calculated by the Ford-Fulkerson’s algorithm.
Note that the min-cut here is the one found in the graph after a node has been
removed. The set of edges in that min-cut is called a cut-set associated with
the removed node, and the total weight of edges in the cut-set is called cut-
value. Together, a node and its cut-set form a boundary between two graph
fragments. The lower the cut-value is, the more the related fragments will
resemble quasi-SESE fragments. Therefore, if we find a set of nodes with low
cut-values, we can take multiple graph cuts on those nodes and their cut-
sets to obtain a stage decomposition that can approximate the maximum
modularity.

Milestone nodes intuitively have lower cut-values than the min-cut found
by the Ford-Fulkerson’s algorithm in the original DFG (called source-min-
cut and equal to the number of traces in the log). Thus, we can use the
source-min-cut as a threshold when selecting a candidate list of cut-points,
i.e. nodes with cut-values smaller than that of the source-min-cut will be
selected. Further, in a DFG , the source-min-cut can be computed in constant
time as it is equal to the set of outgoing edges of the source node of the graph
or the set of incoming edges of the sink node.

Once we have a candidate list, the key question is how to find a sub-
set of nodes to form a stage decomposition that can maximize modularity.
One way is to generate all possible subsets from the list, create stage de-
compositions based on all subsets, and select the one that has the highest
modularity. However, this approach may suffer from combinatorial problems
if the number of candidate nodes is large. For example, if we assume that
the DFG has 60 nodes and the candidate list has 30 nodes, the total number
of subsets would be

(
30
1

)
+
(

30
2

)
+ ...+

(
30
30

)
= 1,050,777,736. We thus propose

two algorithms (Algorithm 1 & 2) to find a stage decomposition that can
approximate the maximum modularity. The inputs to the algorithms are an
event log and a minimum stage size.

Algorithm 1 is a greedy algorithm. The main idea (Lines 9-22) is to search
in the candidate list for a cut-point that can result in a stage decomposition
with two stages and of highest modularity. The find stage function searches

11

Algorithm 1: Highest Modularity Stage Decomposition
Input: EL: an event log

minStateSize: minimum number of activities in a stage
Output: A list of stages, each is a set of activities

1 G = create flow graph(EL)
2 CandidateNodes := {}
3 forall v in V

FLG
EL \ {i, o} do

4 <v.mincut, v.cutset>:= node min cut(G, v)
5 if v.mincut < source min cut(G) then
6 CandidateNodes := CandidateNodes ∪ {v}

7 CurrentBestSD := [V
FLG
EL \ {i, o}]

8 NewBestSD := CurrentBestSD
9 while CandidateNodes 6= {} do

10 forall v in CandidateNodes do
11 CutStage := find stage(CurrentBestSD , v) // search for the stage containing v
12 <PreStage,SucStage>:= cut graph(G, v,CutStage) // refer to Algorithm 3
13 if |PreStage|≥ minStateSize and |SucStage|≥ minStateSize then
14 NewSD := copy sd(CurrentBestSD ,CutStage,PreStage,SucStage)
15 if modularity(NewSD , G) > modularity(NewBestSD , G) then
16 NewBestSD := NewSD
17 BestCutPoint := v

18 if NewBestSD 6= CurrentBestSD then
19 CurrentBestSD := NewBestSD
20 CandidateNodes := CandidateNodes \ {BestCutPoint}

21 else
22 break // stop when modularity is not increased

23 return CurrentBestSD

in the current decomposition for a stage that contains the candidate cut-
point, then the cut graph function (Algorithm 3) cuts the found stage into
two substages, and then the copy sd function creates a new decomposition
from the current one by replacing the found stage with its two substages.
Then it removes the node from the candidate list (Line 20) and searches in
the list again for another cut-point that can create a new decomposition with
three stages and of highest modularity, i.e. higher than the former decompo-
sition and the highest among all decompositions with three stages, and so on
until it cannot either find a stage decomposition of higher modularity or all
new decompositions have a stage of smaller size than the minimum stage size.
Note that stage decomposition is recursive meaning a stage in the current
decomposition will be decomposed into two substages based on a selected
cut-point (Line 14). Modularity is computed according to Equation 1 based
on the modular graph as described above (Line 15).

Algorithm 3 also shows that each stage is marked with starting and ending

12

Algorithm 2: Lowest Cut-value Stage Decomposition
Input: EL: an event log

minStageSize: minimum number of activities in a stage
Output: A list of stages, each is a set of activities

// Line 1-7 is the same as Algorithm 1
8 Candidates sorted := sort(CandidateNodes,min cut , asc)
9 while Candidates sorted 6= [] do

10 v := head(Candidates sorted)
11 CutStage := find stage(CurrentBestSD , v) // search for the stage containing v
12 <PreStage,SucStage>:= cut graph(G, v,CutStage) // refer to Algorithm 3
13 if |PreStage|≥ minStateSize and |SucStage|≥ minStateSize then
14 NewSD := copy sd(CurrentBestSD ,CutStage,PreStage,SucStage)
15 if modularity(NewSD , G) > modularity(CurrentBestSD , G) then
16 CurrentBestSD := NewSD

17 else
18 break // stop when modularity is not increased

19 Candidates sorted := tail(Candidates sorted)

20 return CurrentBestSD

Algorithm 3: cut graph
Input: G: a DFG

v: a node
CutStage: a node set containing v

Output: a pair of subsets of CutStage

1 G aftercut := remove edges(remove node(G, v), v .cutset) // Graph cut
2 G source := source graph(G aftercut) // The subgraph containing the source
3 PreStage := (CutStage ∩ VG source) ∪ {v}
4 SucStage := CutStage \ PreStage
5 PreStage.end := v
6 SucStage.start := v
7 if CutStage = VG then
8 PreStage.start := G.source
9 SucStage.end := G.sink

10 else
11 PreStage.start := CutStage.start
12 SucStage.end := CutStage.end

13 return <PreStage,SucStage>

milestone nodes based on the selected cut-points. The first stage would take
the source node of the DFG as its (artificial) starting milestone, and the last
stage would take the sink node of the DFG as its (artificial) ending milestone.
Two consecutive stages would share the cut-point, i.e. the ending milestone
of the preceding stage and the starting milestone of the succeeding stage.

Algorithm 2 has the same structure as Algorithm 1, but uses the lowest
cut-value as a heuristic. Firstly, it sorts the candidate list in ascending order
of cut-values, then it sequentially picks every node from the list to create

13

recursive stage decompositions until the modularity is not increased or all
new decompositions have a stage of smaller size than the minimum threshold.

The worst-case time complexity of functions used in the algorithms can
be computed as follows. The create flow graph function is O(V +F), where
V = V FLG

EL and F = FFLG
EL . The node min cut function removes a node from

the graph and uses the Ford-Fulkerson’s algorithm to find a min-cut; it is
O(Fw), where w is the maximum weight of edges in the DFG [28]. The
source min cut function is O(1) since it only computes the total weight of
edges originating from the source node. The find stage function searches in
the current decomposition for a stage that contains a node; it is O(V). The
cut graph function (Algorithm 3) is O(V + F), which performs a depth-first
search to find disconnected components in the graph [28]. The copy sd func-
tion is O(V) (replace a stage with two substages). The modularity function
is O(V + F), which involves copying the original graph to a new one with
a special treatment for cut-points (O(V + F)) and computing the modular-
ity based on Equation 1 (O(F)). The get activity labels function is O(V)
(extract activity labels from nodes). The sort function (Algorithm 2) is
O(V log V). Based on these observations, the complexity of Algorithm 1 is
O(V 2(V + F)), and Algorithm 2 is O(V (V + F)).

Given the example log shown in Table 1, Algorithm 1 produces the stage
decomposition visualized in Figure 4. It has two stages: {i, A,B,C,D,U}
and {U,E, F,G,H,K, o}. The milestone node (or cut-point) U is visualized
as a node between two boxes. An edge on this visualization is aggregated
from the edges on the DFG and the edge weight is the total of the aggregated
edge weights on the DFGs.

i o

Figure 4: Example stage decomposition

14

4. Stage-based Process Discovery

This section presents the proposed divide-and-conquer technique for au-
tomated discovery of process models from event logs. The section starts by
presenting the quality criteria that we adopt to evaluate a process model
discovered from an event log. Next, we present the overall process discovery
technique, followed by each of its main steps.

4.1. Quality of automatically discovered process models

To evaluate the quality of the resulting process models, we use three
measures of accuracy, namely fitness, precision, and F-score, as defined in
previous research in the field of automated process discovery. Fitness is the
ability of a model to reproduce the behavior contained in the log. A fitness
of 1 means that the model can reproduce every trace in the log. In this
paper, we use the fitness measure proposed in [29], which measures the de-
gree to which every trace in the log can be aligned with a trace produced by
the model. Precision is the ability of a model to only generate the behavior
found in the log. A score of 1 indicates that any trace produced by the model
is contained in the log. We use the alignment-based ETC precision measure
defined in [30], which is based on similar principles as the above fitness mea-
sure. We note that this measure of precision is not universally accepted. A
recent study has found that neither this nor other existing measures of preci-
sion satisfy a set of basic axioms that a precision measure should intuitively
fulfill [31]. In particular, ETC precision is non-deterministic. While new pre-
cision measures have been proposed recently [32] fulfilling these axioms, there
is currently no consensus yet as to which measure of precision is the most
suitable. In the absence of consensus, we adopt the alignment-based ETC
precision measure since it is widely used for comparing automated process
discovery techniques [33].

Fitness and precision can be combined into a single measure of accuracy,
known as F-score, which is the harmonic mean of the two measurements, as
shown below.

F-score = 2 · Fitness · Precision

Fitness + Precision
(2)

In addition to having a high F-score, it is natural to expect that a process
model discovered from an event log is syntactically and semantically correct.
A basic syntactic correctness criterion for process models is that all the nodes
are on a path from a start node to an end node. In other words, there are no

15

disconnected nodes or dangling arcs. A well-accepted semantic correctness
notion is soundness [34], which has been defined in the context of Workflow
nets2 and is also applicable to BPMN process models. Specifically, a BPMN
process model with one start and one end event is sound iff: (i) given any
sequence of task firings starting from the state where there is a token in the
start event, the resulting state is either the final state (i.e. the state where
there is a token in the end event) or it is possible to reach the final state
from that state; (ii) when a token reaches the end event, no other token
remains elsewhere; and (iii) it is not possible to reach a state where there are
two tokens on the same sequence flow. The first property is called option to
complete, the second proper completion, and the third safeness.3

4.2. Overview of the Stage-Based Process Discovery Technique

The input of the proposed technique is an event log and a decomposition
of the activities in the process into sequential stages as described above. The
output is a (BPMN) process model. The technique is composed of four main
steps: Mine, Chain, Adjust, and Stitch, or MCAS for short. The Mine step
decomposes the original event log into one sublog per stage and then mines a
submodel for each stage using a base miner (called a subminer). The Chain
step connects the resulting submodels together by merging the milestone
nodes to form a chained model. Since the subminer is applied on each sublog
separately, it cannot exploit information about the overall behavior observed
in the full event log, and hence the chained model may have low accuracy.
To improve accuracy, the Adjust step analyzes the chained model to detect
sources of additional behavior, then filters out these sources of additional
behavior from the sublogs, and re-applies the Mine and Chain steps again to
produce a chained model with higher overall accuracy. This step is orthogonal
to the stage-based decomposition approach and can be treated as optional,
but it is nonetheless useful if we seek to maximize the accuracy of the process
model. Finally, the Stitch step adds inter-stage edges to the chained model
to complete the overall process model.

2A Workflow net is a Petri net with a single source (start) place, a single sink (end)
place, and such that every transition is on a path from the start place to the end place.

3BPMN allows process models to have multiple start and multiple end events, but such
process models can be re-written as process models with a single start and a single end
event, hence we can restrict ourselves to process models with a single start and a single
end event without loss of generality. Also, the models produced by the automated process
discovery techniques used in this article have a single start and a single end event.

16

The approach is described in detail in Algorithm 4. Lines 1-8 corre-
spond to Mine, Chain, and Adjust steps. The DiagnoseImprecision function
identifies a set of imprecise behaviors on the chained model as part of the
Adjust step. The adjustment can be made optional by replacing Line 5 with
imprecision := ∅. Lines 9-18 correspond to the Stitch step, which takes an
exhaustive approach to add a collection of inter-stage edges to the chained
model such that the new model can maximize the F-score. It uses a frequency
threshold to select all inter-stage edges whose frequency exceeding the thresh-
old. The selection and stitch is repeated for each frequency threshold ranging
from 0.0 to 1.0 with incremental step of 0.05.

Algorithm 4: Stage-Based Process Discovery
Input: EL: An Event Log

SD : A Stage Decomposition
Output: A Process Model

1 subLogs := ExtractSubLogs(EL,SD)
2 do
3 subModels := MineSubModels(subLogs)
4 chainModel := Chain(subModels)
5 imprecision := DiagnoseImprecision(chainModel ,EL)
6 if imprecision 6= ∅ then
7 subLogs := Filter(subLogs, imprecision)

8 while imprecision 6= ∅
9 bestModel := chainModel

10 bestFscore := ComputeFscore(bestModel ,EL)
11 E := GetInterStageEdges(SD ,EL)
12 for freqThres ← 0.0 to 1.0 by 0.05 do
13 E := GetInterStageEdges(SD ,EL, freqThres)
14 stitchModel := Stitch(E, bestModel)
15 newFscore := ComputeFscore(stitchModel ,EL)
16 if newFscore > bestFscore then
17 bestModel := stitchModel
18 bestFscore := newFscore

19 return bestModel

The next subsections describe the details of the Mine, Chain, Adjust and
Stitch steps.

4.3. Mine

Recall that Algorithms 1 and 2 return a stage decomposition as shown in
Figure 2. For example, the stage decomposition discovered from the event
log shown in Table 1 is shown in Figure 4 with two stages {i, A,B,C,D,U}
and {U,E, F,G,H,K, o}, where U is the milestone node.

In order to create sublogs, we decompose each trace of the log into sub-
traces – multiple subtraces corresponding to a stage can be extracted from

17

each trace. A subtrace corresponding to a given stage contains all directly-
following events in the original trace that belong to that stage without being
interrupted by any events of other stages. The subtrace corresponding to a
stage is called a stage-trace and the sublog containing all stage-traces of a
given stage is called as a stage-log.

Definition 4 (Stage-trace). A stage-trace ST c
S extracted from case c ∈ C

for stage S is a maximal sequence of events in c such that all activities in
that sequence belong to S. Formally, ST c

S is a triple (c, i, j), where 1 ≤ i ≤
j ≤ |c| such that ∀i ≤ v ≤ j [act(cv) ∈ S] ∧ (i = 1 ∨ act(ci−1) /∈ S) ∧ (j =
|c|∨act(cj+1) /∈ S).

Definition 5 (Stage-log). A stage-log SLEL
S extracted from event log EL

for stage S is the set of all stage-traces of S extracted from all cases in EL
for stage S, i.e. SLEL

S = {ST c
S | c ∈ C}.

A small technical issue arises from the fact that a milestone node between
two stages belongs to both stages. However, in the resulting process model,
we only need to capture this node once. To resolve this technical issue, we
delete each milestone node from the second of the stages in which it appears.
In other words, we only retain the copy of a milestone node in the first of
the two stages in which it appears.

Consider for example the event log shown in Table 1 and the stage
decomposition shown in Figure 4 with two stages {i, A,B,C,D,U} and
{U,E, F,G,H,K, o}. We first delete the milestone node U from the second
stage, hence the stages become {i, A,B,C,D,U} and {E,F,G,H,K, o}. We
then apply the above definitions to decompose the log into stage-logs. Ta-
bles 2 and 3 are the two stage-logs. Note that the start event (i) is placed in
the subtrace of the first stage-trace of each trace, the end event (o) is placed
in the last stage-trace of each trace, and the two stages are non-overlapping.

A subminer is called for the sublogs 1 and 2, producing the BPMN models
shown in Figures 5 and 6.

18

Variant Trace Occurrences

1 iABCU 10

2 iADU 18

3 iABU 5

4 iACDU 1

5 iABDU 1

Table 2: Stage-log 1.

Variant Trace Occurrences

1 EFo 14

2 Go 17

3 Ho 2

4 HEo 1

5 GFo 1

6 Ko 1

Table 3: Stage-log 2.

Sub-Log 1

A

B C

D

U

Trace Frequency

1 iABCU 10

2 iADU 18

3 iABU 5

4 iACDU 1

5 iABDU 1

35

i A B C U
i A B C U

#1: Alignment:

Precision Automaton:

i A D U
i A D U

#2: #3:

35

15
C

35
A

B

20 20
U

D

i A B / U
i A B C U

#4: i A C D U
i A / D U

#5: i A B D U
i A / D U

15 15
U

35
i

Fitness = 1 - (5*1 + 1*1 + 1*1 + 1*1)/(35 + 35*5) = 0.96

Precision = (35*1+35*1+35*2+15*1+15*1+15*1)/(35*1+35*1+35*2+15*1+15*1+15*1)= 1.0

3

Run a miner on the sub-logs

Sub-Model 1

i

Figure 5: Submodel 1 mined from the sublog 1.

Sub-Log 2

E F

G

H

Trace Frequency

1 EFo 14

2 Go 17

3 Ho 2

4 HEo 1

5 GFo 1

35

E F o
E F o

#1: Alignment:

Precision Automaton:

G o
G o

#2: #3:

35

14
F

35
U

E

18 18
o G

H o
H o

#4: H E o
H / o

#5: G F o
G / o

14 14
o

Fitness = 1 - (1*1 + 1*1)/(35 + 35*4) = 0.99

Precision = (35*1+35*3+14*1+14*1+14*1+18*1+18*1+3*1+3*1)/
 (35*1+35*3+14*1+14*1+14*1+18*1+18*1+3*1+3*1)= 1.0

3 3

H
o

4

Run a miner on the sub-logs

Sub-Model 2

o

K

Figure 6: Submodel 2 mined from the sublog 2.

4.4. Chain

The goal of the chain step is to sequentially combine the submodels dis-
covered for each stage into a single model. Without loss of generality, we
assume that the submodels discovered by a subminer have a start event with
a single outgoing sequence flow (called starting sequence flow) and an event
with a single incoming sequence flow (called ending sequence flow). If this
property does not hold (e.g. the start event has multiple outgoing flows), it
is always possible to re-factor the model by adding a gateway at the start
in order to achieve this property. With this property in place, the chaining
step consists in concatenating every two adjacent submodels by merging the

19

ending sequence flow of one submodel with the starting sequence flow of the
successive submodels and removing the end event and start event of the two
corresponding submodels, as illustrated in Figure 7. In other words, the end
sequence flow of the first stage is re-directed so that it points to the target
of the starting sequence flow in the second stage.

Coming back to the running example, Figure 8 illustrates the model ob-
tained by chaining the submodel 1 in Figure 5 and the submodel 2 in Figure 6.

We note that the chaining step preserves soundness. In other words, if
two models are sound, the resulting chained model will be sound too. Indeed,
if the first model is sound, it means that the milestone task can always be
reached (and no token is left elsewhere in the first model). And since the
second model is sound as well, then starting from a token in the flow coming
out from the milestone task, it is possible to reach the end event of the second
model, which is the end event of the chained model, without any token being
left behind.

Sub-model 1 Sub-model 2

Figure 7: Chaining submodels.

4.5. Adjust

Algorithm 5 implements the diagnosis of imprecise relations in the ad-
just step. Given that a process model is a collection of directed relations
(or edges) between activity nodes, the quality of the model depends on how
precise such relations are compared with those existing in the logs. Hence,
in order to improve the model, the purpose of the algorithm is to find impre-
cise relations, i.e. those that appear infrequently in the log but are strongly

20

A

B C

D

U

E F

G

H

K

i o

Figure 8: Chained model built from submodel 1 and 2.

represented by the model. It does this by checking details of the precision
computation for the model. From [35], this computation is based on an au-
tomaton constructed from the alignment between the log and the model. As
the alignment and precision are computed on Petri nets, all BPMN models
are first converted to Petri nets as an input to this algorithm. If the gen-
erated BPMN models only contain AND and XOR gateways, the converted
Petri nets are ensured to be equivalent to the BPMN models [36]. We note
that we do not support generated models containing OR-join gateways.

Figure 9 shows an example of a precision automaton. The automaton is
created from the alignments between the model and the log (the log has two
trace variants). “White” nodes represent prefixes in the model-move part
(the lower part) of the alignments while a no-move denoted as ⊥ is ignored.
For example, the third “white” node in the figure is associated with prefix
bd starting from the source node. Edges represent transitions on the model.
“Gray” nodes represent model moves not aligned with any traces. Thus,
gray nodes are also called available transitions of the connected “white” node.
Node numbers indicate the total frequency of the corresponding prefixes from
the alignments.

From the automaton, we call an available relation a pair of transitions
where the first transition is the incoming edge of a “white” node and the
second transition is any outgoing edge of the same node. They represent
available relations allowed by the model. We also call an actual relation a
pair of transitions where they are incoming and outgoing edges of a “white”
node that connects to another “white” node. For example, ba,bc,bd, and
be are available relations but only bd is an actual relation in Figure 9. In
addition, we are only interested in visible relations, i.e. relations between
visible transitions. Thus, we need a way to search for visible relations from
a given available or actual relation.

The purpose of Algorithm 5 is to check the automaton for visible rela-
tions with significantly higher frequency as available relations than as actual
relations. Those are called imprecise relations, which need to be removed

21

Process Model Event Log

Alignments Precision Automaton

Figure 9: Example automaton (extracted from [35]).

from the model to improve its quality. They exist because of imperfection in
the filtering and mining techniques of base miners.

First, the algorithm visits all “white” nodes on the automaton to search
for visible available relations. If the first transition in the relation is invis-
ible, the algorithm will backtrack from the visited node along the incom-
ing edge until it reaches the first edge associated with a visible transition
(getVisibleEdge). If the second transition in the relation is invisible, the
algorithm will traverse on the model to search for all visible successor tran-
sitions (getVisibleSuccessorTransitions). As a result, Ravailable is a set of all
visible and available relations. Meanwhile, the algorithm also searches for
real actual relations by traversing forward from the visited node on the au-
tomaton until it reaches an edge associated with a visible transition. Ractual

is a set of all visible and actual relations.
A relation is considered imprecise if it has high frequency (i.e. weight) in

Ravailable but low frequency in Ractual . To determine the amount of imprecise
relations, an imprecision threshold is used, which is the ratio between the
frequency of the relation in Ractual and its frequency in Ravailable . Another
type of imprecise relation is one that is allowed by the model (found in
Ravailable) but that is never found in Ractual (Lines 21-23). If so and if they
are highly available, i.e. their presence exceeds a threshold, e.g. 80% of the
maximum weight in Ravailable , they are also considered imprecise relations.

22

This threshold is called Minimum Availability, which is the ratio between the
frequency of the relation and the maximum frequency in Ravailable . Rimprecise

is the set of all imprecise relations.
Once all imprecise relations have been collected, entire traces that contain

any imprecise relation will be removed instead of the relations (i.e. pair of
transitions). This is because removing a pair of transitions from a trace
will make new relations appear, thus change log behavior. This makes new
models deviate from the original log, which causes lower fitness and precision.
As the frequency of imprecise relations is usually low, the expected effect is
that the new model is primarily similar to the previous one but with less
imprecise relations.

The diagnosis and removal of imprecise relations can be repeated multiple
times until no more imprecise relations can be found.

From the chained model shown in Figure 8, Figure 10 shows the alignment
of the chained model and the original log in Table 1, and Figure 11 shows
the precision automaton of the chained model with three escaping edges
highlighted. From the alignment and the precision automaton, the fitness
and precision of the current chained model are calculated as 0.92 and 0.83,
respectively (F-score = 0.87).

Based on the precision automaton of the chained model, the Algorithm 5
determines that UH and UK are two imprecise relations on the model. They
are removed from the sublog 2 resulting in the adjusted sublog 2 shown in
Table 4. Then, the mining and chaining steps are executed again due to
changes in sublogs. Figures 12 and 13 show the adjusted submodel 2 and the
chained model.

Figures 14 and 15 show the alignment of the adjusted chained model with
the original log and the new precision automaton. The fitness and precision of
the adjusted chained model are 0.9 and 1.0, respectively. It can be seen that
the fitness is negligibly reduced because of the removed imprecise relations;
however, the precision is significantly improved leading to the improvement
of F-score (F-score = 0.95).

A

B C

D

U

E F

G

H

CHAINING
A B C U E F
A B C U E F

#1: A D U G
A D U G

#2:
A B E F A D U G
A B C ⊥ ⊥ ⊥ U G

#3:
A C D U G
A ⊥ D U G

#4: A B ⊥ U G
A B C U G

#5:

A B D U G
A ⊥ D U G

#6:
A D U H
A D U H

#7: A D U H E
A D U H ⊥

#8:
A D U G F
A D U G ⊥

#9:

32

15 15
C

15 10 10 E F

17

D
17

U
13

U

3

K

32
A

B
5

G

G
H

E

Fitness = 1 - (3*4 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)/(32 + 6*32) = 0.92

Precision = (32*1+32*2+15*1+15*1+15*2+10*1+17*1+17*3) / (32*1+32*2+15*1+15*1+15*4+10*1+17*1+17*4) = 0.83

Trace
1 ABCUEF 10
2 ADUG 10
3 ABEFADUG 4
4 ACDUG 1
5 ABUG 1
6 ABDUG 1
7 ADUH 2
8 ADUHE 1
9 ADUGF 1
10 ADUK 1

32

6

F-SCORE = 0.89

H

1

K

K

A D U K
A D U K

#10:

Figure 10: Alignment of the chained model in Figure 8 and the log in Table 1.

23

Algorithm 5: Diagnose Imprecise Relations
Input: M : Petri net converted from BPMN Model

L: Event Log
ImpThres: Imprecision Threshold
MinAvail : Availability Threshold

Output: A set of imprecise relations
1 Automaton := GetPrecisionAutomaton(M,L)
2 Ravailable := {}
3 Ractual := {}
4 foreach “White” node a in Automaton do
5 if a is not root node then
6 sa := a.incomingEdge
7 if sa is invisible then
8 sa := getVisibleEdge(a)

9 if sa 6= null then
10 foreach Transition oa ∈ a.outgoingEdges do
11 Ttarget = {}
12 if oa is visible then
13 Ttarget := Ttarget ∪ {oa}

14 else
15 Ttarget := Ttarget ∪ getVisibleSuccessorTransitions(oa)

16 foreach Transition ta ∈ Ttarget do
17 r := (sa, ta)
18 if r /∈ Ravailable then
19 r .AvailableWeight := a.Weight
20 Ravailable := Ravailable ∪ {r}

21 else
22 r .AvailableWeight := r .AvailableWeight + a.Weight

23 foreach Transition oa ∈ a.outgoingEdges do
24 if oa is visible then
25 r := (sa, oa)
26 if r /∈ Ractual then
27 r .ActualWeight := oa .Target .Weight
28 Ractual := Ractual ∪ {r}

29 else
30 r .ActualWeight := r .ActualWeight + e.Target .Weight

31 Rimprecise := {}
32 foreach Relation r ∈ Ractual do
33 if r .ActualWeight/r .AvailableWeight ≤ ImpThres then
34 Rimprecise := Rimprecise ∪ {r}

35 foreach Relation r ∈ Ravailable \Ractual do
36 if r.AvailableWeight >= MinAvail ∗MaxWeight(Ravailable) then
37 Rimprecise := Rimprecise ∪ {r}

38 return Rimprecise

24

A

B C

D

U

E F

G

H

CHAINING
A B C U E F
A B C U E F

#1: A D U G
A D U G

#2:
A B E F A D U G
A B C / / / U G

#3:
A C D U G
A / D U G

#4: A B / U G
A B C U G

#5:

A B D U G
A / D U G

#6:
A D U H
A D U H

#7: A D U H E
A D U H /

#8:
A D U G F
A D U G /

#9:

32

15 15
C

15 10 10 E F

17

D
17

U
13

U

3

K

32
A

B
5

G

G
H

E

Fitness = 1 - (3*4 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)/(32 + 6*32) = 0.92

Precision = (32*1+32*2+15*1+15*1+15*2+10*1+17*1+17*3) / (32*1+32*2+15*1+15*1+15*4+10*1+17*1+17*4) = 0.83

Trace
1 ABCUEF 10
2 ADUG 10
3 ABEFADUG 4
4 ACDUG 1
5 ABUG 1
6 ABDUG 1
7 ADUH 2
8 ADUHE 1
9 ADUGF 1
10 ADUK 1

32

6

F-SCORE = 0.89

H

1

K

K

A D U K
A D U K

#10:

Figure 11: Precision automaton of the chained model in Figure 8.

Variant Trace Occurrences

1 EFo 14

2 Go 17

4 GFo 1

Table 4: Adjusted sublog 2.

Rav Available relations AB (31), BC(15), CU(15), UH(31), UE(31), UG(31), EF(10),
AD(31), DU(16)

Rac Actual relations AB (15), BC(15), CU(15), UH(3), UE(10), UG(18), EF(10),
AD(16), DU(16)

Usage Threshold AB (15/31), BC(15/15), CU(15/15), UH(3/31), UE(10/31),
UG(18/31), EF(10/10), AD(16/31), DU(16/16)

Rim Imprecise relations UH(3/31 = 0.096) with imprecise relation threshold = 0.1

7

Check the precision automaton of the Chained Model and search for available, actual
and imprecise relations. An example of relation: AB (31) is the sequence from A to B on
the automaton with the weight of 31 (i.e. frequency).

AJUSTING STEP

Trace

1 UEFo 14

2 UGo 17

3 UHo 2

4 UHEo 1

5 UGFo 1

Sub-Log 2

Trace

1 UEFo 14

2 UGo 17

3 UHo 2

4 UHEo 1

5 UGFo 1

New Sub-Log 2

E F

G o

New Sub-Model 2

Remove imprecise relations from sub-logs and rerun the miner for sublogs

Figure 12: Adjusted submodel 2.

We note that the Adjust step leads to a sound model, assuming that the
base miner produces a sound model. Indeed, the miner filters the sublog for
each stage, applies the base miner to obtain one submodel per stage, and
then it chains the resulting submodels. And as discussed above, a chained
model is sound if the submodels are sound.

4.6. Stitch

During the mining step, any edges (i.e. directly-follows dependencies) in
the DFG that go from the middle of one stage to the middle of another stage
are left aside. Instead, one isolated model is discovered for each stage. The
chaining step reconnects the stages via edges from the end of one stage to the
start of the next stage, but it does not reinstate the other edges lost during
the mining step. The stitching step aims to add many of these inter-stage
edges into the chained model.

25

A

B C

D

U

E F

G i o

Figure 13: Adjusted chained model.

A

B C

D

U

E F

G

NEW CHAINING

A B C U E F
A B C U E F

#1: A D U G
A D U G

#2:
A B E F A D U G
A B C ⊥ ⊥ ⊥ U G

#3: A C D U G
A ⊥ D U G

#4: A B ⊥ U G
A B C U G

#5:

A B D U G
A ⊥ D U G

#6:
A D U ⊥ H
A D U G ⊥

#7: A D U H E ⊥
A D U ⊥ E F

#8:
A D U G F

A D U G ⊥
#9:

32

15 15
C

15 10 10 E F

17

D

17
U

16

U

32
A

B

5

G

G

Fitness = 1 - (3*4 + 1*1 + 1*1 + 1*1 + 2*1 + 2*1 + 1*1 + 2*1)/(32 + 6*32) = 0.90

Precision = (32*1+32*2+15*1+15*1+15*2+10*1+17*1+17*2 + 1*1) /
(32*1+32*2+15*1+15*1+15*2+10*1+17*1+17*2 + 1*1) = 1.0

Trace
1 ABCUEF 10
2 ADUG 10
3 ABEFADUG 4
4 ACDUG 1
5 ABUG 1
6 ABDUG 1
7 ADUH 2
8 ADUHE 1
9 ADUGF 1
10 ADUK 1

32

9

F-SCORE = 0.91

1 1 E F

A D U ⊥ K

A D U G ⊥
#10:

Figure 14: Alignment of the adjusted chained model and the original log (Table 1).

A

B C

D

U

E F

G

NEW CHAINING

A B C U E F
A B C U E F

#1: A D U G
A D U G

#2:
A B E F A D U G
A B C / / / U G

#3: A C D U G
A / D U G

#4: A B / U G
A B C U G

#5:

A B D U G
A / D U G

#6:
A D U / H
A D U G /

#7: A D U H E /
A D U / E F

#8:
A D U G F

A D U G /
#9:

32

15 15
C

15 10 10 E F

17

D

17
U

16

U

32
A

B

5

G

G

Fitness = 1 - (3*4 + 1*1 + 1*1 + 1*1 + 2*1 + 2*1 + 1*1 + 2*1)/(32 + 6*32) = 0.90

Precision = (32*1+32*2+15*1+15*1+15*2+10*1+17*1+17*2 + 1*1) /
 (32*1+32*2+15*1+15*1+15*2+10*1+17*1+17*2 + 1*1) = 1.0

Trace
1 ABCUEF 10
2 ADUG 10
3 ABEFADUG 4
4 ACDUG 1
5 ABUG 1
6 ABDUG 1
7 ADUH 2
8 ADUHE 1
9 ADUGF 1
10 ADUK 1

32

9

F-SCORE = 0.91

1 1 E F

A D U / K

A D U G /
#10:

Figure 15: Precision automaton of the adjusted chained model.

26

We recall that the stage decomposition leads to a linearly ordered set of
stages. Let SD be a stage decomposition and S1, S2 be two stages in SD , i.e.
S1, S2 ∈ SD , we denote S1 � S2 iif S1 is followed by S2 in SD , and S1 < S2

iif S1 is directly followed by S2 in SD . An inter-stage edge is classified as a
forward edge when it goes from one stage to a later stage and it is classified
as a backward edge otherwise, as illustrated in Figure 16. These two types of
edges are formalized as follows.

forward edge

backward
edge Sub-model 1 Sub-model 2

i o

Figure 16: Overview of Stitching.

Definition 6 (Forward Edges). The set of forward edges on DFG with
respect to SD, denoted as EJF

SD , are directed edges whose source is a node of a
stage in SD (other than the milestone node) and whose target is a node of the
following stages, i.e. EJF

SD = {(a1, a2) ∈ DFG | ∃S1, S2 ∈ SD [(S1 < S2∧a1 ∈
S1 ∧ a1 6=MS1 ∧ a2 ∈ S2)∨ (S1 � S2 ∧S1 ≮ S2 ∧ a1 ∈ S1 ∧ a2 ∈ S2)]}, where
MS1 is the milestone node of S1.

Definition 7 (Backward Edges). The set of backward edges on DFG with
respect to SD, denoted as EJB

SD , are directed edges whose source is a node of a
stage in SD and target is a node of the preceding stages, i.e. EJB

SD = {(a1, a2) ∈
DFG | ∃S1, S2 ∈ SD [S2 � S1 ∧ a1 ∈ S1 ∧ a2 ∈ S2]}.

When stitching two task nodes belonging to different stages in the chained
model, the connection between them is always done via XOR gateways as
shown in Figure 17. In other words, when drawing a sequence flow from a
task A in one stage to a task B in another stage, we insert an XOR-split
gateway right after task A, an XOR-join right before task B, and we draw
a jumping edge from the XOR-split to the XOR-join gateway. The addition
of jumping edges can make the resulting model unsound if the target of a
jumping edge is located in a parallel branch, i.e. a branch that starts from

27

an AND-split gateway. The reason is that when we inject a token in one of
multiple parallel branches and not in the other parallel branches, the AND-
join gateway(s) where these parallel branches converge will receive one token
from one of its incoming flows, but not from the others. Hence, there will be
a deadlock in the downstream AND-join gateways, which affects the option
to complete property discussed in Section 4.1. To avoid such deadlocks, we
replace every AND-gateways of the target stage, which are reachable from
the point where a jumping edge ends, with inclusive OR-join gateways. An
inclusive OR-join gateway will fire if it receives a token in only one of its
incoming branches and no token can arrive from the other branches.

While the use of OR-join gateways allows us to guarantee the option-to-
complete property, it does not allow us to ensure proper completion, i.e. it
does not ensure that when a token reaches the end event, no token is left that
can reach the end event later. The stitching procedure is such that improper
completion may arise when an edge is added from a parallel branch of a stage
to a different stage. These edges create a situation where tokens are present in
two different stages simultaneously. These tokens might not be synchronized
(e.g. when the edge is a backward edge), leading to improper completion.
This same issue arises in the Split Miner [37] – an automated process discov-
ery technique that relies on the use of OR-joins to ensure option-to-complete
but does not ensure proper completion. Experimental evaluations conducted
in the context of the Split Miner have shown that this problem does not
arise when discovering process models from directly-follows graphs extracted
from real-life event logs. This observation was confirmed in our experiments,
where all models generated using our technique exhibited proper completion
and hence soundness.

We also note that existing techniques for measuring the fitness and pre-
cision of automatically discovered process models are not able to handle
BPMN process models with OR-joins. The reason is that they require a
BPMN process model that can be readily converted into a Petri net and
OR-join gateways do not have a direct mapping to Petri nets. Hence, to cal-
culate fitness and precision, we need to convert a stitched process model with
OR-joins into a model without OR-joins. To replace the introduces OR-joins
with XOR and AND-join gateways, we use the technique to remove OR-join
gateways proposed in [37], which itself is based on the technique in [38] (the
latter being restricted to acyclic process models). The technique in [37] is
not able to remove OR-join gateways in all cases, but it does so in practical
cases. In the experimental evaluation reported later in this paper, we did
not encounter a situation where the OR-join could not be removed by this

28

technique and hence this was not an impediment for measuring fitness and
precision.

…

…

Figure 17: Stitching step.

Coming back to the running example, we note that the DFG in Figure 1
has two inter-stage edges: B → E and F → A. Figure 18 shows the stitched
model created from the chained model in Figure 8 and the DFG in Figure 1.

A

B C

D

U

E F

G i o

Figure 18: Stitched model created from the chained model in Figure 13 and the DFG in
Figure 1.

5. Evaluation

We implemented the Staged Process Miner as a set of open-source plugins
for the Apromore4 and ProM5 The input to the technique is an event log and
the output is a process model. A stage decomposition is produced as an
intermediate artifact.

4http://apromore.org
5http://apromore.org/platform/tools platforms for process mining. The source

code is released in GitHub6 as well as on the ProM source repository.7

29

Using this implementation, we carried out a two-pronged evaluation on a
range of real-life logs and against various log decomposition and automated
discovery baselines. Our first evaluation aimed at determining if it is
possible to algorithmically produce stage decompositions of event logs that
mimic decompositions produced manually by domain experts (our ground
truth). This aim is summarized by the following two questions:

Q1. How does the quality of the stage decomposition produced by our pro-
posed method compare to that of existing event log decomposition baselines?

Q2. How does the quality of the decomposition produced by our proposed
method vary depending on the minimum stage size?

Our second evaluation aimed at determining the quality of the final
process model produced by our technique, starting from a given stage
decomposition. This aim is summarized by the following question:

Q3. How does the quality of process models produced by our technique
compare to that of automated discovery baselines?

5.1. Datasets

We used eight real-life event logs taken from the 4TU Centre for Research
Data.8 Specifically, we focused on the Business Process Intelligence (BPI)
Challenge 2012, 2013, 2015 and 2017 logs. These logs record executions of
business processes in various domains such as finance, IT service management
and government. We derived the ground truth for the stages in two ways.
For the BPI12 and BPI15 logs, the log itself comes with event attributes
indicating the stage the event belongs to. For the BPI13 and BPI17 logs,
we derived information about the stages from the supporting documentation
that accompanies the logs.

BPI12 [7] is a loan origination process in a Dutch bank. Its stages are: i)
pre-assess application completeness, ii) assess eligibility, iii) offer & negotiate
loan packages with customers, and iv) validate & approve. These stages are
marked in the original log by milestone events occurring at the end of each
stage, such as A PREACCEPTED (stage i) and A ACCEPTED (stage ii),

8https://data.4tu.nl/repository/collection:event_logs_real

30

where “A” stands for Application. In this log, we observed that some mile-
stone events within the same case have the same timestamp. This is possibly
a logging error. Accordingly, we preprocessed this log by replacing any group
of milestone events occurring simultaneously within a case, with a single rep-
resentative milestone event. This pre-processing step was also required since
our technique supports a single milestone per stage only. We used the same
pre-processed log to evaluate the baseline techniques considered in this paper.

BPI13 [39] is an IT incident handling process at Volvo Belgium. A stage
in this process reflects the IT helpdesk level (team) where an IT incident
ticket is processed. The IT department has three levels from 1 to 3. The
ground truth of stages is the helpdesk level of the resource who initiates an
event, as per the accompanying documentation. This log is preprocessed by
removing incomplete cases, which are incident tickets that have not been
closed and resolution activities are taking place.

BPI15 [40] is a set of five logs from five Dutch municipalities relating
to a building permit application process. This process consists of a main
process (HOOFD in the action code field) and multiple subprocesses. The
main process has a number of stages, such as: i) application receipt, ii)
completeness check of the application, iii) investigation leading to a resolution
(e.g. accept, reject, ask for more info), iv) communication of the resolution,
v) public review, vi) decision finalization, and vii) objection and complaint
filing. The ground truth of stages in this process is encoded in the action code
field, which has a generic format 01 HOOFD xyy, where x indicates the stage
number ranging from 0 to 8 and yy indicates the activity code within the
stage. However, in each of these logs, there is only one case with two activities
with Stage number 6, and there is only one activity with Stage number 7,
which has similar meaning to an activity in Stage 8 for closing the case.
We considered these exceptions as noise and preprocessed each BPI15 log by
removing the only case containing Stage 6 and changing the stage number in
the events of Stage 7 from 7 to 8. This led to seven stages in total, with the
stage number taking values from 0 to 5 and 8. Another issue of these logs
is that many events in a case have the same timestamp. We cleaned these
logs by sorting the events with the same timestamp within a case using their
stage number.

BPI17 [41] is from the same loan origination process and organization as
the BPI12 log with a number of changes. This process has three stages to
process a loan application: i) pre-assess, ii) assess, and iii) validation. We
identified this information about the stages from the supporting documenta-
tion of this log.

31

Table 5 reports descriptive statistics on the size of these datasets. It can
be seen that the BPI12 and BPI17 logs have the most number of cases and
events. However, the BPI15 logs have the most number of distinct activities
and also the largest mean number of distinct activities per case.

Dataset Business process Cases Events Activities

BPI12 Loan Origination 13,087 127,290 19

BPI13 IT Incident Handling 7,456 64,975 35

BPI15-1

Building Permit Application

1,198 39,695 143

BPI15-2 830 31,972 132

BPI15-3 1,402 45,258 132

BPI15-4 1,052 34,523 118

BPI15-5 1,155 43,019 128

BPI17 Loan Origination 31,509 475,306 24

Table 5: Statistics on the datasets used in the evaluation

5.2. Baselines

The goal of the experimental evaluation is to assess the quality of the
decompositions produced by the proposed stage decomposition method, and
the quality of the process models discovered by the proposed Staged Process
Miner (SPM).

To assess the stage decomposition method, we compared it against
two state-of-the-art event log decomposition methods, namely Divide and
Conquer (DC) and Performance Analysis with Simple Precedence Diagram
(SPD), both presented in Section 2 and available as ProM plugins. Similar
to our method, both DC and SPD start from the directly-follows graph con-
structed from an event log. DC forms a cluster starting from heavy edges
(edges with high weights) and grows the cluster to adjacent edges whose
weight exceeds a threshold, until the number of nodes in the cluster exceeds
a maximum size threshold. DC can produce overlapping clusters, i.e. clus-
ters with some common nodes, because the next found cluster always include
both nodes of unvisited edges while some of these nodes belonging to visited
edges have been included in the clusters found earlier. SPD searches for clus-
ters based on medoids, i.e. a central node in a directly-follows graph that is
close to all other nodes in the cluster, where closeness is measured by the
frequency of the directly-follows relation between nodes. SPD can also pro-
duce overlapping clusters because the membership function used to assess

32

whether a node belongs to a cluster is a fuzzy function based on a proximity
measure of the node to the medoid of the cluster.

Since ground-truth stages are non-overlapping clusters, we adjusted the
baseline methods to produce non-overlapping clusters in order to compare
their result with the ground truth. For DC, we adjusted the technique so that
a node is not added to a cluster if it already belongs to one of the clusters built
earlier. This makes the assignment of nodes to clusters arbitrary (it depends
on the order in which the nodes are given in the input), but deterministic. For
SPD, we adjusted the method to use a crisp membership function that assigns
a node to a cluster if the closeness between the node and the corresponding
medoid is the highest.

To assess the quality of SPM, we compared this technique with both flat
and divide-and-conquer techniques as outlined in Figure 19. As a repre-
sentative of flat discovery techniques, we selected Fodina (FO) which is an
improved variant of the Heuristics Miner. This technique does not guaran-
tee that the discovered process model is sound, but in practice, it generally
produces sound models. Next, we selected Inductive Miner (IM) and Region-
Based Miner (RM) as two decomposed approaches with built-in activity clus-
tering and model discovery. IM discovers block-structured process models
from event logs. It has the advantage that it guarantees that the discovered
model is sound. RM decomposes an event log into so-called language-based
regions, then uses a technique to convert transition systems into Petri nets
in order to discover a process model for each region. Finally, we selected De-
composed Miner (DM) which is a meta technique in the sense that it cannot
discover a process model by itself. Instead, it decomposes the event log into
sub-logs and relies on another miner (a base miner) to discover a process
model for each fragment in the decomposition. The latter is a characteristic
shared with SPM, which is also a meta technique. FO, IM and DM are avail-
able in ProM, while RM is implemented in the genet tool. We excluded other
decomposition methods that rely on different decomposition dimensions than
ours such as BPMN Miner [19]. The latter decomposes a BPMN model into
sub-processes based on data objects.

We note that DM sometimes produces Petri nets that are not Workflow
nets because they have more than one start or end place. It is straightforward
to turn such Petri nets into Workflow nets by adding a transition from a single
start place to the initial marking (where each start place has a token) and a
transition from every final marking to a single end place. We can then check
soundness and compute accuracy on the resulting Workflow net.

33

Fodina

Inductive Miner

Divide &
Conquer

Decomposed
Miner

Stage Mining

Event Log

Activity Clustering

Stage Decomposition Staged Process
Model Discovery

Region-Based Miner
Process Model

Decompose Discovery

Figure 19: Overview of the techniques used in the automated process discovery evaluation.

5.3. Quality Measures

To evaluate the accuracy of a stage decomposition against the ground
truth, we experimented with three well-known external indexes of clustering
quality: Rand, Fowlkes–Mallows and Jaccard [42]. These indexes are used
to evaluate the similarity of two clusterings. The higher the index is, the
more similar the two clusterings are. In our tests, the Rand Index was very
high even for less similar clusterings while Jaccard was often low even for
very similar clusterings. Fowlkes–Mallows provided more reasonable results
between those returned by the other two indexes. Thus, we decided to report
the results using the Fowlkes–Mallows index only, given that Rand and Jac-
card also showed consistent results across all datasets and techniques. The
formula for Fowlkes–Mallows is provided below, where n11 is the number of
activities that are in the same stage in both decompositions, and n10(n01)
is the number of activities that are in the same stage in the first (second)
decomposition but in different stages in the second (first) decomposition.

Fowlkes–Mallows =
n11√

(n11 + n10)(n11 + n01)
(3)

To evaluate the accuracy of the discovered models, we report on fitness,
precision, and F-score as defined in Section 4.1. As noted in Section 4.1,
ETC-precision is non-deterministic [31]. To mitigate the threat to validity
that this non-determinism entails, we computed the ETC precision twice for
each log. We found that the observed ETC precision value was the same
results in both runs for all logs and miners, except for the BPI12 log when

34

using inductive miner with noise thresholds of 0.3 and below. Accordingly,
for this latter log, we computed the ETC precision five times on the BPI12
log and reported the average and the confidence interval.

We hyper-parameter optimized all techniques in order to find the best
F-score for each of them. For SPM and SPD, we experimented with the fol-
lowing parameters: minimum stage size and number of clusters, respectively.
For DC, we ran the technique with the Decompose configuration used in the
evaluation of the original paper [10]. The results reported are based on the
best parameters configuration for each technique (see Table 6).

Besides fitness, precision and their F-score, we report on model complex-
ity to avoid the bias of the so-called “flower” model (i.e. a model where all
tasks can be performed in any order) or the “enumeration” model (a model
that enumerates all distinct traces of the log through an XOR-split gate-
way) [43], which can easily achieve perfect fitness and F-score, respectively.
Complexity quantifies how difficult it is to understand a model. Several com-
plexity metrics have been shown to be (inversely) related to understandabil-
ity [44], including Size (number of nodes), Control-Flow Complexity (CFC)
(the amount of branching caused by split gateways in the model), and Struc-
turedness (the percentage of nodes located directly inside a well-structured
single-entry single-exit fragment).

Finally, we complement the above quality measures with run-time per-
formance. For decomposition, we measure the time from reading a log to
the generation of a given decomposition. For automated process discovery,
we measure the time from reading a log to the generation of the final pro-
cess model, including the time for the evaluation of fitness and precision to
select models with the best F-score. The latter is needed to compare the
various discovery techniques using their best possible model obtained via
hyper-parameter optimization. As some generated process models are overly
complex and time for model-log alignment can be extremely long, we set a
timeout of 200 seconds. All the above measures are summarized in Table 7.

All experiments were conducted on a laptop with Intel i7 2.1GHz 64-bit
CPU, 16GB RAM, 8GB RAM for Java 8 Virtual Machine, and Microsoft
Windows 10.

5.4. Stage Decomposition Results

We present the evaluation results in light of the first two questions
identified above.

35

Technique Description Parameter Min. value Max. value Step

FO Fodina
Dependency threshold 0.2 0.8 0.2

Pattern threshold 0.2 0.8 0.2

IM Inductive Miner Noise Threshold 0.1 0.7 0.1

RM Region-based
Miner

- - - -

DMim Decomposed Miner
on top of Inductive

Miner

Noise Threshold 0.0 0.7 0.1

DMfo
Decomposed Miner
on top of Fodina

Dependency threshold 0.2 0.8 0.2

Pattern threshold 0.2 0.8 0.2

SPMim
SPM on top of
Inductive Miner

Noise threshold 0.0 0.7 0.1

Interstage threshold 0.0 0.8 0.1

Imprecision threshold 0.06 0.06 -

SPMfo
SPM on top of

Fodina

Dependency threshold 0.2 0.8 0.2

Pattern threshold 0.2 0.8 0.2

Interstage threshold 0.0 0.8 0.1

Imprecision threshold 0.06 0.06 -

Table 6: Parameters, value ranges and step increments used to evaluate each automated
process discovery technique

Measure Type Description

Fowlkes–Mallows Decomposition accuracy Similarity between a stage
decomposition and its ground truth

Fitness Model accuracy Ability to reproduce the behavior in
the log

Precision Model accuracy Ability to only generate the behavior
in the log

F-score Model accuracy Harmonic mean of fitness and
precision

Size Model complexity Number of nodes in the model

CFC Model complexity Amount of branching caused by split
gateways in the model

Structuredness Model complexity Percentage of nodes in a
well-structured single-entry single-exit

fragment

Soundness Model correctness Behavioral correctness

Discovery time Time performance Time to discover a process model
with the highest F-score

Table 7: Quality and time performance measures used to compare different techniques for
stage decomposition and automated process discovery

36

Q1. How does the quality of the stage decomposition produced by
our technique compare to that of existing baselines?

Table 8 shows the Fowlkes–Mallows index for the three techniques, for
each log. SPM, in either of its two variants (highest modularity and low-
est cut-value) consistently outperformed the two baseline techniques across
all datasets except SPD for the BPI13 log. These results attest the appro-
priateness of the modularity measure for stage decomposition, with lowest
cut-value being a good approximation of the ground truth. In addition, our
heuristics-based techniques with highest modularity and lowest cut-value can
approximate the optimal selection of cut-points when comparing with the ex-
haustive technique for the BPI12 and BPI13 logs. For the BPI15-x logs, the
exhaustive technique does not finish after running for several hours due to
the large number of combinations of cut-points.

Figures 20, 21 and 22 visualize the three decompositions by SPM, DC and
SPD, respectively. Activities highlighted in red are those in wrong clusters.
SPM identifies correct clusters for all activities, while DC has many wrongly
placed activities and SPD has some wrongly placed activities.

36

Figure 20: Stage decomposition produced by SPM for the BPI12 log.

For the BPI13 log, SPD achieves the best index among the techniques
with one wrongly placed activity, SPM comes the second with some wrongly
placed activities and DC has many wrongly placed activities (see Figures 23,
24 and 25). This process has a unique feature: each stage has a key activity
that often receives IT tickets from the other stages and is strongly connected
with all other activities in a stage (see Figure 28). Based on this feature, SPD
can detect these activities as medoids and correctly identifies clusters based
on the closeness between the medoids and other nodes. In contrast to the
BPI12 log without this feature, SPD fails to identify correct clusters. In case
of the BPI13 log, SPM detects these activities as cut-points and produces a

37

Figure 21: Stage decomposition produced by DC for the BPI12 log.

Figure 22: Stage decomposition produced by SPD for the BPI12 log.

close decomposition to the ground truth with a few wrongly placed activities.

Figure 23: Stage decomposition produced by SPM for the BPI13 log.

For other logs, SPM consistently achieves higher accuracy index than
SPD and DC. Figures 26 and 27 visualize the stage decomposition of SM for
the BPI15-1 and BPI17 logs. For the BPI15-1 log, although SPM identifies
the correct order of stages and closely the number of stages as the ground
truth (8 vs. 7), there are a number of wrongly placed activities that affect
its accuracy index. As each log in the set of BPI15 logs has a large number

38

Figure 24: Stage decomposition produced by DC for the BPI13 log.

41

BPIC13 – SPD – 0.94

Figure 25: Stage decomposition produced by SPD for the BPI13 log.

39

of activities, relatively large number of stages and variations of activities in
a stage, SPM is the best effort among these techniques that can produce the
closest decomposition to the ground truth. For the BPI17 log, SPM identifies
the correct order and number of stages with three wrongly placed activities.

Figure 26: Stage decomposition produced by SM for the BPI15-1 log.

Among these techniques, only SPM can retrieve the order of stages while
ordering is not part of the results provided by the two baseline techniques.
For these logs, SPM can correctly identify the order of stages from BPI12,
BPI15 and BPI17 logs. For the BPI13 log, as shown in Figure 23, Stage 3
is placed between Stage 1 and Stage 2. This is because this process has a
strong flow between Stage 1 and Stage 3 without going through Stage 2 (IT
incident tickets are sent directly from the Helpdesk line 1 to line 3), making
the stage decomposition algorithm wrongly take Stage 3 as the second stage.

In terms of runtime performance, both our technique and the two base-
lines perform within reasonable bounds, in the order of seconds. However,
as mentioned before, the exhaustive variant of our technique could not finish

40

Figure 27: Stage decomposition produced by SM for the BPI17 log.

6,302

3,675

3,533

2,223

340

21

1,796 215

89

2,498

2,616

4215

880 1,987195

1,328

86

38

17

701

7

158 804

1

4411

534

38

3

2,070

38

93

30

2

13

211

48 161

1,830

134

193

3,509

32

1

126

4

147

180

73

74

862

8 9

6,439

880

374

132

4

17

5,581

1

3,436

1st_in progress

22,616

3rd_awaiting assignment

599

3rd_in progress

1,080

1st_awaiting assignment

6,992

2nd_in progress

6,334

2nd_resolved

1,897

3rd_assigned

152

3rd_resolved

345

3rd_closed

340

2nd_awaiting assignment

3,845

2nd_wait - user

846

3rd_wait - implementation

43

2nd_wait - implementation

194

2nd_assigned

881

2nd_wait

471

1st_assigned

2,155

1st_wait - implementation

244

1st_resolved

3,775

1st_closed

3,544

2nd_closed

1,831

1st_wait - user

3,090

2nd_wait - vendor

57

1st_wait

968

3rd_wait - user

209

1st_in call

2,004

1st_wait - vendor

242

2nd_wait - customer

46

3rd_wait

78

1st_wait - customer

43

3rd_wait - vendor

8

3rd_wait - customer

10

1st_unmatched

4

2nd_in call

30

2nd_unmatched

1

1st_cancelled

1

Figure 28: Simplified DFG created from the BPI13 log using the Disco tool.

Dataset DC SPD
SPM

Highest Modularity Lowest Cut-value Exhaustive

BPI12 0.26 0.56 (Clusters=5) 1.0 (MinSS=3) 1.0 1.0

BPI13 0.45 0.94 (Clusters=3) 0.73 (MinSS=4) 0.73 0.73

BPI15-1 0.39 0.42 (Clusters=4) 0.55 (MinSS=6) 0.55 Timed-out

BPI15-2 0.31 0.37 (Clusters=2) 0.55 (MinSS=7) 0.55 Timed-out

BPI15-3 0.36 0.37 (Clusters=9) 0.54 (MinSS=6) 0.54 Timed-out

BPI15-4 0.32 0.37 (Clusters=6) 0.61 (MinSS=7) 0.61 Timed-out

BPI15-5 0.30 0.36 (Clusters=9) 0.54 (MinSS=7) 0.54 Timed-out

BPI17 0.44 0.44 (Clusters=2) 0.75 (MinSS=4) 0.75 0.75

Table 8: Fowlkes–Mallows index for the evaluated techniques (MinSS: Min. stage size).

41

for the BPI15-x logs after running for several hours.

Q2. How does the quality of the decomposition produced by our
technique vary depending on the minimum stage size?

To answer this question, we run our technique with the highest modularity
algorithm using different values of minimum stage size (minSS), from 2 to
half of the total number of activities in an event log. Table 9 provides the
characteristics of different stage decompositions, each for a minSS value. It
shows that the modularity is usually higher when minSS is small (minSS is
2 or 3). This is because there are often strong edges between 2 or 3 nodes
on DFGs representing highly common activity sequences. As minSS gets
smaller, the technique will decompose the graph into small stages as long as
the modularity keeps increasing.

MinSS
BPI12 BPI13 BPI15-1 BPI17

Stages Mod FM Stages Mod FM Stages Mod FM Stages Mod FM

2 6 0.53 0.79 4 0.35 0.57 11 0.75 0.49 7 0.67 0.56

3 4 0.59 1.00 3 0.34 0.59 9 0.76 0.51 5 0.68 0.59

4 4 0.52 0.81 3 0.31 0.73 9 0.75 0.49 3 0.56 0.75

5 3 0.52 0.82 3 0.31 0.73 9 0.75 0.49 2 0.47 0.70

6 3 0.44 0.70 3 0.31 0.73 8 0.75 0.55 2 0.47 0.70

7 2 0.42 0.68 3 0.31 0.73 8 0.75 0.55 2 0.47 0.70

8 2 0.42 0.67 3 0.31 0.73 6 0.69 0.53 2 0.47 0.70

9 2 0.31 0.63 6 0.69 0.53 2 0.47 0.70

10 2 0.31 0.63 6 0.69 0.53 2 0.47 0.73

11 2 0.31 0.63 5 0.69 0.52 2 0.47 0.73

12 1 0.10 0.56 5 0.69 0.52

13 1 0.10 0.56 5 0.69 0.52

14 1 0.10 0.56 5 0.69 0.52

15 1 0.10 0.56 5 0.69 0.52

16 1 0.10 0.56 5 0.69 0.50

17 4 0.67 0.50

18 4 0.67 0.50

19 4 0.67 0.50

20 4 0.67 0.50

21 4 0.67 0.50

22 4 0.67 0.50

23 4 0.67 0.50

24 4 0.67 0.50

25 3 0.58 0.49

26

27

28

29

Table 9: Highest-modularity SPM with different minimum stage sizes (MinSS=Minimum
Stage Size, Mod=Modularity, FM=Fowlkes–Mallows).

42

5.5. Automated Process Discovery Results

In the last part of our evaluation, guided by our third question shown
below, we focus on the quality of the models automatically discovered by
our technique, and compare the results with various baselines.

Q3. How does the quality of process models produced by our
technique compare to that of the baselines?

To answer this question, we compared Staged Process Miner on top of In-
ductive Miner (called SPMim) and on top of Fodina (SPMfo), against various
baseline techniques for automated process discovery: two base miners, Induc-
tive Miner (IM), Fodina (FO), and two decomposition miners, Decomposed
Miner on top of IM and FO (called DMimand DMfo), and Region-based Miner
(RM). As discussed, we used the following quality measures: fitness, precision
and their F-score as proxies for model accuracy, size, CFC and structured-
ness (as proxies for model complexity), and soundness. We complemented
these quality measures with runtime performance, where we set a time out
of five minutes for each technique, which includes the time to compute the
F-score.

Table 10 reports the evaluation results. We can observe that SPM always
achieves the best F-score across all logs. This occurs when SPM is used on
top of IM, except for the BPI17 log, where the best score is achieved with
SPM on top of Fodina, though SPMim is close off. The SPMfo variant also
performs quite well in terms of accuracy, often reaching the second-highest
F-score. This confirms that our technique indeed enhances the accuracy of
the base miner it is used atop. Notably, SPM can achieve better F-score
than all other baselines because precision significantly improves while fitness
is only marginally affected negatively.

Among the decomposition methods, SPM is the only one that returns
sound models. In contrast, DM and RM produce unsound models because
of their stitching technique. Although Table 10 shows fitness and precision
measurements for the unsound models produced by DM and RM, these mea-
surements are not reliable. In the case of an unsound model, the alignment
fitness measure might not reflect the alignment penalty between each trace
in the log and the closest trace that the model can generate, but rather the
penalty of an alignment between each trace of the log and a trace of the
model with the least number of skip transitions.

The complexity of the models obtained by SPM is generally low compared
to the models obtained by the two base miners IM and FO, generally higher,

43

Log name
Discovery Accuracy Complexity

Sound?
Runtime

technique Fitness Precision F-score Size CFC Struct. (seconds)

BPI12

IM 0.98 0.82±0.068 0.93 54 36 0.94 yes 78

FO 1.0 0.85 0.92 45 32 0.67 yes 594

SPMim 0.97 0.95 0.96 31 20 1.0 yes 107

SPMfo 0.77 1.0 0.87 24 10 0.75 yes 99

DMim - - - 86 61 0.34 - timed out

DMfo - - - 89 75 0.42 - timed out

RM 1.0* 0.20* 0.33* 22 17 - no 15

BPI13

IM 1.0 0.58 0.68 63 37 0.98 yes 831

FO 1.0 0.61 0.76 85 145 0.15 yes 1,105

SPMim 0.78 0.76 0.77 97 67 0.83 yes 543

SPMfo 0.77 0.84 0.80 37 35 0.3 yes 460

DMim - - - 91 55 0.78 - timed out

DMfo - - - 111 148 0.74 - timed out

RM - - - - - - - timed out

BPI15-1

IM - - - - - - timed out

FO - - - - - - - timed out

SPMim 0.72 0.76 0.74 180 103 0.78 yes 818

SPMfo 0.81 0.65 0.72 213 161 0.46 yes 1057

DMim - - - - - - - timed out

DMfo - - - 496 540 0.15 - timed out

RM - - - - - - - timed out

BPI15-2

IM - - - - - - - timed out

FO - - - - - - - timed out

SPMim 0.73 0.64 0.68 214 105 1.0 yes 1,715

SPMfo - - - 321 525 0.18 yes timed out

DMim - - - 441 301 0.39 no timed out

DMfo - - - 567 712 0.11 - timed out

RM - - - - - - - timed out

BPI15-3

IM - - - - - - - timed out

FO - - - - - - - timed out

SPMim 0.74 0.78 0.76 140 66 1.0 yes 571

SPMfo 0.82 0.65 0.72 182 146 0.36 yes 960

DMim - - - 169 120 0.31 no timed out

DMfo - - - 460 451 0.18 no timed out

RM - - - - - - - timed out

BPI15-4

IM - - - - - - - timed out

FO - - - - - - - timed out

SPMim 0.79 0.76 0.78 187 105 0.68 no 417

SPMfo 0.85 0.61 0.71 195 163 0.3 yes 531

DMim - - - - - - - timed out

DMfo - - - 445 486 0.14 - timed out

RM - - - - - - - timed out

BPI15-5

IM - - - - - - - timed out

FO - - - - - - - timed out

SPMim 0.70 0.77 0.73 149 76 0.86 yes 955

SPMfo - - - 312 396 - no timed out

DMim - - - - - - - timed out

DMfo - - - 483 479 0.12 - timed out

RM - - - - - - - timed out

BPI17

IM 0.59 0.96 0.73 21 5 1.0 yes 610

FO 1.0 0.57 0.73 64 119 0.11 yes 1,513

SPMim 0.84 0.83 0.84 42 18 0.76 yes 718

SPMfo 0.95 0.81 0.87 50 43 0.36 yes 789

DMim - - - 83 54 - no timed out

DMfo - - - 110 116 0.24 - timed out

RM 1.0* 0.21* 0.34* 29 21 - no 52

Table 10: Comparison of techniques for automated process discovery (* indicates unreliable
value due to the model being unsound).

44

and by DM fo, which is always the highest.
Another finding is that SPM achieves equal or better runtime performance

than the base miners. This is thanks to the decomposition approach where
sub-models are mined and assessed separately, from smaller sub-logs. At the
same time, SPM uses a relatively fast decomposition approach. In contrast,
RM suffers from scalability issues due to its decomposition approach, to the
extent that it times-out in several cases.

To illustrate the differences between the evaluated approaches, let us con-
sider the models obtained by the various techniques assessed above, starting
from the BPI12 log. Figures 29 and 30 show the models produced by IM and
FO for this log, while Figure 31 shows the model obtained by SPM on top
of IM, and Figures 32 and 33 show the models obtained by DM and RM. As
this log is highly structured, the models obtained by IM and FO have high
F-score but at the same time, high model complexity. However, the model
obtained by SPM on top of IM has the highest F-score and is the simplest in
terms of Size and CFC measures. Compared to IM, SPM has simplified the
model by removing a number of edges, yet the model is able to keep a higher
F-score. In contrast, the models obtained by other decomposed techniques
are overly complex with low precision and unsound. DM suffers from the way
it stitches submodels by using many AND gateways, while RM suffers from
its decomposition approach, which often results in a low-precision model.

Figure 29: Process model discovered from the BPI12 log by Inductive Miner.

Figure 30: Process model discovered from the BPI12 log by Fodina.

Figure 31: Process model discovered from the BPI12 log by SPM on top of Inductive
Miner.

45

Figure 32: Process model discovered from the BPI12 log by Decomposed Miner on top of
Inductive Miner.

Figure 33: Process model discovered from the BPI12 log by Region-based Miner. Note
the absence of an end event.

46

For the BPI13 log, the log is less structured than the BPI12 log and reveals
more differences between the techniques. Figures 34 and 35 show the models
discovered by IM and FO, while Figures 36 and 37 show the model obtained
by SPM on top of IM and FO, respectively. The model obtained by IM is
highly structured (Structuredness = 1.0 by design, however, 0.98 is returned
based on the latest Inductive Miner implementation). On the contrary, the
model obtained by Fodina is highly unstructured (Structuredness = 0.15) and
also highly complex. This is because Fodina keeps all activities in order to
achieve high fitness while IM always maintains a structured model while also
filtering out infrequent activities to improve the model precision. In contrast,
the model obtained by SPM on top of IM is slightly less structured than the
one by IM because of the stitching of inter-stage edges. Thus, it improves
over IM in terms of precision but results in lower fitness. This is because when
SPM uses IM to mine submodels, IM has filtered out significant behaviors in
sublogs to achieve the best F-score. When submodels are chained, the fitness
of the chaining model is rather low (approximately 0.5). Subsequently, when
the submodels are stitched with inter-stage edges, it can only improve the
precision and fitness to a certain level given that fitness has been lost in
the submodels. On the other hand, the model obtained by SPM on top of
Fodina improves over SPM on top of IM. This is because Fodina tends to
keep as many activities and edges as possible, which can then be improved
by SPM. The model obtained by SPM on top of Fodina is also much simpler
than the one by Fodina itself. Compared to IM, it also has much lower Size
and CFC values. In a nutshell, SPM depends on the subminer used. It can
produce significantly simpler models than the base techniques (e.g. compared
with Fodina). It can also achieve higher F-score than the base techniques
(e.g. SPM on top of Fodina). In terms of structuredness, despite the low
structuredness of the process model from this log, SPM has an advantage
that it is always aware of the overall structure of the produced model because
it is based on a stage decomposition. For other decomposed techniques, the
model obtained by Decomposed Miner is overly complex with many AND
gateways as shown in Figure 38. Both the log-model alignment and soundness
check timed out. Similarly, the Region-Based Miner could not complete the
discovery of the model from this log within the allotted time.

For the BPIC15 logs, the main challenge is due to their complexity: these
logs have a large number of activities, long traces and extreme variance be-
tween traces. For these logs, both Inductive Miner and Fodina produce
highly complex models, which often make the computation of model qual-
ity/complexity and soundness verification time out. Figures 39 and 40 illus-

47

Figure 34: Process model discovered from the BPI13 log by Inductive Miner.

Figure 35: Process model discovered from the BPI13 log by Fodina.

Figure 36: Process model discovered from the BPI13 log by SPM on top of Inductive
Miner.

Figure 37: Process model discovered from the BPI13 log by SPM on top of Fodina.

48

trate the models obtained by Inductive Miner and Fodina from the BPI15-1
log. The former exhibits a form of flower model with edges connecting from
an XOR join gateway back to an XOR split gateway. The latter is a typical
example of a spaghetti model. In contrast, Figures 41 and 42 show much
simpler models discovered by SPM on top of Inductive Miner and Fodina.
These results highlight the advantage of SPM over the base techniques in
dealing with complex logs. We also observe that for the BPI15-5 log, as Fo-
dina produces an unsound submodel, the chained model produced by SPM
by chaining submodels is also unsound. For other decomposed techniques,
Decomposed Miner often produces overly complex models, which makes it
unable to check the model quality and soundness within an acceptable time-
frame, while the Region-Based Miner often fails to produce a model within
the same timeframe.

Figure 38: Process model discovered from the BPI13 log by Decomposed Miner on top of
Inductive Miner.

Figure 39: Process model discovered from the BPI15-1 log by Inductive Miner.

For the BPI17 log, the results are similar to those of the BPI12 log. SPM
can produce simpler models with higher F-score than those discovered by
Inductive Miner and Fodina, while Decomposed Miner has a highly complex
model and Region-Based Miner suffers from a low-precision model.

Finally, Table 11 illustrates the results of SPM without the Adjusting
step. In comparison with the results shown in Table 10, we can see that

49

Figure 40: Process model discovered from the BPI15-1 log by Fodina.

SPM with the Adjusting step always improves the quality of the process
model (both in terms of precision and complexity), particularly in the case
of the BPI15 logs. As an example, Figure 43 shows the process model discov-
ered from the BPI15-1 log without the Adjusting step. This is visibly more
complex than the same extract of model, using the Adjusting step, as shown
in Figure 42.

Log name
Discovery Accuracy Complexity

Sound?
Runtime

technique Fitness Precision F-score Size CFC Struct. (seconds)

BPI12
SPMim 0.89 0.9 0.9 48 28 1.0 yes 68

SPMfo 0.81 0.98 0.88 46 32 0.54 yes 122

BPI13
SPMim 0.78 0.76 0.77 97 67 0.83 yes 494

SPMfo 0.8 0.67 0.73 83 120 0.23 yes 858

BPI15-1
SPMim 0.75 0.4 0.52 238 144 0.92 yes 680

SPMfo 0.85 0.4 0.54 335 423 0.21 yes 1,216

BPI15-2
SPMim 0.73 0.65 0.69 214 105 1.0 yes 1,444

SPMfo - - - 321 525 0.18 yes timed out

BPI15-3
SPMim 0.77 0.63 0.69 260 144 1.0 yes 397

SPMfo 0.86 0.41 0.56 293 328 0.27 yes 540

BPI15-4
SPMim 0.8 0.49 0.61 232 136 1.0 yes 405

SPMfo 0.87 0.43 0.57 274 322 0.19 yes 557

BPI15-5
SPMim 0.81 0.52 0.63 272 155 0.82 yes 1333

SPMfo - - - 312 396 - no timed out

BPI17
SPMim 0.92 0.74 0.82 53 28 1.0 yes 425

SPMfo 0.97 0.64 0.77 68 105 0.13 yes 760

Table 11: SPM without the Adjusting step.

6. Conclusion

This article put forward a technique to identify stages from an event log
in a way that seeks to maximize modularity. The experimental evaluation
showed that this modularity-driven method leads to stage-based process de-
compositions that are closer to human expert decompositions, compared to

50

F
ig

u
re

41
:

P
ro

ce
ss

m
o
d

el
d

is
co

v
er

ed
fr

o
m

th
e

B
P

I1
5
-1

lo
g

b
y

S
P

M
o
n

to
p

o
f

In
d

u
ct

iv
e

M
in

er
.

F
ig

u
re

42
:

P
ro

ce
ss

m
o
d

el
d

is
co

ve
re

d
fr

o
m

th
e

B
P

I1
5
-1

lo
g

b
y

S
P

M
o
n

to
p

o
f

F
o
d

in
a
.

F
ig

u
re

43
:

P
ro

ce
ss

m
o
d

el
d

is
co

v
er

ed
fr

om
th

e
B

P
I1

5
-1

lo
g

b
y

S
P

M
o
n

to
p

o
f

F
o
d

in
a

w
it

h
o
u

t
th

e
A

d
ju

st
in

g
st

ep
.

51

non-modular decomposition approaches previously proposed in the litera-
ture. This result confirms previous findings that human experts intuitively
produce decompositions of business processes with high modularity [11].

Based on this modularity-driven stage decomposition method, the article
also presented a new divide-and-conquer tecnique for automated process dis-
covery (i.e. discovering process models from event logs). The experimental
evaluation showed that the proposed stage-based automated process discov-
ery technique discovers relatively simple models for each stage, and merges
them together into a final process model with higher F-score than existing
flat and divide-and-conquer automated process discovery techniques.

Besides automated process discovery, the proposed stage-based decompo-
sition method has other potential applications in the field of process mining.
For example, in [45] we have shown that stage-based decompositions can be
used to produce effective visualizations for process performance analysis. An
avenue for future work is to develop a comprehensive process performance
analysis framework based on automatically extracted stage-based process de-
compositions. Another potential application is in the field of conformance
checking, where divide-and-conquer approaches have been proposed to scale-
up existing conformance checking techniques [46].

Beyond the field of process mining, the proposed stage-based decomposi-
tion method could find applications in customer journey analysis, by allowing
analysts to identify stages from customer session logs. It may be possible to
extend the proposed stage identification technique to compute abstracted
views of large event sequences for interactive visual data mining.

The proposed automated process decomposition method is inherently lim-
ited in scope to identifying linearly ordered stages. Such linear structures can
be found for example in application-to-approval and order-to-cash processes.
However, they cannot always be found in highly variable business processes
such as those found in the healthcare domain (e.g. patient flows). In these
processes, there may be parallel and alternative stages as well as frequent
jumps between stages. A possible direction for future work is to extend
the proposed automated process decomposition method in order to iden-
tify stages that are not linearly ordered and stages that do not have clear
boundaries (e.g. with frequent back-and-forth transitions between stages).
A possible direction for tackling this challenge is to combine existing au-
tomated process decomposition approaches (based on clustering) with the
modularity-driven approach proposed in this article.

Acknowledgments. This research is funded by the Australian Research

52

Council (grant DP150103356) and the Estonian Research Council (grant
IUT20-55).

References

[1] M. Dumas, M. La Rosa, J. Mendling, H. Reijers, Fundamentals of Busi-
ness Process Management, Springer 2nd Edition, 2018.

[2] W. van der Aalst, Process Mining: Data Science in Action, Springer,
2016.

[3] A. Weijters, W. M. van Der Aalst, A. A. De Medeiros, Process mining
with the heuristics miner-algorithm, Technische Universiteit Eindhoven,
Tech. Rep. WP 166 (2006) 1–34.

[4] S. J. Leemans, D. Fahland, W. M. van der Aalst, Discovering block-
structured process models from event logs containing infrequent be-
haviour, in: International Conference on Business Process Management,
Springer, 2013, pp. 66–78.

[5] S. vanden Broucke, J. De Weerdt, J. Vanthienen, B. Baesens, Fodina: a
robust and flexible heuristic process discovery technique, Decision Sup-
port Systems.

[6] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi, A. Mar-
rella, M. Mecella, A. Soo, Automated discovery of process models from
event logs: Review and benchmark, CoRR abs/1705.02288.

[7] 4TU Data Center, BPI Challenge 2012 Event Log (2012).
doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

[8] J. Carmona, J. Cortadella, M. Kishinevsky, Divide-and-conquer strate-
gies for process mining, in: Proc. of BPM, Springer, 2009, pp. 327–343.

[9] W. M. Van der Aalst, Decomposing Petri nets for process mining: A
generic approach, Distributed and Parallel Databases 31 (4) (2013) 471–
507.

[10] H. Verbeek, W. van der Aalst, J. Munoz-Gama, Divide and conquer: A
tool framework for supporting decomposed discovery in process mining,
The Computer Journal (2017) 1–26.

53

[11] H. A. Reijers, J. Mendling, R. M. Dijkman, Human and automatic mod-
ularizations of process models to enhance their comprehension, Inf. Syst.
36 (5) (2011) 881–897.

[12] H. Nguyen, M. Dumas, A. H. ter Hofstede, M. La Rosa, F. M. Maggi,
Mining business process stages from event logs, in: International Con-
ference on Advanced Information Systems Engineering, Springer, 2017,
pp. 167–185.

[13] W. M. P. van der Aalst, T. Weijters, L. Maruster, Workflow mining:
discovering process models from event logs, IEEE TKDE 16 (9) (2004)
1128–1142.

[14] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, G. Bruno, Automated
discovery of structured process models: Discover structured vs. discover
and structure, in: Conceptual Modeling: 35th International Conference,
ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings 35, Springer,
2016, pp. 313–329.

[15] A. K. de Medeiros, A. J. Weijters, W. M. van der Aalst, Genetic pro-
cess mining: an experimental evaluation, Data Mining and Knowledge
Discovery 14 (2) (2007) 245–304.

[16] J. C. Buijs, B. F. Van Dongen, W. M. van Der Aalst, On the role of
fitness, precision, generalization and simplicity in process discovery, in:
OTM Confederated International Conferences” On the Move to Mean-
ingful Internet Systems”, Springer, 2012, pp. 305–322.

[17] J. M. E. Van der Werf, B. F. van Dongen, C. A. Hurkens, A. Serebrenik,
Process discovery using integer linear programming, in: International
Conference on Applications and Theory of Petri nets, Springer, 2008,
pp. 368–387.

[18] W. M. Van Der Aalst, Decomposing process mining problems using pas-
sages, in: International Conference on Application and Theory of Petri
nets and Concurrency, Springer, 2012, pp. 72–91.

[19] R. Conforti, M. Dumas, L. Garćıa-Bañuelos, M. La Rosa, BPMN miner:
Automated discovery of BPMN process models with hierarchical struc-
ture, Inf. Syst. 56 (2016) 284–303.

54

[20] G. Greco, A. Guzzo, L. Pontieri, Mining taxonomies of process models,
Data & Knowledge Engineering 67 (1) (2008) 74–102.

[21] C. C. Ekanayake, M. Dumas, L. Garćıa-Bañuelos, M. La Rosa, Slice,
mine and dice: Complexity-aware automated discovery of business pro-
cess models, in: International Conference on Business Process Manage-
ment (BPM), Springer, 2013, pp. 49–64.

[22] J. De Weerdt, J. Vanthienen, B. Baesens, Active trace clustering for
improved process discovery, Knowledge and Data Engineering, IEEE
Transactions on 25 (12) (2013) 2708–2720.

[23] L. Raichelson, P. Soffer, E. Verbeek, Merging event logs: Combin-
ing granularity levels for process flow analysis, Information Systems 71
(2017) 211 – 227. doi:https://doi.org/10.1016/j.is.2017.08.010.

[24] J. Claes, G. Poels, Merging event logs for process mining: A
rule based merging method and rule suggestion algorithm, Ex-
pert Systems with Applications 41 (16) (2014) 7291 – 7306.
doi:https://doi.org/10.1016/j.eswa.2014.06.012.

[25] J. C. A. M. Buijs, B. F. van Dongen, W. M. P. van der Aalst, Mining
configurable process models from collections of event logs, in: Busi-
ness Process Management - 11th International Conference, BPM 2013,
Beijing, China, August 26-30, 2013. Proceedings, 2013, pp. 33–48.
doi:10.1007/978-3-642-40176-3 5.

[26] L. Garćıa-Bañuelos, M. Dumas, M. L. Rosa, J. D. Weerdt,
C. C. Ekanayake, Controlled automated discovery of collections of
business process models, Information Systems 46 (2014) 85–101.
doi:10.1016/j.is.2014.04.006.

[27] M. E. Newman, M. Girvan, Finding and evaluating community structure
in networks, Physical review E 69 (2) (2004) 026113.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, The MIT Press, 2009.

[29] A. Adriansyah, B. van Dongen, W. van der Aalst, Conformance checking
using cost-based fitness analysis, in: Proc. of EDOC, IEEE, 2011, pp.
55–64.

55

[30] A. Adriansyah, J. Muñoz-Gama, J. Carmona, B. van Dongen,
W. van der Aalst, Measuring precision of modeled behavior, ISeB 13 (1)
(2015) 37–67.

[31] N. Tax, X. Lu, N. Sidorova, D. Fahland, W. M. P. van der Aalst, The
imprecisions of precision measures in process mining, Inf. Process. Lett.
135 (2018) 1–8.

[32] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. L. Rosa,
D. Reißner, Abstract-and-compare: A family of scalable precision mea-
sures for automated process discovery, in: Proceedings of the 16th Inter-
national Conference on Business Process Management (BPM), Springer,
2018, pp. 158–175.

[33] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, F. Maggi, A. Marrella,
M. Mecella, A. Soo, Automated discovery of process models from event
logs: Review and benchmark, IEEE Transactions on Knowledge and
Data EngineeringTo appear.

[34] W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Verbeek,
M. Voorhoeve, M. Wynn, Soundness of workflow nets: classification,
decidability, and analysis, Formal Asp. Comput. 23 (3).

[35] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, W. M.
van der Aalst, Alignment based precision checking, in: Proceedings of
BPM, Springer, 2012, pp. 137–149.

[36] C. Favre, D. Fahland, H. Völzer, The relationship between workflow
graphs and free-choice workflow nets, Information Systems 47 (2015)
197–219.

[37] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, A. Polyvyanyy, Split
Miner: automated discovery of accurate and simple business process
models from event logs, Knowledge and Information Systems 59 (2)
(2019) 251–284.

[38] C. Favre, H. Völzer, The difficulty of replacing an inclusive or-join, in:
International Conference on Business Process Management, Springer,
2012, pp. 156–171.

[39] 4TU Data Center, BPI Challenge 2013 Event Log (2013).
doi:doi:10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee.

56

[40] 4TU Data Center, BPI Challenge 2015 Event Log (2015).
doi:doi:10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.

[41] 4TU Data Center, BPI Challenge 2017 Event Log (2017).
doi:doi:10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

[42] M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation
techniques, J. Intell. Inf. Syst. 17 (2-3) (2001) 107–145.

[43] W. van der Aalst, Process Mining: Discovery, Conformance and En-
hancement of Business Processes, Springer, 2011.

[44] J. Mendling, Metrics for Process Models: Empirical Foundations of Ver-
ification, Error Prediction, and Guidelines for Correctness, Springer,
2008.

[45] H. Nguyen, M. Dumas, A. H. ter Hofstede, M. La Rosa, F. M. Maggi,
Business process performance mining with staged process flows, in:
Proc. of CAiSE, Springer, 2016, pp. 167–185.

[46] S. K. L. M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens,
J. Vanthienen, Event-based real-time decomposed conformance analysis,
in: Proceedings of the OTM 2014 Confederated International Confer-
ences, Springer, 2014, pp. 345–363.

57

