
BESERIAL: Behavioural Service Interface
Analyser

Ali Aı̈t-Bachir1?, Marlon Dumas2 and Marie-Christine Fauvet1

1 University of Grenoble, LIG (MRIM)
385 rue de la bibliotheque – B.P. 53

38041 Grenoble Cedex 9, France
2 University of Tartu Estonia

Abstract. In a service-oriented architecture, software services interact
by means of message exchanges that follow certain patterns documented
in the form of behavioural interfaces. As any software artifact, a service
interface evolves over time. When this happens, incompatibility problems
may arise. We demonstrate a tool, namely BESERIAL, that can pinpoint
incompatibilities between behavioural interfaces.

1 Motivation

The interface of a software service establishes a contract between the service and
its clients or peers. In its basic form, a service interface defines the operations
provided by the service and the schema of the messages that the service can
receive and send. This structural interface can be captured for example using
WSDL. In the case of conversational services that provide several inter-related
operations, a service interface may also capture the inter-dependencies between
these operations. Such behavioural interfaces can be captured for example using
BPEL business protocols, or more simply using state machines as we consider
in this paper [2].

As a service evolves, its interface is likely to undergo changes. These changes
may lead to the situation where the interface provided by a service no longer
matches the interfaces that its peers expect from it. This may result in incom-
patibilities between the service and the client applications and other services
that interact with it.

This paper presents a tool, namely BESERIAL, which is able to automati-
cally detect incompatibilities between behavioural service interfaces and to re-
port them graphically. This feature enables designers to pinpoint the exact lo-
cations of these incompatibilities and to fix them. BESERIAL is able to de-
tect elementary changes in the flow of service operations that lead to incom-
patibilities (e.g. adding an operation, deleting an operation and modifying an

? This author is partially funded by the Web Intelligence project granted by the French
Rhône-Alpes Region and a scholarship from Estonian Ministry of Education and
Research.



operation). Existing tools, such as WS-Engineer3, are able to detect if two
behavioural interfaces are compatible. But, they will only detect one incom-
patibility at a time, whereas BESERIAL identifies several incompatibilities at
once. Also BESERIAL allows one to compare a given interface with multiple
other interfaces in order to identify which one most closely matches the given
interface. This can be used for service selection. A screencast of the demo is
available online at http://www-clips.imag.fr/mrim/User/ali.ait-bachir/
webServices/webServices.html.

2 BESERIAL tool

In BESERIAL behavioural service interfaces are modeled by means of Finite
State Machines (FSM)4. These FSMs are serialized in SCXML5. Figure 1 (Pro-
cess1 ) depicts an FSM representing the behaviour of a given interface (the un-
derlying service supports orders and deliveries of goods). In this work, we con-
sider only the external behaviour of an interface (sent messages and received
messages) and we abstract away from internal steps of the underlying business
process. Accordingly, transitions are labelled by the types of messages to be sent
(with prefix ’ !’) or received (with prefix ’?’).

2.1 Incompatibility Detection

One of the main features of BESERIAL is to detect changes between a new ver-
sion of an interface and a previous one. BESERIAL specifically detects changes
that may cause the new version to be incompatible vis-a-vis of clients or peers
that use the previous version. To that end, BESERIAL relies on a simulation
algorithm incorporating an incompatibility diagnosis and recovery mechanism.
The originality of BESERIAL is that the simulation algorithm does not stop at
the first incompatibility encountered [2,4] but tries to search further to identify
a series of incompatibilities leading up to one of the final states of the old version
of the interface.

A screenshot of the tool is shown in Figure 1. The screenshot displays the re-
sult of comparing two versions of an interface FSM (Process2 versus Process1 ).
The operation that allows customers to cancel an order has been deleted as well
as the operation that allows the supplier to send updated information about an
order to the customer (!OrderResponse). Accordingly, we can see two state pairs
(updateOrderResonse, invoice) and (transfer, transfer) linked by a dashed
edge labelled deletion. The deleted operations are !OrderResponse and ?Can-
celOrder shown by dotted arrows.

For validation purposes, we built a test collection consisting of 14 process sce-
narios from the xCBL6 textual description of order management choreographies.
3 http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
4 Transformations exist between other languages for describing behavioural service in-

terfaces (e.g. BPEL) and FSMs – see for example the WS-Engineer and Tools4BPEL
toolsets referenced above.

5 http://www.w3.org/TR/scxml/
6 XML Common Business Library (http://www.xcbl.org/).

http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html
http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
http://www.w3.org/TR/scxml/
http://www.xcbl.org/


process #2:orderManagement_3_3.xmlprocess #1:orderManagement_3_2.xml

_delivery _canceledcanceled

transfer

cancelOrder
_transfer

_order

updateOrderResponse

_orderResponse

_cancelOrder

_invoice

order

orderResponse

delivery

!Invoice

?CancelOrder

?Transfer

?CancelOrder

!OrderResponse

?CancelOrder!Invoice

?Order

!OrderResponse

?CancelOrder

?CancelOrder

?Order

deletion

!OrderResponse

deletion

!CancelOrderResponse

?Transfer
!CancelOrderResponse

Fig. 1. Detected incompatibilities in two FSMs.

These two-party choreographies describe possible document exchanges between
trading partners in an Order Management business process.

2.2 BESERIAL in action

One of the two features of BESERIAL is to detect changes between two be-
havioural interfaces that cause that one interface does not simulate the behaviour
of another interface. A typical usage scenario is one where the compared inter-
faces correspond to consecutive versions of a service. The algorithm simulates
the two FSMs by visiting state pairs (one state from each of the two interfaces).
Given a state pair, the algorithm determines if an incompatibility exists and clas-
sifies it as addition, deletion or modification (i.e. replacement of one operation
with another). If an addition is detected the algorithm moves along the transi-
tion of the added operation in the new version only. Conversely, if the change is
a deletion, the algorithm will move along the transition of the deleted operation
in the old version only. However, if a modification is detected, the algorithm
progresses along both FSMs simultaneously. Detection results are written down
in a text area showing the test and its outcomes (states, changes). Results can
be viewed graphically, as in Figure 1, to better pinpoint the incompatibilities.

BESERIAL can also compare one interface to a collection of interfaces. The
comparison results are sorted increasingly according to the number of detected
incompatibilities. This functionality may be used to select which service interface
is most closely compatible with the required interface.



Fig. 2. Test results of incompatibility detections in BESERIAL tool.

In Figure 2, one given interface is compared to other interfaces and the de-
tection result is rendered and sorted in the table area. Results can be sorted
increasingly and a graph can be viewed. The graph shows which interface yields
less incompatibilities with respect to the interface given as reference. In this ex-
ample, the closest interface to the given one yields two incompatibilities and the
worst result is six incompatibilities.

3 Future work

In this paper we focused on elementary incompatibility detection. Ongoing work
aims at extending BESERIAL towards two directions:

– Detecting complex incompatibilities combining elementary ones,
– Fixing detected incompatibilities.

As BESERIAL covers synchronous communications only, it also needs to be
extended to address the asynchronous case along the lines of [3].

References

1. L. Bordeaux, G. Salan, D. Berardi, and M. Mecella. When are two web services
compatible? In Proc. 5th Int. on Technologies for E-Services, pages 15–28, Canada,
2004. Springer Verlag.

2. R. Hamid, N. Motahari, B. Benatallah, A. Martens, F. Curbera, and F. Casati.
Semi-automated adaptation of service interactions. In Proc. of the 16th WWW Int.
Conf., pages 993–1002, Canada, 2007. ACM.

3. J. Wu and Z. Wu. Similarity-based web service matchmaking. In Proc. of the Int.
Conference on Services Computing, pages 287 – 294, Florida, 2005.


	BESERIAL: Behavioural Service Interface Analyser 
	Ali Aït-Bachir, Marlon Dumas and Marie-Christine Fauvet

