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Abstract. Business process simulation is a versatile technique to pre-
dict the impact of one or more changes on the performance of a pro-
cess. Mainstream approaches in this space suffer from various limitations,
some stemming from the fact that they treat resources as undifferentiated
entities grouped into resource pools. These approaches assume that all
resources in a pool have the same performance and share the same avail-
ability calendars. Previous studies have acknowledged these assumptions,
without quantifying their impact on simulation model accuracy. This pa-
per addresses this gap in the context of simulation models automatically
discovered from event logs. The paper proposes a simulation approach
and a method for discovering simulation models, wherein each resource is
treated as an individual entity, with its own performance and availability
calendar. An evaluation shows that simulation models with differentiated
resources more closely replicate the distributions of cycle times and the
work rhythm in a process than models with undifferentiated resources.
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1 Introduction

Business Process (BP) simulation [1] is a technique to analyze “what-if” sce-
narios, such as “what would be the cycle time of a process if the number of
daily new cases increases by 20%?” (S1) or “what if two resources involved in a
process become unavailable for an extended period of time?” (S2).

The starting point for BP simulation is a simulation model consisting of a
process model enhanced with parameters capturing the available resource capac-
ity, activity processing times, arrival rate of new cases, etc. It has been noted
that existing BP simulation approaches suffer from various limitations [1, 2, 8].
Some of these limitations stem from incompleteness of, or inaccuracies in, the
BP simulation model. These limitations are partly addressed by data-driven
simulation methods [5, 11], which automatically discover and calibrate simula-
tion models from execution data (event logs). These methods ensure that the
simulation model is better aligned with the observed reality [1, 5, 11]. Other
limitations of BP simulation approaches relate to assumptions made by the un-
derlying BP simulator [1, 8], most notably the assumption that resources are
interchangeable entities. Specifically, mainstream BP simulation approaches, in-
cluding data-driven ones, make the following assumptions:
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A1 Pooled resource allocation. Each resource belongs to one resource pool (e.g.,
a role or group). Resource pools are disjoint. All instances of an activity
are allocated to the same resource pool. For example, all instances of tasks
Check invoice and Schedule payment are allocated to an Accountant pool.

A2 Undifferentiated performance. The processing time of an activity does not
depend on the resource who performs it.

A3 Undifferentiated availability. All resources in a pool are available for work
during the same time periods, e.g., Monday to Friday, 9:00-17:00.

In practice, each (human) resource has their own capabilities, performance,
and availability. Previous studies have hypothesized that the above assumptions
affect the accuracy of simulation models [1–3, 8], but without quantifying their
impact. In this setting, this paper addresses the following question: Do assump-
tions A1-A3 affect the accuracy of a business process simulation model, and if
so, to what extent? The paper studies this question in the context of simulation
models discovered from event logs. To address this question, the paper proposes
and evaluates: (1) a business process simulation approach with differentiated
resources; and (2) an automated method to discover a simulation model with
differentiated resources from an event log. In the proposed approach, resources
are not grouped into pools, but treated as individuals (unpooled allocation), the
performance of each resource is independent of that of other resources (differen-
tiated performance), and each resource may have its own availability calendar
(differentiated availability). As a result, a simulation model can be used not only
to answer what-if scenarios S1 and S2 above, but also scenarios such as: “what
if resource R is replaced by resource R′ with lower performance?” (S3) or “what
if a resource changes their availability from full-time to part-time?” (S4).

The paper is structured as follows. Sect. 2 discusses related work. Sect. 3
formalizes assumptions A1-A3 by presenting a simulation approach with undif-
ferentiated resources. Sect. 4 presents a simulation approach with differentiated
resources, while Sect 5 proposes a corresponding method to discover simulation
models. Sect. 6 empirically compares simulation models with differentiated vs.
undifferentiated resources, and Sect. 7 concludes and sketches future work.

2 Related Work

Van der Aalst et al. [1,2] analyze three limitations of BP simulation approaches:
unreliability of simulation models for short-term prediction, insufficient reliance
on execution data to construct simulation models, and incorrect modeling of
resources. The authors emphasize that resources often work part-time and that
failure to capture this, leads to inaccurate simulations. In [13], the authors study
the impact of workload on resource performance, i.e., to what extent resource
performance varies depending on workload and the impact of this variability on
simulation accuracy. Our contribution is related to these studies, but we focus
on limitations that arise when resources are modeled as undifferentiated entities.

Afifi et al. [3] note that existing BP simulation approaches, including the BP-
Sim simulation modeling standard [16], rely on role-based resource allocation,
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and do not support a wider range of resource allocation styles such as those iden-
tified in [15]. However, the authors do not quantify the impact of the identified
limitations (e.g., role-based allocation) on concrete simulation scenarios.

Freitas & Pereira [8] reviews five BP simulation tools. They find that these
tools do not allow one to define unavailability periods for individual resources.
However, they do not evaluate the impact of this limitation. Some commercial
simulation engines such as IBM Websphere Modeler1 support the definition of
“named resources”, which can have their own timetables (differentiated avail-
ability). However, the activity processing times are defined at the level of tasks,
and hence they do not support differentiated performance.

This paper studies the impact of resource differentiation on simulation models
discovered from logs. Prior studies on BP simulation model discovery [5, 11, 14]
assume that resources are available 24/7. In [7], the authors address this limita-
tion by integrating a technique for discovering timetables into a simulation model
discovery pipeline, assuming all resources in a pool have the same timetable.

3 Simulation Models with Undifferentiated Resources

A BP simulation model with pooled allocation and undifferentiated resources
(herein, a classic BP simulation model) consists of a process model M (e.g., a
BPMN diagram) enhanced with simulation metadata described in Def. 1.

Definition 1 (Classic BP Simulation Model). A classic BP simulation
model is a tuple < E,A,G, F,RPools,Alloc, PT,BP,AT,AC >, where E,A,G
are respectively the sets of events, activities, and gateways of a BPMN model, F
is the set of directed flow arcs of a BPMN model, and the remaining elements
capture simulation parameters as follows:

1. RPools is a set of resource pools. Each resource pool p ∈ RP represents a
group of resources. The resource pools are disjoint, i.e., ∀ p1, p2 ∈ RPools :
p1 ∩ p2 = ∅. Each resource pool is described by the following properties:

– Size(p) ∈ N is the number of resources in the pool.
– Avail(p) is a calendar (a set of intervals) during which every resource

in p is available to perform activity instances.
– Cost(p) is the cost of each pool p per time unit (e.g., hour).

2. Alloc : A → RP is a function mapping each activity a ∈ A to one resource
pool p ∈ RPools. A resource pool can perform many activities.

3. PT : A → P(R+) is a mapping from each activity a ∈ A to a probability
density function, modeling the the processing times of activity a.

4. BP: F → [0, 1] is a function that maps each flow f ∈ F s.t., the source of f
is an element of G to a probability (a.k.a., the branching probability).

5. AT ∈ P(R+) is a probability density function modeling the inter-arrival
times between consecutive case creations.

1 https://www.ibm.com/support/pages/download-websphere-business-modeler-

advanced-v70

https://www.ibm.com/support/pages/download-websphere-business-modeler-advanced-v70
https://www.ibm.com/support/pages/download-websphere-business-modeler-advanced-v70
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6. AC is calendar (set of intervals) such that cases can only be created during
an interval in AC.

Given that in classic BP simulation models, resource pools are disjoint, they
cannot capture scenarios where participants share their time across multiple
pools (cf. assumption A1 in Sect. 1). Also, since all resources in a pool have the
same timetable, these models cannot capture scenarios where a pool incorporates
some part-time resources and some full-time ones (assumption A3). Finally, in
classic BP simulation models, the processing times of an activity do not depend
on the resource that performs it. Hence, such models cannot capture scenarios
where some resources in a pool are faster or slower than others (assumption A2).

When executed in a simulation engine, a (classic) BP simulation model pro-
duces an event log as per Def. 2. Herein, we call simulated logs those logs pro-
duced by a simulation and real logs those extracted from information systems.

Definition 2 (Event log). An event log E is a set of events, each representing
the execution of an activity instance in a process. An event e ∈ E is a tuple
e =< α, r, τ0, τs, τc >, where α is the label of one activity in a business process
(i.e., e is an instance of the activity α), r is the resource who performed α, τ0
is the timestamp in which the activity instance was enabled to be executed, and
τs, τc are, respectively, the timestamps corresponding to the beginning and end
of the activity instance. A trace (a.k.a., process case) is a non-empty sequence of
events t =< e1, e2, ..., en >, and an event log L =< t1, t2, ..., tm > is a non-empty
sequence of traces, each capturing one instance of a process (i.e., a case).

Various performance metrics can be computed from a log, including: waiting
time – the time-span from the moment the activity is enabled until the starting
of the corresponding event; processing time – the time-span between beginning
and end of the event; cycle time – the difference between the end time and start
time of a case; and resource utilization – the ratio between the time a resource
is busy executing activity instances, divided and its total availability time.

4 Simulation Models with Differentiated Resources

To lift the limitations imposed by assumptions A1-A3 (cf. Sect. 1), we propose
an approach to BP simulation with differentiated resources. In this simulation
model, the notion of resource pool is replaced by that of resource profile. Like a
resource pool, a resource profile models a set of resources that share the same
availability calendar. However, unlike classic BP simulation models, an activity
in a process model may be assigned to multiple resource profiles and the same
resource profile may be shared by multiple pools. For example, in a claims han-
dling process, there may be a resource profile for junior claims handler, another
for senior claims handler and a third for lead claims handler, each with different
calendars. Activity Analyze claim may be assigned to junior claims handler and
senior claims handler, i.e., an instance of Analyze claim may be performed by
a junior or by a senior claims handler. Meanwhile, activity Assess claim may
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be assigned to senior claims handler and lead claims handler. Finally, activ-
ity Approve large claim may be assigned to lead claims handler, i.e., only lead
claims handlers may perform this activity. Another difference is that in a classic
simulation model, each activity is mapped to a distribution of processing times.
Meanwhile, in a simulation model with differentiated resources, the distribution
of processing times depends not only on the activity, but also on the resource
profile. Thus, the distribution of processing times of the activity Analyze claim
when assigned to a junior claims handler is different than when assigned to a
senior claims handler, e.g., seniors may be faster, on average, than juniors.

Definition 3 (BP simulation model with differentiated resources). A
BP simulation model with differentiated resources DSM is a tuple < E,A,G, F,
RProf, BP,AT,AC >, where E,A,G are the sets of events, activities, and
gateways of a BPMN model, F is the set of directed flow arcs of a BPMN model,
and the remaining elements capture simulation parameters as follows:

1. RProf = {r1, ..., rn} is a set of resource profiles, where n is the number of
resources in the process, and each resource r ∈ R is described by:
– Alloc (r) = {α | α ∈ A} is the set of activities that r can execute,
– Perf (r, α) = R × Am → Pm(R+) is a mapping from the resource r to

a list of density functions over positive real numbers, corresponding to
the distribution of processing times of each activity α ∈ Alloc, with m
being the number of activities that r can perform,

– Avail(r) is the calendar (a set of intervals) in which the resource r is
available to perform each activity α ∈ Alloc,

– Cost(r) is the cost of the resource r per time unit (e.g., hour)
2. BP, AT, and AC are defined as in Def. 1.

The key difference between Def. 3 and Def. 1 is that instead of mapping each
activity to a pool, Def. 1 maps each resource profile to the set of activities, and
for each activity, it captures the corresponding probability density function of
processing times. Note that a classic simulation model can be converted into
a model with differentiated resources by mapping each resource pool to one
resource profile. However, a scenario where an activity is assigned to multiple
resource profiles cannot be captured as a classic simulation model. Note also
that if every resource profile has a size of one (i.e., one profile per resource),
each resource may have different performance and availability. In Sect. 5, we
focus on discovering such models with individualized resources.

The operational semantics of simulation models with differentiated resources
is captured by Alg. 1. This algorithm takes as input a simulation model DSM
according to Def. 3, the number pCases of process instances to simulate, and
the timestamp startAt of the beginning of the simulation. Like in a classic BP
simulation engine, the simulation produces a log and the performance indicators
in Sect. 3. Due to space limitations, we illustrate steps related to the generation
and update of the simulation events, focusing on the functions in Def. 3, but
omitting the details of the data structures and algorithms required to handle
the event logs, calendars, scheduling, and estimation of performance indicators.
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Algorithm 1 Snippet of processes simulation with differentiated resources
1: function SimulateProcess(DSM , pCases, startAt)
2: for each resource r ∈ DSM do
3: readyAt[r] ← minFrom(Avail , startAt)

4: diffResQ ← DiffResourceQueue (Alloc, Avail, SortingCriteria= min(readyAt))
5: evtQ ← GenerateAllArrivalEvents (pCases, DSM , AT, AC)
6: while evtQ not empty do
7: e ← PopEvent(evtQ)
8: e[r] ← PopResource(diffResQ, e[α])
9: e[τs] ← max(e[τ0], readyAt[e[r]])
10: e[τc] ← e[τs] + IdleProcessingTime (e[τs], e[r], e[α], Avail, Perf)
11: readyAt[e[r]] ← e[τc] + IdleT ime(r, Avail, e[τc])
12: UpdateResourceAvailability(diffResQ, e[r])
13: UpdateSimulatedEventLog(e)
14: state, enabled ← UpdateProcessState(e[α], e[pState], DSM , BP)
15: for each α′ ∈ enabled do
16: nE ← Event(α = α′, τ0 = e[τc], pState = state)
17: EnqueueEnabledEvent(evtQ, nE)

The first issue to handle in models with differentiated resources is that they
can be shared among several tasks. Unlike undifferentiated models, which al-
low only one pool per activity, multiple resource profiles may be allocated to
each activity in differentiated scenarios. To address this, we use a multi-queue
data structure named DiffResourceQueue, initialized in line 4. The queue
groups the resources by activities according to function Alloc, restricting allo-
cated resources to the remaining shared activities. Besides, resources are sorted
in the queue according to a priority function SortingCriteria given as input.
By default, the resource sorting criteria consider the minimum timestamp in
which each resource will be ready to perform an activity, i.e., stored in the map
readyAt. Thus, the values in the map readyAt (initialized in lines 2-3) are calcu-
lated considering the resources working calendars, given by the function Avail,
and the periods in which resources are busy performing activities during the
simulation. The support for multiple sorting criteria in DiffResourceQueue
opens many options for prioritizing and sorting resources following different cri-
teria, e.g., allocate resources according to their expertise given some conditions.

Next, function GenerateAllArrivalEvents in line 5 produces the initial
event (see Def. 2) of each process case to simulate, i.e., according to the arrival
time distribution AT, in the intervals defined by the arrival calendar AC. The
queue evtQ stores and retrieves all the simulated events according to the times-
tamp in which the corresponding activity α was enabled. Then the simulation
proceeds until there is not enabled event in evtQ (line 6). We are using the nota-
tion e[r], e[α], e[τ0], e[τs] and e[τc] referring respectively to the resource allocated,
activity name, enabling, starting and completing times of the event e (see Def. 2).
Additionally, e[pState] represents the marking over the flow-arcs of the corre-
sponding process instance at the moment of the event creation. This marking
simulates the token game as specified in the BPMN standard. For each process
instance created by the function GenerateAllArrivalEvents, it generates
tokens that traverse the flow-arcs in the model until reaching the end event in
the BPMN model. An element in the control flow becomes enabled when one



Business Process Simulation with Differentiated Resources 7

or many tokens arrive at its incoming flow-arcs (i.e., according to the element
execution semantics). Similarly, the execution of an enabled element consumes
the incoming tokens, generating new ones on its outgoing flow-arcs.

The queue evtQ only stores enabled events. Thus, the attributes e[r], e[τs]
and e[τc] are determined and updated once the corresponding event is popped
from evtQ, i.e., the event is then executed. In lines 7-8 of Alg. 1, the event with
the lowest enabling timestamp in evQ is allocated to a resource, according to
availability and allocation criteria passed to the resources queue diffResQ, i.e.,
selecting the participant being available the earliest as default criteria.

When the event is enabled, the allocated resource may not be according to
their calendar (and vice-versa). Thus, the starting timestamp of the event relies
on both task and resource availability (line 9). Next, in line 10, the completion
timestamp is calculated by the function IdleProcessingTime which adjusts
the ideal processing time (if the resource works in the task without interruption
according to Perf), plus the time the resource may rest from their calendar in
Avail. Similarly, function IdleTime calculates the next timestamp the resource
is available after completing the task, updating the resource queue accordingly
(lines 11-12). Finally, lines 14-17 update the process state, retrieving the activ-
ities enabled after executing the current event, queuing them as events in evtQ

with enabling time equal to the completion time of the previous event.

5 Discovering Differentiated Resources Profiles

This section proposes an approach to discover simulation models with differen-
tiated resources described in Sec. 4. Due to space limitations, we focus only on
the main steps to discover differentiated resource profiles from event logs, i.e.,
to model each resource performance and availability independently. Before de-
scribing our proposal, Def. 4 formalizes the weekly calendars, followed by Def. 5
introducing some notations we will use across this section.

Definition 4. A weekly calendar Ĉ is binary relation W × ∆ between the set
of weekdays, W = {Monday, ..., Sunday}, and a set of time granules ∆ =
{δ1, ..., δn} where

⋂n
i=1 δi = ∅. Each time granule δi ∈ ∆ is a sorted pair of

time points < τws , τwc >, such that τws , τwc =< hour,minute, second >, hour ∈
[0, ..., 23], minute, second ∈ [0, ..., 60], and τws ≤ τwc . A calendar entry κ is a
tuple < ω, τws , τwc > representing a time interval for a given day. For example,
κ =<Monday, 08:15:00, 12:00:00> describes Monday from 08:15 to 10:30.

Definition 5 (Notations).

– Given an event log L: E is the set of all the events in L, R and A are,
respectively, the sets of resources and activities in any event e ∈ E. Besides,
Ar = {α ∈ A | ∃ e ∈ E, r ∈ R,α ∈ A : r, α ∈ e}, and Er= {e ∈ E | r ∈
R ∧ r ∈ e} are the set of activities and events executed by the resource r,
respectively. With, Eα = {e ∈ E | α ∈ A ∧ α ∈ e} being the set of events,
which are instances of the activity α, and Er,α = {e | e ∈ Er ∩ Eα} the set
of instances of α executed by the resource r.
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– Γ is function mapping a timestamp in the event log into a calendar entry
κ =< ω, τws , τwc >, where < τws , τwc > spans n minutes. Specifically, Γ re-
trieves an interval of size n containing the timestamp received as input. Note
that, Γ retrieves intervals assuming that days are split into intervals of equal
size n starting from the 00 : 00 : 00 hours, e.g., from n=15 min days are
split as [00 : 00 : 00 − 00 : 15 : 00), [00 : 15 : 00 − 00 : 30 : 00), ..., [23 : 45 :
00−00 : 00 : 00). For example, consider a calendar with time intervals of 15
minutes, for the timestamp 2022 − 01 − 01T08 : 12, the function Γ returns
the calendar entry candidate < Saturday,< 08, 00, 00 >,< 08, 15, 00 >>.

– Ωn
r = {κm(κ) | ∀ < τs, τc > ∈ Er, n > 0, κ = Γ (τs, n) ∧ κ = Γ (τc, n)}

is a multi-set of calendar entry candidates of duration n mapped from the
starting and ending timestamps of each event executed by the resource r, with
the supra-index m(κ) being the number of calendar entries κ in Ωn

r .
– Ωn

r,α = {κm | κ ∈ Ωn
r ∧ α ∼ κ, n > 0} is the subset of Ωn

r containing all
the calendar entry candidates that are instances of the activity α, with ∼
representing that an instance of α occurred in the calendar entry κ.

To discover resource availability calendars, we take inspiration from the ap-
proach in [9], which discovers repetition patterns from a set of time granules with
a certain level of confidence and support. The latter approach assumes time in-
tervals that are covered entirely. This condition does not hold when discovering
working intervals of a resource, since the event log shows only the start and com-
pletion timestamps of each event, and gives no information about what happens
in two timestamps. Also, the start of an event is conditioned by the enablement
of the related activity, i.e., a resource can be available but still needs to wait to
start an activity until it becomes enabled in the process. Thus, we redefined the
confidence and support metrics in [9] to discover calendars over time granules not
fully described by the input data. Furthermore, we filter the resources with low
frequency according to their relative participation, to exclude external resources
(i.e., resource who seldom participate in the process), as there is insufficient data
to discover availability calendars for such resources individually.

Other approaches such as [12] can be used to discover resource availability
calendars. In this latter work, the authors use the activity waiting and processing
times of each activity to estimate the intervals resources are available according
to an input event log. Thus, [12] assumes that available resources will work as
soon as an activity is enabled, and they keep working during the entire activ-
ity’s execution interval (without any break). In this paper, do not make this
assumption. Instead, we only assume that the resource was working when the
activity instance starts and when it completes, and in-between, we consider that
the resource may or may not be working. In any case, the calendar discovery
approach in [12] could be used as an alternative to the approach presented here.

Defs. 6, 7, and 8 describe, respectively, the metrics of confidence, support,
and resource participation we use to filter and discover the resource profiles.
The metrics retrieve a real number between 0 (worst assessment) and 1, the
best possible value. The activity-conditional confidence, given a calendar entry
κ =< ω, τws , τwc > related to an activity α, measures the ratio between the
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number of times α was started or completed on the weekday ω between τws and
τwc , divided by the total of weekdays ω that α occurred. For example, it measures
from every Monday a resource was observed executing a given activity, how often
it happened between 8:00 AM - 8:15 AM. Def. 6 generalizes the metric to a set of
tasks executed by a resource in the same time granules as the maximum between
the individual value computed for each activity. The support metric computes
from all the timestamps a resource was active in the log, what ratio is covered
by some calendar entry. Finally, the participation metric estimates the ratio of
events performed by a resource compared with the number of events executed
by the most frequent resource. The comparison is relative to the activities each
resource can perform. For example, resources r1 and r2 may execute 10 and 1000
events, respectively. If we compare r1 and r2 globally, then r1 has a participation
ratio of 0.01 compared to r2. However, if r1 and r2 execute different activities,
and if r1 is the only executing all the instances of an activity, the relative ratio
is 1.0 as r1 is relevant to the activity r1 performs alone.

Definition 6. Confidence(r, κ) =
max

α∈Ar,α∼κ
|Ωn

r,α|

|{ωm | ω∈W ∧ ω∈Ωn
r,α}|

computes the activity-

conditioned confidence of a calendar entry κ =< ω, τws , τwe >. The multi-set in
the fraction denominator computes how many times each activity α was executed
on the weekday ω.

Definition 7. Support(r, Ĉ) =
|{κm | κ∈Ωn

r ∧κ∈Ĉ}|
|Ωn

r |
computes the support of a

given calendar Ĉ, where the multi-set in the fraction numerator computes how
many calendar entries κ from the multi-set of candidates Ωn

r are covered by Ĉ.

Definition 8. RParticipation(r) =
∑

α∈Ar
|Er,α|∑

α∈Ar
max
r′∈R

|{Er′,α}|
computes the relative

participation of a respurce r. The fraction numerator computes the number of
events executed by r. The denominator sums up all the events executed by each
resource who executed the most events for each activity executed by r.

Alg. 2 captures the main steps to calculate differentiated resource profiles.
It takes as input an event log, a BPMN model, the size n of the granules in
the calendar, the desired support, confidence, and participation values, and the
minimum number of data points required to infer the processing-time distribu-
tions. Line 2 extracts from the log the sets and multi-sets described in Def. 5,
followed by the initialization of the mappings Alloc, Avail and Perf in Def. 3.
Lines 4-9 discard the resources with low relative participation (Def. 8), storing
(in the mapping Avail) the discovered calendars of each resource over the re-
quired threshold. Function ExtractCalendarEntries, in line 5 transforms
the timestamps in which each resource was active into calendar entries according
to Γ (cf. Def. 5). Function DiscoverCalendar in line 7 is described by Alg. 3.

To discover a calendar, Alg. 3 receives a multi-set of calendar entry candidates
of a given resource r. Then, lines 3-7 iterate over each candidate, adding those
with confidence above dConf in the calendar Ĉ, discarding the remaining ones.
Next, line 8 verifies if the calendar achieved the required support dSupp. If not,
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Algorithm 2 Resource Profiles Discovery (from event logs)

1: function DiscoverResourceProfiles(L, DSM , n, dSupp, dConf , dPart)
2: ParseEventLog(L) ▷ To extract sets and multi-sets in Def. 5
3: Alloc, Avail, Perf ← ∅, ∅, ∅
4: for each r ∈ R do
5: Ωn

r ← ExtractCalendarEntries(Er, Γ , n)
6: if RParticipation(r) ≥ dPart then
7: Avail[r] ← DiscoverCalendar(Ωn

r , dSupp, dConf)
8: else
9: Avail[r] ← ∅
10: for each α ∈ A do
11: discarded ← ∅
12: for each r ∈ R : Avail[r] = ∅ and Er,α ̸= ∅ do
13: discarded.Add(Er,α)

14: jointR ← MaxDisjointIntervals(discarded)
15: for each r ∈ jointR do
16: Ωn

r ← ExtractCalendarEntries(jointR, Γ , n)

17: Ĉ ← DiscoverCalendar(Ωn
r , dSupp, dConf)

18: if Ĉ ̸= ∅ then

19: Avail[r].Add(Ĉ)

20: if IsUnallocated(α) then
21: BuildUnrestrictedCalendar(jointR, Avail)

22: for each r ∈ Avail : Avail[r] ̸= ∅ do
23: Alloc[r] ← Ar

24: for each α ∈ A do
25: Perf[α].Add(DiscoverProcessingTimes(Eα, R))

26: return Alloc, Avail, Perf

Algorithm 3 Calendar Discovery
1: function DiscoverCalendar(Ωn

r , dSupp, dConf)

2: Ĉ, discarded ← ∅, ∅
3: for each < ω, τw

s , τw
c > ∈ Ωn

r do
4: if Confidence(< ω, τw

s , τw
c >, Ωn

r ) ≥ dConf then

5: Ĉ.Add(< ω, τw
s , τw

c >)
6: else
7: discarded.Add(< ω, τ̂s, τ̂c >)

8: if Support(Ĉ, Ωn
r ) < dSupp then

9: SortMultisetByMultiplicity(discarded[r], order=decreasing)
10: for < ω, τw

s , τw
c > ∈ discarded do

11: Ĉ.Add(< ω, τw
s , τw

c >)
12: discarded.Remove(< ω, τw

s , τw
c >)

13: if Support(Ĉ, Ωn
r ) ≥ dSupp then

14: break
15: return Ĉ

Algorithm 4 Processing Time Distribution Discovery
1: function DiscoverProcessingTimes(Eα, R, binSize = 50)

2: D̂ ← ∅
3: pendingResources ← ∅
4: for each r ∈ R do
5: if |Er,α| ≥ binSize then

6: D̂[r] = BestFittedDistribution(Er,α, Alloc, binSize)
7: else
8: pendingResources.Add(r)

9: jointD ← BestFittedDistribution(Eα, binSize)
10: for each r ∈ pendingResources do

11: D̂[r] ← jointD

12: return D̂
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the algorithm adds the most frequent entries until reaching the required support
(lines 9-14). Thus, the algorithm relies on confidence only to filter potential
outliers among the entry candidates, prioritizing that the calendar always covers
the ratio of timestamps described by the support.

Filtering the resource and calendar entries in lines 6-7 of Alg. 2 may cause the
coverage of some tasks to become too low. As a result, an activity that is executed
rarely or that is executed by external resources (i.e., resources from outside the
organization, who seldom participate in the process) can lose all their resources,
if none of them fulfills the participation threshold. This issue is addressed by
Alg. 2 in lines 10-21 by grouping the events of the removed resources related
to each activity and assigning them to aggregated resources.Function MaxDis-
jointIntervals takes those grouped events and: (1) Sort them in ascending
order of their start times τs, (2) add event e′ with the highest τs, deleting all
events whose time interval intersects e′, (3) repeat (1)-(2) until no intervals re-
main. Next, an aggregated resource is created from each set of events retrieved.
The calendar of the aggregated resource is built from the maximal set of mutu-
ally disjoint time intervals [4], i.e., by grouping the calendar entries that were
discarded due to low confidence. Then, lines 15-19 create a calendar for each ag-
gregated resource. If none fulfills the confidence and support requirement, lines
20-21 retrieve a single calendar as an aggregation of all the discarded events of
the related activity without checking for confidence and support values.

Lines 22-23 of Alg. 2 allocate, to each discovered resource, the activities ex-
ecuted by them in the event log. Then, function DiscoverProcessingTimes
(line 25) estimates the differentiated resource performance as described in Alg. 4,
which from every pair activity resource (lines 4-5), validates the number of events
extracted fulfills a certain level of significance binSize (above 50 by default).
Resources below the threshold binSize are grouped, with their performance dis-
covered as an aggregation of all their events (lines 7-11). Function BestFitted-
Distribution adjusts each event duration by the calendar of the corresponding
resource. Then, it builds a histogram from the event durations and applies curve-
fitting to find a probability distribution, from a library of distributions, that best
approximates the histogram (the one with lowest residual sum).

6 Implementation and Evaluation

We implemented the proposed approach as an open-source (Python-based) sim-
ulation engine, namely Prosimos, available at https://github.com/Autom

atedProcessImprovement/Prosimos. Prosimos supports the simulation of
processes with an unpooled allocation model and differentiated availability and
performance as per Sect. 4. Besides, it provides a component to automatically
discover a simulation model with differentiated resources from an event log, as
described in Sect. 5. Prosimos takes as input a BPMN process model with simu-
lation parameters as per Def. 3 (encoded in JSON format). Like other simulation
engines, Prosimos produces an event log and a set of performance indicators
such as waiting, processing, and cycle times, and resource utilization.

https://github.com/AutomatedProcessImprovement/Prosimos
https://github.com/AutomatedProcessImprovement/Prosimos
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LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17

Traces 1000 1000 1000 1000 608 225 954 1182 8616 30 276

Events 9844 9782 9768 9569 9119 4503 4962 23 141 59 302 240 854

Activities 15 15 15 15 23 23 18 11 8 9

Resources 19 19 34 34 47 54 337 125 68 141

Simulation Time 1.27 1.24 1.25 1.24 1.07 0.72 0.73 1.29 10.32 41.97

Table 1. Characteristics of the business processes used in the experimentation.

Using Prosimos, we conducted an empirical evaluation aimed at answering
the following sub-questions derived from the question posed in Sect. 1: EQ1
What impact does unpooled resource allocation have compared to pooled allo-
cation? EQ2 What impact does differentiated resource performance have com-
pared to undifferentiated performance? EQ3 What impact does differentiated
resource availability have compared to undifferentiated availability?

Datasets We use five simulated (synthetic) logs and five real-life ones. Since our
proposal does not deal with process model discovery, we use the BPMN models
generated from the input logs using the Apromore open-source platform,2, which
we manually adjusted to obtain 90% replay-based fitness. Table 1 gives descrip-
tive statistics of the employed logs, including number of traces and events and
number of activities and resources. Row “simulation time” shows the average
execution times (in seconds) across five simulation runs.

The first four event logs were obtained by simulating a Loan Origination
(LO) process model using Apromore. The model contains 15 tasks assigned to 5
resource pools. We first simulated the model by assigning the same calendar to
all resource pools. Using this single-calendar (S) model, we generated two logs:
one where the resource utilization of each pool is around 50% (Low Utilization
– L) and another with a resource utilization of 80% (High Utilization – H). The
simulation parameters of the H model were identical to the ones of the L model,
except that we adjusted the case arrival rate to obtain higher resource utilization.
To test the techniques in the presence of multiple calendars, we simulated the
same model after assigning different (overlapping) calendars to each of the five
resource pools. We simulated this multi-calendar (M) model twice: once with
a low utilization (L) and once with high utilization (H). This procedure led to
four simulated logs: LO-SL, LO-SH, LO-ML, LO-MH. The fifth log (purchasing-
example (P-EX)) is part of the academic material of the Fluxicon Disco tool.3

The first real-life log (PRD) is a log of a manufacturing process.4. The second
and third are anonymized real-life logs from private processes. The C-DM comes
from an academic recognition process executed at a Colombian University. The
INS log belongs to an insurance claims process. The fourth real-life log is a
subset of the BPIC-2012 log5 – of a loan application process from a Dutch
financial institution. We focused on the subset of this log consisting of activities

2 https://apromore.com
3 https://fluxicon.com/academic/material/
4 https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

https://apromore.com
https://fluxicon.com/academic/material/
https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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that have both start and end timestamps. Similarly, we used the equivalent
subset of the BPIC-2017 log6 , which is an updated version of the BPI-2012 log
(extracted in 2017 instead of 2012). We extracted the subsets of the BPI-2012
and BPI-2017 logs by following the recommendations provided by the winning
teams of the BPIC-2017 challenge.7

Experiment setup and goodness measures To address questions EQ1-EQ3, we
discovered five simulation models from each log using the following approaches:

– SP-NP-NA corresponds to an unpooled allocation with undifferentiated
performances and availability. We allocate the resources into a single pool,
where each resource can execute the same activities as in the log. The re-
sources share an aggregated calendar built from the entire log. The process-
ing time of each activity is discovered by aggregating all its instances without
considering the resource who executes them.

– MP-NP-NA represents a pooled resource allocation with undifferentiated
resource profiles. Resources are grouped into disjoint pools assigned to one or
several activities according to [5]. Each resource pool shares a single calendar
and shares processing time distribution functions for each related activity,
i.e., built by aggregating the events of the resources in the pool.

– MP-DP-NA is a pooled resource allocation with differentiated performance
and undifferentiated availability. We retain the pools and calendars discov-
ered for MP-NP-NA. However, we extract differentiated processing time
distributions for each pair activity-resource.

– MP-NP-DA is pooled resource allocation with undifferentiated perfor-
mance and differentiated availability. We retain the pools and processing-
time distributions discovered for MP-NP-NA. However, we extract a dif-
ferentiated calendar from the activity instances of each resource in the pool.

– SP-DP-DA corresponds to the unpooled resource allocation with differen-
tiated resources and performances proposed in this paper.

We assessed the goodness of the discovered models by simulating them us-
ing Prosimos and measuring the distance between the simulated logs and the
original ones. Camargo et al. [5] propose several measures to assess the goodness
of simulation models discovered from data. These measures cover two dimen-
sions: the control-flow and the temporal dimension. The techniques proposed in
this paper do not affect the control flow. They only deal with resource perfor-
mance and availability. Accordingly, we evaluate them using temporal measures.
In line with [6], we compare simulated and real logs by extracting temporal
histograms from each log and computing the Earth Movers’ Distance (EMD)
between these histograms. We use two EMD metrics, namely EMD-CT and
EMD-WR. EMD-CT compares the distributions of cycle time of the traces
in the logs. This metric captures to what extent the total durations produced by
the simulation model resemble those in the real log. To calculate the EMD-CT,
we group the cycle times in the real log into 100 equidistant bins. Then, we

6 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
7 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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discretize the simulated log by grouping the cycle times of its traces into bins
of the same width as those of the real log. We then measure the EMD between
these histograms. The second metric (EMD-WR) compares the distribution of
timestamps of the events in the two logs. This measure allows us to assess if
the simulated and the real log capture similar work rhythms. To calculate the
EMD-WR, we transform each log into a histogram by extracting the start and
end timestamps of each event in the log, and we group the resulting set of times-
tamps by hour. We then calculate the EMD between the resulting histograms.

The EMD is defined on an absolute dataset-dependent scale. Thus, EMD
distances should not be used to compare the performance of the approach across
multiple logs. Below, we use the EMD metrics to assess the relative performance
of multiple simulation discovery approaches within a given dataset.

The selection of parameters for simulation model discovery may impact the
accuracy. Choosing a small granule size, e.g., n = 60 seconds, may lead to a
fragmented calendar with many intervals. Conversely, a large value, e.g., n = 24
hours, may lead to unrealistic calendars in which resources are always available.
With a low support threshold, the algorithm may discard many timestamps
in the log, leading to low coverage of the observed events. To mitigate these
issues, we run a grid search over a range of parameters to find a configuration
with low confidence (to filter outliers), high support (to cover a representative
set of events), and mid-to-low resource participation (to discard resources that
rarely participate in the process). The grid search returned a granule size of 60
minutes for all experiments. The confidence values ranged from 0.1 to 0.5, and
the support and resource participation ranged between 0.5 and 1.0.

Results Tables 2 and 3 show the results of the EMD-CT and EMD-WR met-
rics, respectively. The results of the SP-NP-NAmodels illustrate that unpooled
resource allocations with undifferentiated resource profiles yield, on average, poor
results on both metrics. This suggests that undifferentiated availability and per-
formance may lead to less accurate results, especially when resources have con-
siderable differences in availability and performance. Another drawback of this
unpooled approach, due to the activities sharing resources, is that resources may
become busy executing an activity that they execute rarely. Thus, increasing the
waiting times of other shared activities (with higher frequencies) due to the un-
availability of the resource. This problem may have more impact on processes
with external resources. Still, these unpooled resource allocations with undiffer-
entiated resources may perform well in processes where resources have similar
calendars and performance, as shown in the BPI challenge logs.

Comparing the pooled models MP-NP-NA, MP-DP-NA, and MP-NP-
DA is not straightforward. On average, they exhibited better results than the
unpooled and undifferentiated model SP-NP-NA. The latter is a consequence
of the pooled models preventing the issue of resources allocated to low-frequency
tasks (outliers), but at the cost of not modeling processes with resources shared
among tasks. Also, in pooled models, the similarity criteria used to group the
resources adjust the data points to discover the aggregated calendars and pro-
cessing time distributions, leading to more accurate approximations. The exper-
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LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17 Mean

SP-NP-NA 4.49 3.83 15.77 35.1 17.54 21.73 10.53 11.24 10.04 3.95 13.42

MP-NP-NA 3.77 3.58 4.64 14.44 15.11 17.2 10.53 11.28 9.99 3.94 9.45

MP-DP-NA 3.65 4.15 7.35 17.72 15.54 18.1 10.53 11.23 9.98 3.95 10.22

MP-NP-DA 4.31 6.06 4.64 8.5 10.49 18.32 10.02 11.25 6.55 3.85 8.4

SP-DP-DA 2.19 1.82 2.44 4.9 10.26 7.32 8.83 3.33 3.84 1.32 4.63

Table 2. Results of the EMD-CT metric.

LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17 Mean

SP-NP-NA 491.4 264.5 341.4 195.1 1728.8 511.9 302.7 9244.1 2510.3 5177.0 2076.7

MP-NP-NA 375.1 276.2 369.5 64.5 1755.7 518.0 254.8 9176.4 2545.8 5141.5 2047.8

MP-DP-NA 507.5 207.6 344.2 64.9 1722.7 447.5 266.9 9178.5 2518.9 5134.5 2039.3

MP-NP-DA 402.5 273.1 388.5 169.5 1807.7 467.1 347.1 9384.5 2638.4 5129.9 2100.8

SP-DP-DA 378.4 273.5 331.3 76.7 1692.2 216.8 238.7 8510.9 2628.9 5277.4 1962.5

Table 3. Results of the EMD-WR metric.

iment shows that, on average, the model MP-NP-DA gets better values for
the EMD-CT metric than the models MP-NP-NA and MP-DP-NA. Sug-
gesting that a pooled model with differentiated availability and undifferentiated
performance approximates trace cycle times better than the baseline of pooled
allocation with undifferentiated resources. In contrast, the pooled model with
undifferentiated availability and differentiated performance MP-DP-NA per-
forms better on the metric EMD-WR than MP-NP-DA and MP-NP-NA.

As highlighted in Table 2, the unpooled model SP-DP-DA with fully dif-
ferentiated performance and availability yields the best results w.r.t. metric
EMD-CT. On average, the values achieved by SP-DP-DA are twice better
thanMP-NP-NA and almost three times better than SP-NP-NA. This shows
that filtering resources with low resource participation (Def. 8), combined with
differentiated modeling of performance and availability, heightens the temporal
accuracy of the discovered simulation models. With respect to metric EMD-
WR (Table 3), the unpooled models with differentiated resource performance
and availability exhibited the best average results. Here, differences are not as
significant as with the cycle time estimations. However, unlike with the EMD-
CT, histograms built for the metric EDM-WR are also impacted by the inter-
arrival times discovered. For example, assume the discovered inter-arrival in-
tervals would produce more dispersed starting events in the simulation than in
the actual process. Consequently, it may lead to a shift in the timestamps of
the subsequently simulated events. The EMD-WR metric compares the ex-
act timestamps in which each event occurs. Then, a shift of those events may
have a more significant impact on the metric evaluation than in the EMD-CT
metric, which compares the trace durations without taking into account the ex-
act timestamps involved. The inter-arrival time discovery is orthogonal to the
primary goal of this paper, thus, kept as future work [10]. 8

8 We estimate the inter-case arrival distribution by applying curve-fitting to the data
series consisting of the start time of each trace. Branching probabilities are estimated
by replaying the log over the model and counting the conditional flow traversals.
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To summarize, with respect to question EQ1, unpooled models offer the
best results. However, as expected, these models perform poorly when the pro-
cess involves homogeneous resource pools. Regarding questions EQ2-EQ3, the
experiments show that, on average, models with differentiated performance yield
better results (w.r.t. replicating the work rhythm) than undifferentiated models.
Conversely, models with differentiated availability are able to better replicate
the cycle times. If we only take into account one dimension at a time (differ-
entiated performance or availability), we do not observe significant accuracy
improvements (w.r.t. to models with undifferentiated resources). Instead, the
experiments show that modeling differentiated performance and availability to-
gether yield the most visible improvements, both when it comes to replicating
the cycle time distribution and the work rhythm.

Threats to validity The evaluation reported above is potentially affected by the
following threats to validity: (1) Internal validity : the experiments rely only
on ten events logs. The results could differ on other datasets. To mitigate this
limitation, we selected logs with different sizes and characteristics and from
different domains. (2) Construct validity : we used two measures of goodness
based on histogram abstractions. The results could be different if we employed
other measures, e.g. similarity measures between time series based on dynamic
time warping. (3) Ecological validity : the evaluation compares the simulation
results against the original log. While this allows us to measure how well the
simulation models replicate the as-is process, it does not allow us to assess the
accuracy improvements of using differentiated resources in a what-if setting, i.e.,
predicting the performance of the process after a change.

7 Conclusion

The paper outlined an approach to discover simulation models where each re-
source may have its own performance profile (differentiated performance) and
its own calendar (differentiated availability). The paper empirically shows that
models with differentiated performance and availability produce simulation logs
that are closer to the actual logs from which the simulation model is discovered.

The proposal has a few limitations that warrant further research. First, to
estimate inter-arrival times, it applies curve-fitting to the data series consisting of
the start time of the first activity instance of each trace. However, the actual case
creation time may be earlier than the start time of the first activity instance. This
limitation may be tackled by using specialized approaches such as the one in [10].
Second, the approach to discover availability calendars is designed to discover
calendars with weekly periodicity. In practice, the availability of a resource may
vary across the year (e.g. different availability in summer months than in winter
ones), or across a month (e.g., different availability at the start than at the
end of a month). Another future work direction is to discover calendars with
more complex periodicity. Third, the approach for calendar discovery relies on
three parameters: confidence, support, and resource participation. In the current
implementation, we apply a grid search over narrow parameter ranges to find an
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optimal configuration. Another future work direction is to enhance the approach
with a hyperparameter tuning algorithm to explore large configuration spaces.

Reproducibility. The experiments on public datasets may be reproduced by
cloning the repository https://github.com/AutomatedProcessImprovement

/Prosimos (tag bpm2022) and following the instructions given thereon.
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Yerokhin, M.: Discovering business process simulation models in the presence of
multitasking and availability constraints. Data Knowl. Eng. 134, 101897 (2021)

8. Freitas, A.P., Pereira, J.L.M.: Process simulation support in bpm tools: The case
of bpmn (2015)

9. Li, Y., Wang, X.S., Jajodia, S.: Discovering temporal patterns in multiple granu-
larities. In: TSDM 2000 Workshops. pp. 5–19 (2000)

10. Martin, N., Depaire, B., Caris, A.: Using event logs to model interarrival times in
business process simulation. In: BPM 2015 Workshops. pp. 255–267 (2015)

11. Martin, N., Depaire, B., Caris, A.: The use of process mining in business process
simulation model construction - structuring the field. Bus. Inf. Syst. Eng. 58(1),
73–87 (2016)

12. Martin, N., Depaire, B., Caris, A., Schepers, D.: Retrieving the resource availability
calendars of a process from an event log. Inf. Syst. 88 (2020)

13. Nakatumba, J., Westergaard, M., van der Aalst, W.: Generating event logs with
workload-dependent speeds from simulation models. In: CAiSE 2012 Workshops.
vol. 112, pp. 383–397 (2012)

14. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

15. Russell, N., van der Aalst, W., ter Hofstede, A.H.M., Edmond, D.: Workflow re-
source patterns: Identification, representation and tool support. In: CAiSE 2005.
pp. 216–232 (2005)

16. Workflow Management Coalition: Business process simulation specification, v2.0
(2016), https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf

https://github.com/AutomatedProcessImprovement/Prosimos
https://github.com/AutomatedProcessImprovement/Prosimos
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf

	Business Process Simulation with Differentiated Resources: Does it Make a Difference?

