
Fast Fully Dynamic Landmark-based Estimation of
Shortest Path Distances in Very Large Graphs

Konstantin Tretyakov
∗ †

University of Tartu
Estonia

kt@ut.ee

Abel Armas-Cervantes
University of Tartu

Estonia
abel.armas@ut.ee

Luciano García-Bañuelos
University of Tartu

Estonia
luciano.garcia@ut.ee

Jaak Vilo
University of Tartu

Estonia
jaak.vilo@ut.ee

Marlon Dumas
University of Tartu

Estonia
marlon.dumas@ut.ee

ABSTRACT
Computing the shortest path between a pair of vertices in
a graph is a fundamental primitive in graph algorithmics.
Classical exact methods for this problem do not scale up
to contemporary, rapidly evolving social networks with hun-
dreds of millions of users and billions of connections. A num-
ber of approximate methods have been proposed, includ-
ing several landmark-based methods that have been shown
to scale up to very large graphs with acceptable accuracy.
This paper presents two improvements to existing landmark-
based shortest path estimation methods. The first improve-
ment relates to the use of shortest-path trees (SPTs). To-
gether with appropriate short-cutting heuristics, the use of
SPTs allows to achieve higher accuracy with acceptable time
and memory overhead. Furthermore, SPTs can be main-
tained incrementally under edge insertions and deletions,
which allows for a fully-dynamic algorithm. The second im-
provement is a new landmark selection strategy that seeks
to maximize the coverage of all shortest paths by the se-
lected landmarks. The improved method is evaluated on
the DBLP, Orkut, Twitter and Skype social networks.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and networks, Trees;
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Algorithms, Experimentation, Performance

∗Corresponding author.
†All authors are also affiliated with Software Technology and
Applications Competence Center (STACC), Estonia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

Keywords
Graph Databases, Shortest Paths, Social Networks, Land-
marks, Trees, Dynamic Updates

1. INTRODUCTION
Finding the shortest path between a given pair of ver-

tices in a graph is a fundamental primitive in graph algorith-
mics. For example, in the context of social network analysis,
this primitive is useful for socially-sensitive search [18, 20],
whereby a user of a social network searches for an individual
by name and expects to see the results ranked in the order
of their shortest path distance to him. Similarly, a user may
wish to know what chain of contacts allows him to reach
another user in the network.

There exists a large body of methods to address this prob-
lem [21]. Existing methods can be broadly classified into ex-
act and approximate. Exact methods, such as those based
on Dijkstra’s traversal, are prohibitively slow for perform-
ing online queries on graphs with hundreds of millions of
vertices, which is a typical size for a contemporary social net-
work. Among the approximate methods, a family of scalable
algorithms for this problem are the so-called landmark-based
(or sketch-based) approaches [4, 5, 7, 9, 18]. In this family of
techniques, a fixed set of landmark nodes is selected and dis-
tances or actual shortest paths are precomputed from each
vertex to some or all of the landmarks. Knowledge of the dis-
tances to the landmarks, together with the triangle inequal-
ity, typically allows one to compute approximate distance
between any two vertices in O(k) time, where k is the num-
ber of landmarks, and O(kn) space, where n is the number
of vertices in the network. Those estimates can then be used
as-is, or exploited further as a component of a graph traver-
sal or routing strategy in order to obtain an exact shortest
path [7, 10].

Although landmark-based algorithms do not provide strong
theoretical guarantees on approximation quality [11], they
have been shown to perform well in practice, scaling up to
graphs with millions or even billions of edges with accept-
able accuracy and response times of under one second per
query [5, 9, 16].

In this paper we describe two improvements to existing
landmark-based estimation methods for undirected graphs.

These improvements allow us to achieve higher accuracy
than existing methods with millisecond-execution times on
a graph with over three billion edges.

The first improvement derives from the use of shortest path
trees (SPTs) to maintain the paths between each landmark
and every vertex in the graph. Based on this data structure,
we present three novel strategies for computing an approxi-
mate shortest path between any pair of nodes. Moreover, the
use of SPTs makes the proposed method suitable for contin-
uously evolving graphs, since practically efficient algorithms
exist for incremental SPT update [3, 6]. For completeness’
sake we explicitly present a version of the incremental up-
date algorithm from [6], simplified to unweighted graphs.

The second improvement relates to the selection of land-
marks. Specifically, we propose a greedy approach to select
those landmarks that provide the best coverage of all short-
est paths in a random sample of vertex pairs.

We evaluate the proposed method on four large social net-
work, the largest of them (Skype) consisting of circa 500 mil-
lion users and 3 billion connections. The evaluation demon-
strates improved precision of distance estimates gained by
both the landmark selection technique and the use of SPTs.

The rest of the paper is structured as follows. Section 2 in-
troduces the notation used to present the algorithms, which
are themselves given in Section 3. Section 4 summarizes the
experimental evaluation results. Finally, Section 5 discusses
related work, while Section 6 provides concluding remarks.

2. BASIC DEFINITIONS
Let G = (V,E) denote a graph with n = |V | vertices

and m = |E| edges. For simplicity of exposition, we shall
consider an undirected, unweighted graph, although our ap-
proach can be easily generalized to accommodate weighted
directed graphs as well.

A path πs,t of length ` between two vertices s, t ∈ V is
defined as a sequence πs,t = (s, u1, u2, . . . , u`−1, t), where
{u1, u2, . . . , u`−1} ⊆ V and {(s, u1), (u1, u2), . . . , (u`−1, t)} ⊆
E. We denote the length ` of a path πs,t as |πs,t|. The con-
catenation of two paths πs,t = (s, . . . , t) and πt,v = (t, . . . , v)
is the combined path πs,v = πs,t + πt,v = (s, . . . , t, . . . , v).

The distance d(s, t) between vertices s and t is defined
as the length of the shortest path between s and t. The
shortest path distance in a graph is a metric and satisfies
the triangle inequality : for any s, t, u ∈ V

d(s, t) ≤ d(s, u) + d(u, t) . (1)

The upper bound becomes an equality iff there exists a short-
est path πs,t which passes through u.

The diameter of a graph is the maximal length of a short-
est path in the graph. In this work we rely on an important
property of social networks – their diameter is small [19].

Centrality of a vertex is a general term used to refer to a
number of metrics of importance of a vertex within a graph.
Betweenness centrality corresponds to the mean proportion
of shortest paths passing through a given vertex. Closeness
centrality measures the average distance of a vertex to all
other vertices in the graph. Computing centrality measures
for all vertices exactly is typically hard (e.g., the best be-
tweenness centrality algorithm so far requires O(mn) time
on unweighted graphs [2]), but can be approximated using
random sampling [1].

Algorithm 1 Landmarks-Basic

Require: Graph G = (V,E), number of landmarks k.

1: procedure Precompute
2: U ← Select-Landmarks(G,k) . Algorithm 4
3: for u ∈ U do
4: Do a BFS traversal starting from u.
5: For each v ∈ V store its distance from u as du[v].
6: end for
7: end procedure

8: function Landmarks-Basic(s, t)
9: dapprox ← minu∈U (du[s] + du[t])

10: return dapprox
11: end function

3. ALGORITHM DESCRIPTION

3.1 Landmark-based distance estimation
As noted in Equation 1, if we fix a single landmark node u

and precompute the distance d(u, v) from this node to each
other vertex v in the graph, we can get an upper bound
approximation for the distance d(s, t) between any two ver-
tices s and t:

duapprox(s, t) = d(s, u) + d(u, t) (2)

If we now select a set U = {u1, u2, . . . , uk} of k landmarks,
a potentially better approximation can be computed:

dUapprox(s, t) = min
u∈U

duapprox(s, t) (3)

In principle, the triangle inequality also allows to compute
a lower bound on the distance, but previous work [16] indi-
cates that lower-bound estimates are not as accurate as the
upper-bound ones.

In the following we refer to this algorithm as Landmarks-
Basic (Algorithm 1). For unweighted graph, the algorithm
requires O(km) time to precompute distances using k BFS
traversals and O(kn) space to store the distances. Each
query is answered in O(k) time. Note that this approach
only allows us to compute an approximate distance, but does
not provide a way to retrieve the path itself.

3.2 Improved landmark-based algorithms

3.2.1 Shortest path trees
The central contribution of this paper is the idea of main-

taining an explicit shortest path tree (SPT) for each land-
mark, instead of simply storing the distances to landmarks
as numbers. More precisely, let pu[v] be the next vertex
on an arbitrarily chosen shortest path from a vertex v to a
landmark u. We shall refer to pu[v] as the parent link of v
in the SPT of u (Figure 1). Similarly to distances, parent
links can be computed in a straightforward manner during
a BFS traversal of the graph in O(m) time per landmark.

The availability of parent links enables us to recover an
exact shortest path from each vertex v to each landmark u
by simply following the corresponding links. Consequently,
it also allows to compute the shortest path distance d(u, v)
and thus directly apply the ideas of the Landmarks-Basic
algorithm, with the only difference that each distance com-
putation now requires O(D) steps, where D is the diameter
of the graph. As the diameters of social network graphs tend

Figure 1: Shortest path tree for landmark u. Black
arrows denote parent links. Dashed lines are graph
edges that are not part of the tree.

to be small, the expected overhead of such a computation is
minor.

Note that this approach allows to retrieve an actual path
between any two vertices in addition to the distance approx-
imation.

3.2.2 Lowest common ancestor method
Besides performing basic landmark-based approximation,

the availability of the SPT allows us to significantly improve
the upper bound estimates on distances for many vertex
pairs. Consider the situation depicted in Figure 2 and sup-
pose we wish to approximate the distance between v5 and v8.
By applying the basic technique we obtain an upper bound
estimate of d(v5, v8) ≤ d(v5, u) + d(u, v8) = 3 + 4 = 7 .
Observe, however, that once we have the explicit shortest
paths:

πv5,u = (v5, v3, v1, u), πv8,u = (v8, v6, v3, v1, u) ,

we can note that both of them pass through v3 and thus the
estimate

d(v5, v8) ≤ d(v5, v3) + d(v3, v8) = 1 + 2 = 3 .

will result in a better upper bound. In general, whenever two
shortest paths πs,u and πt,u have a common vertex v 6= u,
we have

d(s, t) ≤ d(s, v) + d(v, t) < d(s, u) + d(u, t) , (4)

and thus if we use v instead of u to approximate d(s, t) we
obtain a tighter bound. Naturally, it makes sense to select
the vertex v providing the best such approximation. It can
be easily seen that this vertex is the lowest common ancestor
(LCA) of s and t in the SPT of u.

This observation provides the basis of our LCA approxi-
mation method (Distance-LCA, Algorithm 2). By substi-
tuting this distance estimate into Equation (3), we obtain a
new algorithm Landmarks-LCA with increased accuracy.
Note that this algorithm can also be trivially extended to
return the actual path.

One way to understand the extent of improvement is to
note that the basic algorithm will provide exact estimates
only for shortest paths that pass through the landmark ver-
tex. In Figure 2 those are only the paths connecting v2 with
v1 and v3. The LCA algorithm, however, will provide exact
answers for all shortest paths that lie along the SPT, and
there will be typically considerably more of those.

3.2.3 Shortcutting
Denote the lowest common ancestor of s and t by v. The

LCA algorithm approximates πs,t by a concatenation of πs,v

with πv,t. However, it may happen that a vertex w ∈ πs,v

is connected directly by an edge with a vertex w′ ∈ πv,t.
In this case, an even shorter approximation to πs,t can be

Figure 2: Lowest common ancestor technique.
When approximating distance between v5 and v8 we
use their lowest common ancestor v3 instead of the
landmark u as a reference.

Figure 3: Landmark-BFS technique. Here, solid ar-
rows belong to the SPT of u1, and dotted arrows
belong to the SPT of u2.

obtained by concatenating the paths πs,w, πw,w′ and πw′,t.
For example, in Figure 2, the edge (v5, v6) acts as a short-
cut from πv5,v3 to πv3,v8 . If we account for this edge, we
may further improve the LCA distance estimate to the true
shortest path d(v5, v8) = 2.

In order to locate shortcuts we can simply examine all
pairs of vertices in πs,v × πt,v and if some of them are con-
nected by an edge, find the edge providing the best distance
estimate. This can be done in |πs,v| × |πt,v|, i.e., at most
O(D2) steps. We refer to the resulting distance approxi-
mation method as Distance-SC (Algorithm 2). By using
this upper bound estimate in Equation (3) we obtain the
landmark-based algorithm Landmarks-SC.

3.2.4 Landmarks-BFS
The algorithms Landmarks-Basic, Landmarks-LCA,

and Landmarks-SC use each landmark for distance approx-
imation independently of the other landmarks. This is not
the best possible use of all available landmark data. Con-
sider Figure 3, for example. When approximating distance
between vertices v1 and v5, we would obtain a path of length
5 if we used the two landmarks independently. By combin-
ing the two subtrees we can find a better path of length
4. Finally, by taking other graph edges (i.e., “shortcuts”)
into account, we further improve the distance approxima-
tion to 3.

This suggests a very simple, yet powerful improvement
over the previous approaches. In order to approximate dis-
tance between two vertices, collect all paths from those ver-
tices to all landmarks, and perform a usual BFS (or, in the
case of weighted graphs, Dijkstra) traversal on the subgraph,
induced by the union of those paths. We refer to this algo-
rithm as Landmarks-BFS (Algorithm 3).

For k landmarks, the size of the subgraph will be less than
2kD. Consequently, the memory complexity of Landmarks-
BFS is O(kD) and the time complexity is at most O(k2D2).

3.3 Landmark selection techniques
Although landmarks can be selected uniformly at random,

experiments of Potamias et al. [16] show that selecting land-

Algorithm 2 LCA-based upper bounding algorithms

Require: Graph G = (V,E), a landmark u ∈ V , a parent
link pu[v] precomputed for each v ∈ V .

1: function Path-Tou(s,π)
Returns the path in the SPT pu from the vertex s
to the closest vertex q belonging to the path π

2: Result ← (s) . Sequence of 1 element.
3: while s /∈ π do
4: s ← pu[s]
5: Append s to Result
6: end while
7: return Result . (s, pu[s], pu[pu[s]], . . . , q), q ∈ π
8: end function

9: function Distance-LCAu(s,t)

10: π(1) ← Path-Tou(s, (u))

11: π(2) ← Path-Tou(t, π(1))

12: LCA ← Last element of π(2)

13: π(3) ← Path-Tou(s, (LCA))

14: return |π(2)|+ |π(3)|
15: end function

16: function Distance-SCu(s,t)

17: π(1) ← Path-Tou(s, (u))

18: π(2) ← Path-Tou(t, π(1))

19: LCA ← Last element of π(2)

20: π(3) ← Path-Tou(s, (LCA))

21: Best ← |π(2)|+ |π(3)|
22: for (w,w′) ∈ (π(2) × π(3)) ∩ E do
23: Current ← |πs,w|+ |πw,w′ |+ |πw′,t|
24: Best ← min(Current,Best)
25: end for
26: return Best
27: end function

marks with the highest degree or lowest closeness central-
ity typically ensures better distance estimates, whereas it is
shown that the two methods provide similar accuracy. In
our experiments we use the highest degree landmark selec-
tion method and compare it with the following one.

Best coverage. When a landmark u lies on the shortest
path between s and t, its upper bound distance estimate is
exact. We say that such a landmark covers the pair (s, t).
Consequently, the most desirable set of landmarks would be
the one that covers as many vertex pairs as possible. It can
be shown that the task of finding the optimal landmark set
(i.e., the one with the maximal coverage) is NP-hard [16].
Instead, we propose a simple greedy strategy based on sam-
pling (Algorithm 4). We sample a set of M vertex pairs,
and compute exact shortest path for each pair. As the first
landmark we select the vertex that is present in most paths
of the sample. We remove the paths covered by that first
landmark from the sample and proceed to select the second
landmark as the vertex, which covers most of the remaining
paths, etc.

3.4 Incremental updates
If the graph is subject to intensive edge insertion and dele-

tion, landmarks that have been computed originally become

Algorithm 3 Landmarks-BFS

Require: Graph G = (V,E), a set of landmarks U ⊂ V , an
SPT parent link pu[v] precomputed for each u ∈ U, v ∈
V .

1: function Landmarks-BFS(s,t)
2: S ← ∅
3: for u ∈ U do
4: S ← S ∪Path-Tou(s, (u)) . (see Algorithm 2)
5: S ← S ∪Path-Tou(t, (u))
6: end for
7: Let G[S] be the subgraph of G induced by S.
8: Apply BFS on G[S] to find a path π from s to t.
9: return |π|

10: end function

Algorithm 4 Select-Landmarks

Require: Graph G = (V,E), number of landmarks k, sam-
ple size M .

1: function Highest-Degree
2: For each v ∈ V let d[v]← Degree(v).
3: Sort V by d[v].
4: Let v(i) denote the vertex with i-th largest d[v].
5: return {v(1), v(2), . . . , v(k)}
6: end function

7: function Best-Coverage
8: P ← ∅
9: for i ∈ {1, . . . ,M} do

10: (si, ti) ← Random pair of vertices
11: pi ← ShortestPath(si, ti)
12: P ← P ∪ {pi}
13: end for
14: VP ← ∪p∈P p
15: for i ∈ {1, . . . , k} do
16: For each v ∈ VP let c[v]← |{p ∈ P : v ∈ p}|
17: ui ← argmaxv∈VP

c[v] . Resolve ties arbitrarily
18: P ← P \ {ui}
19: end for
20: return {u1, . . . , uk}
21: end function

outdated and the approximation performance deteriorates.
Therefore, landmarks have to be maintained up to date. Al-
though this can be achieved by means of daily or hourly full
recomputation, such a solution is computationally expen-
sive. Moreover, for certain applications, such as the above-
mentioned social search, it can be particularly important to
maintain landmarks up to date at all times. Indeed, if the
social search feature is relied upon by new users to establish
their first list of contacts, it is important that adding a new
contact would be immediately reflected in the consequent
search orderings.

Fortunately, when landmarks are maintained in the form
of shortest path trees, they can be updated incrementally
to accommodate edge insertions or deletions. The proce-
dures for maintaining SPTs under insertions and deletions
are well-known [3, 6]. In the particular case of unweighted
graphs with a small diameter, they are fairly straightfor-
ward.

As an informal example, consider the SPT presented on
Figure 1. Suppose that an edge {u, v8} has just been inserted

Algorithm 5 Insert-Edge

Require: Graph G = (V,E), a landmark u ∈ V , a parent
link pu[v] precomputed for each v ∈ V .

1: function Insert-Edgeu(s,t)
2: if DistTou(s) > DistTou(t) then
3: (s,t) = (t,s)
4: end if
5: DistChanged ← FIFOQueue()
6: UpdateIfBetterParentu(s, t,DistChanged)
7: while not DistChanged.empty() do
8: s ← DistChanged.pop()
9: for t ∈Neighbors(s) do

10: UpdateIfBetterParentu(s, t,DistChanged)
11: end for
12: end while
13: end function

Helper routines

14: function DistTou(s)
Distance to u in the current SPT
Note that we compute it in O(D) steps.

15: d ← 0
16: while pu[s] 6= u do
17: s ← pu[s]
18: d ← d+ 1
19: if s ==null then
20: return ∞ . used in Delete-Edge
21: end if
22: end while
23: return d
24: end function

25: function UpdateIfBetterParentu(s,t,queue)
Checks whether s is a better parent for t in the SPT.
If so, updates pu and pushes t to the queue.

26: if (pu[t] 6= s)
27: and (DistTou(t) > DistTou(s) + 1) then
28: pu[t] ← s
29: queue.push(t)
30: end if
31: end function

into the graph. The SPT update algorithm would proceed
as follows. Firstly, note that the newly added edge provides
a shorter path from v8 to the landmark than what was pre-
viously available. Therefore, the parent pointer of v8 has to
be changed to make use of the new edge: pu[v8] := u. Now
that the path to the landmark from v8 has improved, we
have to recursively examine all neighbors of v8 (i.e., v6 and
v7) and check, whether switching their parent pointer to v8
would improve their previously known path to the landmark.
This is true both for v6 and v7, hence we set pu[v6] := v8,
pu[v7] := v8. We repeat this again for all neighbors of v6 and
v7. Having found no new path improvements, we complete
the update.

The deletion of an edge involves two passes. Consider
again Figure 1 and suppose the edge {v1, v3} was deleted
from the graph. In order to find a new path to the land-
mark (and a new parent pointer) for v3, we first examine its
neighbors (v5 and v6). Unfortunately, both of them relied on

Algorithm 6 Delete-Edge

Require: Graph G = (V,E), a landmark u ∈ V , a parent
link pu[v] precomputed for each v ∈ V .

1: function Delete-Edgeu(s,t)
2: if pu[s] == t then
3: (s,t) = (t,s)
4: else if pu[t] 6= s then
5: return . SPT not affected
6: end if
7: prevDist ← DistTo(t)
8: pu[t] ← null
9: DistChanged ← PriorityQueue()

10: PushIfDistChangedu(t,prevDist, DistChanged)
11: while not DistChanged.empty() do
12: t ← DistChanged.pop()
13: Find the neighbor s of t
14: with minimal DistTou(s)
15: pu[t] ← s
16: end while
17: end function

Helper routines

18: function PushIfDistChangedu(t, prevDist, pqueue)
Checks whether there exists a new parent for t with
which its DistTo will stay unchanged.
If so, updates pu. Otherwise, pushes t to queue and
descends into leaves.

19: Find the neighbor s of t
20: with minimal DistTou(s)
21: For all neighbors of t that are in the pqueue,
22: and have their key >DistTou(s)+2,
23: update their key to DistTou(s)+2.
24: if DistTou(s) == prevDist-1 then
25: pu[t] ← s
26: else
27: pqueue.push(t, key=DistTou(s)+1)
28: for v ∈ children of t in the SPT do
29: pu[v] ← null
30: PushIfDistChangedu(v,prevDist+1,pqueue)
31: end for
32: end if
33: end function

v3 for reaching the landmark, hence they provide no immedi-
ate fix. We record v3 temporarily in a priority queue, using
the best available new path length (∞ so far) as the key. We
then recursively descend to process the children of v3 in the
SPT. Vertex v5 has no immediate fix and gets recorded in
the priority queue with key ∞. Vertex v6, however, can be
connected to v4, retaining a path to the landmark of length
3. Consequently, there is no need to process children of v6.
After reconnecting v6 we must update the keys of its neigh-
bors (v3 and v5) in the priority queue – the new potential
path of length 4 is better than the previously recorded ∞.
This completes the first pass. In the second pass we empty
the priority queue, rebuilding the rest of the SPT.

We provide a more formal description of the update pro-
cedures in Algorithms 5 and 6, and refer the reader to [6]
for detailed explanations.

In theory, a single update may trigger the SPT recompu-

tation for the whole graph (e.g. deleting an edge that was
a bridge between the landmark and all the other nodes). In
practice, however, such situations are rare and, according
to our experiments, the amortized time necessary to process
a single update in a real Skype network is in the order of
milliseconds (see Section 4.3).

4. EXPERIMENTAL EVALUATION

4.1 Datasets
We tested our approach on four real-world social network

graphs, representing four different orders of magnitude in
terms of network size.

• DBLP. The DBLP dataset contains bibliographic in-
formation of computer science publications [13]. Ev-
ery vertex corresponds to an author. Two authors are
connected by an edge if they have co-authored at least
one publication. The snapshot from May 15, 2010 was
used.

• Orkut. Orkut is a large social networking website. It
is a graph, where each user corresponds to a vertex and
each user-to-user connection is an edge. The snapshot
of the Orkut network was published by Mislove et al.
in 2007 [14].

• Twitter. Twitter is a microblogging site, which allows
users to follow each other, thus forming a network.
A snapshot of the Twitter network was published by
Kwak et al. in 2010 [12]. Although originally the net-
work is directed, in our experiments we ignore edge
direction.

• Skype. Skype is a large social network for peer-to-
peer communication. We say that two users are con-
nected by an edge if they are in each other’s contact
list. A subset of the network comprising 454M users
was obtained in February 2010.

The properties of these datasets are summarized in Ta-
ble 1. The table shows the number of vertices |V |, number
of edges |E|, average distance between vertices d (computed
on a sample vertex pairs), approximate diameter ∆, frac-
tion of vertices in the largest connected component |S|/|V |,
and average time to perform a BFS traversal over the graph
tBFS .

Dataset |V | |E| d ∆ |S|/|V | tBFS

DBLP 770K 2.6M 6.3 25 85% 345 ms
Orkut 3.1M 117M 5.7 10 100% 8 sec
Twitter 41.7M 1.2B 4.2 25 100% 9 min
Skype 454M 3.1B 6.7 60 85% 20 min

Table 1: Datasets.

4.2 Experimental setup
To evaluate the performance of our methods we first select

a random sample of 500 vertex pairs from each graph and
precompute the actual shortest path distance for every pair.
We then apply the distance approximation techniques to
those vertex pairs and measure their Approximation error,
Time, and Disk space.

Approximation error is computed as (`′ − `)/`, where `′

is the approximation and ` is the actual distance. Time
refers to the average time required to compute a distance
approximation for a pair of vertices. Finally, the Disk space
corresponds to the amount of data stored for each landmark.

We run our measurements on a server with 32× Quad-
core AMD Opteron 64bit 2.2GHz processors, 256G of RAM,
accessing IBM DS 3400 FC SAN disk array, running Red
Hat Enterprise Linux 5 operating system. We used C++
for algorithm implementation.

4.3 Results

4.3.1 Approximation Error
The approximation quality measurements are summarized

in Figure 4 and Table 3. Observe that landmark selection
strategy has a significant effect on approximation quality
for the Landmarks-Basic and the Landmarks-LCA algo-
rithms. The use of shortcutting in the Landmarks-SC and
Landmarks-BFS seems to reduce the importance of land-
mark selection. Indeed, in case of Landmarks-BFS ran-
domly selected landmarks often outperform the more sophis-
ticated techniques. Overall, the best coverage and highest
degree techniques perform nearly equally well, and depend-
ing on the particular graph either one or the other should
be preferred to achieve the best possible results.

Note that the use of the LCA approach reduces the er-
ror of the basic technique consistently by 10–50%, with fur-
ther slight improvements obtained by shortcutting and BFS
methods.

4.3.2 Query Time and Disk Usage
The disk usage in all the discussed methods is linear with

respect to number of vertices, because we have to store a sin-
gle value for each vertex-landmark pair. In the basic method
this value is a distance and can be stored in a single byte,
as distances in the studied social network graphs are small.
When using SPTs, a vertex pointer needs to be stored for
each vertex-landmark pair. For a graph as large as Skype, a
4-byte pointer is necessary. Consequently, the per-landmark
disk space is 4 times greater when using SPTs than when
storing distances only (see Table 2).

Dataset Graph file Landmark file
Basic LCA/SC/LBFS

DBLP 27M 753K 3.0M
Orkut 918M 3.0M 12.0M
Twitter 9.3G 40M 160M
Skype 27G 433M 1.7G

Table 2: Disk usage.

Table 4 reports the average execution time per query. This
is computed as the total time required process 500 random
queries sequentially divided by 500. This also includes the
time spent to load precomputed data from disk on-the-fly
using Linux mmap facilities. We observe that the LCA and
SC methods are 3-6 times slower than the basic algorithm,
but the execution times still remain in the order of a few
milliseconds even for the Skype graph. The Landmarks-
BFS method can be considerably slower, especially so for
the Twitter graph, due to the presence of nodes with very
high degree in this network.

Dataset Landmark selection Method
Basic LCA SC LBFS

DBLP Random 0.46 0.07 0.04 0.02
Highest Degree 0.11 0.05 0.03 0.03
Best Coverage 0.07 0.04 0.03 0.02

Orkut Random 0.50 0.13 0.08 0.04
Highest Degree 0.14 0.12 0.10 0.07
Best Coverage 0.13 0.11 0.08 0.05

Twitter Random 0.53 0.07 0.02 0.02
Highest Degree 0.06 0.05 0.03 0.03
Best Coverage 0.07 0.06 0.03 0.02

Skype Random 0.56 0.25 0.23 0.21
Highest Degree 0.21 0.19 0.18 0.16
Best Coverage 0.19 0.17 0.16 0.15

Table 3: Approximation error for different methods (using 100 landmarks).

Dataset Method No. of Landmarks
20 60 100

DBLP Basic 0.03 0.09 0.14
LCA 0.10 0.29 0.46
SC 0.13 0.47 0.78
LBFS 0.45 1.00 1.42

Orkut Basic 0.08 0.11 0.39
LCA 0.31 0.78 1.10
SC 0.40 0.95 1.26
LBFS 1.87 8.05 12.49

Twitter Basic 0.15 0.49 0.84
LCA 0.72 0.81 1.21
SC 0.82 0.99 1.87
LBFS 240 633 889

Skype Basic 0.18 0.56 0.91
LCA 1.06 2.43 3.69
SC 1.22 2.92 4.85
LBFS 5.10 13.24 16.25

Table 4: Query execution time averaged across 500
queries (in ms).

4.3.3 Precomputation Time
Precomputation time is comprised of two parts – land-

mark selection and the computation of SPTs (or distances,
in the case of the basic method) for each landmark.

• Landmark selection. In the case of random land-
mark selection, the time is negligible. The highest
degree method requires a single pass through the set
of vertices of the graph, which is dominated by the
time needed to read the graph data from disk. The
most complex method is best coverage, which requires
a sampling of pairs of vertices and the precomputations
of their exact shortest paths (e.g. using BFS). Ta-
ble 5 summarizes timing measurements obtained with
a näıve sequential implementation (i.e. shortest paths
were computed one after the other using BFS).

• SPT computation per landmark. The time needed
to compute each landmark is equal to the time needed
to perform a full BFS over the graph and is given in
Table 1. For the DBLP graph each landmark can be
computed in about 500ms, while for the Skype graph
this time is approximately 20 minutes. Note that this

Dataset Highest degree Best coverage

DBLP 140 ms 2 min
Orkut 2 s 15 min
Twitter 22 s 15 h
Skype 1 min 54 h

Table 5: Landmark selection timings.

operation can be trivially parallelized by assigning one
thread per landmark.

4.3.4 Incremental Updates
We tested the performance of the incremental update pro-

cedures on our graphs by simulating a random sequence of
1000 edge modifications and using the landmark update pro-
cedures to maintain 100 landmarks up to date. Each edge
modification was randomly chosen to be a deletion or an
insertion of an edge between two random vertices. Table 6
presents the average time necessary to update one landmark.

DBLP Orkut Twitter Skype

Insertion 1µs 10µs 10µs 30µs
Deletion 100µs 2ms 12ms 11ms

Table 6: Average time to perform one update for
one landmark.

5. RELATED WORK
The task of finding a shortest path between an arbitrary

pair of vertices is known as a point-to-point shortest path
(PPSP) problem. The näıve solution is to run the Dijk-
stra’s traversal from the source to the destination vertex on
every query. An improvement to this can be obtained by
running a bi-directional search [15]. A further improvement
is obtained by exploiting the A* search with landmark-based
heuristics [7, 8, 10].

Sometimes it makes sense to precompute all pairwise dis-
tances. The corresponding algorithms are typically referred
to as all pairs shortest paths (APSP). Although a variety of
elegant techniques have been proposed for this task, such
as dynamic programming, path-forming and Boolean ma-
trix multiplications, most known exact APSP algorithms are
about O(n3) in time, with a few subcubic solutions for cer-

Figure 4: Approximation error results. The best accuracy is consistently obtained using Landmarks-BFS
distance estimation method.

tain types of graphs [21]. This is not significantly better than
simply performing a separate SSSP run for each vertex.

For many practical applications, finding out approximate
distances between vertices can be sufficient. Careful index-
ing of the graph can provide a way to later provide approx-
imate answers to arbitrary distance queries in constant or
logarithmic time. Thorup and Zwick [17] coin the term ap-
proximate distance oracles for such algorithms. They present
a method which requires O(kn1+1/k) space and O(kmn1/k)
expected time for preprocessing and allows constant O(k)
query time. The idea of their method is to compute a se-
quence of nested sets of randomly picked landmarks. The
closest landmark from each set is located and stored for each
vertex together with the distance to it. A distance query
d(s, t) can then be answered by finding a landmark u which
is one of the closest to both s and t and using the approxi-
mation given by Equation (2). The authors prove that their
algorithm provides distance estimates which can be wrong
up to a factor of 2k − 1.

An interesting analogy of our method to this algorithm
can be observed. Indeed, let u be a single landmark. Con-
sider the collection of nested sets A0 ⊆ A1 · · · ⊆ AD, where
Ai = {v ∈ V , d(u, v) ≤ i}, and D is the diameter of the
graph. Then the complete shortest path πs,u corresponds to
the bunch concept from Thorup’s algorithm, and the process
of finding the LCA is similar to the distance estimation tech-
nique used in that paper. However, the strategy of selecting
the nested sets Ai is completely different. Besides, the anal-

ogy does not hold as soon as more than one landmark is
used in our algorithm.

In general, the idea of landmark-based estimation has
been widely studied in previous works (see, e.g., [4, 5, 7,
9, 16, 18]). A closely related work is that of Potamias et al.
[16], where the Landmarks-Basic algorithm is evaluated
under different landmark selection strategies. The major in-
novation of our work is the use of SPTs instead just keeping
the distance from each landmark to every vertex.

The algorithms Landmarks-LCA, Landmarks-SC and
Landmarks-BFS are also similar to those suggested by Gu-
bichev et al. [9]. However, the algorithms in [9] use different
sets of landmarks for each vertex and thus store complete
shortest paths to each landmark at each vertex. This results
in higher memory requirements (O(Dkn) instead of O(kn)
for storing only a single pointer per vertex-landmark pair
in our approach) and prevents the possibility of performing
incremental updates. The execution times reported in [9]
are considerably slower when compared to ours – more than
4 seconds on a graph with 10 times less edges and 100 times
less vertices than the Skype graph.

An important aspect of landmark-based methods is the
way landmarks are selected – a careful selection strategy
can have a significant positive effect. Strategies, which rely
on selecting landmarks with high degree, betweenness- and
closeness centrality as well as ensuring proper dispersion of
landmarks over the graph and its parts, have been suggested,
with highest degree and closeness centrality being shown to

typically yield highest accuracy in [16]. In our work, we pro-
posed and evaluated an additional method that can compete
with the highest degree approach, outperforming it slightly
on some datasets. The combined effect of our improvements
(best coverage landmark selection with Landmarks-BFS al-
gorithm) for the large Skype network is a 40% smaller error.

6. CONCLUSION
This paper described and evaluated two improvements to

existing approaches for landmark-based estimation of short-
est paths. These improvements strike a tradeoff between
accuracy, query execution time and disk usage for precom-
puted data. With respect to previous related work, we
achieve notable accuracy improvements while maintaining
the response time per query within a few milliseconds – even
for a graph with billions of edges – and a space consump-
tion comparable to previous state of the art methods. An
exclusive property of the proposed methods is the support
for dynamic updates.

Several extensions to the proposed method are possible.

Generalization to directed weighted graphs. We have
presented the algorithms for the case of an undirected un-
weighted graph. The generalization to weighted graphs is
obtained by replacing the BFS in the SPT precomputation
phase and in the Landmark-BFS algorithm with a Dijk-
stra traversal. The generalization to directed graphs requires
computing two shortest path trees for each landmark – the
first one holding distances to the landmark, and the second
one with distances from the landmark. The algorithms then
need to be updated slightly to use both trees appropriately
(e.g. lines 4 and 5 of Algorithm 3 will refer to two different
trees rather than one).

Exact distance estimation. Being a distance approxima-
tion scheme, a landmark-based algorithm can be used as a
heuristic in the (unidirectional or bidirectional) A* search,
as described in [7, 10]. In particular, this ability to efficiently
estimate exact shortest paths allows us to take larger sam-
ples for best coverage landmark selection. Note that due
to the incremental update capabilities of our approach, the
result is a fast fully-dynamic exact shortest path algorithm.

Evolutionary landmark selection. In the presented ap-
proach, all landmarks are selected ex ante and the selection
of landmarks is never revised. A further improvement might
be obtained by using information collected during the pro-
cessing of queries in order to add or remove landmarks. Each
time a query is answered, we can identify which vertices are
used in the shortest path. Based on this information we
could promote certain vertices, which lie on shortest paths
frequently, to become landmarks, or we could drop land-
marks that are infrequently used.

7. ACKNOWLEDGMENTS
The authors gratefully acknowledge the contributions of

Andres Kütt and André Karpǐstšenko from Skype Technolo-
gies. This research is funded by the ERDF via the Estonian
Software Technology and Applications Competence Center.

8. REFERENCES
[1] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.

Approximating betweenness centrality. In Proceedings
of the 5th international conference on Algorithms and
models for the web-graph, WAW’07, pages 124–137,
Berlin, Heidelberg, 2007. Springer-Verlag.

[2] U. Brandes. A faster algorithm for betweenness
centrality, 2001.

[3] E. P. F. Chan and Y. Yang. Shortest path tree
computation in dynamic graphs. IEEE Trans.
Comput., 58(4):541–557, 2009.

[4] L. J. Cowen and C. G. Wagner. Compact roundtrip
routing in directed networks. Journal of Algorithms,
50(1):79 – 95, 2004.

[5] A. Das Sarma, S. Gollapudi, M. Najork, and
R. Panigrahy. A sketch-based distance oracle for
web-scale graphs. In Proceedings of the third ACM
international conference on Web search and data
mining, WSDM ’10, pages 401–410, New York, NY,
USA, 2010. ACM.

[6] D. Frigioni. Fully dynamic algorithms for maintaining
shortest path trees, 2000.

[7] A. V. Goldberg and C. Harrelson. Computing the
shortest path: A* search meets graph theory. In Proc.
16th ACM-SIAM Symposium on Discrete Algorithms,
pages 156–165, 2005.

[8] A. V. Goldberg, H. Kaplan, and R. F. Werneck.
Abstract reach for A*: Efficient point-to-point
shortest path algorithms, 2006.

[9] A. Gubichev, S. J. Bedathur, S. Seufert, and
G. Weikum. Fast and accurate estimation of shortest
paths in large graphs. In CIKM ’10: Proceeding of the
19th ACM conference on Information and knowledge
management, pages 499–508. ACM, 2010.

[10] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura,
H. Shimoura, T. Hashimoto, K. Tenmoku, and
K. Mitoh. A fast algorithm for finding better routes by
ai search techniques. In Proc. Vehicle Navigation and
Information Systems Conf., pages 291–296, 1994.

[11] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation
and embedding using small sets of beacons. In Proc.
45th Annual IEEE Symp. Foundations of Computer
Science, pages 444–453, 2004.

[12] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW
’10: Proceedings of the 19th international conference
on World wide web, pages 591–600, New York, NY,
USA, 2010. ACM.

[13] M. Ley and P. Reuther. Maintaining an online
bibliographical database: the problem of data quality.
in egc, ser. revue des nouvelles technologies de l’
information, vol. rnti-e-6. Cépadués Éditions,
2006:5–10, 2006.

[14] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In Proceedings of the 5th
ACM/Usenix Internet Measurement Conference
(IMC’07), San Diego, CA, October 2007.

[15] I. Pohl. Bi-directional search. In D. Meltzer,
Bernard; Michie, editor, Machine Intelligence.
Edinburgh University Press, 1971.

[16] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis.

Fast shortest path distance estimation in large
networks. In CIKM ’09: Proceeding of the 18th ACM
conference on Information and knowledge
management, pages 867–876, New York, NY, USA,
2009. ACM.

[17] M. Thorup and U. Zwick. Approximate distance
oracles. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, STOC ’01, pages
183–192, New York, NY, USA, 2001. ACM.

[18] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B.
Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient
search ranking in social networks.
In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge

management, CIKM ’07, pages 563–572, New York,
NY, USA, 2007. ACM.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,
Jun 1998.

[20] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y.
Zhao. Orion: shortest path estimation for large social
graphs. In Proceedings of the 3rd conference on Online
social networks, WOSN’10, pages 9–9, Berkeley, CA,
USA, 2010. USENIX Association.

[21] U. Zwick. Exact and approximate distances in graphs
– a survey. In ESA ’01: 9th Annual European
Symposium on Algorithms, pages 33–48. Springer,
2001.

