Optimized Decentralization of Composite Web
Services

Walid Fdhila
LORIA - INRIA Nancy - Grand Est
F-54500 Vandceuvre-leés-Nancy, France
Email: fdhilawa@Ioria.fr

Abstract—

Composite services are usually specified by means of or-
chestration models that capture control and data-flow rela-
tions between activities. Concrete services are then assif to
each activity based on various criteria. In mainstream serice
orchestration platforms, the orchestration model is exected
by a centralized orchestrator through which all interactions
are channeled. This architecture is not optimal in terms of
communication overhead and has the usual problems of a singl
point of failure. In previous work, we proposed a method for
executing service orchestrations in a decentralized mannavhile
fulfilling collocation and separation constraints. Howeve this
and similar methods for decentralized orchestration do not
seek to optimize the communication overhead between seres
participating in the orchestration. This paper presents a nethod
for optimizing the selection of services assigned to actiies
in a service orchestration in terms of QoS properties and
communication overhead. The method takes into account the
communication cost between pairs of services, the amount of
data that these services need to exchange in the orchestiati,
and the collocation and separation constraints imposed byhe
service providers.

I. INTRODUCTION

Marlon Dumas
University of Tartu
Tartu 50409, Estonia
Email: marlon.dumas@ut.ee

Claude Godart
LORIA - INRIA Nancy - Grand Est
F-54500 Vandceuvre-leés-Nancy, France
Email: godart@Iloria.fr

all its output data. The orchestrator then determines which
services need to be invoked next and forwards them the
required input data. This architecture is not optimal inmter

of communication overhead and has the usual problems of a
single point of failure [3].

In previous work, we proposed a method for executing ser-
vice orchestrations in a decentralized manner [6]. The islea
to group activities into partitions and to assign each parti
to a separate orchestrator. Partitions are chosen marually
service designers. Designers may opt, for example, to put
all activities invoking the same service into a partition to
put all activities invoking services in a given organizatb
domain into a partition, or any other partitioning critario
of their choice. Clearly, the performance and robustness
of a decentralized service orchestration would benefit from
placing each orchestration engine as close as possible to
the component services that it manages. But neither the
above method nor other similar decentralized orchestratio
methods [14], [9], [5], [19], [3] help designers to optimize
the communication overhead between component services.

This paper presents a method for partitioning activities in

Service-Oriented Architecture (SOA) is a proven collettio an orchestration and assigning services to activitiesuah s

of principles for structuring large-scale systems in ordera way as to minimize the communication overhead, while
to improve manageability and to streamline change. Onenaximizing the QoS expressed in terms of combinations of
of the pillars of SOA is the ability to rapidly compose properties such as time, cost, reliability, etc. The method
multiple services into an added-value business process, aralso allows designers to keep control over the placement
then to expose the resulting business process@smposite of activities. Specifically, designers may specify colliza

service [3]. Composite services are generally captured byand separation constraints between pairs of activities. A
means of an orchestration model: a process model in whichollocation constraint states that two activities must laegd

each activity represents either an intermediate step e.g. in the same partition (e.g. because they are performed by ser

data transformation) or an interaction with one of the smwi
participating in the composition (theomponent servicgs

vices from the same company), while a separation constraint
imposes that two activities must be in different partitions

The process model specifies the control-flow and data-flow The proposed method needs to deal with an optimization

relations between activities, using a specialized langsagh

problem involving different types of constraints and inter

as the Business Process Execution Language (WS-BPEL) eelated optimization variables: QoS variables, locatiani-v

the Business Process Modeling Notation (BPMN).

ables, collocation and separation constraints. To coph wit

In mainstream service composition platforms, the responthis complexity, the proposal relies on heuristic optintiza

sibility for coordinating the execution of a composite seev
lies on a single entity, namely th@chestrator The orches-

techniques [4]. Specifically, we present and analyze a greed
algorithm to build an initial solution, and we outline how

trator handles incoming requests for the composite servicéabu search can be applied to improve the initial solution.
and interacts with the component services in order to fulfillThe crux of the heuristics is to place services that commu-
these requests. Every time a component service completescate frequently in the same partition, while fulfillingeth
an activity, it sends a message back to the orchestrator witbollocation and separation constraints given by the design

P, P,] Py

A

n
&
| [=] L8]
pl
+J‘
&
o

ds

= - =i fi
Ins
- dy » dy
ds dy > »
: : r o =
!
4 |PS 4—
5 o »
—y ~ " d[‘
a |] d -
P d,
- P, ’

ds da el
Tlins

h 4
Lo]|
A

(a) b) (c)

Fig. 1. (a) centralized model (b) First decentralized mddglSecond decentralized model

The rest of this paper is structured as follows. Section 2an accidentES provides emergency call answering service
introduces a motivating example and uses it to illustrage thto policyholders and liaises with the hospitéldspital) and
importance of choosing the right partitioning for decelied the traffic patrol Police). Some time after the accident,
orchestration. Section 3 describes the details of the mexgbo the policyholder contactiC for reimbursement. In order to
method. Section 4 discusses related work and Section Bandle the claim)C executes the orchestration depicted in
summarizes the contribution and outlines future diregion Figure 2. First,IC invokes ES to obtain details about the
incident (activityay). ES provides the protocol numbers that
are required byHospital (H) andPolice (P) services, in order

To motivate and illustrate the method presented in thigo release the respective incident reports. These depeieden
paper, we make use of a sample orchestration taken from [2Hre denotedi; and d,. With the details provided b¥S,

(cf. Figure 2). This orchestration is designed to automatéC invokes P and H concurrently. Additionally,Delivery

a claim handling process at an insurance comp&hyThe Service (DS) is invoked in order to pick up the physical
corresponding process model is captured in the BPMN noteelaim documents from the customer (activity). Note that
tion, and it includes both control and data dependenciesk Ta a; is executed afted, but it does not have a data dependency
nodes have labels of the form:S where theu; is the activity with it, while there are data dependencies betweganda,
identifier andS is the identifier of the invoked service. We andag andas. IC uses the output obtained frofhandH in
assume for the time being that each activity has already beawrder to invoke thdnspection Service (Ins) (activity ay).
assigned to a component service. We will discuss later hovhgain note that, there are data dependencies betweand

II. MOTIVATING EXAMPLE

this assignment is done in an optimized manner. as andaz anday but not betweeru, and as. Servicelns
decides whether the claim must be reimbursed or not. If so,
1€ : Composte Sanvice the report provided by (data dependenais) and the results

of inspection {s) are sent to the policyholder by invoking
DS (activity as). Moreover, aBank (B) service is invoked
for the reimbursement. If the claim is not reimbursallds
not invoked. This is why an OR-split/OR-join used used in
the last part of the process: sometimes bbth and B are
invoked, and other times onl®S is invoked.

e

In existing service orchestration platforms (e.g. BPMN or

oanospi1 opon (Qp ORspit ORpin ~DalaEdge [DataElement —— Contrl Ecige BPEL engines), control and data dependencies between ser-
vices are managed centrally b@. The resulting interactions
Fig. 2. Motivating example betweenC and the component services are hence as depicted

in Figure 1la. The centralized orchestrator is a bottleneck a
Before this process starts, it is assumed that the policymay cause performance degradation and availability issues
holder has contacted themergency Service (ES) to report It also causes additional traffic of messages, since every ac

Services §
l—constrained aclvitie54< A={a4,az,....a...ax} }Non constrained activities
CA Constraints CTR NCA
a; a; | Collocate(a;.as) Collocate(as,as) :'3 214
a; a4 Collocate(as,aq) Separate(as,a;) a:: a::
:i :2 Collocate(ag,a1) Collocate(as,aqn) aw am w
ag ap | Separate(as.as) Collocate(asp,a12) Az
aq1 aqz
Seaparate(as.as) Distribute|= f{(cost) Assign|=g*(cost)
¥ v ¥
CA; CTR, CA; CTR; CA; CTR; +
a Collocate(as,as) i l l
:2 Collocate(az,ag) as | Collocated(as,as) as | Collocate(as.a+o) N
aﬁ Collocate(ag,aq) a A1 Amax
ai Separate(as,ag) a; | Separate(as.ar) ay; | Collocate(aso,arz) PP,
an| Seaparate(a;.as) PP, NA min

I PP | | PP:| |PP's | | PP

l l' FP, FP. FPy FP,
a A ’
a ag ag A
ag s ap ay ar 5
EPZ, PP,

P, PP, PP

Gy Gz

GCTR:={Separate(PP";, PP";), GCTR;={Separate(PP%;, PP%;)}
Separate(PP';, PP'3)}

Y

Fig. 3. Partitioning process

tivity execution involves a back-and-forth message exgkan data flows exchanged between partitions to only 4 messages.
betweenIC and a service, which may be located arbitrarily The example shows that that the communication overhead
apart and in a different organizational domain. An alteweat varies depending on the number of partitions, the placement
is to execute the orchestration in a decentralized manner. of activities into partitions, the distance between sexsjc
and the number of message exchanges. This paper takes into
consideration all these facts in order to obtain optimized
partitions for decentralized orchestration.
Each partition P; is responsible for all activities that are In addition to seeking to minimize cqmmunlcatlon over-
é@ad, the proposed method also take into account the QoS

delegated to a given service. The time needed to exchan s - .
messages between a partition and its corresponding orchel €ach service. Specifically, we consider the case where

trator is assumed to be negligible, since orchestrators a/id€'€ are multiple candidate services that can perform each
placed close to the services they manage. In this decetdali activity. Each of these services of_fers a QOS and ha_s_ a
architecture, the data produced by a service are routectlgire location. The m_e'gh_od _seeks_ FO assign services to act|V|_t|es
to the partitions of the services that consume these data. Fgnd to place activities in partitions in such a way as to etrik

example hospitalandpolice protocols(d; andd,) generated a tradeof_f b_e_tween minimizing the gommgnication over.head
by ES are routed directly tH and P. If we consider the and maximizing overall QoS. Relative weights are assigned

data exchanged only between services, then the number I each factor in order to capture their relative importance

data flow messages in figure 1a is 11 (cf. communication I1l. PARTITIONING APPROACH

links Iabell_ed with .data |.tem._$i). Meanwhile, in decentralized Given a centralized process specification, our partitignin

prchestratlon dep_lcted in Figure 1b, the number of messagesnroach is based on two principle steps. The first step

is reduced to 6 since data are transferred directly fron theigynists in determining an optimized configuration in teahs

sources to their points of consumption. partitions number, activities to put in each partition aed s
Now consider the case whelS andH are geographically vice selection in order to improve the overall performante o

close to each other, and the same holdsH@ndIns. Then, the decentralized execution. This step constitutes thgesub

it is preferable to create a single partition 8 andH, and of this paper. The second step, consists in wiring the dietdvi

same forP andlIns. This arrangement reduces the number ofof a same partition or inter-partitions together to presehe

Figure 1b depicts a possible decentralized execution se
tings for the same process, whé€eis partitioned into seven
partitions that are executed by seven distributed orchtess.

semantics of the centralized process. This wiring incluti#a definition syntax of the ML language):
and control dependencies, and synchronization process. Th

part was acheived in our previous work [6], [18]. So, the work Process = Pm?NOde

introduced in this paper try to minimize communication sost ProcessNode = Activity | ProcNode

between partitions by well placing activities overall fragnts ControlNode = SEQ([ProcNode))

according to their invoked services and other preferences. | CHC/([CondBranch)) |
It is possible that user requires a subset of activities to | PAR({ ProcNode})

be run in the same partition, the other to be dispersed in
different partitions. The approach considers these peafsrs | RPT(ProcNode x P)
as constraints. Constraints are binary relations betwveen a CondBranch == COND (P x ProcNode)
set of activities in order to impose either putting togethe
or disperse couples of activities over partitions (comséa
activities). It should be noted that these constrainedrities

may be decomposed into different sets. Each set includgs onby the following expression: SEQ(, PAR(s, as, a4), as
activities that may have some relation within the set but ar%HC(COND@l a5), COND(ps PAR,(G5 aa))),)- ' Y
independent of other sets. So, using a recursive algorithm" , | activity i’n ;,service or’chestrati’on represents a one-
(see algorithm 1), we partition each of these sets into iadep way or a bidirectional interaction with a service via the

dentpre-partitionsrespecting the associated constraints. Afterinvocation of one of its operations. Each activity has a

computlng the minimum and maX|murr-1.number of pO‘Q‘S'blenon-empty set of candidate services that it can be bound
partitions, we fix, at each step, a partitions number and tr

. . . ! i Xvith. In addition, activities may be related by means of two
to find an optimal configuration for activities placements

: : . . . 'types of distribution constraints: collocation (actig&i must
services assignments Tthrough metrics, weight functiomks a be placed in the same partition), and separation (actvitie
heuristics through &euristic optimization algorithm i

must be placed in different partitions). Formally, a sesvic
orchestration is defined as follows:
Definition 2: Service Orchestration Aservice orchestra-
A. Inputs and Outputs tionis a tuple(Proc, Data. Cand, Collocate, Separatejere:
« Proc is a process model capturing control-flow depen-
The method for optimized service selection takes as input dencies between a set of activities;
a service orchestration consisting of activities relatad b + Datais a ternary relation consisting of tuples of the form

'whereP is the range of real numbers frai0 to 1.0, denoting
probabilities.
For example, the BPMN model in Figure 2 is represented

control, data-flow and distribution constraints. In order t Datag;, a;,d;) stating that, upon completion of activity
precisely define the notion of service orchestration, welnee a;, data itemd;, needs to be transferred to activiy
adopt a model for representing control-flow relations betwe « Candis a function that maps each activity to a set of
activities. In this paper, we adopt a structured represienta candidate services that are able to perform that activity.

of process models. In essence a process model is represented Collocateis a relation consisting of facts of the form
as a tree whose leaves represent activities and whoseahtern Collocate(;, a;) stating that the services assigned to
nodes represent either sequence (SEQ), parallel (PARgeho activitiesa; andas must be placed together;
(CHC) or repeat loop (RPT) constructs. Structured process « Separateis a relation consisting of facts of the form
models are very close to BPEL, and they have the advantage Separate(;, a;) stating that the services assigned to
of being simpler to analyze. And while it is possible to write activitiesa; andao must be placed in different partitions.
unstructured models both in BPEL and in BPMN, recentror consistency, we impose thet;, a- —(Collocate™ (ay,
work has shown that most unstructured process models can lag) A Separate(ay,as)) where Collocate™ is the transitive
automatically translated into structured ones [16]. No@t t closure of relationCollocate. This means that if we declare
for the purpose of the proposed method, we do not need tghat two activities must be collocated, we cannot state-addi
capture concrete branching expressions. Instead, itfisisut tionally that these activities must be separated.
to know the probability of taking each conditional branckin An activity that is not related with any other activity by
choice and the probability of taking the “repeat” branch in ag collocate or separate constraint is calleduaconstrained
loop. Also, we do not need to capture OR-split/OR-join pairs activity. In the sequel, we writ€'T R to denote the set of all
because when a process is structured, OR-split/OR-joibean gjstribution constraints defined in an orchestratiGh'® =
trivially translated into a combination of choice and pklal Coiocate U Separate). Also, we write Act(Orc) to refer to
blocks. For example, the OR-split/OR-join pair in Figure 2 the set of activities of an orchestratioflA(Orc) to denote
can be transformed into a choice between executingnly the set of constrained activities afdC' A(Orc) to denote
or executing bothus andag in parallel. Formally, we capture the set of unconstrained activities. Unconstrained distivi
structured process models as follows. are also calledlexible activitiessince we can place them in
Definition 1: (Structured) Process Model A process modelany partition. When it is clear to which orchestration we are
is a tree with the following structure (here we use the typereferring to, we will simply writeAct, CA and NC A.

Given a service orchestration defined as above, the purpogeA; is a set of pre-partitions such thatGk:UPPg. For

of the method is to construct: example, in Figure 3(C'A; is decomposed into threpre-
« A binding, that is, is a function that maps each activity partitions PP{'={a,as}, PP={as} andPP{={ag,a11,a2}.
in the orchestration model to a service: After the pre-partitoning phase, we know that all actiatie

« A partitioning of activities, that is, a function that maps & pre-partitions should be manipulated as a single package
each activity in an orchestration to a partition. This and put together in one final partition.
partition function is needed for decentralized service This pre-partitioning is operationalized by algorithm 1.
orchestration. This algorithm first computes the groups by calculating the
Specifically, the method seeks to bind candidate services teonnected componentSTR; of CTR. EachCTR; leads
activities in such as way as to minimize the communicatiorfo one group. Next, the algorithm computes the partitions
overhead and to maximize the QoS of the services in thavithin each group by computing the connected components of
binding. We do not impose a particular model for calculatingthe Collocaterelation restricted to the connected component
the QoS of a service. Instead, we assume that there is @T'R;.
function QoSs) that returns the QoS of a serviee For For convenience, we lift the relatideparateso that it can
example, we could use the QoS model presented in [24}e applied to partitions as follows:
in order to calculate the QoS of each component service,
based on a weighted sum of the service’s execution time,
Cost, rellablllty and avallablllty Separate(Pi’ P_]) & da; € Py, aj € Pj : Separate(ai’ aj)
Composite service designers are able to influence the
relative importance given to the minimization of the com-
munication overhead versus the maximization of the qualitfror example, with respect to Figure 3, it holds that
by setting two weightsuw,. € [0..1] is the weight given to the Separate(PP}, PP}) A Separate(PPy, PPy). This implies
communication overhead and, € [0..1] is the weight given that PP; should not be combined neither wifhP! nor with
to the quality of service. PP} in the same final partition.

B. Pre-partitioning of Constrained Activities

The purpose of the pre-partitioning phase is to partitian th - Algorithm 1: Constrained activities partitioning
set of constrained activitie§'A so that we can later easily ™ Require: - CTR: set of all constraints
identify which activities should be collocated and which Init: Groups «+ {}
activities should be separated. To this end, we decompese th begin

set of activities into group§C' 4, ...CA,}, so that elements for ?Srgg;ffi EﬁonnectedComponeﬁI(FR) do

in two groups are not related nelther. bﬁapgratmor by a for Collocp;tei in

Collocateconstraint. In other words, if we view the relation ConnectedComponent(CTR; N Collocate) do
CTR = Separate U Collocate as a graph, a group consists NewPartition + {a|3a’ Collocate;(a, a’)}
of all activities in one of the connected components of this CurGroup — CurGroup U {NewPartition}
graph. Figure 3 shows an example involving 12 activities Groups «— Groups U {CurGroup}

CA = {ay,..,a12} linked throughSeparateand Collocate Return Groups

relations. Looking at the correspondi@’R relation, we can end . -

see that there are three connected components in the inducnfﬁesu”: groups of constrained partitions

graph, and thus three groups are created, nadely, C A,

and C'As. If we restrict the relationC'T'R to the activities _ o) _

in each of these groups, we obtain three restrictdaR re- The final pa_lmtlonlng_ aIgonthr_n presente_d later tries to

lations, namelyC'T Ry, CT R, and CT R; respectively: The compute part|t|0ns_of dlffer_e_nt sizes. To th!s end, we need

rationale for this initial grouping is that activities begingto {0 know the approximate minimum and maximum number of

different groups can be freely combined with one another in £0Ssible final partitions”P;. Algorithm 2 describes of how

final partition (or they can be left in separate final partipy ~ {© compute the minimum required final partitions that can

because no constraint links them. be obtained by merging pre-partitions from different greup
Next, each group is further partitioned into a numbepret while respecting the constrair_lts that lingee-partitions of _

partitions by looking at the relatiotCollocateonly. The idea e same group. However, this number does not take into

is that each of these partitions is a maximal set of activitie cOnsiderationon-constrainedactivities NCA. So, to have

that must be collocated. In other words, if we view the refati the exact number, considedct| the number oftonstrained

Collocateas a graph, a partition in a groupA,, consists of ~and not constrainedactivities, N Az (N Amin) the max-

all activities in CA4, that belong to one of the connected IMum (minimum) number of allowed activities by partition

components of this graph. The pre-partitioning of each grou (fixed by user after constrained activities partitioningy)P
the issued from algorithm 2, arld’ 4| (|NCA|) the number

We note thatvi, j,i # j, CA; N CA;={0} and CTR; N CTR;={0}. of constrained (Non-constrainedtivities, then:

, |Act]
— <
NP if NA. S NP
NPmin =

NP + |Act] - E\J/vvjnﬂ;j\]/lmaz) Otherwise
NoAl 1)

N
NPmaz =) 2
gk Size(G) + NA (2

...whereNP,,;, and N P,,,,, represent respectively the min-
imum and maximum number of final partitions. In Section
3.4, we will vary the number of partitions fronVP,,;,
to NP,...) and try to distribute the flexible activities'A
and the groupss, over those partitions in such a way as

« Activities a; and ay are consecutive. If we take the

representation of a process model as a graph consisting
of activities and gateways (as in Figure 2), two activities
are consecutive if there is a control-flow arc directly
from a; to a, or there is a path fronu; to ay that
does not traverse any other activity (i.e. only gateways
are traversed). In this case, every time an instance of
activity a; completes, if activityus needs to be executed
next, the service assignedd@ must send a control-flow
notification to the service attached ¢e.

There exists a data-flow from activity; to activity as
(a1,a2,d) € Data. The presence of such a data flow
implies that every time activity; completes, the service
assigned tai; must send a message containing a datum
of type d to the service assigned t@.

to minimize the communication overhead and maximize the Without loss of genera"ty' we measure communhnication

QoS. We will then choose the partitioning that leads to thegyerhead in bytes. We assume that control-flow notification
best overall tradeoff between communication overhead angas 3 size of one byte. We also assume that the average size
QoS according to relative weights given by the user. in bytes of a message of typé is known, and we write
size(d) to denote this size. In order to determine how many
bytes will be exchanged between the service assigned to
and the service assigned t@ during one execution of an
orchestration, we need to determine two things:

« How many times a given activity will be executed
for a given execution of the orchestration)? We write
Ngmaz— Max(SizeGk)), k € [1..N¢] (g .)
; numEzec(a) to denote this amount.
RecursiveGroups, Ngmaz)
begin o Given two consecutive activitiea; and as, what is
if (Gr = {},V k#ANgmaz) then the probability that one execution of activity; is
return Groups immediately followed by an execution of activity. We
for &Gk(';kqmgp;'dk#\]gmw) do write probFollows(a1, az) to denote this probability.
or (P;° in Gg) do . . .
min&ﬂzmwwgmw) To compute the number of times that a given activity
if (Size(PF) + Size(PN9m9%) > N Apas) is executed we reason on the structured process model (as
then defined in Definition 1), and make the following observations

k Ngmaz . . -
Add(Py, prames) « If a process node’N is a direct child of a sequence

Algorithm 2: Computing approximative minimum num-
ber of partitions after groups merging
Require: - Groups = UG}, Il The set of all partition groups

- NAmaz /I The maximum number of activities by partition
Init: Ng «— Size(Groups)

DeleteF, Gi)

repeat

Praz—Max(PF) st —constrained(Maxf), PN¢ma=)
Vk # Ngmaz, Vi € [1..Size(Gg)]

Add(Prqs, PNI™T)

min

DeletePraz)
until (GN9 = {} V Size(Pmaz) > Size(PNS),YNg #
Ng'maw)

RecursivgdGroups, NGmaz)
end
Result: N P=Size(RecursiveGroups, N gmaz))

C. Communication Overhead

(SEQ) node, then each execution of the SEQ node entails
one execution ofP N

If a process nod@ N is a direct child of a parallel (PAR)
node, then each execution of the PAR node entails one
execution of PN

If a process node’ N is a direct child of a condition-
alBranch (COND) node that has a branching probability
of p, then each evaluation of node COND entgils
executions ofP V.

If a process nodePN is a direct child of a Repeat
(RPT) node that has a repeat probabilityppthen each
execution of the node RPT entailg(1 — p) executions

of PN.

One of the aims of the optimized partitioning approach is Based on these observations, we conclude that the number
to produce partitions such that the communication overheadf times an activitya needs to be executed (for a given

(i.e. the amount of communication) between activitiesdasi

execution of an orchestration) is determined by the prob-

a partition is as large as possible and, conversely, the comabilities of the conditional branch and repeat nodes that

munication overhead across partitions is as small as dessib appear in the path from the root of the process modei.to
To construct such optimized partitions, we need to estimat&tarting from one execution of the entire process, each time

the communication overhead between pairs of activitieso Twa COND node with probability is traversed, the number of

activitiesa; andao need to communicate if:

executions of its child node is multiplied hy, while every

time a RPT node is traversedm the number of executionactivity will send the corresponding datum to the target
is multiplied by 1/(1 — p). This observation leads us to activity, regardless of whether or not the target activiy i
Algorithm 3 that calculates the average number of timegerformed.
that a given activity is executed for each execution of an - N
orchestration. In this algorithmpyob(cb) andprob(rb) denote D. Optimized partitioning process
the probability attached to conditional brandhor a repeat In the previous sections, we presented algorithms to par-
block rb respectively. tition constrained activities into a set of independenttipar
tion groupsGy, (pre-partitiong, while respecting constraints
defined by user. we also introduced algorithms to compute
the minimal and maximum number of final partitiof&’;.
In the following, we will present our solution, to optimally
distribute thepre-partitionsand unconstrained activities over
final partitions, and assign activities to web services. The
problem can be considered as a quadratic assignment prob-
lem (QAP) introduced by Koopmans and Beckmann [10] in
1957, as a mathematical model for the location of a set of
indivisible economical activities. Using th@AP formulation
of Koopmans-Beckman, we are given a cost mattix=
Next, we have to compuie-obFollows(ai, az): the proba- [co;;], where co;; is the communication overhead between
bility that the completion of an instance of activity triggers activity a;, and activity a;. We are also given a distance
the execution of another activity, — assuming that; and matrix between partitionD? = [dfj], where dfj represents
ap are consecutive activities. For this, it is more convenienthe distance between partitidl) and partitionP;, a distance
to take the representation of the process model as a graphatrix between service®® = [df;] where df; represents
consisting of activities and gateways, and to retrieve thehe distance between servisgand services; and a quality
conditional control-flow arcs traversed on the path fram matrix Q=[g;;], whereg,; is the contribution to overall QoS
to ap. Here, a conditional control-flow arc is an arc in the obtained by assigning activity; to services;.
process graph whose source is an XOR gateway. For each tra-Given the above matrices, if activifyis assigned to service
versed conditional control-flow arc, theobFollows(a1,a2) bind(i), the contribution of this assignment to the overall
is multiplied by the probability attached to the controiilo QoS is equal to the QoS of servibénd(i) multiplied by the
arc. This leads to the Algorithm refalgo:probFollows. listh average number of times that is executed per execution
algorithm, prob(ca) denotes the probability associated to aof the orchestration, i.enumFEzxec(a;) as defined above.

Algorithm 3: Algorithm numExec(a)

Input: orc // an Orchestration

a Il an activity in Act(orc)
path — the path from the root oProc(orc) to a
condBranches— the list of COND nodes ipath
repeatBlocks— the list of RPT nodes ipath
OUtpUt: (checondBranchespTOb(Cb) X
(H'r‘berepeatBlocksl/(l - pTOb(Tb)))

conditional control-flow area. Meanwhile, if activity i is assigned taP(i), and activity j
is assigned taP(j), the inter-partition communication cost
Algorithm 4 : Algorithm probFollows(a1, az) associated with this assignmentcis;; - d’;(i),P(j). Finally, if
Input: orc // an Orchestration activity ¢ is assigned tdind(:), and activity j is assigned
a1, as Il two consecutive activities ilct(orc) to bind(j), the intra-partition distance cost associated with
path — the path in the process graph fram to a- this assignment iso;; - dy, ;) ina(;)- NOte thatbind(i) and
condArcs« the list of conditional control-flow arcs in bind(j) are subject to the constrainid(i) € Cand(i) and
path bind(j) € Cand(j), meaning that an activity can only be
output: MeaecondAresprob(ca) bound to one of its candidate services.

The optimization problem has three components: we have
] .] to maximize the quality of service, minimize the inter-

“Having defined functionsumExec andprobFollows and — partition communication cost — because it implies commu-
given the above observations, the communication overheggcation between orchestrators possibly located far from o
between two activitiesi; and a; — namelyco(a1,as) = 1S another — and we have to minimize the distance between
computed as follows: services placed in the same partition — given that suchesvi
co(a) = Cons(a1,as) x numEzec(ay) x probFollows(as) ~ Need to interact with a local orchestrator. Because we waish t
strike a tradeoff between three factors, we introduce three
parametersw,, wo,: and w;,, where w, is the relative
...whereCons(as, az) is a function equal to one if; andas weight given to maximizing QoSy,.; is the weight given
are consecutive activities, and zero otherwise. The first te to minimizing inter-partition communication cost, ang, is
in this formula corresponds to the communication overheadhe weight given to minimizing the distance between sesvice
induced by control-flow notifications, while the second termassigned to activities in the same patrtition.
corresponds to the communication overhead induced by data- Given these weights, the total cost of a solution to this
flows. Note thaprobFollows does not appear in the second assignment problem is given by equation 3. An optimal
term, because a data-flow dependency implies that the sourselution to the problem consists of an assignment of ai#vit

+ Y(a1,as,d)e DataUMEzec(ar) * size(d)

to partitions and a binding of activities to services sucitth Algorithm 5: Greedy algorithm: initial elite solution
this total cost is minimal. Solutions are only admissiblthiy computation

respect the binding constraints (a service can only berassig ~ Require: - NCA(Orc), NPmin, NPmas

to an activity if it is one of the candidates of this activity) - P.: Constrained partitionspe — partitions)

and the collocation and separation constraints for assigni - {Cand(a:), Vai € Act(Orc)}

activities to partitions. In equation 3 we write — QoS, Init: Pe « FU{{ai}\a; € NCA(Orc) }

o . . bestQuality « 400, best Number < N Ppin
because we seek to maximize the sum of QoS, which is , .5 o {}, bestBind — {}

equivalent to minimizingl — QoSs. Begin
n for (NP+N Ppin TO N Pras) do
w, Z(l — Q0Shina(s)) * numBaxec(i) FinalPart — a set of sizeV P of empty sets

for (each PP in P.) do

=1 Quality™ «— +oo

n m n
for (eachFP € [1..NP] where—Separate(PP,
+wout p_ D €0ijdp(iyp() + Win Y dyind(i) bind(j) Final Part[FP)) do
i=1 j=1 i=1 CurQual — 0

1) Heuristic optimization algorithms overviewSeveral for (eacha; in PP) do
Sa; < argmin |wg - (1 — QoS(sy))

exact algorithms have been used for solving the QAP
problems, like branch and bound, cutting plane and branch " sicCand(a;)

and cut algorithms [4]. Although substantial improvements = (F P COag,a; s, bind(a)
ajEFinalPart FP ai,aj-Ys;,bind(a;

have been done in the development of exact algorithms for +Wout :

the QAP, they remain inefficient to solve problems with size | Final Part[FP]|
n>20 in reasonable computational time (there arelistinct Zajennazpm[pp] ds; bind(a;)
permutations). This makes the development of heuristic Hin |Final Part[F P]| }

algorithms essential to provide good quality solutions
in a reasonable time. Many research have been devoted
to the development of such approaches. We distinguish

CurQual — CurQual+ |wq-(1—QoS(s;))

Zaj €FinalPart[FP] COa;,aj 'dSiab’i”Ld((I«j)

the following heuristic algorithms [4]: Tabu search (TS), FWout- .

Simulated annealing (SA), Genetic algorithms (GA), Greedy | FinalPart[FP]|
randomized adaptive search procedures (GRASP), Ant . Zajennazpm[pp] ds; bind(a;)
systems (AS)...etc. These methods are also known as local Hin |Final Part[F P }

search algorithms. A local search procedure starts with an
initial feasible solution and iteratively tries to improviee 2

. .. - . FP* — FP
current solution. This is done by substituting the lattethvel Quality® — CurQual
(better) feasible solution from its neighborhood. Thisatave | for (a; in PP) do bind(a;) — sa,
step is repeated until no further improvement can be found.
Improvement methods are local search algorithm which allow
only improvements of the current solution in each iteration
For a comprehensive discussion of theoretical and prdctica

'f_CurQual < Quality™ then

F_inalPart[FP*] — FinalPart[FP*|U PP
| qualSolution «— qualSolution + Quality™

(qualSolution < bestQuality) then
bestQuality < qualSolution

—

aspects of local search in combinatorial optimization the bestPartition «— Final Part

reader is referred to [1]. In this paper we adopt the Tabu L bestBind « bind

search algorithm to look for an optimal solution to our R_eturn(bestPartition, bestBind, bestQuality))
decentralization problem. End

Tabu search [7] is a local search method where the basic
idea is to remember which solutions have been already disite
by the algorithm, in order to derive the promising direcion The simplest way to do this, is to generate a random solution
for further search. A generic procedure starts with andhiti by randomly assigning activities to partitions and sersice
feasible solution and selects a best-quality solution Srgmo to activities. However, the obtained results proved to be
(a part of) the neighbors of S obtained by non-tabu movesnot sufficient. In this sense, many recent researches in TS
Then the current solution is updated by the selected solutio deals with various techniques for making the search more
If there are no improving moves, tabu search chooses oneffective. These include methods for creating better istart
that least degrades the objective function.The searchs stopoints called elite solutions. For this purpose, we adopt
when a stop criterion (running time limit, limited number of Greedy algorithm to generate a good initial solution. Gyeed
iterations) is fulfilled. algorithms are intuitive heuristics in which greedy chaice
2) Greedy algorithm:The first part of the Tabu Search are made to achieve a certain goal [11]. Greedy heuristes ar
TS algorithm is the construction of a feasible initial s@at constructive heuristics since they construct feasiblatsnis
in order to find better solutions by stepwise transformation for optimization problems from scratch by making the most

favorable choice in each step of construction. By adding ampossible moves will be calculated and the move leading to
element to the (partial) solution which promises to deliber the highest benefit will be performed. If the highest benefit
highest gain, the heuristic acts as a greedy constructor. is negative, the move will be performed anyway, unless this

Algorithm 5 presents a method that computes a goodnove is forbidden by the tabu list. In order to guide the
feasible solution to activity placement and service salact moves, we utilize some heuristics that can be employed (in
It takes as inpupre-partitions unconstrained activities and conjunction with the tabu search algorithm) to improve the
service candidates of each activity. Then, according toeafix solution. The heuristics are described as follows:
final partitions number, try to place at each step an activity . Put together activities which exchange lot of data to
(or pre-partition) to a final partition, and assign a service (or reduce inter-partitions interactions
a set of service) to it. Both assignment and placement are , Put together activities whose invoked services are geo-
based on cost estimation. The cost of assigning an activity t graphically close.
a service among its candidate services depends of the |atterAIgorithm 6 presents a pseudo code for the tabu search
quality. Then the cost of placing an activity in each final\yhere stop condition represents:
partition depends of the communication overhead as well as . after a fixed number of iteration
the average distance between the activity to place and all ft. ber of iterations without an improvement in the
activities of the partition. The most favorable choice amgon o arernum : P
final partitions costs is selected. For pre-partitions @haent objective func_t on value i

) ' ' .« When the objective reaches a pre-specified threshold

the same procedure is used except the fact that we take into

. . . - value.
consideration the constraints, and a global cost of asgigni The f . lit i | d d ibed i .
it to a final partition since it includes a set of activities. | "¢ functionquality is evaluated as described in equation

Once all activities and pre-partitions are assigned, weprden 3. A move is described by an activity assignment to another

the global cost, and then change final partitions number anf@rtition or service with respect to the constraints.
iterate. After each iteration we compare the quality of the
current solution to the previous one and save the best. TheAlgorithm 6: Tabu search
output of the algorithm is an optimized feasible solution. Require: - Sg: greedy solution

To analyze the complexity of Algorithm 5 , we first Nt So < sg ,
analyze the c_ompl_exity of one _iteration of the _outer _Ioo_p. S:_Sgéchgéegésst?ll(lﬁéwn solution
In one such iteration, we consider every possible binding ¢« . ;yality(S,)
of an activity (that has not yet been bound) to a service. T « : Tabu list
If we write MaxCandto denote the maximum number of begin

candidate services that any activity has, we have to conside whilg (F Stngondiqtion())jo s

MaxCand possible bindings per activity and thus at most ifef?gt) <”}ir%hne};ns’€1\’“<s> [(S)]
MazxCandx|Act| bindings in total. Each such binding is then 77 F(S)

compared against all activities that have already beendoun S* — 8

order to compute the distances (again, there are at [Host record tabu for the current move in T (delete
such bound activities). We also have to evaluate the QoS of oldest entry if necessary)

each service binding, but we assume this is a constant-time engd

operation. Thus, the complexity of one iteration of the oute return S*

loop is O(MaxCand x |Act|?). Also, during each iteration

of the outer loop, we have to test P times whether or

not two partitions are linked through aSeparateconstraint. IV. RELATED WORK

Each such test takes at mdst|? operations. Next, we note In recent years, several methods and systems for decen-

that the outer loop is executed P,,.. — NP, times, tralized business process execution have been proposed. On

with NP ranging between these two values. Thus overallof the earliest work in the area is the Mentor project [19].

the complexity iISO((NPpaz — NPpin) X MaxCand X In Mentor, workflows are modeled using state-charts that are

|Act|*+(N Ppaz—N Prin)? x| A|?). Thus we can say thatthe partitioned so that each partition is delegated to a separat

complexity of the algorithm is a polynomial of order fourtbu processing entitiPE). Each PE-specific state-chart is exe-

one of the variables in this polynomial 8 P,,,... — N Ppin, cuted locally on the PE workstation. Their approach takes

which can be made smaller if needed since we do not neeidto account both control and data-flow dependencies. Sadiq

to consider all possible numbers of partitions. et al. [17] present another method for decentralized wonkflo
3) Tabu search algorithmin the following we will de- execution based on partitions, but without considering dat

scribe a solution that combine the greedy algorithm to thelependencies. More recently, Khalaf et al [9][8] present a

Tabu search algorithm in order to optimize the previouslymethod for decentralized orchestration of BPEL processes,

presented solution. As we mentioned before, the key idea i®cusing on the derivation of P2P interactions. Meanwhile,

to start the Tabu search with an initial good solution. Fis th Yildiz et al [23][20][22] consider the decentralization of

purpose we use the greedy solution. Then, for each iteratioprocesses from an abstract perspective by extending thk dea

path elimination algorithm used in BPEL process executiomPcknowledgmentsThis work was conducted while the sec-

engines. Their contribution focuses on preserving therobnt

ond author was Visiting Professor at LORIA — INRIA Nancy.

flow constraints in the centralized specification, while-pre The second author was also supported by the ERDF through
venting deadlocks when services interact with one another.the Estonian Centre of Excellence in Computer Science.

The above approaches do not consider communication
overhead when splitting the process into partitions. budte
they assume that the split is given by the designer or inflerre [
from the roles specified in the process model. Importantly, 5
our partitioning approach could be used on top of any of the
above decentralized orchestration approaches. Thus, anlr w
is complementary to the above ones.

Nanda et al. [15][5] present an approach to partition BPEL
processes using program partitioning techniques with itme a 4!
of reducing the communication costs between the partitions
However, they do not take into account distribution conistsa [5]
(Collocate and Separate) so the designer cannot control the
partitioning. Also, they do not take into account the poiisib 6]
of an activity having multiple candidate services, eachhwit
a different location and a different QoS.

Other approaches to decentralized orchestration do nojy
require any partitioning. For instance, the Self-Serv sys-[8]
tem [3][2] is able to execute web service compositions in
an entirely peer-to-peer fashion: services send messages tyg;
one another after completing each activity in the orchestra
tion. This approach is equivalent to assigning each agtivit [1°!
(service) to a separate partition (as illustrated in Figlig
Another method for decentralized execution without partit ~ [11]
ing is presented in [12][13]. The authors developed a formal
approach that takes as input the existing services, the gogb,
service and the costs, and produces a set of decentralized
choreographers that optimally realize the goal servicagusi [13]
the existing services. However, the authors do not explain
how they deal with Repeat blocks (i.e. loops), which have g14]
significant impact on communication overhead.

(3]

V. CONCLUSION [15]

This paper presented a method for optimized constraineﬁa
decentralization of composite web services. The methdkssee
to create an activity partitioning and a binding of actesti
to services that minimizes communication costs while maxi{17]
mizing QoS. In doing so, the method takes into account theyg
expected communication volume between partitions, the dis
tance between partitions and the distance between seiwices
the same partition. The resulting model is richer than nesi
models for optimizing decentralized service orchestratio
The proposed method also complements existing methods f%o]
decentralized orchestration of services that take as iaput
predetermined partitioning.

Because of the nature of the objective function, we ha 23]
to formulate the problem as a quadratic assignment problem.
A greedy heuristic is used in order to construct an initial[23]
solution. The paper also sketched how Tabu search could be
used to improve this initial solution. Future work will aim o4
at empirically assessing the quality of the solutions oisdi
with the greedy algorithm, and the improvements obtained
using Tabu search or other meta-heuristics.

[19]

[21]

REFERENCES

E. Aarts and e. J. K. Lenstra. lhocal Search in Combinatorial
Optimization, Wiley, Chicheste997.

B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating tapid
development and scalable orchestration of composite wefices. In
Distributed and Parallel Database2005.

B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-sewiremment
for web services compositionEEE Internet Computing7(1):40-48,
2003.

R. E. Burkard, E. Cela, G. Rote, and G. J. Woeginger. Thadeatic
assignment problem with a monotone anti-monge and a syriumetr
toeplitz matrix: Easy and hard cases.|RCO, pages 204-218, 1996.
G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentdli
orchestration of composite web services. WWW (Alternate Track
Papers & Posters)pages 134-143, 2004.

W. Fdhila, U. Yildiz, and C. Godart. A flexible approachr fautomatic
process decentralization using dependency tabledCWS '09: Pro-
ceedings of the 2009 IEEE International Conference on Webices
pages 847-855, Los Angeles, CA, USA, 2009. IEEE Computeie§oc
F. Glover and M. Laguna. Tabu search, 1997.

R. Khalaf, O. Kopp, and F. Leymann. Maintaining data degencies
across bpel process fragmenitst. J. Cooperative Inf. Systl17(3):259—
282, 2008.

R. Khalaf and F. Leymann. E role-based decomposition usiress
processes using bpel. ICWS pages 770-780, 2006.

Koopmans and M. J. Beckmann. Wssignment problems and the
location of economic activitiesvolume Econometrica, pages 53-76,
1957.

P. Merz and B. Freisleben. Greedy and local search $iggifor
unconstrained binary quadratic programmirdg.Heuristics 8(2):197—
213, 2002.

S. Mitra, R. Kumar, and S. Basu. Optimum decentralizedreography
for web services composition. liEEE SCC (2) pages 395-402, 2008.
S. Mitra, R. Kumar, and S. Basu. A framework for optimas-d
centralized service-choreographyweb Services, |IEEE International
Conference on0:493-500, 2009.

F. Montagut, R. Molva, and S. T. Golega. The pervasivakfiow:

A decentralized workflow system supporting long-runningngac-
tions. IEEE Transactions on Systems, Man, and Cybernetics, Part C
38(3):319-333, 2008.

M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizikgcetion of
composite web services. IBOPSLA pages 170-187, 2004.

A. Polyvyanyy, L. Garcia-Banuelos, and M. Dumas. Stutag acyclic
process models. IRroceedings of the 8th International Conference on
Business Process Management

W. Sadig, S. W. Sadiq, and K. Schulz. Model driven disition of
collaborative business processes.IlHEE SCC pages 281-284, 2006.
F. W. and C. Godart. Toward synchronization betweenedtalized
orchestrations of composite web servicesChilaborative Computing:
Networking, Applications and Worksharing, 2009. CollaieCom
2009. 5th International Conference jopages 1 —10, 11-14 2009.

D. Wodtke, J. Weil3enfels, G. Weikum, and A. K. Dittrichhe mentor
project: Steps toward enterprise-wide workflow managementCDE,
pages 556-565, 1996.

U. Yildiz and C. Godart. Centralized versus decertgli conversation-
based orchestrations. DEC/EEE pages 289-296, 2007.

U. Yildiz and C. Godart. Information flow control with dentralized
service compositions. IICWS pages 9-17, 2007.

U. Yildiz and C. Godart. Synchronization solutions fdecentralized
service orchestrations. ICIW, page 39, 2007.

U. Yildiz and C. Godart. Towards decentralized serdcehestrations.
In Proceedings of the 2007 ACM Symposium on Applied Computing ,
SAC pages 1662—-1666, 2007.

L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanand
H. Chang. QoS-Aware Middleware for Web Services Compasitio
IEEE Transactions on Software Engineerirgp(5):311-327, 2004.

