
Optimized Decentralization of Composite Web
Services

Walid Fdhila
LORIA - INRIA Nancy - Grand Est

F-54500 Vandœuvre-lès-Nancy, France
Email: fdhilawa@loria.fr

Marlon Dumas
University of Tartu

Tartu 50409, Estonia
Email: marlon.dumas@ut.ee

Claude Godart
LORIA - INRIA Nancy - Grand Est

F-54500 Vandœuvre-lès-Nancy, France
Email: godart@loria.fr

Abstract—
Composite services are usually specified by means of or-

chestration models that capture control and data-flow rela-
tions between activities. Concrete services are then assigned to
each activity based on various criteria. In mainstream service
orchestration platforms, the orchestration model is executed
by a centralized orchestrator through which all interactions
are channeled. This architecture is not optimal in terms of
communication overhead and has the usual problems of a single
point of failure. In previous work, we proposed a method for
executing service orchestrations in a decentralized manner while
fulfilling collocation and separation constraints. However, this
and similar methods for decentralized orchestration do not
seek to optimize the communication overhead between services
participating in the orchestration. This paper presents a method
for optimizing the selection of services assigned to activities
in a service orchestration in terms of QoS properties and
communication overhead. The method takes into account the
communication cost between pairs of services, the amount of
data that these services need to exchange in the orchestration,
and the collocation and separation constraints imposed by the
service providers.

I. I NTRODUCTION

Service-Oriented Architecture (SOA) is a proven collection
of principles for structuring large-scale systems in order
to improve manageability and to streamline change. One
of the pillars of SOA is the ability to rapidly compose
multiple services into an added-value business process, and
then to expose the resulting business process as acomposite
service [3]. Composite services are generally captured by
means of an orchestration model: a process model in which
each activity represents either an intermediate step (e.g.a
data transformation) or an interaction with one of the services
participating in the composition (thecomponent services).
The process model specifies the control-flow and data-flow
relations between activities, using a specialized language such
as the Business Process Execution Language (WS-BPEL) or
the Business Process Modeling Notation (BPMN).

In mainstream service composition platforms, the respon-
sibility for coordinating the execution of a composite service
lies on a single entity, namely theorchestrator. The orches-
trator handles incoming requests for the composite service
and interacts with the component services in order to fulfill
these requests. Every time a component service completes
an activity, it sends a message back to the orchestrator with

all its output data. The orchestrator then determines which
services need to be invoked next and forwards them the
required input data. This architecture is not optimal in terms
of communication overhead and has the usual problems of a
single point of failure [3].

In previous work, we proposed a method for executing ser-
vice orchestrations in a decentralized manner [6]. The ideais
to group activities into partitions and to assign each partition
to a separate orchestrator. Partitions are chosen manuallyby
service designers. Designers may opt, for example, to put
all activities invoking the same service into a partition, or to
put all activities invoking services in a given organizational
domain into a partition, or any other partitioning criterion
of their choice. Clearly, the performance and robustness
of a decentralized service orchestration would benefit from
placing each orchestration engine as close as possible to
the component services that it manages. But neither the
above method nor other similar decentralized orchestration
methods [14], [9], [5], [19], [3] help designers to optimize
the communication overhead between component services.

This paper presents a method for partitioning activities in
an orchestration and assigning services to activities, in such
a way as to minimize the communication overhead, while
maximizing the QoS expressed in terms of combinations of
properties such as time, cost, reliability, etc. The method
also allows designers to keep control over the placement
of activities. Specifically, designers may specify collocation
and separation constraints between pairs of activities. A
collocation constraint states that two activities must be placed
in the same partition (e.g. because they are performed by ser-
vices from the same company), while a separation constraint
imposes that two activities must be in different partitions.

The proposed method needs to deal with an optimization
problem involving different types of constraints and inter-
related optimization variables: QoS variables, location vari-
ables, collocation and separation constraints. To cope with
this complexity, the proposal relies on heuristic optimization
techniques [4]. Specifically, we present and analyze a greedy
algorithm to build an initial solution, and we outline how
Tabu search can be applied to improve the initial solution.
The crux of the heuristics is to place services that commu-
nicate frequently in the same partition, while fulfilling the
collocation and separation constraints given by the designer.

Fig. 1. (a) centralized model (b) First decentralized model(c) Second decentralized model

The rest of this paper is structured as follows. Section 2
introduces a motivating example and uses it to illustrate the
importance of choosing the right partitioning for decentralized
orchestration. Section 3 describes the details of the proposed
method. Section 4 discusses related work and Section 5
summarizes the contribution and outlines future directions.

II. M OTIVATING EXAMPLE

To motivate and illustrate the method presented in this
paper, we make use of a sample orchestration taken from [21]
(cf. Figure 2). This orchestration is designed to automate
a claim handling process at an insurance companyIC. The
corresponding process model is captured in the BPMN nota-
tion, and it includes both control and data dependencies. Task
nodes have labels of the formai:S where theai is the activity
identifier andS is the identifier of the invoked service. We
assume for the time being that each activity has already been
assigned to a component service. We will discuss later how
this assignment is done in an optimized manner.

Fig. 2. Motivating example

Before this process starts, it is assumed that the policy-
holder has contacted theEmergency Service (ES) to report

an accident.ES provides emergency call answering service
to policyholders and liaises with the hospital (Hospital) and
the traffic patrol (Police). Some time after the accident,
the policyholder contactsIC for reimbursement. In order to
handle the claim,IC executes the orchestration depicted in
Figure 2. First,IC invokes ES to obtain details about the
incident (activitya0). ES provides the protocol numbers that
are required byHospital (H) andPolice (P) services, in order
to release the respective incident reports. These dependencies
are denotedd1 and d2. With the details provided byES,
IC invokes P and H concurrently. Additionally,Delivery
Service (DS) is invoked in order to pick up the physical
claim documents from the customer (activitya2). Note that
a2 is executed aftera0 but it does not have a data dependency
with it, while there are data dependencies betweena0 anda1

anda0 anda3. IC uses the output obtained fromP andH in
order to invoke theInspection Service (Ins) (activity a4).
Again note that, there are data dependencies betweena1 and
a4 and a3 and a4 but not betweena2 and a4. ServiceIns
decides whether the claim must be reimbursed or not. If so,
the report provided byH (data dependencyd5) and the results
of inspection (d6) are sent to the policyholder by invoking
DS (activity a5). Moreover, aBank (B) service is invoked
for the reimbursement. If the claim is not reimbursable,B is
not invoked. This is why an OR-split/OR-join used used in
the last part of the process: sometimes bothDS and B are
invoked, and other times onlyDS is invoked.

In existing service orchestration platforms (e.g. BPMN or
BPEL engines), control and data dependencies between ser-
vices are managed centrally byIC. The resulting interactions
betweenIC and the component services are hence as depicted
in Figure 1a. The centralized orchestrator is a bottleneck and
may cause performance degradation and availability issues.
It also causes additional traffic of messages, since every ac-

Fig. 3. Partitioning process

tivity execution involves a back-and-forth message exchange
betweenIC and a service, which may be located arbitrarily
apart and in a different organizational domain. An alternative
is to execute the orchestration in a decentralized manner.

Figure 1b depicts a possible decentralized execution set-
tings for the same process, whereIC is partitioned into seven
partitions that are executed by seven distributed orchestrators.
Each partitionPi is responsible for all activities that are
delegated to a given service. The time needed to exchange
messages between a partition and its corresponding orches-
trator is assumed to be negligible, since orchestrators are
placed close to the services they manage. In this decentralized
architecture, the data produced by a service are routed directly
to the partitions of the services that consume these data. For
example,hospitalandpolice protocols(d1 andd2) generated
by ES are routed directly toH and P. If we consider the
data exchanged only between services, then the number of
data flow messages in figure 1a is 11 (cf. communication
links labelled with data itemsdi). Meanwhile, in decentralized
orchestration depicted in Figure 1b, the number of messages
is reduced to 6 since data are transferred directly from their
sources to their points of consumption.

Now consider the case whereES andH are geographically
close to each other, and the same holds forP and Ins. Then,
it is preferable to create a single partition forES andH, and
same forP andIns. This arrangement reduces the number of

data flows exchanged between partitions to only 4 messages.
The example shows that that the communication overhead

varies depending on the number of partitions, the placement
of activities into partitions, the distance between services,
and the number of message exchanges. This paper takes into
consideration all these facts in order to obtain optimized
partitions for decentralized orchestration.

In addition to seeking to minimize communication over-
head, the proposed method also take into account the QoS
of each service. Specifically, we consider the case where
there are multiple candidate services that can perform each
activity. Each of these services offers a QoS and has a
location. The method seeks to assign services to activities
and to place activities in partitions in such a way as to strike
a tradeoff between minimizing the communication overhead
and maximizing overall QoS. Relative weights are assigned
to each factor in order to capture their relative importance.

III. PARTITIONING APPROACH

Given a centralized process specification, our partitioning
approach is based on two principle steps. The first step
consists in determining an optimized configuration in termsof
partitions number, activities to put in each partition and ser-
vice selection in order to improve the overall performance of
the decentralized execution. This step constitutes the subject
of this paper. The second step, consists in wiring the activities
of a same partition or inter-partitions together to preserve the

semantics of the centralized process. This wiring includesdata
and control dependencies, and synchronization process. This
part was acheived in our previous work [6], [18]. So, the work
introduced in this paper try to minimize communication costs
between partitions by well placing activities overall fragments
according to their invoked services and other preferences.

It is possible that user requires a subset of activities to
be run in the same partition, the other to be dispersed in
different partitions. The approach considers these preferences
as constraints. Constraints are binary relations between a
set of activities in order to impose either putting together
or disperse couples of activities over partitions (constrained
activities). It should be noted that these constrained activities
may be decomposed into different sets. Each set includes only
activities that may have some relation within the set but are
independent of other sets. So, using a recursive algorithm
(see algorithm 1), we partition each of these sets into indepen-
dentpre-partitionsrespecting the associated constraints. After
computing the minimum and maximum number of possible
partitions, we fix, at each step, a partitions number and try
to find an optimal configuration for activities placements,
services assignments Tthrough metrics, weight functions and
heuristics through aheuristic optimization algorithm.

A. Inputs and Outputs

The method for optimized service selection takes as input
a service orchestration consisting of activities related by
control, data-flow and distribution constraints. In order to
precisely define the notion of service orchestration, we need to
adopt a model for representing control-flow relations between
activities. In this paper, we adopt a structured representation
of process models. In essence a process model is represented
as a tree whose leaves represent activities and whose internal
nodes represent either sequence (SEQ), parallel (PAR), choice
(CHC) or repeat loop (RPT) constructs. Structured process
models are very close to BPEL, and they have the advantage
of being simpler to analyze. And while it is possible to write
unstructured models both in BPEL and in BPMN, recent
work has shown that most unstructured process models can be
automatically translated into structured ones [16]. Note that
for the purpose of the proposed method, we do not need to
capture concrete branching expressions. Instead, it is sufficient
to know the probability of taking each conditional branch ina
choice and the probability of taking the “repeat” branch in a
loop. Also, we do not need to capture OR-split/OR-join pairs,
because when a process is structured, OR-split/OR-join canbe
trivially translated into a combination of choice and parallel
blocks. For example, the OR-split/OR-join pair in Figure 2
can be transformed into a choice between executinga5 only
or executing botha5 anda6 in parallel. Formally, we capture
structured process models as follows.

Definition 1: (Structured) Process Model A process model
is a tree with the following structure (here we use the type

definition syntax of the ML language):

Process ::= ProcNode

ProcessNode ::= Activity | ProcNode

ControlNode ::= SEQ([ProcNode])

| CHC ([CondBranch]) |

| PAR({ProcNode})

| RPT (ProcNode × P)

CondBranch ::= COND (P × ProcNode)

whereP is the range of real numbers from0.0 to 1.0, denoting
probabilities.

For example, the BPMN model in Figure 2 is represented
by the following expression: SEQ(a1, PAR(a2, a3, a4), a5,
CHC(COND(p1, a5), COND(p2, PAR(a5, a6)))).

An activity in a service orchestration represents a one-
way or a bidirectional interaction with a service via the
invocation of one of its operations. Each activity has a
non-empty set of candidate services that it can be bound
with. In addition, activities may be related by means of two
types of distribution constraints: collocation (activities must
be placed in the same partition), and separation (activities
must be placed in different partitions). Formally, a service
orchestration is defined as follows:

Definition 2: Service Orchestration Aservice orchestra-
tion is a tuple(Proc, Data. Cand, Collocate, Separate), where:

• Proc is a process model capturing control-flow depen-
dencies between a set of activities;

• Data is a ternary relation consisting of tuples of the form
Data(ai, aj ,dk) stating that, upon completion of activity
ai, data itemdk needs to be transferred to activityaj

• Cand is a function that maps each activity to a set of
candidate services that are able to perform that activity.

• Collocate is a relation consisting of facts of the form
Collocate(ai, aj) stating that the services assigned to
activitiesa1 anda2 must be placed together;

• Separateis a relation consisting of facts of the form
Separate(ai, aj) stating that the services assigned to
activitiesa1 anda2 must be placed in different partitions.

For consistency, we impose that∀a1, a2 ¬(Collocate+(a1,
a2) ∧ Separate(a1, a2)) whereCollocate+ is the transitive
closure of relationCollocate. This means that if we declare
that two activities must be collocated, we cannot state addi-
tionally that these activities must be separated.

An activity that is not related with any other activity by
a collocate or separate constraint is called anunconstrained
activity. In the sequel, we writeCTR to denote the set of all
distribution constraints defined in an orchestration (CTR =
Collocate∪Separate). Also, we writeAct(Orc) to refer to
the set of activities of an orchestration,CA(Orc) to denote
the set of constrained activities andNCA(Orc) to denote
the set of unconstrained activities. Unconstrained activities
are also calledflexible activitiessince we can place them in
any partition. When it is clear to which orchestration we are
referring to, we will simply writeAct, CA andNCA.

Given a service orchestration defined as above, the purpose
of the method is to construct:

• A binding, that is, is a function that maps each activity
in the orchestration model to a service;

• A partitioning of activities, that is, a function that maps
each activity in an orchestration to a partition. This
partition function is needed for decentralized service
orchestration.

Specifically, the method seeks to bind candidate services to
activities in such as way as to minimize the communication
overhead and to maximize the QoS of the services in the
binding. We do not impose a particular model for calculating
the QoS of a service. Instead, we assume that there is a
function QoS(s) that returns the QoS of a services. For
example, we could use the QoS model presented in [24]
in order to calculate the QoS of each component service,
based on a weighted sum of the service’s execution time,
cost, reliability and availability.

Composite service designers are able to influence the
relative importance given to the minimization of the com-
munication overhead versus the maximization of the quality
by setting two weights:wc ∈ [0..1] is the weight given to the
communication overhead andwq ∈ [0..1] is the weight given
to the quality of service.

B. Pre-partitioning of Constrained Activities

The purpose of the pre-partitioning phase is to partition the
set of constrained activitiesCA so that we can later easily
identify which activities should be collocated and which
activities should be separated. To this end, we decompose the
set of activities into groups{CA1 . . . CAn}, so that elements
in two groups are not related neither by aSeparatenor by a
Collocateconstraint. In other words, if we view the relation
CTR = Separate ∪ Collocate as a graph, a group consists
of all activities in one of the connected components of this
graph. Figure 3 shows an example involving 12 activities
CA = {a1, .., a12} linked throughSeparateand Collocate
relations. Looking at the correspondingCTR relation, we can
see that there are three connected components in the induced
graph, and thus three groups are created, namelyCA1, CA2

and CA3. If we restrict the relationCTR to the activities
in each of these groups, we obtain three restrictedCTR re-
lations, namelyCTR1, CTR2 andCTR3 respectively.1 The
rationale for this initial grouping is that activities belonging to
different groups can be freely combined with one another in a
final partition (or they can be left in separate final partitions),
because no constraint links them.

Next, each group is further partitioned into a number ofpre-
partitions by looking at the relationCollocateonly. The idea
is that each of these partitions is a maximal set of activities
that must be collocated. In other words, if we view the relation
Collocateas a graph, a partition in a groupCAk consists of
all activities in CAk that belong to one of the connected
components of this graph. The pre-partitioning of each group

1We note that∀i, j, i 6= j, CAi ∩ CAj={∅} andCTRi ∩ CTRj={∅}.

CAk is a set ofpre-partitions such thatGk=
⋃

PP j
k . For

example, in Figure 3,CA1 is decomposed into threepre-
partitions: PP 1

1 ={a1,a8}, PP 2
1 ={a6} andPP 3

1 ={a9,a11,a2}.
After the pre-partitoning phase, we know that all activities in
a pre-partitions should be manipulated as a single package
and put together in one final partition.

This pre-partitioning is operationalized by algorithm 1.
This algorithm first computes the groups by calculating the
connected componentsCTRi of CTR. Each CTRi leads
to one group. Next, the algorithm computes the partitions
within each group by computing the connected components of
the Collocaterelation restricted to the connected component
CTRi.

For convenience, we lift the relationSeparateso that it can
be applied to partitions as follows:

Separate(Pi, Pj)⇔ ∃ai ∈ Pi, aj ∈ Pj : Separate(ai, aj)

For example, with respect to Figure 3, it holds that
Separate(PP 1

1 , PP 1
2)∧Separate(PP 1

2 , PP 1
3). This implies

thatPP 1
2 should not be combined neither withPP 1

1 nor with
PP 1

3 in the same final partition.

Algorithm 1 : Constrained activities partitioning
Require: - CTR: set of all constraints
Init: Groups← {}
begin

for eachCTRi in ConnectedComponent(CTR) do
CurGroup←{}
for Collocatei in
ConnectedComponent(CTRi ∩ Collocate) do

NewPartition← {a|∃a′ Collocatei(a, a′)}
CurGroup← CurGroup ∪ {NewPartition}

Groups← Groups ∪ {CurGroup}

Return Groups
end
Result: groups of constrained partitions

The final partitioning algorithm presented later tries to
compute partitions of different sizes. To this end, we need
to know the approximate minimum and maximum number of
possible final partitionsFPj . Algorithm 2 describes of how
to compute the minimum required final partitions that can
be obtained by merging pre-partitions from different groups,
while respecting the constraints that linkpre-partitions of
the same group. However, this number does not take into
considerationnon-constrainedactivities NCA. So, to have
the exact number, consider|Act| the number ofconstrained
and not constrainedactivities, NAmax (NAmin) the max-
imum (minimum) number of allowed activities by partition
(fixed by user after constrained activities partitioning),NP
the issued from algorithm 2, and|CA| (|NCA|) the number
of constrained (Non-constrained)activities, then:

NPmin =

NP if
|Act|

NAmax

≤ NP

NP +
|Act| − (NP ∗NAmax)

NAmax

Otherwise

(1)

NPmax =
∑

k

Size(Gk) +
|NCA|

NAmin

(2)

...whereNPmin andNPmax represent respectively the min-
imum and maximum number of final partitions. In Section
3.4, we will vary the number of partitions fromNPmin

to NPmax) and try to distribute the flexible activitiesFA
and the groupsGk over those partitions in such a way as
to minimize the communication overhead and maximize the
QoS. We will then choose the partitioning that leads to the
best overall tradeoff between communication overhead and
QoS according to relative weights given by the user.

Algorithm 2 : Computing approximative minimum num-
ber of partitions after groups merging
Require: - Groups = ∪Gk // The set of all partition groups
- NAmax // The maximum number of activities by partition
Init: Ng ← Size(Groups)
Ngmax← Max(Size(Gk)), k ∈ [1..Ng]
Recursive(Groups, Ngmax)
begin

if (Gk = {}, ∀ k 6=Ngmax) then
returnGroups
for (Gk in Groups, k 6=Ngmax) do

for (P k
i in Gk) do

min←Min(P Ngmax)
if ((Size(P k

i) + Size(P Ngmax

min) > NAmax)
then
Add(P k

i , P Ngmax)
Delete(P k

i , Gk)

repeat
Pmax←Max(P k

i) st ¬constrained(Max(P k
i), P

Ngmax

min)
∀k 6= Ngmax, ∀i ∈ [1..Size(Gk)]
Add(Pmax, P

Ngmax
min)

Delete(Pmax)
until (GNg = {} ∨ Size(Pmax) > Size(P NG

min),∀Ng 6=
Ngmax)
Recursive(Groups, NGmax)

end
Result: NP=Size(Recursive(Groups, Ngmax))

C. Communication Overhead

One of the aims of the optimized partitioning approach is
to produce partitions such that the communication overhead
(i.e. the amount of communication) between activities inside
a partition is as large as possible and, conversely, the com-
munication overhead across partitions is as small as possible.

To construct such optimized partitions, we need to estimate
the communication overhead between pairs of activities. Two
activitiesa1 anda2 need to communicate if:

• Activities a1 and a2 are consecutive. If we take the
representation of a process model as a graph consisting
of activities and gateways (as in Figure 2), two activities
are consecutive if there is a control-flow arc directly
from a1 to a2, or there is a path froma1 to a2 that
does not traverse any other activity (i.e. only gateways
are traversed). In this case, every time an instance of
activity a1 completes, if activitya2 needs to be executed
next, the service assigned toa1 must send a control-flow
notification to the service attached toa2.

• There exists a data-flow from activitya1 to activity a2

(a1, a2, d) ∈ Data. The presence of such a data flow
implies that every time activitya1 completes, the service
assigned toa1 must send a message containing a datum
of type d to the service assigned toa2.

Without loss of generality, we measure communication
overhead in bytes. We assume that control-flow notification
has a size of one byte. We also assume that the average size
in bytes of a message of typed is known, and we write
size(d) to denote this size. In order to determine how many
bytes will be exchanged between the service assigned toa1

and the service assigned toa2 during one execution of an
orchestration, we need to determine two things:

• How many times a given activity will be executed
(for a given execution of the orchestration)? We write
numExec(a) to denote this amount.

• Given two consecutive activitiesa1 and a2, what is
the probability that one execution of activitya1 is
immediately followed by an execution of activitya2. We
write probFollows(a1, a2) to denote this probability.

To compute the number of times that a given activity
is executed we reason on the structured process model (as
defined in Definition 1), and make the following observations:

• If a process nodePN is a direct child of a sequence
(SEQ) node, then each execution of the SEQ node entails
one execution ofPN

• If a process nodePN is a direct child of a parallel (PAR)
node, then each execution of the PAR node entails one
execution ofPN

• If a process nodePN is a direct child of a condition-
alBranch (COND) node that has a branching probability
of p, then each evaluation of node COND entailsp
executions ofPN .

• If a process nodePN is a direct child of a Repeat
(RPT) node that has a repeat probability ofp, then each
execution of the node RPT entails1/(1− p) executions
of PN .

Based on these observations, we conclude that the number
of times an activitya needs to be executed (for a given
execution of an orchestration) is determined by the prob-
abilities of the conditional branch and repeat nodes that
appear in the path from the root of the process model toa.
Starting from one execution of the entire process, each time
a COND node with probabilityp is traversed, the number of
executions of its child node is multiplied byp, while every

time a RPT node is traversedm the number of executions
is multiplied by 1/(1 − p). This observation leads us to
Algorithm 3 that calculates the average number of times
that a given activity is executed for each execution of an
orchestration. In this algorithm,prob(cb) andprob(rb) denote
the probability attached to conditional branchcb or a repeat
block rb respectively.

Algorithm 3 : Algorithm numExec(a)

Input: orc // an Orchestration
a // an activity inAct(orc)

path← the path from the root ofProc(orc) to a
condBranches← the list of COND nodes inpath
repeatBlocks← the list of RPT nodes inpath
Output: (Πcb∈condBranchesprob(cb)×
(Πrb∈repeatBlocks1/(1− prob(rb)))

Next, we have to computeprobFollows(a1, a2): the proba-
bility that the completion of an instance of activitya1 triggers
the execution of another activitya2 – assuming thata1 and
a2 are consecutive activities. For this, it is more convenient
to take the representation of the process model as a graph
consisting of activities and gateways, and to retrieve the
conditional control-flow arcs traversed on the path froma1

to a2. Here, a conditional control-flow arc is an arc in the
process graph whose source is an XOR gateway. For each tra-
versed conditional control-flow arc, theprobFollows(a1, a2)
is multiplied by the probability attached to the control-flow
arc. This leads to the Algorithm refalgo:probFollows. In this
algorithm, prob(ca) denotes the probability associated to a
conditional control-flow arcca.

Algorithm 4 : Algorithm probFollows(a1, a2)

Input: orc // an Orchestration
a1, a2 // two consecutive activities inAct(orc)

path← the path in the process graph froma1 to a2

condArcs← the list of conditional control-flow arcs in
path
Output: Πca∈condArcsprob(ca)

Having defined functionsnumExec andprobFollows and
given the above observations, the communication overhead
between two activitiesa1 and a2 – namelyco(a1, a2) – is
computed as follows:

co(a) = Cons(a1, a2)× numExec(a1)× probFollows(a2)

+ Σ(a1,a2,d)∈DatanumExec(a1) ∗ size(d)

...whereCons(a1, a2) is a function equal to one ifa1 anda2

are consecutive activities, and zero otherwise. The first term
in this formula corresponds to the communication overhead
induced by control-flow notifications, while the second term
corresponds to the communication overhead induced by data-
flows. Note thatprobFollows does not appear in the second
term, because a data-flow dependency implies that the source

activity will send the corresponding datum to the target
activity, regardless of whether or not the target activity is
performed.

D. Optimized partitioning process

In the previous sections, we presented algorithms to par-
tition constrained activities into a set of independent parti-
tion groupsGk (pre-partitions), while respecting constraints
defined by user. we also introduced algorithms to compute
the minimal and maximum number of final partitionsFPj .
In the following, we will present our solution, to optimally
distribute thepre-partitionsand unconstrained activities over
final partitions, and assign activities to web services. The
problem can be considered as a quadratic assignment prob-
lem (QAP) introduced by Koopmans and Beckmann [10] in
1957, as a mathematical model for the location of a set of
indivisible economical activities. Using theQAP formulation
of Koopmans-Beckman, we are given a cost matrixC =
[coij], where coij is the communication overhead between
activity ai and activity aj . We are also given a distance
matrix between partitionsDp = [dp

ij], where dp
ij represents

the distance between partitionPi and partitionPj , a distance
matrix between servicesDs = [ds

ij] where ds
ij represents

the distance between servicesi and servicesj and a quality
matrix Q=[qij], whereqij is the contribution to overall QoS
obtained by assigning activityai to servicesj .

Given the above matrices, if activityi is assigned to service
bind(i), the contribution of this assignment to the overall
QoS is equal to the QoS of servicebind(i) multiplied by the
average number of times thatai is executed per execution
of the orchestration, i.e.numExec(ai) as defined above.
Meanwhile, if activity i is assigned toP (i), and activityj
is assigned toP (j), the inter-partition communication cost
associated with this assignment iscoij · d

p

P (i),P (j). Finally, if
activity i is assigned tobind(i), and activity j is assigned
to bind(j), the intra-partition distance cost associated with
this assignment iscoij ·d

s
bind(i),bind(j). Note thatbind(i) and

bind(j) are subject to the constraintsbind(i) ∈ Cand(i) and
bind(j) ∈ Cand(j), meaning that an activity can only be
bound to one of its candidate services.

The optimization problem has three components: we have
to maximize the quality of service, minimize the inter-
partition communication cost – because it implies commu-
nication between orchestrators possibly located far from one
another – and we have to minimize the distance between
services placed in the same partition – given that such services
need to interact with a local orchestrator. Because we wish to
strike a tradeoff between three factors, we introduce three
parameterswq , wout and win, where wq is the relative
weight given to maximizing QoS,wout is the weight given
to minimizing inter-partition communication cost, andwin is
the weight given to minimizing the distance between services
assigned to activities in the same partition.

Given these weights, the total cost of a solution to this
assignment problem is given by equation 3. An optimal
solution to the problem consists of an assignment of activities

to partitions and a binding of activities to services such that
this total cost is minimal. Solutions are only admissible ifthey
respect the binding constraints (a service can only be assigned
to an activity if it is one of the candidates of this activity),
and the collocation and separation constraints for assigning
activities to partitions. In equation 3 we write1 − QoSs

because we seek to maximize the sum of QoS, which is
equivalent to minimizing1−QoSs.

wq

n
∑

i=1

(1−QoSbind(i)) ∗ numExec(i)

+wout

n
∑

i=1

m
∑

j=1

coijdP (i)P (j) + win

n
∑

i=1

dbind(i),bind(j)

1) Heuristic optimization algorithms overview:Several
exact algorithms have been used for solving the QAP
problems, like branch and bound, cutting plane and branch
and cut algorithms [4]. Although substantial improvements
have been done in the development of exact algorithms for
the QAP, they remain inefficient to solve problems with size
n>20 in reasonable computational time (there aren! distinct
permutations). This makes the development of heuristic
algorithms essential to provide good quality solutions
in a reasonable time. Many research have been devoted
to the development of such approaches. We distinguish
the following heuristic algorithms [4]: Tabu search (TS),
Simulated annealing (SA), Genetic algorithms (GA), Greedy
randomized adaptive search procedures (GRASP), Ant
systems (AS)...etc. These methods are also known as local
search algorithms. A local search procedure starts with an
initial feasible solution and iteratively tries to improvethe
current solution. This is done by substituting the latter with a
(better) feasible solution from its neighborhood. This iterative
step is repeated until no further improvement can be found.
Improvement methods are local search algorithm which allow
only improvements of the current solution in each iteration.
For a comprehensive discussion of theoretical and practical
aspects of local search in combinatorial optimization the
reader is referred to [1]. In this paper we adopt the Tabu
search algorithm to look for an optimal solution to our
decentralization problem.

Tabu search [7] is a local search method where the basic
idea is to remember which solutions have been already visited
by the algorithm, in order to derive the promising directions
for further search. A generic procedure starts with an initial
feasible solution and selects a best-quality solution S among
(a part of) the neighbors of S obtained by non-tabu moves.
Then the current solution is updated by the selected solution.
If there are no improving moves, tabu search chooses one
that least degrades the objective function.The search stops
when a stop criterion (running time limit, limited number of
iterations) is fulfilled.

2) Greedy algorithm:The first part of the Tabu Search
TS algorithm is the construction of a feasible initial solution
in order to find better solutions by stepwise transformations.

Algorithm 5 : Greedy algorithm: initial elite solution
computation

Require: - NCA(Orc), NPmin, NPmax

- Pc: Constrained partitions (pre − partitions)
- {Cand(ai), ∀ai ∈ Act(Orc)}
Init: Pc ← Pc∪{{ai}\ai ∈ NCA(Orc) }
bestQuality← +∞, bestNumber← NPmin

bestPartition← {}, bestBind← {}
Begin
for (NP←NPmin To NPmax) do

FinalPart← a set of sizeNP of empty sets
for (eachPP in Pc) do

Quality∗ ← +∞
for (eachFP ∈ [1..NP] where¬Separate(PP ,
FinalPart[FP]) do

CurQual← 0
for (eachai in PP) do

sai
← arg min

si∈Cand(ai)

h

wq · (1−QoS(si))

+wout·

P

aj∈F inalPart[F P] coai,aj
.dsi,bind(aj)

|FinalPart[FP]|

+win ·

P

aj∈F inalPart[F P] dsi,bind(aj)

|FinalPart[FP]|

i

CurQual← CurQual+
h

wq ·(1−QoS(si))

+wout·

P

aj∈F inalPart[F P] coai,aj
.dsi,bind(aj)

|FinalPart[FP]|

+win ·

P

aj∈F inalPart[F P] dsi,bind(aj)

|FinalPart[FP]|

i

if CurQual < Quality∗ then
FP ∗ ← FP
Quality∗ ← CurQual
for (ai in PP) do bind(ai)← sai

FinalPart[FP ∗]← FinalPart[FP ∗] ∪ PP
qualSolution← qualSolution + Quality∗

if (qualSolution < bestQuality) then
bestQuality ← qualSolution
bestPartition← FinalPart
bestBind← bind

Return(bestPartition, bestBind, bestQuality))
End

The simplest way to do this, is to generate a random solution
by randomly assigning activities to partitions and services
to activities. However, the obtained results proved to be
not sufficient. In this sense, many recent researches in TS
deals with various techniques for making the search more
effective. These include methods for creating better starting
points called elite solutions. For this purpose, we adopt
Greedy algorithm to generate a good initial solution. Greedy
algorithms are intuitive heuristics in which greedy choices
are made to achieve a certain goal [11]. Greedy heuristics are
constructive heuristics since they construct feasible solutions
for optimization problems from scratch by making the most

favorable choice in each step of construction. By adding an
element to the (partial) solution which promises to deliverthe
highest gain, the heuristic acts as a greedy constructor.

Algorithm 5 presents a method that computes a good
feasible solution to activity placement and service selection.
It takes as inputpre-partitions, unconstrained activities and
service candidates of each activity. Then, according to a fixed
final partitions number, try to place at each step an activity
(or pre-partition) to a final partition, and assign a service (or
a set of service) to it. Both assignment and placement are
based on cost estimation. The cost of assigning an activity to
a service among its candidate services depends of the latter
quality. Then the cost of placing an activity in each final
partition depends of the communication overhead as well as
the average distance between the activity to place and all
activities of the partition. The most favorable choice among
final partitions costs is selected. For pre-partitions placement,
the same procedure is used except the fact that we take into
consideration the constraints, and a global cost of assigning
it to a final partition since it includes a set of activities.
Once all activities and pre-partitions are assigned, we compute
the global cost, and then change final partitions number and
iterate. After each iteration we compare the quality of the
current solution to the previous one and save the best. The
output of the algorithm is an optimized feasible solution.

To analyze the complexity of Algorithm 5 , we first
analyze the complexity of one iteration of the outer loop.
In one such iteration, we consider every possible binding
of an activity (that has not yet been bound) to a service.
If we write MaxCand to denote the maximum number of
candidate services that any activity has, we have to consider
MaxCand possible bindings per activity and thus at most
MaxCand×|Act| bindings in total. Each such binding is then
compared against all activities that have already been bound in
order to compute the distances (again, there are at most|Act|
such bound activities). We also have to evaluate the QoS of
each service binding, but we assume this is a constant-time
operation. Thus, the complexity of one iteration of the outer
loop is O(MaxCand × |Act|2). Also, during each iteration
of the outer loop, we have to testNP times whether or
not two partitions are linked through anySeparateconstraint.
Each such test takes at most|A|2 operations. Next, we note
that the outer loop is executedNPmax − NPmin times,
with NP ranging between these two values. Thus overall,
the complexity isO((NPmax − NPmin) × MaxCand ×
|Act|2+(NPmax−NPmin)2×|A|2). Thus we can say that the
complexity of the algorithm is a polynomial of order four, but
one of the variables in this polynomial isNPmax−NPmin,
which can be made smaller if needed since we do not need
to consider all possible numbers of partitions.

3) Tabu search algorithm:In the following we will de-
scribe a solution that combine the greedy algorithm to the
Tabu search algorithm in order to optimize the previously
presented solution. As we mentioned before, the key idea is
to start the Tabu search with an initial good solution. For this
purpose we use the greedy solution. Then, for each iteration,

possible moves will be calculated and the move leading to
the highest benefit will be performed. If the highest benefit
is negative, the move will be performed anyway, unless this
move is forbidden by the tabu list. In order to guide the
moves, we utilize some heuristics that can be employed (in
conjunction with the tabu search algorithm) to improve the
solution. The heuristics are described as follows:

• Put together activities which exchange lot of data to
reduce inter-partitions interactions

• Put together activities whose invoked services are geo-
graphically close.

Algorithm 6 presents a pseudo code for the tabu search
where stop condition represents:

• after a fixed number of iteration
• after number of iterations without an improvement in the

objective function value
• when the objective reaches a pre-specified threshold

value.
The functionquality is evaluated as described in equation
3. A move is described by an activity assignment to another
partition or service with respect to the constraints.

Algorithm 6 : Tabu search
Require: - Sg : greedy solution
Init: S0 ← sg

S ← S0: current solution
S∗ ← S0: the best-known solution
f∗ ← quality(S0)
T ← : Tabu list
begin

while (¬ StopCondidtion())do
Select S inarg minS′∈Na(S) [f(S)]
if f(S) < f∗ then

f∗ ← f(S)
S∗ ← S
record tabu for the current move in T (delete
oldest entry if necessary)

end
return S∗

IV. RELATED WORK

In recent years, several methods and systems for decen-
tralized business process execution have been proposed. One
of the earliest work in the area is the Mentor project [19].
In Mentor, workflows are modeled using state-charts that are
partitioned so that each partition is delegated to a separate
processing entitiy(PE). Each PE-specific state-chart is exe-
cuted locally on the PE workstation. Their approach takes
into account both control and data-flow dependencies. Sadiq
et al. [17] present another method for decentralized workflow
execution based on partitions, but without considering data
dependencies. More recently, Khalaf et al [9][8] present a
method for decentralized orchestration of BPEL processes,
focusing on the derivation of P2P interactions. Meanwhile,
Yildiz et al [23][20][22] consider the decentralization of
processes from an abstract perspective by extending the dead

path elimination algorithm used in BPEL process execution
engines. Their contribution focuses on preserving the control-
flow constraints in the centralized specification, while pre-
venting deadlocks when services interact with one another.

The above approaches do not consider communication
overhead when splitting the process into partitions. Instead,
they assume that the split is given by the designer or inferred
from the roles specified in the process model. Importantly,
our partitioning approach could be used on top of any of the
above decentralized orchestration approaches. Thus, our work
is complementary to the above ones.

Nanda et al. [15][5] present an approach to partition BPEL
processes using program partitioning techniques with the aim
of reducing the communication costs between the partitions.
However, they do not take into account distribution constraints
(Collocate and Separate) so the designer cannot control the
partitioning. Also, they do not take into account the possibility
of an activity having multiple candidate services, each with
a different location and a different QoS.

Other approaches to decentralized orchestration do not
require any partitioning. For instance, the Self-Serv sys-
tem [3][2] is able to execute web service compositions in
an entirely peer-to-peer fashion: services send messages to
one another after completing each activity in the orchestra-
tion. This approach is equivalent to assigning each activity
(service) to a separate partition (as illustrated in Figure1b).
Another method for decentralized execution without partition-
ing is presented in [12][13]. The authors developed a formal
approach that takes as input the existing services, the goal
service and the costs, and produces a set of decentralized
choreographers that optimally realize the goal service using
the existing services. However, the authors do not explain
how they deal with Repeat blocks (i.e. loops), which have a
significant impact on communication overhead.

V. CONCLUSION

This paper presented a method for optimized constrained
decentralization of composite web services. The method seeks
to create an activity partitioning and a binding of activities
to services that minimizes communication costs while maxi-
mizing QoS. In doing so, the method takes into account the
expected communication volume between partitions, the dis-
tance between partitions and the distance between servicesin
the same partition. The resulting model is richer than previous
models for optimizing decentralized service orchestrations.
The proposed method also complements existing methods for
decentralized orchestration of services that take as inputa
predetermined partitioning.

Because of the nature of the objective function, we had
to formulate the problem as a quadratic assignment problem.
A greedy heuristic is used in order to construct an initial
solution. The paper also sketched how Tabu search could be
used to improve this initial solution. Future work will aim
at empirically assessing the quality of the solutions obtained
with the greedy algorithm, and the improvements obtained
using Tabu search or other meta-heuristics.

AcknowledgmentsThis work was conducted while the sec-
ond author was Visiting Professor at LORIA – INRIA Nancy.
The second author was also supported by the ERDF through
the Estonian Centre of Excellence in Computer Science.

REFERENCES

[1] E. Aarts and e. J. K. Lenstra. InLocal Search in Combinatorial
Optimization, Wiley, Chichester, 1997.

[2] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the rapid
development and scalable orchestration of composite web services. In
Distributed and Parallel Databases, 2005.

[3] B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv environment
for web services composition.IEEE Internet Computing, 7(1):40–48,
2003.

[4] R. E. Burkard, E. Çela, G. Rote, and G. J. Woeginger. The quadratic
assignment problem with a monotone anti-monge and a symmetric
toeplitz matrix: Easy and hard cases. InIPCO, pages 204–218, 1996.

[5] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. Decentralized
orchestration of composite web services. InWWW (Alternate Track
Papers & Posters), pages 134–143, 2004.

[6] W. Fdhila, U. Yildiz, and C. Godart. A flexible approach for automatic
process decentralization using dependency tables. InICWS ’09: Pro-
ceedings of the 2009 IEEE International Conference on Web Services,
pages 847–855, Los Angeles, CA, USA, 2009. IEEE Computer Society.

[7] F. Glover and M. Laguna. Tabu search, 1997.
[8] R. Khalaf, O. Kopp, and F. Leymann. Maintaining data dependencies

across bpel process fragments.Int. J. Cooperative Inf. Syst., 17(3):259–
282, 2008.

[9] R. Khalaf and F. Leymann. E role-based decomposition of business
processes using bpel. InICWS, pages 770–780, 2006.

[10] Koopmans and M. J. Beckmann. InAssignment problems and the
location of economic activities, volume Econometrica, pages 53–76,
1957.

[11] P. Merz and B. Freisleben. Greedy and local search heuristics for
unconstrained binary quadratic programming.J. Heuristics, 8(2):197–
213, 2002.

[12] S. Mitra, R. Kumar, and S. Basu. Optimum decentralized choreography
for web services composition. InIEEE SCC (2), pages 395–402, 2008.

[13] S. Mitra, R. Kumar, and S. Basu. A framework for optimal de-
centralized service-choreography.Web Services, IEEE International
Conference on, 0:493–500, 2009.

[14] F. Montagut, R. Molva, and S. T. Golega. The pervasive workflow:
A decentralized workflow system supporting long-running transac-
tions. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
38(3):319–333, 2008.

[15] M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing execution of
composite web services. InOOPSLA, pages 170–187, 2004.

[16] A. Polyvyanyy, L. Garcia-Banuelos, and M. Dumas. Structuring acyclic
process models. InProceedings of the 8th International Conference on
Business Process Management.

[17] W. Sadiq, S. W. Sadiq, and K. Schulz. Model driven distribution of
collaborative business processes. InIEEE SCC, pages 281–284, 2006.

[18] F. W. and C. Godart. Toward synchronization between decentralized
orchestrations of composite web services. InCollaborative Computing:
Networking, Applications and Worksharing, 2009. CollaborateCom
2009. 5th International Conference on, pages 1 –10, 11-14 2009.

[19] D. Wodtke, J. Weißenfels, G. Weikum, and A. K. Dittrich.The mentor
project: Steps toward enterprise-wide workflow management. In ICDE,
pages 556–565, 1996.

[20] U. Yildiz and C. Godart. Centralized versus decentralized conversation-
based orchestrations. InCEC/EEE, pages 289–296, 2007.

[21] U. Yildiz and C. Godart. Information flow control with decentralized
service compositions. InICWS, pages 9–17, 2007.

[22] U. Yildiz and C. Godart. Synchronization solutions fordecentralized
service orchestrations. InICIW, page 39, 2007.

[23] U. Yildiz and C. Godart. Towards decentralized serviceorchestrations.
In Proceedings of the 2007 ACM Symposium on Applied Computing ,
SAC, pages 1662–1666, 2007.

[24] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,and
H. Chang. QoS-Aware Middleware for Web Services Composition.
IEEE Transactions on Software Engineering, 30(5):311–327, 2004.

