
Browserbite: Accurate Cross-Browser Testing via
Machine Learning Over Image Features

Nataliia Semenenko, Marlon Dumas
Institute of Computer Science
University of Tartu, Estonia

{nataliia, marlon.dumas}@ut.ee

Tõnis Saar
Browserbite and Software Technology and Applications

Competence Center, Estonia
tonis.saar@stacc.ee

Abstract— Cross-browser compatibility testing is a time
consuming and monotonous task. In its most manual form, Web
testers open Web pages one-by-one on multiple browser-platform
combinations and visually compare the resulting page
renderings. Automated cross-browser testing tools speed up this
process by extracting screenshots and applying image processing
techniques so as to highlight potential incompatibilities. However,
these systems suffer from insufficient accuracy, primarily due to
a large percentage of false positives. Improving accuracy in this
context is challenging as the criteria for classifying a difference as
an incompatibility are to some extent subjective. We present our
experience building a cross-browser testing tool (Browserbite)
based on image segmentation and differencing in conjunction
with machine learning. An experimental evaluation involving a
dataset of 140 pages, each rendered in 14 browser-system
combinations, shows that the use of machine learning in this
context leads to significant accuracy improvement, allowing us to
attain an F-score of over 90%.

Keywords—cross-browser testing; machine learning; image
processng

I.  INTRODUCTION
A long-standing issue in Web application development is

that a given Web page may be rendered differently in different
browsers or systems depending on the rendering engine,
screen resolution, font, etc. Some of these differences are
minor or even imperceptible, but others constitute layout,
formatting or functional incompatibilities. Manual detection of
these incompatibilities by means of visual inspection is labor-
intensive and error-prone, as fatigue may cause testers to miss
incompatibilities. Depending on a Web site’s popularity, the
number of browser-system combinations that need to be tested
in order to cover 90-95% of users can go up to 20-30 [1]. This
is a major hindrance for Web application maintenance.

A number of automated cross-browser testing prototypes,
such as CrossCheck [2] and WebDiff [3] as well as
commercial tools such as Mogotest1 and Browsera2
significantly reduce the required amount of manual effort by
automating the screenshot capture and comparison steps.
However, these systems suffer from over-sensitivity and
produce an excessive amount of false positives. For instance,

1 http://mogotest.com
2 http://browsera.com

an evaluation of CrossCheck showed 64% of false positives,
while for WebDiff this number reached 79% [2].
Fundamentally, this is due to the fact that what constitutes an
incompatibility, as opposed to a simple difference, is to some
extent subjective [2]. Thus, setting specific thresholds to
classify a difference as an incompatibility is far from trivial.

This paper reports our experience building an industrial-
strength cross-browser compatibility testing tool, namely
Browserbite3, by combining image processing techniques with
machine learning. One of the novelties of Browserbite is that
rather than attempting to set thresholds for classifying image
discrepancies as incompatibilities during image comparison,
the task of classifying differences as incompatibilities is
almost entirely pushed to the machine learning phase. We
evaluate the accuracy of neural networks and classification
trees for this task, based on a dataset of 140 popular Web
pages rendered across 14 configurations.

The rest of the paper is structured as follows. Section 2
gives an overview of the Browserbite system. Section 3
introduces the machine learning approach to post-process the
output of Browserbite’s image comparison module. Next,
Section 4 discusses the evaluation results, while Section 5
concludes and discusses directions for future work.

II. BROWSERBITE
The aim of Browserbite is to detect potentially incompatible

renderings of a given Web document (identified by its URL)
across different browsers and operating systems (OS). At
present, Browserbite supports 14 browser-OS combinations
(called configurations), covering major versions of popular
browsers (Chrome, Firefox, IE, Safari) running on Windows
XP, Windows 7 and Mac OS.

Browserbite’s architecture comprises three main modules:
screenshot capture, screenshot comparison and classification.
The screenshot capture module consists of a scheduler that
controls a number of workers. The workers are instances of
different types of Virtual Machines (VMs). Each worker is
capable of taking full-page screenshots of Web pages in a
given configuration.

3 http://www.browserbite.com

Figure 1. Browserbite main components

Web pages are opened and rendered using Selenium.4 Full-
page capture is achieved via image stitching or window
resizing depending on the configuration. In the first case, the
Web page is automatically scrolled and a screenshot is taken
after each scrolling operation. The resulting partial-page
screenshots are stitched together into a full Web page image.
In the second case the browser window is resized to match the
size of the web page document, and a single full Web page
screenshot is taken. The latter method has been found to work
with IE, while the former method is used for other browsers.

The screenshot comparison module relies on image
segmentation and comparison techniques. Its input is a
collection of screenshots (images). One of these images is
designated by the user as the baseline image, while other
images are called Images Under Test (IUTs). The baseline
image is meant to correspond to a correct rendering of the
Web page. IUTs are compared against the baseline image.

Each image is first segmented into smaller rectangular
regions called Regions of Interest (ROI), based on borders and
color changes in the image. The set of ROIs extracted from the
baseline image is matched with the set of ROIs extracted from
each of the IUTs. An ROI in the baseline image (called an
ROIB) is mapped to at most one ROI in the IUT (an ROIT).
The matching of an ROIB to an ROIT is based on a
correlation-based image comparison technique. The ROIB and
ROIT are correlated and a correlation index is extracted. This
index captures the similarity between the pair of ROIs. An
ROIB and ROIT are declared compatible if their similarity is
above a certain threshold. Otherwise, Browserbite reports the
pair (ROIB, ROIT) as a potential incompatibility. Every ROIB
not matched to an ROIT (missing ROI) is reported as an
incompatibility of the form (ROIB, ⊥), where ⊥ is the null
value. Conversely, an ROIT not matched to any ROIB
(additional ROI) is reported as a pair (⊥, ROIT). When
reporting a potential incompatibility, Browserbite superposes
the ROIB to the ROIT using 50% transparency, enabling users
to check the extent of the incompatibility. For instance, Fig. 2
shows a true positive, while Fig. 3 shows a false positive.

Fig. 2. Difference corresponding to an actual incompatibility

(www.sourceforge.net). The text element presented in the baseline is absent in
the IUT; instead IUT contains another text.

Fig. 3. Minor difference that users did not classify as an incompatibility

(www.rik.ee)

4 http://seleniumhq.org

An empirical evaluation of an early pre-commercial
version of Browserbite by Tamm [4] showed a rate of false
positives of around 10% and a rate of false negatives of 44%.
Attempts to manually fine-tune the correlation index threshold
and other parameters used during image comparison turned
out to be unproductive, as decreases in false negatives led to
considerable increases in false positives. Given the strong
impact that false negatives can have in commercial usage, we
decided to increase the sensitivity of Browserbite in the first
commercial release of the tool, in such a way that false
negatives rate is close to zero, at the expense a high rate of
false positives.

Feedback collected during commercial usage confirmed
that Bowserbite is oversensitive and practically does not miss
any incompatibility. To validate this observation, we
conducted another experiment in which the first author of the
paper manually compared pairs of Web pages rendered on
different configurations. A total of 140 Web pages (dataset
described below) were analyzed and each was rendered in four
browsers (Chrome 22.0, IE8 and Firefox 3.6 and 16.0.1 on
Windows 7). The resulting screenshot pairs were manually
compared by the first author. We found that 98% of
incompatibilities detected manually were reported by
Browserbite in the form of ROI pairs (i.e. 98% recall), but the
precision on the other hand was in the order of 66%.

Accordingly, we decided to supplement the screenshot
comparison module with a classification module in which
machine learning is used to reduce the false positive rate. The
next section discusses the classification module.

III. CLASSFICATION MODULE
The aim of the classification module is to classify potential

incompatibilities reported by Browserbite’s screenshot
comparison module into two categories: true positives (the
potential incompatibility is perceived as such by a user) and
false positives (the potential incompatibility is not perceived
as such by a user). Below we present the datasets used for
training/testing classification models, the employed features
and machine learning techniques.

A. Dataset and Golden Standard
We collected a dataset consisting of home pages of the top

140 Websites of Estonia according to Alexa5. Each Web page
was given as input to Browserbite, which generated around
20000 potential incompatibilities (ROI pairs). The first author
trimmed down this set to 1200 potential incompatibilities by
manually identifying 600 pairs that were likely to be true
incompatibilities and 600 pairs that were likely to be false
positives. This classification by the first author was only used
to extract a balanced subset of samples. The judgments made
by the first author were discarded in the subsequent evaluation
– only the set of 1200 ROI pairs was kept.

We recruited 40 subjects through social media and asked
them to classify pairs of ROIs into the two classes: “no
difference or insignificant difference” and “major difference”.
Subjects were asked to put a pair in the first class if either they

5 http://alexa.com

Screenshot
Capturing

Screenshot
Comparison

Classification

Fig. 1 Browserbite main modules

noticed no difference at all, or they noticed a minor layout
difference, which in their opinion would not affect their
perception of a Web page containing that segment. Otherwise
they were instructed to classify the pair in the second category.

Respondents were University students in the range of 20-
25 years from 6 countries (Estonia, Russia, Ukraine, Germany,
Italy and Hungary). The subjects came from different
specialties: 60% with the IT background, 20% with economics
and business background, 10% with philological background,
and 10% others. Each respondent classified between 200 and
400 (ROIB, ROIT) pairs randomly sampled from the dataset
with replacement. On the end, we obtained at least 8
classifications for each pair (up to 15 in some cases). For
uniformity, we randomly trimmed the dataset so that each
(ROIB, ROIT) had exactly 8 judgments (i.e. 8 subjects per
pair). The final dataset contained 50.4% of true positives and
40.6% of false positives.6 The inter-rater reliability of the
resulting dataset is 0.947, indicating little disagreement
between judges. We aggregated the judgments by marking a
potential incompatibility as a true incompatibility if at least 5
subjects rated it as a “major difference”.

B. Feature Set
We recall that an incompatibility reported by Browserbite

consists of a pair (ROIB, ROIT) where ROIB is an ROI in the
baseline image and ROIT is a corresponding ROI in the IUT.
In case of a missing or additional ROI, ROIT and ROIB can
take null values. Given a pair (ROIB, ROIT), we extract, the
following 17 features to build a sample for constructing
classification models:

• 10 histogram bins (h0, h1, … h9). These 10 integers
encode the image histogram of the ROIB. 10 discrete
bins represent pixel intensity distribution across the
entire ROI image;

• Correlation between the ROI in the baseline image and
ROI in the IUT. This is a number between zero and
one. It is close to zero in case of very low correlation
between ROIB and ROIT. It is zero in case of a
missing or additional image.

• Horizontal and vertical position of the ROIB (X and Y
coordinates) on the baseline image;

• Horizontal and vertical size of ROIB (width and
height) of the baseline image;

• Configuration index – a numerical identifier of the
browser-platform combination of the IUT. Browserbite
supports 14 browser-platforms combinations, thus this
is an integer between 1 and 14;

• Mismatch Density MD = E / T, where E is the number
of ROIs in the IUT that are not matched 100% to an
ROI in the baseline image, and T is the total number of

6 False negatives were identified by the first author separately.
External subjects were used to classify true and false positives.
7 Calculated using the Inter-Rater Reliability Calculator at
http://www.med-ed-online.org/rating/reliability.html which implements the
measure in [5]

ROIs in the IUT. This is a feature of the IUT itself
rather than of an ROI inside the IUT. However, for the
sake of convenience when constructing the machine
learning models, we make the MD a feature of each
ROI. All ROIs extracted from the same IUT will have
the same MD (the MD of their enclosing IUT).

C. Machine Learning Techniques
We explored two popular machine learning techniques for

classification: classification trees (i.e. decision tree) [6] and
artificial neural networks [7]. Specifically, we used the
implementations of these techniques provided in Matlab.

The use of classification trees is motivated by the fact that
they provide a convenient way to interpret the model. By
analyzing the classification tree, we can obtain insights into
the thresholds that determine whether a potential
incompatibility is an actual incompatibility or not.

Neural networks imitate the brain's ability to sort out
patterns and learn from trials and errors, discerning and
extracting the relationships that underlie the data with which it
is presented. Studies have shown that neural networks are a
promising alternative to standard classification methods [7]. In
this respect, a key advantage of neural networks is their ability
to adjust themselves to the data without any explicit
specification of functional or distributional form.

We selected the 3-layered feed-forward neural network.
The first layer (input layer) consists of 17 neurons
corresponding to the number of features. The output layer has
2 neurons (binary classification). As the dataset is not linearly
separable one or more additional “hidden” layers are needed.
In practice, very few problems that cannot be solved with a
single hidden layer can be solved by adding another hidden
layer [8]. Accordingly, we chose one hidden layer.8

The number of neurons in the neural network is another
important parameter, as too few hidden neurons can cause
underfitting so that the neural network cannot learn the details.
Conversely, a too large number of hidden neurons can cause
overfitting, as the neural network starts to learn insignificant
details. Accordingly, the number of hidden neurons was
determined experimentally. In order to determine the
appropriate number of hidden neurons we applied empirically
derived rules-of-thumb. One of the most common is that the
number of hidden neurons should be around the mid-point
between the size of the input and size of the output layers [9].
As the number of input neurons equals 17 (the number of
features) and the number of output neurons equals 2 and 4 for
binary and quaternary classification respectively, we tried to
find an optimal number of hidden neurons between 8 and 13.
To this end, we trained the neural network with different
number of neurons and calculated the F-score for each trained
model, using a set of 200 (ROIB, ROIT) samples not used in
the subsequent evaluation. We experimentally found that the
peak in F-score is reached for a number of hidden neurons of
11. This number was used in the evaluation reported below.

8 Additional experiments conducted after the evaluation reported here
confirmed that adding a hidden layer does not improve F-score.

Using the golden standard described above, we compared
the classification accuracy of Browserbite without machine
learning post-processing, with that of Browserbite post-
processed with a classification tree and Browserbite post-
processed with a neural network. Classification accuracy is
measured in terms of precision, recall and F-score with their
standard definitions [10]. The machine learning models were
trained and evaluated using a five-fold cross-validation
method. In other words, the dataset was partitioned into five
equal parts, four parts were used to train a model and the
remaining one was used to test the model. This process was
repeated 5 times with each part playing the testing role once.
The results from each fold were averaged to produce a single
measurement of precision, recall and F-score for each method
(classification tree and neural network).

Additionally using the same dataset, we also evaluated
Mogotest – a commercial tool for cross-browser compatibility
testing based on analysis of Document Object Models (DOM).

IV. EVALUATION RESULTS
The evaluation results are summarized in Table 1. It can be
seen from the tables that neural networks outperform by far
classification trees. The neural network achieves a very high
precision at the expense of some degradation in recall. The
improvement in precision provided by classification trees is
less significant, and comes at the expense of a drop in recall.

TABLE 1. ACCURACY FOR BROWSERBITE W/OUT CLASSIFICATION, MOGOTEST,
BROWSEBITE + CLASSIFICATON TREE AND BROWSERBITE+ NEURAL NETWORK

Measure Plain Browserbite Mogotest Classification tree Neural network

Precision 0.66 0.75 0.844 0.964

Recall 0.98 0.82 0.792 0.886

F-score 0.79 0.78 0.81 0.923

These results are a significant improvement with respect to
state of the art techniques such as CrossCheck [2], which
achieves a precision of 36% (64% of false positives) and its
predecessor WebDiff, with a precision of 21% according to an
evaluation reported in [2]. This latter evaluation of
CrossCheck and WebDiff is focused on false positives (false
negatives are not reported). Assuming 100% recall, these
results imply an F-score of 52% and 35% respectively. Given
the differences in experimental setups and evaluation goal, no
conclusive comparative statements can be drawn, but the
results suggest that Browserbite enhanced with a neural
network-based classification module achieves high accuracy
relative to state-of-the-art techniques.

V. CONCLUSION
This paper presented and evaluated the Browserbite cross-

browser testing tool with an emphasis on its classification
module. The results show that neural networks for
incompatibility classification provide a high level of accuracy
in this context (precision of 96% with recall of 89%)
outperforming classification trees. Given the improvements

achieved, the neural network technique has been productized
and included in Browserbite’s private beta version (to be
released in the public version later in 2013).

While the approach has been framed in the context of
Browserbite, the underlying principles may be applied to
enhance other image-based cross-browser testing techniques
such as CrossCheck. Validating the technique in other settings
is a direction for future work. A related direction is to evaluate
the proposed technique with different types of stakeholders
involved in Web application development (e.g. Web designers
versus testers versus developers). In this respect, one can
hypothesize that classification models for designers would be
different than those for developers, for example.

Browserbite is representative of tools for single-page
cross-browser compatibility testing. Prototypes and techniques
such as Crosscheck [2], Webmate [11], [12] or the technique
reported in [13], address the complementary problem of
behavioral testing, meaning that they detect incompatibilities
that arise when navigating from a given page. The integration
of the techniques explored in this paper with behavioral testing
techniques is another avenue for future work.

REFERENCES 
[1] StatCounter Gglobal Stats.. [Online]. http://gs.statcounter.com

[2] S. R. Choudhary, M. R. Prasad, A. Orso, "CROSSCHECK: Combining
Crawling and Differencing To Better Detect Cross-browser
Incompatibilities in Web Applications," in Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation (ICST), Montreal, Canada, 2012, pp. 171–180.

[3] S. R. Choudhary, H. Versee, A. Orso, "WEBDIFF: Automated
Identification of Cross-browser Issues in Web Applications," in
Proceedings of the 2010 IEEE International Conference on Software
Maintenance (ICSM), Timisoara, Romania, 2010, pp. 1–10.

[4] A.-L. Tamm, "Visual testing in different testing approaches", University
of Tartu, Bachelor thesis 2012.

[5] R. L. Ebel, "Estimation of the reliability of ratings," Psychometrica, vol.
16, no. 4, pp. 407-424, 1951.

[6] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and
Regression Trees, 1st ed.: Chapman and Hall/CRC, 1984.

[7] G. P. Zhang, "Neural Networks for Classification: A Survey," IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 30, no. 4, pp. 451-462, 2000.

[8] J. Heaton, Introduction to Neural Networks for Java, 2nd ed.: Heaton
Research, 2005.

 [9] A. Blum, Neural Networks in C++: An Object Oriented Framework for
Building Connections, NY: John Wiley & Sons, 1992.

[10] D. M. W. Powers, "Evaluation: from Precision, Recall and F-measure to
ROC, Informedness, Markedness, and Correlation," Journal of Machine
Learning Technologies, vol. 2, no. 1, pp. 37-63, 2011.

[11] V. Dallmeier, M. Burger, T. Orth, A. Zeller, "WebMate: A Tool for
Testing Web 2.0 Applications," in Proceedings of the Workshop on
JavaScript Tools, Beijing, China, 2012, pp. 11-15.

[12] V. Dallmeier, M. Burger, T. Orth, A. Zeller, "WebMate: Generating Test
Cases for Web 2.0," in Software Quality. Increasing Value in Software
and Systems Development, S. Biffl D. Winkler, Ed.: Springer, 2013, pp.
55-69.

[13] A. Mesbah, M. R. Prasad, "Automated Cross-Browser Compatibility
Testing," in Proceedings of the 33rd International Conference on
Software Engineering, ICSE'11, Honolulu, HI, USA, 2011, pp. 561–570.

