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Abstract— Cross-browser compatibility testing is a time 
consuming and monotonous task. In its most manual form, Web 
testers open Web pages one-by-one on multiple browser-platform 
combinations and visually compare the resulting page 
renderings. Automated cross-browser testing tools speed up this 
process by extracting screenshots and applying image processing 
techniques so as to highlight potential incompatibilities. However, 
these systems suffer from insufficient accuracy, primarily due to 
a large percentage of false positives. Improving accuracy in this 
context is challenging as the criteria for classifying a difference as 
an incompatibility are to some extent subjective. We present our 
experience building a cross-browser testing tool (Browserbite) 
based on image segmentation and differencing in conjunction 
with machine learning. An experimental evaluation involving a 
dataset of 140 pages, each rendered in 14 browser-system 
combinations, shows that the use of machine learning in this 
context leads to significant accuracy improvement, allowing us to 
attain an F-score of over 90%. 
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I.  INTRODUCTION 
A long-standing issue in Web application development is 

that a given Web page may be rendered differently in different 
browsers or systems depending on the rendering engine, 
screen resolution, font, etc. Some of these differences are 
minor or even imperceptible, but others constitute layout, 
formatting or functional incompatibilities. Manual detection of 
these incompatibilities by means of visual inspection is labor-
intensive and error-prone, as fatigue may cause testers to miss 
incompatibilities. Depending on a Web site’s popularity, the 
number of browser-system combinations that need to be tested 
in order to cover 90-95% of users can go up to 20-30 [1]. This 
is a major hindrance for Web application maintenance. 

A number of automated cross-browser testing prototypes, 
such as CrossCheck [2] and WebDiff [3] as well as 
commercial tools such as Mogotest1 and Browsera2 
significantly reduce the required amount of manual effort by 
automating the screenshot capture and comparison steps. 
However, these systems suffer from over-sensitivity and 
produce an excessive amount of false positives. For instance, 

                                                             
1 http://mogotest.com 
2 http://browsera.com 

an evaluation of CrossCheck showed 64% of false positives, 
while for WebDiff this number reached 79% [2]. 
Fundamentally, this is due to the fact that what constitutes an 
incompatibility, as opposed to a simple difference, is to some 
extent subjective [2]. Thus, setting specific thresholds to 
classify a difference as an incompatibility is far from trivial. 

This paper reports our experience building an industrial-
strength cross-browser compatibility testing tool, namely 
Browserbite3, by combining image processing techniques with 
machine learning. One of the novelties of Browserbite is that 
rather than attempting to set thresholds for classifying image 
discrepancies as incompatibilities during image comparison, 
the task of classifying differences as incompatibilities is 
almost entirely pushed to the machine learning phase. We 
evaluate the accuracy of neural networks and classification 
trees for this task, based on a dataset of 140 popular Web 
pages rendered across 14 configurations. 

The rest of the paper is structured as follows. Section 2 
gives an overview of the Browserbite system. Section 3 
introduces the machine learning approach to post-process the 
output of Browserbite’s image comparison module. Next, 
Section 4 discusses the evaluation results, while Section 5 
concludes and discusses directions for future work. 

II. BROWSERBITE 
The aim of Browserbite is to detect potentially incompatible 

renderings of a given Web document (identified by its URL) 
across different browsers and operating systems (OS). At 
present, Browserbite supports 14 browser-OS combinations 
(called configurations), covering major versions of popular 
browsers (Chrome, Firefox, IE, Safari) running on Windows 
XP, Windows 7 and Mac OS.  

Browserbite’s architecture comprises three main modules: 
screenshot capture, screenshot comparison and classification. 
The screenshot capture module consists of a scheduler that 
controls a number of workers. The workers are instances of 
different types of Virtual Machines  (VMs). Each worker is 
capable of taking full-page screenshots of Web pages in a 
given configuration.  
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Figure 1. Browserbite main components 
 

 
 

Web pages are opened and rendered using Selenium.4 Full-
page capture is achieved via image stitching or window 
resizing depending on the configuration. In the first case, the 
Web page is automatically scrolled and a screenshot is taken 
after each scrolling operation. The resulting partial-page 
screenshots are stitched together into a full Web page image. 
In the second case the browser window is resized to match the 
size of the web page document, and a single full Web page 
screenshot is taken. The latter method has been found to work 
with IE, while the former method is used for other browsers. 

The screenshot comparison module relies on image 
segmentation and comparison techniques. Its input is a 
collection of screenshots (images). One of these images is 
designated by the user as the baseline image, while other 
images are called Images Under Test (IUTs). The baseline 
image is meant to correspond to a correct rendering of the 
Web page. IUTs are compared against the baseline image. 

Each image is first segmented into smaller rectangular 
regions called Regions of Interest (ROI), based on borders and 
color changes in the image. The set of ROIs extracted from the 
baseline image is matched with the set of ROIs extracted from 
each of the IUTs. An ROI in the baseline image (called an 
ROIB) is mapped to at most one ROI in the IUT (an ROIT). 
The matching of an ROIB to an ROIT is based on a 
correlation-based image comparison technique. The ROIB and 
ROIT are correlated and a correlation index is extracted. This 
index captures the similarity between the pair of ROIs. An 
ROIB and ROIT are declared compatible if their similarity is 
above a certain threshold. Otherwise, Browserbite reports the 
pair (ROIB, ROIT) as a potential incompatibility. Every ROIB 
not matched to an ROIT (missing ROI) is reported as an 
incompatibility of the form (ROIB, ⊥), where ⊥ is the null 
value. Conversely, an ROIT not matched to any ROIB 
(additional ROI) is reported as a pair (⊥, ROIT). When 
reporting a potential incompatibility, Browserbite superposes 
the ROIB to the ROIT using 50% transparency, enabling users 
to check the extent of the incompatibility. For instance, Fig. 2 
shows a true positive, while Fig. 3 shows a false positive. 

 
Fig. 2. Difference corresponding to an actual incompatibility 

(www.sourceforge.net). The text element presented in the baseline is absent in 
the IUT; instead IUT contains another text. 

 
Fig. 3. Minor difference that users did not classify as an incompatibility 

(www.rik.ee) 
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An empirical evaluation of an early pre-commercial 
version of Browserbite by Tamm [4] showed a rate of false 
positives of around 10% and a rate of false negatives of 44%. 
Attempts to manually fine-tune the correlation index threshold 
and other parameters used during image comparison turned 
out to be unproductive, as decreases in false negatives led to 
considerable increases in false positives. Given the strong 
impact that false negatives can have in commercial usage, we 
decided to increase the sensitivity of Browserbite in the first 
commercial release of the tool, in such a way that false 
negatives rate is close to zero, at the expense a high rate of 
false positives. 

Feedback collected during commercial usage confirmed 
that Bowserbite is oversensitive and practically does not miss 
any incompatibility. To validate this observation, we 
conducted another experiment in which the first author of the 
paper manually compared pairs of Web pages rendered on 
different configurations. A total of 140 Web pages (dataset 
described below) were analyzed and each was rendered in four 
browsers (Chrome 22.0, IE8 and Firefox 3.6 and 16.0.1 on 
Windows 7). The resulting screenshot pairs were manually 
compared by the first author. We found that 98% of 
incompatibilities detected manually were reported by 
Browserbite in the form of ROI pairs (i.e. 98% recall), but the 
precision on the other hand was in the order of 66%. 

Accordingly, we decided to supplement the screenshot 
comparison module with a classification module in which 
machine learning is used to reduce the false positive rate. The 
next section discusses the classification module. 

III. CLASSFICATION MODULE 
The aim of the classification module is to classify potential 

incompatibilities reported by Browserbite’s screenshot 
comparison module into two categories: true positives (the 
potential incompatibility is perceived as such by a user) and 
false positives (the potential incompatibility is not perceived 
as such by a user). Below we present the datasets used for 
training/testing classification models, the employed features 
and machine learning techniques. 

A. Dataset and Golden Standard 
We collected a dataset consisting of home pages of the top 

140 Websites of Estonia according to Alexa5. Each Web page 
was given as input to Browserbite, which generated around 
20000 potential incompatibilities (ROI pairs). The first author 
trimmed down this set to 1200 potential incompatibilities by 
manually identifying 600 pairs that were likely to be true 
incompatibilities and 600 pairs that were likely to be false 
positives. This classification by the first author was only used 
to extract a balanced subset of samples. The judgments made 
by the first author were discarded in the subsequent evaluation 
– only the set of 1200 ROI pairs was kept. 

We recruited 40 subjects through social media and asked 
them to classify pairs of ROIs into the two classes: “no 
difference or insignificant difference” and “major difference”. 
Subjects were asked to put a pair in the first class if either they 
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noticed no difference at all, or they noticed a minor layout 
difference, which in their opinion would not affect their 
perception of a Web page containing that segment. Otherwise 
they were instructed to classify the pair in the second category.  

Respondents were University students in the range of 20-
25 years from 6 countries (Estonia, Russia, Ukraine, Germany, 
Italy and Hungary). The subjects came from different 
specialties: 60% with the IT background, 20% with economics 
and business background, 10% with philological background, 
and 10% others. Each respondent classified between 200 and 
400 (ROIB, ROIT) pairs randomly sampled from the dataset 
with replacement. On the end, we obtained at least 8 
classifications for each pair (up to 15 in some cases). For 
uniformity, we randomly trimmed the dataset so that each 
(ROIB, ROIT) had exactly 8 judgments (i.e. 8 subjects per 
pair). The final dataset contained 50.4% of true positives and 
40.6% of false positives.6 The inter-rater reliability of the 
resulting dataset is 0.947, indicating little disagreement 
between judges. We aggregated the judgments by marking a 
potential incompatibility as a true incompatibility if at least 5 
subjects rated it as a “major difference”. 

B. Feature Set 
We recall that an incompatibility reported by Browserbite 

consists of a pair (ROIB, ROIT) where ROIB is an ROI in the 
baseline image and ROIT is a corresponding ROI in the IUT. 
In case of a missing or additional ROI, ROIT and ROIB can 
take null values. Given a pair (ROIB, ROIT), we extract, the 
following 17 features to build a sample for constructing 
classification models: 

• 10 histogram bins (h0, h1, … h9). These 10 integers 
encode the image histogram of the ROIB. 10 discrete 
bins represent pixel intensity distribution across the 
entire ROI image; 

• Correlation between the ROI in the baseline image and 
ROI in the IUT. This is a number between zero and 
one. It is close to zero in case of very low correlation 
between ROIB and ROIT. It is zero in case of a 
missing or additional image. 

• Horizontal and vertical position of the ROIB (X and Y 
coordinates) on the baseline image; 

• Horizontal and vertical size of ROIB (width and 
height) of the baseline image; 

• Configuration index – a numerical identifier of the 
browser-platform combination of the IUT. Browserbite 
supports 14 browser-platforms combinations, thus this 
is an integer between 1 and 14; 

• Mismatch Density MD = E / T, where E is the number 
of ROIs in the IUT that are not matched 100% to an 
ROI in the baseline image, and T is the total number of 

                                                             
6 False negatives were identified by the first author separately. 
External subjects were used to classify true and false positives. 
7 Calculated using the Inter-Rater Reliability Calculator at 
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measure in [5] 

ROIs in the IUT. This is a feature of the IUT itself 
rather than of an ROI inside the IUT. However, for the 
sake of convenience when constructing the machine 
learning models, we make the MD a feature of each 
ROI. All ROIs extracted from the same IUT will have 
the same MD (the MD of their enclosing IUT). 

C. Machine Learning Techniques 
We explored two popular machine learning techniques for 

classification: classification trees (i.e. decision tree) [6] and 
artificial neural networks [7]. Specifically, we used the 
implementations of these techniques provided in Matlab. 

The use of classification trees is motivated by the fact that 
they provide a convenient way to interpret the model. By 
analyzing the classification tree, we can obtain insights into 
the thresholds that determine whether a potential 
incompatibility is an actual incompatibility or not. 

Neural networks imitate the brain's ability to sort out 
patterns and learn from trials and errors, discerning and 
extracting the relationships that underlie the data with which it 
is presented. Studies have shown that neural networks are a 
promising alternative to standard classification methods [7]. In 
this respect, a key advantage of neural networks is their ability 
to adjust themselves to the data without any explicit 
specification of functional or distributional form.  

We selected the 3-layered feed-forward neural network. 
The first layer (input layer) consists of 17 neurons 
corresponding to the number of features. The output layer has 
2 neurons (binary classification). As the dataset is not linearly 
separable one or more additional “hidden” layers are needed. 
In practice, very few problems that cannot be solved with a 
single hidden layer can be solved by adding another hidden 
layer [8]. Accordingly, we chose one hidden layer.8 

The number of neurons in the neural network is another 
important parameter, as too few hidden neurons can cause 
underfitting so that the neural network cannot learn the details. 
Conversely, a too large number of hidden neurons can cause 
overfitting, as the neural network starts to learn insignificant 
details. Accordingly, the number of hidden neurons was 
determined experimentally. In order to determine the 
appropriate number of hidden neurons we applied empirically 
derived rules-of-thumb. One of the most common is that the 
number of hidden neurons should be around the mid-point 
between the size of the input and size of the output layers [9]. 
As the number of input neurons equals 17 (the number of 
features) and the number of output neurons equals 2 and 4 for 
binary and quaternary classification respectively, we tried to 
find an optimal number of hidden neurons between 8 and 13. 
To this end, we trained the neural network with different 
number of neurons and calculated the F-score for each trained 
model, using a set of 200 (ROIB, ROIT) samples not used in 
the subsequent evaluation. We experimentally found that the 
peak in F-score is reached for a number of hidden neurons of 
11. This number was used in the evaluation reported below. 
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Using the golden standard described above, we compared 
the classification accuracy of Browserbite without machine 
learning post-processing, with that of Browserbite post-
processed with a classification tree and Browserbite post-
processed with a neural network. Classification accuracy is 
measured in terms of precision, recall and F-score with their 
standard definitions [10]. The machine learning models were 
trained and evaluated using a five-fold cross-validation 
method. In other words, the dataset was partitioned into five 
equal parts, four parts were used to train a model and the 
remaining one was used to test the model. This process was 
repeated 5 times with each part playing the testing role once. 
The results from each fold were averaged to produce a single 
measurement of precision, recall and F-score for each method 
(classification tree and neural network). 

Additionally using the same dataset, we also evaluated 
Mogotest – a commercial tool for cross-browser compatibility 
testing based on analysis of Document Object Models (DOM). 

IV. EVALUATION RESULTS 
The evaluation results are summarized in Table 1. It can be 
seen from the tables that neural networks outperform by far 
classification trees. The neural network achieves a very high 
precision at the expense of some degradation in recall. The 
improvement in precision provided by classification trees is 
less significant, and comes at the expense of a drop in recall. 

TABLE 1. ACCURACY FOR BROWSERBITE W/OUT CLASSIFICATION, MOGOTEST, 
BROWSEBITE + CLASSIFICATON TREE AND BROWSERBITE+ NEURAL NETWORK 

Measure Plain Browserbite Mogotest Classification tree Neural network 

Precision 0.66 0.75 0.844 0.964 

Recall 0.98 0.82 0.792 0.886 

F-score 0.79 0.78 0.81 0.923 

 

These results are a significant improvement with respect to 
state of the art techniques such as CrossCheck [2], which 
achieves a precision of 36% (64% of false positives) and its 
predecessor WebDiff, with a precision of 21% according to an 
evaluation reported in [2]. This latter evaluation of 
CrossCheck and WebDiff is focused on false positives (false 
negatives are not reported). Assuming 100% recall, these 
results imply an F-score of 52% and 35% respectively. Given 
the differences in experimental setups and evaluation goal, no 
conclusive comparative statements can be drawn, but the 
results suggest that Browserbite enhanced with a neural 
network-based classification module achieves high accuracy 
relative to state-of-the-art techniques. 

V. CONCLUSION 
This paper presented and evaluated the Browserbite cross-

browser testing tool with an emphasis on its classification 
module. The results show that neural networks for 
incompatibility classification provide a high level of accuracy 
in this context (precision of 96% with recall of 89%) 
outperforming classification trees. Given the improvements 

achieved, the neural network technique has been productized 
and included in Browserbite’s private beta version (to be 
released in the public version later in 2013). 

While the approach has been framed in the context of 
Browserbite, the underlying principles may be applied to 
enhance other image-based cross-browser testing techniques 
such as CrossCheck. Validating the technique in other settings 
is a direction for future work. A related direction is to evaluate 
the proposed technique with different types of stakeholders 
involved in Web application development (e.g. Web designers 
versus testers versus developers). In this respect, one can 
hypothesize that classification models for designers would be 
different than those for developers, for example. 

Browserbite is representative of tools for single-page 
cross-browser compatibility testing. Prototypes and techniques 
such as Crosscheck [2], Webmate [11], [12] or the technique 
reported in [13], address the complementary problem of 
behavioral testing, meaning that they detect incompatibilities 
that arise when navigating from a given page. The integration 
of the techniques explored in this paper with behavioral testing 
techniques is another avenue for future work. 
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