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Abstract

This paper addresses the issue of developing agents capa-
ble of participating in several potentially simultaneous auc-
tions of different kinds (English, First-Price, Vickrey), with
the goal of finding the best price for an item on behalf of
their users. Specifically, a multi-agent architecture is pro-
posed, in which a manager agent cooperates with several
expert agents, each specialised in a specific kind of auc-
tion. The expert agents communicate their knowledge to the
manager agent in the form of probability functions, captur-
ing the likelihood that a bid of a given price may win an
auction. Given a set of such functions, the manager agent
builds a bidding plan that it executes in concert with the
expert agents.

1 Introduction

The massive competition created by the development of
online marketplaces has substantially modified the land-
scape of trading practices. In particular, dynamic pricing,
auctions and exchanges, whether in Business-to-Consumer
(B2C), Consumer-to-Consumer (C2C), or Business-to-
Business (B2B) interactions, have gained a considerable
momentum across a variety of product ranges.

In this setting, the ability of buyers to find the best deal
for a trade (e.g. in terms of price), depends on how many
offers from alternative sellers they are able to compare. On
the other hand, the ability for sellers to maximise their rev-
enues, depends on how many prospective buyers are able
to consult their offers. Hence, the automation of offer re-
quest and comparison (e.g., with respect to price) within a
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dynamic marketplace, is a common requirement for all par-
ties. Unfortunately, while the automation of the processes
underlying dynamic pricing and auction management from
the seller’s viewpoint are well supported by commercial
systems, the issue of automating the decision-making and
actions that a buyer needs to undertake in order to achieve a
fair deal within a large and dynamic market, has received
much less attention. In particular, within C2C and B2B
auction houses such as eBay1 and TradeOut2, bidders must
often manually browse a large set of auctions, in order to
obtain the information needed to decide where to bid, when
and how much.

In this paper, we address the issue of developing au-
tonomous agents capable of participating, on behalf of a
buyer, in several potentially simultaneous auctions, with the
goal of achieving the best deal (in terms of price) for a trade
of one unit of a well-identified item. Our aim is to define an
open architecture that can be configured to cater for several
auction protocols, alternative bidding tactics, and various
user requirements. Specifically, the auctions in which an
agent participates may run in several auction houses. Each
auction is assumed to be for a single unit of an item, and to
have a fixed deadline. Also, the outcome of an auction is as-
sumed to be available immediately after its deadline. Auc-
tions satisfying these conditions include First-Price Sealed-
Bid (FPSB) auctions, Vickrey auctions, and fixed-deadline
English auctions with or without proxy bids3. For details
on the rules and properties of these auction protocols, the
reader is referred to [1, 11].

The development of agents for bidding in multiple auc-
tions involves at least three aspects:

1http://www.ebay.com
2http://www.tradeout.com
3In a proxy bid [7], the user bids at the current quote, and authorises

the auction house to bid on its behalf up to a given amount. Subsequently,
every time that a new bid is placed, the auction house counter-bids on the
user’s behalf up to the authorised amount.



1. Auction tracking: Discovering and monitoring auc-
tions for the required item.

2. Bid management: Placing bids and monitoring the out-
come of these bids.

3. Strategical bid planning: Deciding where to bid, when
and how much.

The automation of the first of these aspects is addressed
by existing auction search engines and quote polling servers
such as AuctionBeagle4. These servers are able to retrieve
the status of all the ongoing auctions (within a set of auction
houses) which match a given item description.

The issue of bid placement and monitoring through pro-
grammatical interfaces on the other hand, is currently hard
to address due to the lack of uniformity and stability in
the document exchange standards used by auction houses.
Hopefully, the advent of XML-based standards for business
document exchange such as ebXML5, will make this issue
more manageable.

Finally, the issue of strategic bid planning, which is es-
sentially a decision-making problem under uncertainty, is
currently the subject of intensive research. Ongoing studies
(e.g., [10] and [2]) have shown that this is a more complex
and subtle problem than it may seem at first glance, even
when the number of considered auctions is fixed, and the
user only requests to obtain a single unit of a well-identified
type of item (which is the case addressed in this paper).

Our approach to develop bidding strategies for multiple
alternative auctions is based on a “manager-expert” multi-
agent architecture. The central idea behind this architecture
is that a manager agent encapsulating the knowledge of the
user’s constraints and preferences, cooperates with multiple
expert agents, each specialised in a specific kind of auction,
for a well-identified type of item, within a given auction
house. The communication from the experts to the man-
ager is performed through probability functions, capturing
the beliefs of an expert agent, regarding the probability that
a bid of a given price will succeed at the end of the auc-
tion. These probability functions are computed on the basis
of the history of previous auctions observed by the expert
agent, and they are dynamically adjusted based on the bids
placed by other bidders during the auction. In this paper, we
specifically present two complementary probability estima-
tion models and we discuss how they can be merged into a
single one.

The rest of the paper is structured as follows. Section 2
describes the proposed architecture. This architecture relies
on probability estimation models detailed in section 3. Sec-
tion 4 discusses related work. Finally, section 5 concludes
and outlines directions for future work.

4http://www.auctionbeagle.com
5http//www.ebxml.org

2 Architecture

An agent tracking several auctions on behalf of a user, is
modeled as an aggregation of several (sub-)agents: a man-
ager agent and a set of expert agents (see Figure 1). Concep-
tually, each expert agent is dedicated to tracking one auc-
tion, so that at a given time, there are as many expert agents
connected to a manager agent as auctions being tracked.
However, if the auctions tracked by two expert agents are
for the same type of item and are held in the same auction
house (i.e., they have the same “context”), then the two ex-
pert agents can be clones of each other (i.e., the two expert
agents share a common knowledge but run as separate pro-
cesses).
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Figure 1. Manager-expert architecture

In this section, we successively overview the roles of the
manager and the expert agents, and we discuss their belief
representation and decision-making models.

2.1 The expert agents

An expert agent dedicated to an ongoing auction encap-
sulates three kinds of knowledge:

• Knowledge about the communication primitives in-
volved by the protocol of the auction.

• Knowledge about the status of the auction and the his-
tory of past auctions of the same kind. By “auctions of
the same kind”, we mean auctions with the same pro-
tocol, for the same item, and carried out in the same
auction house as the one that the expert agent is moni-
toring.

• Knowledge about optimal strategies and/or heuristics
for bidding in the auction, as well as models for ex-
trapolating the evolution of the price quotes.

Given this knowledge, the expert agent is responsible for
undertaking two major tasks:

• Bid placement:When instructed by the manager agent,
bid up to a given amount at or before the auction’s dead-
line.
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• Auction outcome prediction:Upon request from the
manager agent, compute a winning probability func-
tion.

When instructed to bid up to a given amountr by the
manager agent, an expert agent will apply its knowledge
about the protocol of the auction to perform this task. In the
case of sealed-bid auctions (whether First-Price or Vickrey)
the expert agent simply places a bid of amountr and waits
until the end of the auction to learn the outcome of the bid.
A similar principle applies in the case of an English auction
with proxy bids: the agent directly places a proxy bid of
amountr and waits until it is either notified that it has been
outbid, or the auction’s outcome is known. Finally, in the
case of an English auction without proxy bids, the agent
starts by bidding the current auction’s quote (provided that
it is below r), and gradually increases its bid in response
to bids from other traders, until it either reachesr, or the
auction closes.

The expert agent attached to an auctiona is also respon-
sible for computing a functionPa(r) that given a bidding
pricer, returns the expected probability of winning the auc-
tion with a bid of that price. This probability functions are
based both on the current quote ofa, and on the history of
past auctions of the same type asa. By same typewe mean
auctions conducted in the same auction house wherea is
conducted, and for the same item as the one auctioned ina.
Section 3 discusses two methods to compute such functions.
In the case of an English auctions, these functions need to
be adjusted as the quote of the auction raises.

Finally, the expert agent is responsible for providing the
manager agent with an estimate of the maximum time that it
takes under normal conditions, to execute a transaction (i.e.,
to place a bid or to get a quote) in the auction to which it is
attached. In the sequel, the average time that it takes to ex-
ecute a transaction in an auctiona is calledδa. The values
δa are used to determine how much time there must be be-
tween the end times of two auctions, so that it is possible to
bid in the earliest auction, know the outcome of this bid, and
place a bid in the latest of the two auctions. The approach
assumes that the winner of any auctiona1 is known imme-
diately after the auction finishes (this is the case in most on-
line auction houses), and that it takes no more thanδa1 time
to access this information. Also, it is assumed that it takes
at mostδa2 time to place a bid in an auctiona2. Hence,
given two auctionsa1 anda2, the approach assumes that if
the end times of the two auctions are separated by at least
δa1 + δa2 time, then it is possible to sequentially bid in the
two auctions.

2.2 The manager agent

The manager agent continuously runs a loop in which it
collects the probability functions from all its active expert

agents, and performs an analysis of these functions in order
to decide whether to bid or not, how much, by what time,
and in which auction. This decision is guided by the con-
straints of the user, which are expressed in the form of three
parameters:

• The maximum price that the user is willing to pay (writ-
tenM).

• The deadline by which the user wishes to obtain the
item (writtenD).

• A number between 0 and 1 calledeagerness factorand
writtenG, stating the tradeoff that the user is willing to
strike between getting the item at a low price, against
taking the risk of not getting the item by the established
deadline.

The eagerness factor is a measure of the user’s attitude
toward risk. A low eagerness factor means that the user is
willing to take the risk of not getting the item by the dead-
line, if this can allow the bidding agent to find a better price.
An eagerness factor close to 1 means that the user wants to
get the item by the deadline at any price (as long as it is
below the fixed maximum). In our architecture, we assume
that the eagerness factor is explicitly provided by the user.
However, it is conceivable that this factor may be derived
from the user’s profile by some analysis tool.

Once the manager agent has collected all the probability
functions from the expert agents, it selects a set of auctions
and a bidding pricer (below the user’s maximum), such that
the probability of getting the desired item by systematically
bidding r in each of the selected auctions is above the ea-
gerness factor. The bidding pricer, together with the subset
of auctions in which the manager chooses to bid, form what
we will subsequently call thebidding plan.

Importantly, when constructing a bidding plan, the man-
ager agent should detect and resolve incompatibilities be-
tween auctions. Two auctions with equal or similar dead-
lines are considered to beincompatible, since it is impossi-
ble to bid in one auction, wait until the outcome of this bid
is known (which could be at the end of that auction), and
then bid in the other auction. Hence, given a set of mutually
incompatible auctions, the manager agent must choose one
of them to the exclusion of the others. This choice is done in
a way to maximise the winning probability of the resulting
bidding plan.

In summary, the planning problem faced by the manager
agent can be formally stated as follows. Given the setAa of
announced auctions, find:

• A set of auctionsAs ⊆ Aa.

• A real numberr ≤ M (corresponding to a bidding
price).

such that:
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• The end times of the auctions inAs are all less than or
equal toD.

• The end times of the auctions inAs are non-
conflicting, that is, for any differenta1 anda2 ∈ As,
|endTime(a2)− endTime(a1)| ≥ δa1 + δa2.

• The probability of at least one of the selected bids suc-
ceeding (writtenφ(As, r)) is greater than or equal to
the eagerness factor, that is:

φ(As, r) = 1−
∏
a∈As

(1− Pa(r)) ≥ G

wherePa(r) is the probability that a bid ofr will suc-
ceed in auctiona.

• The bidding pricer is the lowest one fulfilling the above
constraints.

Should there be nor fulfilling the above constraints, the
manager agent turns back to the user requesting authorisa-
tion either to raise the maximum payable priceM by the
necessary amount, or to accept a lower eagerness. Oth-
erwise, if an adequater is found, the manager agent exe-
cutes the resulting bidding plan by successively requesting
the expert agents responsible for the auctions appearing in
the path, to bid up tor in their auctions. The expert agent
executes this request by using its knowledge about the pro-
tocol of the relevant auction. Importantly, only one expert
agent will be authorised to bid at a given time during the
execution of the bidding plan.

We now turn to the problem of computing anAs and an
r satisfying the above constraints. By observing that for
any auctiona, the functionPa is monotonically increas-
ing, we deduce thatφ(A, x) is also monotonically increas-
ing on its second argument. Hence, searching the lowest
r such thatφ(As, r) ≥ G can be done through a binary
search. At each step during this search, a givenr is con-
sidered. An optimisation algorithmBestPlanpresented be-
low is then applied to retrieve the subsetAs ⊆ Aa such
that φ(As, r) is maximal. If the resultingφ(As, r) is be-
tweenG andG+ ε (ε being the precision at which the min-
imal r is computed), then the search stops. Otherwise, if
φ(As, r) > G + ε (resp.φ(As, r) < G), a new iteration is
performed with a smaller (resp. greater)r as per the binary
search principle. The number of iterations required to min-
imise r is logarithmic on the size of the range ofr, which
is M

ε . At each iteration, the algorithmBestPlanis called
once. Thus, the complexity of the planning algorithm is
log(Mε )× complexity(BestPlan).

The algorithmBestPlantakes as input a bidding pricer,
a set of auctionsAa, and a set of probability functions (one
per auction). Given these inputs, the algorithm retrieves the
subsetAs ⊆ Aa with maximalφ(As, r). The algorithm
proceeds by constructing a graph from its input data, and

applying a critical path algorithm on this graph. Specifi-
cally, each auction is mapped into a node of a graph. The
node representing auctiona is labeled with the probability
of loosing auctiona by biddingr, that is: 1 − Pa(r). An
edge is drawn between two nodes representing auctionsa1
anda2 if and only if a1 anda2 have compatible deadlines,
that is: |endT ime(a2)− endT ime(a1)| ≥ δa2 + δa1. The
edge goes from the auction with the earliest end time to that
with the latest end time. Given this graph, the problem of re-
trieving a set of mutually compatible auctions such that the
probability of loosing all of them (with a bid ofr) is min-
imal, is equivalent to the critical path problem [5]. Specif-
ically, the problem is that of finding the path in the graph
that minimises the product of the labels of the nodes. For
example, in the graph of Figure 2, the path minimising the
product of the nodes is shown in bold. The probability of
loosing in the bidding plan resulting from taking this path
is 0.22 × 0.12 = 0.0004, so that the probability of winning
is 1 – 0.0004 = 99.96%.

Compatible auctions

Auction in best path

0.2

0.2

0.3  0.1

0.2

0.1

Legend

Auction with probability

of loosing = PP

Figure 2. Example of an auction graph.

The classical critical path algorithm has a linear com-
plexity with respect to the number of nodes plus the num-
ber of edges. In the problem at hand, the number of nodes is
equal to the number of auctions, while the number of edges
is (in the worst case) quadratic with respect to the number
of auctions. Hence, the complexity of theBestPlanalgo-
rithm is |As|2. Note that this complexity analysis does not
take into account the cost of the invocations to the probabil-
ity functionsPa(r), which are done when constructing the
auction graph for a givenr. In the case of the approximate
method, this computation takes constant time, while in the
exact method it takes a time proportional to the sizes of the
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sets of past auctions as provided by the expert agents.
During the execution of the bidding plan, the manager

agent periodically searches for new auctions matching the
user’s item description, and periodically receives revised
probability functions from the expert agents. Based on this
new information, the manager agent performs a plan revi-
sion under either of the following circumstances:

• A new auction for the desired item appears.

• The current quote in one of the auctions in the bidding
plan raises abover, in which case it is no longer possi-
ble to bid ofr in that auction.

• The probability of winning with the current plan drops
below the user’s eagerness by more than a given thresh-
old (which is a parameter of the manager agent). This
can happen either because there are few auctions re-
maining in the plan (many auctions in the plan have al-
ready been lost) or/and because the expert agents have
reported new probability functions which significantly
differ from the ones used when building the plan.

Should a plan revision be required, the manager agent
makes sure that all the probability functions are up-to-date,
and recomputes a new bidding plan.

3 Probability estimation models

Every expert agent should be able to construct proba-
bility functions on the fly, by performing an extrapolation
based on the current quote of the auction monitored by the
agent (or its reserve price), and the history of past auctions
that the agent has monitored. In this section we present two
methods that an expert agent may use to incrementally con-
struct a probability function in the setting of the FPSB and
English auctions.

3.1 Construction of the probability functions

The first method that we consider, subsequently called
the exact probability estimation method, is inspired by the
“learning mechanism” described in [10]. The idea of the
method is that the probability of winning with a bidr, is
equal to the number of times that the agent would have won,
had it bidr in all the previous observed auctions, divided by
the total number of auctions.

Given a probability functionP modelling the expected
final price of an auction, we denote byP (fp ≤ r) the prob-
ability that the final pricefp (which is a random variable) is
less than or equal to a given pricer.6 Hence,P (fp ≤ r) is
the probability of winning an auction with a bidr, modulo
tie breaks. According to the exact method, if the winning
price of the first auction observed by the expert agent is20,

6This is usually known as thecumulative probability distribution of P.

the probability functionP1 at the beginning of the second
auction is such thatP1(fp ≤ r) is equal to1 if r ≥ 20, and 0
if r < 20. Subsequently, if the winning price of the second
auction is22, the probability functionP2 at the beginning
of the third auction is such that:

P2(fp ≤ r) =

 1 for r ≥ 22
0.5 for 20 ≤ r < 22
0 for r < 20

Finally, if the final price of the third auction is 25, then
the probability functionP3 at the beginning of the fourth
auction is such that:

P3(fp ≤ r) =


1 for r ≥ 25
0.66 for 22 ≤ r < 25
0.33 for 20 ≤ r < 22
0 for r < 20

This example puts forward a drawback of this approach:
each time that an auction finishes, the whole probability
function has to be recomputed. This leads to an overhead
which may become important as the number of completed
auctions increases. Instead, assuming that the number of
previously observed auctions is large enough (e.g., 50 or
more), if the final prices of these auctions can be modeled
by independentnormally distributedrandom variables, then
the probability of winning with a bidr is given by the cu-
mulative normal distribution function [12], that is:

P (fp ≤ r) =
1√
2πσ

∫ r−µ
σ

−∞
e−x

2/2dx

Many fast algorithms for approximating this function
and its inverse are described in [13].

In favour of the applicability of the approximate method,
it can be argued that the final prices of a set of single-sided
auctions for a given type of item are likely to follow a nor-
mal distribution, since the item has a more or less well-
known value, and that most of the auctions should finish
around this value. In section 3.3 we present the results of a
series of experiments aiming at validating this claim.

In practice, an expert agent can combine the exact and
the approximate methods. The exact method can be used
at the beginning of the agent’s lifespan. When the agent
has collected enough historical data, if these data pass the
normality test, the approximate method can be used instead.
Experience shows that for datasets containing more than 50
samples, the D’Agostino-Pearson normality test is one of
the most robust [6].

We now turn to the issue of estimating the meanµ and
the standard deviationσ of the random variablefp. Given
that the final prices of all the auctions observed by this agent
are modeled by identically distributed random variables, it
follows from the central limit theorem [12] thatµ andσ are
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the limits of the averageµn and the standard deviationσn of
the final prices of then previously observed auctions. Forn
large enough, we can thus approximateµ andσ by µn and
σn respectively.

Interestingly,µn and σn can be computed incremen-
tally. Specifically, by introducing the accumulators:Xn =∑n
i=1 fpi andYn =

∑n
i=1 fp2

i (wherefpi is the final price
of theith observed auction), we have thatµn = Xn/n and
σn =

√
Yn/n−X2

n/n
2. So when the expert agent is noti-

fied of the closing price of thenth observed auction, it just
needs to compute the values forXn andYn fromXn−1 and
Yn−1, and to store these new values for subsequent compu-
tations. This incremental method is not only computation-
ally attractive, it also avoids having to keep the history of
all the auctions, as keeping the values of the accumulators
is enough.

For long-lived expert agents, an interesting alternative
method to estimate the mean and the standard deviation, is
to weight the final prices of past auctions in such a way that
recent auctions are given more importance than older ones.
This can be achieved by multiplying each final price by a
factor obtained from a decay function. If we adopt a lin-
ear decay function, the time-weighted average and standard
deviation are given by the following formulae:

µ′n =
∑n
i=1 fpiti∑n
i=1 ti

σ′n =

√√√√ n∑
i=1

(
(fpi − µ′n)2

ti∑n
i=1 ti

)

By introducing the following three accumulatorsAn =∑n
i=1 fpiti, Bn =

∑n
i=1 ti, andCn =

∑n
i=1 fp2

i ti, the
above formulae can be rewritten as follows:

µ′n =
An
Bn

σ′n =

√
Cn
Bn
− A2

n

B2
n

Again, these formulations provide a simple way to incre-
mentally compute the (time-weighted) average and standard
deviation. Specifically, when an expert agent is notified of
the closing price of thenth observed auction, it computes
An, Bn andCn, and stores these values for subsequent
computations.

3.2 Adjustment of the probability functions

The two methods for constructing probability functions
described above are applicable to make a priori predictions
of the closing price of any kind of single-unit auction. How-
ever, in the case of iterative auctions (e.g. English), where
the bids are made public as soon as they are processed, the
probability function needs to be dynamically adjusted dur-
ing the course of the auction. Specifically, when the expert

agent receives a quoteq, it computes a new probability func-
tion by taking this quote as a fact. Following the definition
of an event’s conditional probability, this adjusted probabil-
ity function is given by the following expression:

P (fp ≤ r | fp ≥ q) =
P (fp ≤ r ∧ fp ≥ q)

P (fp ≥ q)

In the case of the exact method, the adjusted winning
probability function of an auctiona is:

Pa(r) =


0 if r < q∑r

x=q P (fp = x)∑
x≥q P (fp = x)

if r ≥ q

In the case of the approximate method, the adjusted win-
ning probability function of an auctiona is:

Pa(r) =

∫ r−µ
σ

q−µ
σ

e−x
2/2dx∫∞

q−µ
σ
e−x2/2dx

Note that the exact method is inapplicable if the cur-
rent quote of an auction is greater than the final price of
all the past auctions, since the denominator of the corre-
sponding formula is then equal to zero. Intuitively, the exact
method is unable to extrapolate the probability of winning
in an auction if the current quote has never been observed
in the past. The approximate method does not exhibit this
problem, since the domain of the normal distribution is the
whole set of real numbers.

3.3 Validity of the normality assumption

We conducted a series of experiments to validate the
claim that for large sets of auctions of a single type of item,
it is likely that the final prices of these auctions exhibit a
normal distribution (see section 3.1).

The data used in these experiments were extracted from
auctions held at eBay. Two sets of bid histories were col-
lected corresponding to auctions for two different types of
items observed during disjoint periods. The first dataset
concerns 150 auctions for new Motorola P935 pagers end-
ing within a period of 40 days (8 April – 18 May 01). The
second dataset concerns 100 auctions for new Nokia 8260
cellular phones ending within a period of 20 days (15 June–
5 July 01). The choice of the types of items was based on
two criteria: (i) their relatively high degree of homogeneity,
and (ii) the high number of simultaneous auctions for these
items. The auctions were filtered to ensure homogeneity:
auctions for scratched items and auctions in which the ship-
ping was included, were eliminated. Actually, the 150 bid
histories of the first dataset were selected among more than
200, and the 100 entries of the second dataset were selected
among nearly 150.
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For each of the two datasets, we conducted D’Agostino-
Pearson normality tests on the prefixes of the sequence of
highest bids of each auction, ordered according to their end
times. In the case of the 1st dataset, the result is that starting
from the 129th observed auction, the sequences of highest
bids systematically passed the test. Specifically, the level of
significance (i.e. the “factorP ”) of the D’Agostino-Pearson
test for all the prefixes of length greater than or equal to
129, was greater than 0.2. whereas a factor greater than 0.1
is generally taken as enough evidence of normality. For the
prefixes of length less than 129, the D’Agostino-Pearson
test was satisfied in some cases, but not consistently. In the
case of the second dataset, the convergence toward normal-
ity was extremely fast: all the prefixes of length greater than
10 passed the D’Agostino-Pearson test7.

In the case of the first dataset, the above result means that
an expert agent monitoring eBay auctions for new Motorola
P935 pages over the period of our data collection, would
have switched from the exact to the approximate probabil-
ity estimation method (see section 3.1) some time after the
128th auction. The exact moment for operating this tran-
sition could be taken based on a threshold provided by the
agent’s developer, and modifiable by the user. In the case
of the Nokia 8260 phones, the transition between the exact
and the approximate methods could be done earlier during
the lifecycle of the agent.

4 Related work

Automated bidding in Internet auction houses (e.g.,
eBay), is currently limited toproxy biddingin English auc-
tions. Proxy bidding allows a user to continuously hold the
maximum bid in an auction, but it does not allow him/her
to hold the maximum bid in one among a set of alternative
auctions, which is the issue addressed by our approach.

Preist et al. [10] propose an algorithm for agents that
participate in simultaneous multi-unit English auctions with
the goal of obtaining N units of an item. In this algorithm,
the agent starts by placing bids in the auctions with the low-
est price. Subsequently, each time that one or several of
these bids are beaten, the agent replaces them with a new
set of bids with the lowest incremental price. In this way,
the agent holds N “active” bids at any time. The authors
take into account the case of auctions with different dead-
lines, by introducing a utility-based decision-making pro-
cess that determines when to bid in an auction which is
about to close, instead of bidding in an auction that closes
later. An important advantage of our approach over that
of [10], is that in [10] there is no equivalent of the concept of
eagerness. Instead, the agent tries to maximise its chances
of winning by systematically replacing lost bids with new

7We note that the D’Agostino-Pearson test is not valid for datasets of
length less than 10 [6].

ones at a higher price. As a result, the agent does not opti-
mise the bidding price as much as the user’s attitude toward
the risk of not obtaining the item would allow.

Anthony et al. [2] explore an approach to design agents
for bidding in concurrent English, Dutch, and Vickrey auc-
tions. In this approach, bidding agents base their decisions
upon four parameters: (i) the deadline imposed by the user,
(ii) the number of ongoing auctions, (iii) the user’s desire
for bargaining, and (iv) the user’s degree of desperateness
for obtaining the item. For each of these parameters, the
authors present abidding tactic, i.e., a formula which deter-
mines how much to bid in an auction as a function of the
parameter’s value. A bidding agent’s strategy is obtained
by combining these four tactics based on a set of relative
weights provided by the user (i.e., the user expresses how
much importance he/she gives to each parameter). An im-
portant remark is that instead of considering maximal bid-
ding plans as in our architecture, the agents in [2] take local
decisions about where to bid next. As a result, an agent may
behave desperately even if the user expressed a preference
for a gradual behaviour. Indeed, if the agent places a bid in
an auction whose end time is far, and if this bid is rejected
at the last moment, the agent may subsequently be forced
to place desperate bids to meet the user’s time constraint.
Meanwhile, bidding in a series of auctions with earlier end
times, before bidding in the auction with a later one, would
allow the agent to increase its desperateness more gradually.
Another advantage of our approach over that of [2], is that
the user can specify the desired probability of winning (ea-
gerness), whereas in [2], the user has to tune the values and
weights of the “desperateness” and the “desire to bargain”,
in order to express his/her eagerness.

Byde [4] describes a dynamic programming approach to
design algorithms for agents that participate in multiple En-
glish auctions. This approach can be instantiated to capture
both greedy and optimal strategies (in terms of expected re-
turns). Unfortunately, the algorithm implementing the opti-
mal strategy is computationally intractable, making it inap-
plicable to sets of relevant auctions with more than a dozen
elements. In addition, the proposed strategies are not ap-
plicable to English auctions with fixed deadlines. The auc-
tions considered in [4] areround-based: the quote is raised
at each round by the auctioneer, and the bidders indicate
synchronously whether they stay in the auction or not. This
type of English auctions is considered in Bansal & Garg [3],
where it is proven that a simple truth-telling strategy leads
to Nash equilibrium.

Garcia et al [8] consider the issue of designing strategies
for agents bidding in series of Dutch auctions occurring in
strict sequence (no simultaneity). The authors propose an
approach to this problem that combines probabilistic utility
analysis with fuzzy heuristics. As in our approach, the deci-
sion on whether to bid at a given stage of an ongoing auction
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or not, is taken on the basis of an analysis of the history of
past auctions, although the proposed analysis methods are
different.

The Trading Agent Competition (TAC) conducted at the
ICMAS’00 conference [9], involved several agents compet-
ing to acquire goods in simultaneous auctions. The scenario
of the competition involved a set of simultaneously termi-
nating auctions for flights, hotel rooms, and entertainment
tickets, in which the agents bid in order to obtain items that
they had to package later into bundles, in such a way as
to maximise a given set of utility functions. This scenario
differs from the one considered in our problem statement,
in that the auctions all terminate simultaneously, whereas
our architecture caters for auctions which possibly overlap,
but do not necessarily terminate at the same time. In ad-
dition, our architecture caters for bidding in heterogeneous
auctions for the same item, whereas in the TAC scenario all
the auctions for a given item are homogeneous (e.g., all the
hotel nights are sold in English auctions). Finally, in our
approach we do not deal with packaging items into bundles,
whereas in the TAC this was a central issue. Indeed, the
strategies developed by the top-ranked competitors differed
from those of the other participants, in that they relied on
sophisticated algorithms for packaging items into bundles.

5 Conclusion and Future Work

We presented an architecture for developing bidding
agents capable of participating in several potentially simul-
taneous and heterogeneous auctions. A bidding agent in this
architecture is composed of other (sub-)agents: one playing
the role of manager, and the others playing the role of ex-
pert agents. Each expert agent gathers data about past and
ongoing auctions of a given type, and based on these data,
it builds a set of beliefs represented as probability function.
Based on the probability functions collected from the expert
agents, the manager agent computes a bidding plan (i.e. a
series of intended bids) that it executes in concert with the
expert agents. We presented two complementary probabil-
ity estimation models for the expert agents and we discussed
how they can be merged into a single one, whereby the first
model is used in the case of small datasets, and the second
model is applied for large datasets exhibiting a normal dis-
tribution. We reported experimental results showing that in
some real-life scenarios, the final prices of online auctions
for a given type of item follow a normal distribution.

An obvious direction for future work is to develop an
experimental setup in which one or several bidding agents
developed under our approach are put together in a simu-
lated marketplace with other “control” agents implementing
a standard strategy. For example, the control agents could
apply a simple algorithm in which the agent first chooses
an auction at random, and it keeps bidding in this auction

until it either reaches its maximum allowed bid, or the auc-
tion closes. In case of failure, the agent would then choose
another auction at random and repeat this process.

Another direction for future work is to extend the archi-
tecture to cater for sets of auctions in which the items are
substitutable but different (partial substitutes [3]). In this
case, the user might want to win any of the auctions, but
would not necessarily attach the same maximum bidding
price to all of them. For example, if one auction is for an
unused but scratched item, and the other for a brand new
one, the user may be willing to win either of these auctions,
but would bid less in the former than in the latter.

Yet another possible extension to the proposed architec-
ture, is to cater for users wishing to obtain several units of an
item (instead of one unit) in a set of multi-unit auctions (in-
stead of single-unit). The challenge is to take into account
the variability of offer and demand in such environments.
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