
Definition and Execution of Composite Web Services:
The SELF-SERV Project

Boualem Benatallah Marlon Dumas
School of Computer Science & Engineering Centre for IT Innovation

The University of New South Wales Queensland University of Technology
Sydney NSW 2052, Australia GPO Box 2434, Brisbane Q 4001, Australia

boualem@cse.unsw.edu.au m.dumas@qut.edu.au

Zakaria Maamar
College of Information Systems

Zayed University
PO Box 19282, Dubai, U.A.E

zakaria.maamar@zu.ac.ae

Abstract

Web services composition is emerging as a promising technology for the effective automation of business-
to-business collaborations. It allows organizations to form alliances by connecting their applications,
databases, and systems, in order to offer “one-stops shops” for their customers. The SELF-SERV project
aims at providing tool support and middleware infrastructure for the definition and execution of com-
posite Web services. A major outcome of the project has been a prototype system in which Web services
are declaratively composed, and the resulting composite services can be orchestrated either in a peer-
to-peer or in a centralized way within a dynamic environment. Work is underway to extend this system in
order to enable user-driven composition of Web services, and their execution in a mobile environment.

1 Introduction

The growth of Internet technologies has unleashed a wave of innovations that are having tremendous impact
on the way organizations interact with their partners and customers. In particular, Web services composition
is emerging as a new model for automated interactions among distributed and heterogenous applications. This
approach is an alternative to hand-coding an integrated application. A Web Service is defined as a modular and
self-described application that uses standard Web technologies to interact with other services [8, 1]. An example
of a Web service is bidding in an auction through a SOAP interface.

SELF-SERV is an ongoing research project that aims at providing tool support and middleware infras-
tructure for facilitating the composition of Web services in large, autonomous, heterogeneous, and dynamic
environments. More precisely, the SELF-SERV system considers the following key aspects related to service

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

composition. Firstly, declarative service compositionapproaches are required to enable rapid development and
flexible adaption of composite services. Secondly, the number of services to be composed may be large and
continiously evolving. Consequently, approaches where the development of a composite service requires un-
derstanding and establshing interactions among component services at service-definition time are inappropriate.
Instead, a divide-and-conquer approach should be adopted, whereby services providing similar capabilities (also
called alternative services) are grouped together, and these groups take over some of the responsibilities of
service composition. Thirdly, given the highly distributed nature of services, and the large number of network
nodes that are capable of service execution, we believe that novel mechanisms involving scalable and completely
decentralized execution of services will become increasingly important. Specifically, it should be possible to ex-
ecute composite services under different communication topologies: peer-to-peer, centralized, and hybrid.

At present, the technological infrastructure for Web Services is structured around three major standards:
SOAP, WSDL, and UDDI [4]. These standards provide building blocks for the description, discovery, and
invocation of Web services. Other proposed standards such as BPEL4WS, WSCI, WS-Coordination, and WS-
Transaction (dev2dev.bea.com/techtrack/standards.jsp), layer up functionality related to com-
position and transactions on top of the three basic standards.

The SELF-SERV system leverages these standards (especially SOAP, WSDL, and UDDI) and builds upon
lessons learned in previous related work (e.g. eFlow [3], CMI [6]), in order to provide a scalable service middle-
ware through which Web services can be declaratively composed, and the resulting composite services can be
enacted according to different communication topologies within a dynamic environment. The rest of the paper
provides an overview of the concepts (Section 2), architecture (Section 3), and planned extensions (Sections 4
and 5) of the SELF-SERV system.

2 Web Service Composition in SELF-SERV

A composite Web service is an umbrella structure that aggregates multiple other elementary and composite Web
services, which interact according to a given process model. For example, a composite Web service “Travel
Planner” may aggregate multiple Web services for flight booking, travel insurance, accommodation booking,
car rental, itinerary planning, etc., which are executed sequentially or concurrently.

In SELF-SERV, the process model underlying a composite service is specified as a statechart [5] whose
states are labeled with invocations to Web services, and whose transitions are labeled with events, conditions,
and variable assignment operations. Statecharts possess a formal semantics and offer most of the constructs
found in contemporary process modeling languages (sequence, branching, structured loops, concurrent threads,
inter-thread synchronization, etc.). This ensures that the service composition mechanisms and orchestration
techniques developed within the SELF-SERV project can be adapted to other process modeling languages for
Web Services such as BPEL4WS and WSCI.

SELF-SERV exploits the concept of service communityin order to address the issue of composing a poten-
tially large and changing collection of Web services. Service communities are essentially containers of services
that provide a common capability. They provide descriptions of desired services (e.g., flight booking) without
referring to any actual provider (e.g., UA flight-booking Web service). When a community receives a request
for executing an operation, it delegates it to one of its current members. The choice of the delegatee is based
on a selection policy involving parameters of the request, the characteristics of the members, the history of
past executions, and the status of ongoing executions. The set of members of a community can be fixed when
the community is created, or it can be determined through a registration mechanism, thereby allowing service
providers to join, quit, and reinstate the community at any time.

Communities are services themselves. In particular, their operations can be invoked by a composite Web
service. In this way, dynamic provider selection and even some forms of dynamic planning can be achieved.
Specifically, by labeling a state of a composite service with an invocation to an operation provided by a com-

2

munity, the selection of the actual service which is to execute this invocation, is delayed until the last possible
moment, thereby allowing the decision to be taken according to the current execution status. Similarly, when
there are several ways (or plans) for executing a “portion of a composite service”, it is possible to select at run-
time which of these plans is the most appropriate given the current context (e.g., choose the fastest way if time
is important, or the cheapest otherwise). To achieve this, each of the alternative plans is modeled as a composite
service, and all these composite services are grouped in a single community which can be invoked from within
an encompassing composite service. The decision as to which of the available plans to adopt (i.e., which of the
composite services in the communities should be invoked), is taken at the last possible moment.

The execution of a composite service in SELF-SERV is orchestrated by a collection of software components
called state coordinators. One coordinator is attached to each state of a composite service. The coordinator of
a state is in charge of initiating, controlling, and monitoring this state, as well as collaborating with its peers
to orchestrate the composite service execution. In particular, the coordinator of a state S is responsible for
determining: (i) when should S be entered for a given execution of the composite service; (ii) which other states
may potentially need to be entered after S is exited and which data items should be sent to the coordinators of
these states; and (iii) how to handle events such as cancellation or timeouts, while the service invocation labeling
the state S is underway. The knowledge required at runtime by each of the coordinators of a composite service
(e.g. location, peers, and control flow routing policies) is statically extracted from the composite service’s
statechart and represented in a simple tabular form (as routing tables). In this way, the coordinators do not need
to implement any complex scheduling algorithm.

By distributing the responsibility of orchestrating a composite service across several state coordinators,
SELF-SERV enables both peer-to-peer and centralized orchestration. Peer-to-peer orchestration is achieved by
placing each state coordinator in the site of the Web service that is invoked when the corresponding state is
entered. The state coordinators are therefore placed in different physical nodes (the sites of the components of
the composite service), and they interact in a peer-to-peer way. Centralized orchestration is achieved by placing
all the state coordinators in the host of the composite service. The collection of state coordinators placed in
a single physical node can then be seen as a central scheduler, which remotely invokes the components of the
composite service. Hybrid approaches can be achieved by placing some state coordinators in the host of the
composite service provider, and others in the hosts of the Web services participating in the composition.

3 SELF-SERV Architecture and Implementation

The SELF-SERV architecture (Figure 1) consists of three modules, namely the service builder, the service
deployer, and the service discovery engine[7]. These modules have been implemented using Java and the IBM
Web Services Toolkit (alphaworks.ibm.com/tech/webservicestoolkit).

The service builder facilitates the creation and configuration of composite services and service communities.
It provides an editor for describing registration modes and selection policies of service communities, as well
as an editor for drawing and annotating the statechart diagrams of composite service operations. Annotated
statecharts are translated into XML documents for subsequent processing by the service deployer.

The service deployer generates the routing tables of every state of a composite service statechart using the
algorithms presented in [2]. The input of this generation process are statecharts represented in XML, while
the outputs are routing tables formatted in XML as well. Once generated, routing tables are uploaded into the
sites of the corresponding component services (for peer-to-peer orchestration), or into the site of the provider
of the composite service (for centralized orchestration). Peer-to-peer orchestration requires in addition that the
participating service providers download and configure a class called Coordinator, which implements the
concept of state coordinator. This class contains the code required to load and interpret a routing tables, and
to communicate with other coordinators in order to orchestration composite service executions. Centralised
orchestration on the other hand does not require the service providers participating in the composition to install

3

Service Manager

is registered
with

service descriptions

Pool of
Services

Elementary
services

Communities

UDDI
Registry

Composite
services

is composed of

Service Builder

Service Deployer

C ommunication B us

Coordinator.1 Coordinator.2 Coordinator.n

Wrapper

Legend

SELF-SERV

SELF-SERV Interface

requests/results

workflow database applications web-accessible programs

Service Discovery Engine

C1 C2 C3

CS1 CS2

ES1 E S2 ES3 ES4

Figure 1: Architecture of SELF-SERV.

any SELF-SERV-specific runtime environment: they only need to provide their Web services through SOAP.
The SELF-SERV prototype has been used to experimentally compare the performance of the peer-to-peer

orchestration model with respect to the centralized one. The experimental results have shown that peer-to-peer
orchestration leads to less message exchanges in average, better load distribution among the participants, and as
a result, lower execution times.

4 User-Driven Web Services Composition

Many Web sites that presently deliver their services through HTML Web pages, are likely to provide program-
matic access to these services in the near future by exploiting emerging Web Services standards. Google, eBay,
and Amazon are examples of popular Web sites that have already made some of their functionalities available
through programmatic interfaces based on SOAP and WSDL1. As this trend continues to unfold, Web services
with dual (interactive and programmatic) interfaces will become a currency. This will in turn open the possibility
for dual navigation, whereby a set of interactions between a user and one or several Web sites can be assimilated
to a composite Web service, and vice-versa.

1See http://www.xmethods.com for other examples of Web services with HTML-based interfaces that have been made avail-
able through SOAP/WSDL.

4

This idea is better explained through a simple scenario. A user opens the Web page of a stock quote site using
his/her browser. (S)he enters a stock symbol in an input field, clicks a submit button, and obtains the latest quote
for this stock in US Dollars. (S)he then opens a currency converter Web page, enters the quote obtained from
the previous operation into an input field, selects the currency code “USD” in a menu, the currency code “AUD”
in another menu, clicks the submit button, and obtains the stock quote in Australian Dollars. If the currency
converter or the stock quote service are unavailable, (s)he will try using alternative ones. This sequence of
navigation operations are expected to be repeated often, so the user would like to build his own Web page,
that will allow him/her to enter a stock symbol in an input field, and obtain the quote in Australian Dollars
in an output field, by reproducing the above process. An approach to achieve this outcome would be to map
the sequence of navigation operations performed by the user to an equivalent composite Web service with two
sequential states: one that invokes an operation over a community of stock quote services, and another one that
invokes an operation over a community of currency converter services. The input of this composite Web service
will be the stock symbol, and the output would be the quote in Australian Dollars.

More generally, in the context of Web services with dual interfaces, it is conceivable to specify composite
Web services by dragging and dropping elements from several Web pages into a composition panel, and relating
these elements through control and data flow relationships (e.g. the output of one element is given as input
to another). With some simplifying restrictions, these manipulations can be performed by non-expert users,
opening the door for the widespread use of composite Web service technology as a means to enable user-driven
integration of Web services. An application of this type of integration can be found in account aggregation, where
users perform repetitive navigation tasks in order to obtain a complete view of their accounts and investments.

Within SELF-SERV, we are developing a front-end tool to facilitate this kind of user-driven composition
of Web services. Specifically, the tool will enable users to drag-and-drop elements from multiple Web pages
(especially input and output fields within Web forms), in order to specify invocations to elementary services,
which can then be grouped and linked together to form communities and composite Web services. In order to
connect elements of Web pages to operations of Web services, SELF-SERV requires that the provider of services
with dual interfaces defines links between the programmatic and the interactive interfaces. For example, a submit
button in a Web form can be mapped to a Web service operation described in WSDL, while a form input element
can be mapped to an input parameter of an operation. Such links can be expressed using RDF triples, where
the “subjects” of the triples are XPath expressions designating an XHTML element such as a button or an input
field, while the “objects” are Web service operations or input/output parameters.

Having specified a set of invocations to elementary services, the user can then group these services into
communities. In the previous example, the currency converters could be grouped in a community, and a selection
policy could be specified by providing an order over this set: the community would then invoke the first service
in this order, unless it is unavailable, in which case the next service in the order would be selected, and so on.

The front-end composition tool will also allow the user to specify control and data-flow relationships be-
tween the elementary services and communities created in the previous steps by means of a visual language
based on a subset of statecharts. Specifically, the control-flow operators provided by the composition tool will
include sequence, choice, repeat, and parallel branching, while the data-flow will be specified through simple
variable assignments and arithmetic expressions. The composition tool will then translate the resulting com-
posite service specification into an annotated statechart, that can be enacted using a subset of the SELF-SERV
environment. Since the composite service is intended to be used mainly by its creator, a client-side centralized
orchestration model is appropriate, whereby the composite service is orchestrated from the user’s machine.

5 Composite Web Services in Mobile Environments

The explosive growth of interconnected computing devices (e.g., PDAs, wireless technologies) enable new en-
vironments where ubiquitous information access will be a reality. More importanly, Web services will be ac-

5

cessible from mobile devices. However, existing service provisioning techniques are inappropriate to cope with
the requirements of these new environments. Several obstacles still hinder the seamless provisioning of Web
services in mobile environments. Examples of such obstacles are: throughput and connectivity of wireless net-
works, limited computing resources of mobile devices, and risks of communication channel disconnections.
We are extending the SELF-SERV architecture to support service provisioning in mobile environments. More
precisely, we are investigating the following issues:

� Context-sensitive service selection: In addition to criteria such as monetary cost and execution time,
service selection should consider the location of requesters and services, and the capabilities of computing
resources on which services are executed (e.g., CPU, bandwith). This calls for context-aware service
selection policies that enable the system to adapt itself to different computing and user requirements.

� Handling disconnections during composite service execution: In a mobile environment, disconnections are
frequent (e.g., disconnection due to discharged battery, change of location, or to minimize communication
cost). To cope with disconnections related to client or provider disconnection during a composite ser-
vice execution, we are investigating an agent-based service composition middleware architecture. In this
architecture, users and services are represented by delegate agents, which contain disconnection control
policies related to requesters and providers. For example, a user delegate may be used to collect execution
results during disconnection of the user’s device, and returns these results to the user upon re-connection.
Delegate agents reason and act upon evolution regarding user and service devise disconnections.

References

[1] B. Benatallah and F. Casati, editors. Special Issue on Web Services. Distributed and Parallel Databases,
An International Journal, 12(2-3), September 2002.

[2] B. Benatallah, M. Dumas, Q.Z. Sheng, and A. H.H. Ngu. Declarative composition and peer-to-peer pro-
visioning of dynamic web services. In Proceedings of the International Conference on Data Engineering
(ICDE), pages 297–308, San Jose CA, USA, February 2002. IEEE Press.

[3] F. Casati and M.-C. Shan. Dynamic and adaptive composition of e-services. Information Systems,
26(3):143–162, May 2001.

[4] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Unraveling the Web Services
Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing, 6(2):86–93, March 2002.

[5] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[6] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and composing service-based and
reference process-based multi-enterprise processes. In Proc. of the Int. Conference on Advanced Information
Systems Engineering (CAiSE), Stockholm, Sweden, June 2000. Springer Verlag.

[7] Q. Z. Sheng, B. Benatallah, M. Dumas, and E. Mak. SELF-SERV: A Platform for Rapid Composition
of Web Services in a Peer-to-Peer Environment. In Proc. of the 28th VLDB Conference (Demonstration
Session), Hong Kong, China, August 2002. Morgan Kaufmann.

[8] G. Weikum, editor. Infrastructure for Advanced E-Services. IEEE Data Engineering Bulletin, 24(1), March
2001.

6

