
Scientific Computing

Shared Memory Parallel Programming with OpenMP
Overview and Introduction

Heiko Herrmann

October 27, 2010

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 1 / 33

Are Choice of Hardware and Choice of Programming
Languages connected?
Yes!
This is e.g. due to different storing philosophy of matrices.

FORTRAN stores matrices in column-major format,
most other languages use row-major.

The column-major format is especially suited for vectorizing code and
matrix-vector multiplications on vector-processors.

Other factors include
available libraries
extensions (OpenCL, OpenMP, MPI) are only available for some
languages
notably

OpenMP for C/C++ and FORTRAN (there is no python version!)
OpenCL only for C
the C++ bindings will be dropped from the next MPI standard (only ISO C
and FORTRAN 90 remain in MPI-3, C++ bindings are already deprecated in
MPI-2.2)

not all languages/libraries exist for all hardware platforms
c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 2 / 33

SMP: ccNUMA

NUMA: Non Uniform Memory Access

RAM

core

1st level

cache

2nd level

cache

3rd level

cache

core

1st level

cache

2nd level

cache

CPU

RAM

core

1st level

cache

2nd level

cache

3rd level

cache

core

1st level

cache

2nd level

cache

CPU

node

RAM

core

1st level

cache

2nd level

cache

3rd level

cache

core

1st level

cache

2nd level

cache

CPU

RAM

core

1st level

cache

2nd level

cache

3rd level

cache

core

1st level

cache

2nd level

cache

CPU

node

RAM

core

1st level

cache

2nd level

cache

3rd level

cache

core

1st level

cache

2nd level

cache

CPU

RAM

core

1st level

cache

2nd level

cache

3rd level

cache

core

1st level

cache

2nd level

cache

CPU

node

NUMA system

It is important to keep data in caches coherent
−→ ccNUMA architecture
ccNUMA requires special interconnect between nodes (low latency, high
bandwidth)
does not scale as good as distributed memory parallelism (e.g. with MPI) due
to necessary cache coherence

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 3 / 33

Work/Data Distribution

Work decomposition
(based on loop decomposition)

do i=1,100 ->

do i=1,25
do i=26,50
do i=51,75
do i=76,100

Data decomposition
(all work for the local portion of data is done by local processor)

A(1:40,1:100) ->

A(1:20,1:50)
A(1:20,51:100)
A(21:40,1:50)
A(21:40,51:100)

Domain decomposition
(decomposition of work and data is done in a higher model)

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 4 / 33

Parallel Programming Models
Hardware independent (more or less):

OpenMP
Shared Memory Directives
to define the work decomposition
no data decomposition
synchronization is implicit (can be also user-defined)

OpenCL (Open Compute Language)
HPF (High Performance Fortran)

Data Parallelism
User specifies data decomposition with directives
Communication (and synchronization) is implicit

MPI (Message Passing Interface), PVM
User specifies how work & data is distributed
User specifies how and when communication has to be done
by calling MPI communication library-routines

Hardware dependent:
IBM Cell SDK
nVidia CUDA
SSE/MMX/. . . for x86 processors
c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 5 / 33

Distribution Methods

decomposition easiest programming interface
work OpenMP
data HPF

domain MPI

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 6 / 33

Program Optimization

Different optimization goals and strategies:

speed (Flops)
memory usage
portability
maintainability
programming effort/time

NB! Most of these goals are not compatible with each other!

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 7 / 33

OpenMP

most OpenMP constructs are compiler directives of pragmas
focus is to parallelize loops
an incremental approach to parallelism is offered

Serial Program:

void main ()
{

double foo [1 0 0 0] ;
i n t i ;

for (i =0; i <1000; i ++){
do_huge_calc (foo [i]) ;

}
}

Parallel Program:

void main ()
{

double foo [1 0 0 0] ;
i n t i ;

#pragma omp p a r a l l e l for
for (i =0; i <1000; i ++){

do_huge_calc (foo [i]) ;
}

}

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 8 / 33

OpenMP Programming Model

OpenMP is a shared memory model (SMP)
workload is distributed between threads
enabled via a compiler switch (-fopenmp for GCC)
variables can be

shared among threads
duplicated for each thread

unintended sharing of data leads to race conditions
race condition: when the output of the program changes as the threads
are scheduled differently
control race conditions:
use synchronization to prevent data conflicts

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 9 / 33

OpenMP Execution Model

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 10 / 33

OpenMP Parallel Region

Fortran:

!$OMP PARALLEL
code

!$OMP END PARALLEL

C/C++:

#pragma omp p a r a l l e l
s t r u c t u r e d code block

/∗ omp end p a r a l l e l ∗ /

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 11 / 33

OpenMP Directive Format: C/C++

#pragma directives – case sensitive
Format:
#pragma omp directive_name [clause [[,]clause] . . .] newline
Conditional compilation

i f d e f _OPENMP
p r i n t f (" number o f processors : %d \ n " , get_num_procs ()) ;

#endif

include library functions

i f d e f _OPENMP
#include <omp. h>
#endif

constant _OPENMP is defined when gcc -fopenmp is used

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 12 / 33

OpenMP Data Scope Clauses

private (list)
shared (list)
if not specified defaults to shared, but

stack (local) variables in called sub-programs are PRIVATE
automatic variables within a block are PRIVATE
loop control variables of parallel OMP DO/for are PRIVATE

Recommendation: Avoid private variables, use local variables instead (in
C/C++).

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 13 / 33

OpenMP Environment Variables

OMP_NUM_THREADS
sets number of threads
if dynamic adjustment is enabled: maximum number of threads
setenv OMP_NUM_THREADS 4 [csh,tcsh]
export OMP_NUM_THREADS=4 [sh, ksh, bash]

OMP_SCHEDULE

applies only to DO/for directives that have schedule type RUNTIME

sets schedule type and chunk size
setenv OMP_SCHEDULE “GUIDED,4” [csh,tcsh]
export OMP_SCHEDULE=“GUIDED,4” [sh, ksh, bash]

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 14 / 33

OpenMP Runtime Library

C/C++:
#include <omp.h>
Fortran:
!$ INCLUDE ’omp_lib.h’ or !$ USE omp_lib
(availability implementation dependent)
int omp_get_num_threads(void);
returns number of threads currently in the team of the parallel region
int omp_get_thread_num(void);
returns the number of the thread in the team. Master thread is 0.

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 15 / 33

OpenMP Work Sharing Constructs

sections

for (C/C++)
do (Fortran)
workshare (Fortran)
single

divide execution of enclosed code among the team
must be within parallel region
they do not launch new threads
no barrier on entry

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 16 / 33

OpenMP sections Directive

C/C++:

#pragma omp p a r a l l e l
{
#pragma omp sec t ions

{ { a = . . . ;
b = . . . ; }

#pragma omp sec t ion
{ c = . . . ;

d = . . . ; }
#pragma omp sec t ion

{ e = . . . ;
f = . . . ; }

#pragma omp sec t ion
{ g = . . . ;

h = . . . ; }
} /∗ end omp sec t ions ∗ /

} /∗ end omp p a r a l l e l ∗ /

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 17 / 33

OpenMP do/for Directive

C/C++:

#pragma omp p a r a l l e l p r i v a t e (f)
{

f =7;

#pragma omp f o r

f o r (i =0; i <20; i ++)
a [i]=b [i]+ f ∗ (i +1) ;

} /∗ omp end p a r a l l e l ∗ /

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 18 / 33

OpenMP reduction Clause

reduction (operator:list)
performs a reduction on the variables that appear in list, with the operator
operator
operator: one of

C/C++: +,*,-,&,ˆ,|,&&,||
Fortran: +,*,-, .and., .or., ,eqv., .neqv., max, min, iand, ior, ieor

variables must be shared
at the end of the reduction the shared variable is updated with the result.

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 19 / 33

OpenMP reduction Example

C/C++:

sm=0;
#pragma omp p a r a l l e l f o r reduc t ion (+ :sm)
f o r (i =0; i <20; i ++)
{

double r ;

r = work (i) ;

sm=sm+ r ;

} /∗ omp end p a r a l l e l f o r ∗ /

[There is a combined parallel do/for directive
for parallel regions that contain a single do/for.]

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 20 / 33

OpenMP Errors

Two types of SMP errors:
Race Conditions:

Def.: Two threads access the same shared variable and at least one thread
modifies the variable and the sequence of the access is undefined, i.e.
unsynchronized
the outcome of a program depends on the detailed timing of the threads in
the team
often caused by unintended share of data

Deadlock
threads lock up waiting on a locked resource that will never become free

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 21 / 33

OpenMP Race Conditions – Example 1

#pragma omp p a r a l l e l
{
#pragma omp sec t ions

a=b+c ;
#pragma omp sec t ion

b=a+c ;
#pragma omp sec t ion

c=b+a ;
} /∗ omp end p a r a l l e l sec t ions ∗ /

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 22 / 33

OpenMP Race Conditions – Example 2

#pragma omp p a r a l l e l shared (x) , p r i v a t e (tmp)
{

i d =omp_get_thread_num () ;
#pragma omp f o r reduc t ion (+ : x) nowait

f o r (i =1; i <100; i ++)
{
tmp=work1 (i) ;
x=x+tmp ;
} /∗ omp end f o r reduc t ion ∗ /

y (i d)= work2 (x , i d) ;
/∗ omp end p a r a l l e l ∗ /

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 23 / 33

OpenMP Summary (1)

standardized compiler directives for shared memory programming

fork-join model based on threads

support from (relevant) hardware vendors

incremental approach for parallelism

allows to keep single source for parallel and sequential execution

race conditions and deadlock possible

use tools to check for race conditions

NB! Single Source
Don’t fork the code for parallelization, keep a single source tree!

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 24 / 33

Thread Checker

Goals:
detect race conditions
other parallelizations errors, like missing firstprivate

NB!
OpenMP parallelizations should never be used in production without
verification with race-condition checking tools!

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 25 / 33

Parallel Debugging

Intel Thread Checker (needs Intel C/FORTRAN Compiler)
Linux and Windows; needs Intel compiler; commercial:

C++ Compiler prof. Linux 499,- + VAT (download), 539,- + VAT (CD)
Compiler suite prof. Linux (C++ and FORTRAN) 1099,- + VAT (CD)
Thread Checker Linux 409,- + VAT (download), 449,- + VAT (CD)
academic pricing on request

Portland Group pgdbg and compiler
commercial (akad.: C/C++/FORTRAN 699,-, C 299,-, FORTRAN 499,-)
Sun/Oracle Solaris Studio Thread Analyzer
Linux, Solaris; free (but closed source)
maybe PathScale Eko with pathdb (or path64)
Helgrind (Valgrind suite)
Linux (Posix) only; free open-source
DRD (Valgrind suite)
Linux (Posix) only; free open-source
(gcc needs to be compiled with --disable-linux-futex)
ThreadSanitizer
Linux (based on Valgrind), Windows (based on PIN); free open-source

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 26 / 33

Race Checker: Method

Compile your OpenMP program with thread checker/debugging info
start and execute with race checker

executed on 1 thread
verifying all memory accesses
∼ 300 times slower than normal execution (use small but relevant data set)

invoke analysis tool
error report
with references to your source code

try to find the parallelization bugs in your code
try to correct these (without modifying the serial semantics of the program
compile and execute again
repeat until all errors are resolved

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 27 / 33

Intel Thread Checker: Processing

TCI-mode (requires ICC):
compile icc -tcheck -openmp -g -o myprog myprog.c

run tcheck_cl -w 90 -o myprog.txt ./myprog

text output tcheck_cl -f txt -w 130 threadchecker.thr

csv output tcheck_cl -f csv threadchecker.thr

good tool

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 28 / 33

Sun/Oracle Thread Analyzer

Used with Sun/Oracle Solaris Studio
compile cc -xinstrument=datarace source.c

run collect -r [race | deadlock] a.out

display er_print [-race | -deadlock] tha.1.er

display (GUI) tha tha.1.er

untested

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 29 / 33

Valgrind-DRD

Requires gcc > 4.2 compiled with --disable-linux-futex (e.g. use
valgrind-3.6.0~svn11254/drd/scripts/download-and-build-gcc)
and recent Valgrind (SVN or debian/squeeze should be sufficient).

compile gcc -g -fopenmp source.c

set gcc export CC=/path/to/gcc

set libs export LD_LIBRARY_PAT=/path/to/libs

run valgrind --tool=drd --check-stack-var=yes
--read-var-info=yes --first-race-only=yes a.out

take care to use the futex-less gcc and libs! (most distributions have futex
enabled)

Didn’t find all the data-races in my tests.

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 30 / 33

Valgrind-Helgrind

Requires gcc > 4.2 compiled with --disable-linux-futex (e.g. use
valgrind-3.6.0~svn11254/drd/scripts/download-and-build-gcc)
and recent Valgrind (SVN or debian/squeeze should be sufficient).

compile gcc -g -fopenmp source.c

set gcc export CC=/path/to/gcc

set libs export LD_LIBRARY_PAT=/path/to/libs

run valgrind --tool=helgrind
--check-stack-var=yes a.out

take care to use the futex-less gcc and libs! (most distributions have futex
enabled)

Didn’t find all the data-races in my tests.

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 31 / 33

Thread Checker – Summary

Intel Thread Checker finds the locations of race conditions, but the
programmer must find the reason
pgdbg, pathdb and Thread Analyser: untested
Valgrind DRD/Helgrind didn’t find all races
Source code instrumentation returns an important error report (executed
with 1 thread)
programmer has to eliminate all errors or must be sure that the reported
error is a “false positive” (note in source code with sign. of programmer)

It is absolutely necessary to use a tool to check for race-conditions!

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 32 / 33

And . . . I think I will stop here

Acknowledgements:

Thanks to Eero Vainikko for inviting me!

This work is licensed under the Creative Commons CC-BY-NC-ND 3.0 License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/.

In short the terms are: You are allowed to distribute the pdf-file (share alike), You are not allowed to make
money from it (no commercial use) and You are not allowed to alter it or use parts of it (no derivatives).

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 33 / 33

http://creativecommons.org/licenses/by-nc-nd/3.0/

