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Are Choice of Hardware and Choice of Programming
Languages connected?
Yes!
This is e.g. due to different storing philosophy of matrices.

FORTRAN stores matrices in column-major format,
most other languages use row-major.

The column-major format is especially suited for vectorizing code and
matrix-vector multiplications on vector-processors.

Other factors include
available libraries
extensions (OpenCL, OpenMP, MPI) are only available for some
languages
notably

OpenMP for C/C++ and FORTRAN (there is no python version!)
OpenCL only for C
the C++ bindings will be dropped from the next MPI standard (only ISO C
and FORTRAN 90 remain in MPI-3, C++ bindings are already deprecated in
MPI-2.2)

not all languages/libraries exist for all hardware platforms
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SMP: ccNUMA

NUMA: Non Uniform Memory Access
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It is important to keep data in caches coherent
−→ ccNUMA architecture
ccNUMA requires special interconnect between nodes (low latency, high
bandwidth)
does not scale as good as distributed memory parallelism (e.g. with MPI) due
to necessary cache coherence
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Work/Data Distribution

Work decomposition
(based on loop decomposition)

do i=1,100 ->

do i=1,25
do i=26,50
do i=51,75
do i=76,100

Data decomposition
(all work for the local portion of data is done by local processor)

A(1:40,1:100) ->

A(1:20,1:50)
A(1:20,51:100)
A(21:40,1:50)
A(21:40,51:100)

Domain decomposition
(decomposition of work and data is done in a higher model)
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Parallel Programming Models
Hardware independent (more or less):

OpenMP
Shared Memory Directives
to define the work decomposition
no data decomposition
synchronization is implicit (can be also user-defined)

OpenCL (Open Compute Language)
HPF (High Performance Fortran)

Data Parallelism
User specifies data decomposition with directives
Communication (and synchronization) is implicit

MPI (Message Passing Interface), PVM
User specifies how work & data is distributed
User specifies how and when communication has to be done
by calling MPI communication library-routines

Hardware dependent:
IBM Cell SDK
nVidia CUDA
SSE/MMX/. . . for x86 processors
c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 5 / 33



Distribution Methods

decomposition easiest programming interface
work OpenMP
data HPF

domain MPI
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Program Optimization

Different optimization goals and strategies:

speed (Flops)
memory usage
portability
maintainability
programming effort/time

NB! Most of these goals are not compatible with each other!
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OpenMP

most OpenMP constructs are compiler directives of pragmas
focus is to parallelize loops
an incremental approach to parallelism is offered

Serial Program:

void main ( )
{

double foo [ 1 0 0 0 ] ;
i n t i ;

for ( i =0; i <1000; i ++){
do_huge_calc ( foo [ i ] ) ;

}
}

Parallel Program:

void main ( )
{

double foo [ 1 0 0 0 ] ;
i n t i ;

#pragma omp p a r a l l e l for
for ( i =0; i <1000; i ++){

do_huge_calc ( foo [ i ] ) ;
}

}
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OpenMP Programming Model

OpenMP is a shared memory model (SMP)
workload is distributed between threads
enabled via a compiler switch (-fopenmp for GCC)
variables can be

shared among threads
duplicated for each thread

unintended sharing of data leads to race conditions
race condition: when the output of the program changes as the threads
are scheduled differently
control race conditions:
use synchronization to prevent data conflicts
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OpenMP Execution Model
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OpenMP Parallel Region

Fortran:

!$OMP PARALLEL
code

!$OMP END PARALLEL

C/C++:

#pragma omp p a r a l l e l
s t r u c t u r e d code block

/∗ omp end p a r a l l e l ∗ /
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OpenMP Directive Format: C/C++

#pragma directives – case sensitive
Format:
#pragma omp directive_name [clause [[,]clause] . . . ] newline
Conditional compilation

# i f d e f _OPENMP
p r i n t f ( " number o f processors : %d \ n " , get_num_procs ( ) ) ;

#endif

include library functions

# i f d e f _OPENMP
#include <omp. h>
#endif

constant _OPENMP is defined when gcc -fopenmp is used
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OpenMP Data Scope Clauses

private (list)
shared (list)
if not specified defaults to shared, but

stack (local) variables in called sub-programs are PRIVATE
automatic variables within a block are PRIVATE
loop control variables of parallel OMP DO/for are PRIVATE

Recommendation: Avoid private variables, use local variables instead (in
C/C++).
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OpenMP Environment Variables

OMP_NUM_THREADS
sets number of threads
if dynamic adjustment is enabled: maximum number of threads
setenv OMP_NUM_THREADS 4 [csh,tcsh]
export OMP_NUM_THREADS=4 [sh, ksh, bash]

OMP_SCHEDULE

applies only to DO/for directives that have schedule type RUNTIME

sets schedule type and chunk size
setenv OMP_SCHEDULE “GUIDED,4” [csh,tcsh]
export OMP_SCHEDULE=“GUIDED,4” [sh, ksh, bash]
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OpenMP Runtime Library

C/C++:
#include <omp.h>
Fortran:
!$ INCLUDE ’omp_lib.h’ or !$ USE omp_lib
(availability implementation dependent)
int omp_get_num_threads(void);
returns number of threads currently in the team of the parallel region
int omp_get_thread_num(void);
returns the number of the thread in the team. Master thread is 0.
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OpenMP Work Sharing Constructs

sections

for (C/C++)
do (Fortran)
workshare (Fortran)
single

divide execution of enclosed code among the team
must be within parallel region
they do not launch new threads
no barrier on entry
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OpenMP sections Directive

C/C++:

#pragma omp p a r a l l e l
{
#pragma omp sec t ions

{ { a = . . . ;
b = . . . ; }

#pragma omp sec t ion
{ c = . . . ;

d = . . . ; }
#pragma omp sec t ion

{ e = . . . ;
f = . . . ; }

#pragma omp sec t ion
{ g = . . . ;

h = . . . ; }
} /∗ end omp sec t ions ∗ /

} /∗ end omp p a r a l l e l ∗ /
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OpenMP do/for Directive

C/C++:

#pragma omp p a r a l l e l p r i v a t e ( f )
{

f =7;

#pragma omp f o r

f o r ( i =0; i <20; i ++)
a [ i ]=b [ i ]+ f ∗ ( i +1 ) ;

} /∗ omp end p a r a l l e l ∗ /
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OpenMP reduction Clause

reduction (operator:list)
performs a reduction on the variables that appear in list, with the operator
operator
operator: one of

C/C++: +,*,-,&,ˆ,|,&&,||
Fortran: +,*,-, .and., .or., ,eqv., .neqv., max, min, iand, ior, ieor

variables must be shared
at the end of the reduction the shared variable is updated with the result.
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OpenMP reduction Example

C/C++:

sm=0;
#pragma omp p a r a l l e l f o r reduc t ion ( + :sm)
f o r ( i =0; i <20; i ++)
{

double r ;

r = work ( i ) ;

sm=sm+ r ;

} /∗ omp end p a r a l l e l f o r ∗ /

[There is a combined parallel do/for directive
for parallel regions that contain a single do/for.]

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 20 / 33



OpenMP Errors

Two types of SMP errors:
Race Conditions:

Def.: Two threads access the same shared variable and at least one thread
modifies the variable and the sequence of the access is undefined, i.e.
unsynchronized
the outcome of a program depends on the detailed timing of the threads in
the team
often caused by unintended share of data

Deadlock
threads lock up waiting on a locked resource that will never become free
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OpenMP Race Conditions – Example 1

#pragma omp p a r a l l e l
{
#pragma omp sec t ions

a=b+c ;
#pragma omp sec t ion

b=a+c ;
#pragma omp sec t ion

c=b+a ;
} /∗ omp end p a r a l l e l sec t ions ∗ /
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OpenMP Race Conditions – Example 2

#pragma omp p a r a l l e l shared ( x ) , p r i v a t e ( tmp )
{

i d =omp_get_thread_num ( ) ;
#pragma omp f o r reduc t ion ( + : x ) nowait

f o r ( i =1; i <100; i ++)
{
tmp=work1 ( i ) ;
x=x+tmp ;
} /∗ omp end f o r reduc t ion ∗ /

y ( i d )= work2 ( x , i d ) ;
/∗ omp end p a r a l l e l ∗ /

c© Heiko Herrmann (CENS) Shared Memory Parallel Programming with OpenMP October 27, 2010 23 / 33



OpenMP Summary (1)

standardized compiler directives for shared memory programming

fork-join model based on threads

support from (relevant) hardware vendors

incremental approach for parallelism

allows to keep single source for parallel and sequential execution

race conditions and deadlock possible

use tools to check for race conditions

NB! Single Source
Don’t fork the code for parallelization, keep a single source tree!
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Thread Checker

Goals:
detect race conditions
other parallelizations errors, like missing firstprivate

NB!
OpenMP parallelizations should never be used in production without
verification with race-condition checking tools!
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Parallel Debugging

Intel Thread Checker (needs Intel C/FORTRAN Compiler)
Linux and Windows; needs Intel compiler; commercial:

C++ Compiler prof. Linux 499,- + VAT (download), 539,- + VAT (CD)
Compiler suite prof. Linux (C++ and FORTRAN) 1099,- + VAT (CD)
Thread Checker Linux 409,- + VAT (download), 449,- + VAT (CD)
academic pricing on request

Portland Group pgdbg and compiler
commercial (akad.: C/C++/FORTRAN 699,-, C 299,-, FORTRAN 499,-)
Sun/Oracle Solaris Studio Thread Analyzer
Linux, Solaris; free (but closed source)
maybe PathScale Eko with pathdb (or path64)
Helgrind (Valgrind suite)
Linux (Posix) only; free open-source
DRD (Valgrind suite)
Linux (Posix) only; free open-source
(gcc needs to be compiled with --disable-linux-futex)
ThreadSanitizer
Linux (based on Valgrind), Windows (based on PIN); free open-source
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Race Checker: Method

Compile your OpenMP program with thread checker/debugging info
start and execute with race checker

executed on 1 thread
verifying all memory accesses
∼ 300 times slower than normal execution (use small but relevant data set)

invoke analysis tool
error report
with references to your source code

try to find the parallelization bugs in your code
try to correct these (without modifying the serial semantics of the program
compile and execute again
repeat until all errors are resolved
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Intel Thread Checker: Processing

TCI-mode (requires ICC):
compile icc -tcheck -openmp -g -o myprog myprog.c

run tcheck_cl -w 90 -o myprog.txt ./myprog

text output tcheck_cl -f txt -w 130 threadchecker.thr

csv output tcheck_cl -f csv threadchecker.thr

good tool
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Sun/Oracle Thread Analyzer

Used with Sun/Oracle Solaris Studio
compile cc -xinstrument=datarace source.c

run collect -r [ race | deadlock ] a.out

display er_print [-race | -deadlock] tha.1.er

display (GUI) tha tha.1.er

untested
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Valgrind-DRD

Requires gcc > 4.2 compiled with --disable-linux-futex (e.g. use
valgrind-3.6.0~svn11254/drd/scripts/download-and-build-gcc)
and recent Valgrind (SVN or debian/squeeze should be sufficient).

compile gcc -g -fopenmp source.c

set gcc export CC=/path/to/gcc

set libs export LD_LIBRARY_PAT=/path/to/libs

run valgrind --tool=drd --check-stack-var=yes
--read-var-info=yes --first-race-only=yes a.out

take care to use the futex-less gcc and libs! (most distributions have futex
enabled)

Didn’t find all the data-races in my tests.
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Valgrind-Helgrind

Requires gcc > 4.2 compiled with --disable-linux-futex (e.g. use
valgrind-3.6.0~svn11254/drd/scripts/download-and-build-gcc)
and recent Valgrind (SVN or debian/squeeze should be sufficient).

compile gcc -g -fopenmp source.c

set gcc export CC=/path/to/gcc

set libs export LD_LIBRARY_PAT=/path/to/libs

run valgrind --tool=helgrind
--check-stack-var=yes a.out

take care to use the futex-less gcc and libs! (most distributions have futex
enabled)

Didn’t find all the data-races in my tests.
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Thread Checker – Summary

Intel Thread Checker finds the locations of race conditions, but the
programmer must find the reason
pgdbg, pathdb and Thread Analyser: untested
Valgrind DRD/Helgrind didn’t find all races
Source code instrumentation returns an important error report (executed
with 1 thread)
programmer has to eliminate all errors or must be sure that the reported
error is a “false positive” (note in source code with sign. of programmer)

It is absolutely necessary to use a tool to check for race-conditions!
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And . . . I think I will stop here
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