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Matrix-Multiplication Based Algorithm

e Consider the multiplication of the weighted adjacency matrix with itself - except,
in this case, we replace the multiplication operation in matrix multiplication by
addition, and the addition operation by minimization

e Notice that the product of weighted adjacency matrix with itself returns a matrix
that contains shortest paths of length 2 between any pair of nodes

o |t follows from this argument that A” contains all shortest paths

e A" is computed by doubling powers - i.e., as A, A%, A%, A8, ...
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e We need logn matrix multiplications, each taking time O(n?).

e The serial complexity of this procedure is O(n>logn).

e This algorithm is not optimal, since the best known algorithms have complexity
o).

Parallel formulation

e Each of the logn matrix multiplications can be performed in parallel.

e We can use 1’/ logn processors to compute each matrix-matrix product in time
logn.

e The entire process takes O(log”n) time.

Dijkstra’s Algorithm
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e Execute n instances of the single-source shortest path problem, one for each
of the n source vertices.

e Complexity is O(n?).

Parallel formulation

Two parallelization strategies - execute each of the n shortest path problems on a
different processor (source partitioned), or use a parallel formulation of the shortest
path problem to increase concurrency (source parallel).

Dijkstra’s Algorithm: Source Partitioned Formulation

e Use n processors, each processor P; finds the shortest paths from vertex v;
to all other vertices by executing Dijkstra’s sequential single-source shortest
paths algorithm.

e [t requires no interprocess communication (provided that the adjacency matrix
is replicated at all processes).
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e The parallel run time of this formulation is: ®(n?).

e While the algorithm is cost optimal, it can only use n processors. Therefore,
the isoefficiency due to concurrency is ®(p?).

Dijkstra’s Algorithm: Source Parallel Formulation

e In this case, each of the shortest path problems is further executed in parallel.
We can therefore use up to n? processors.

e Given p processors (p > n), each single source shortest path problem is exe-
cuted by p/n processors.

e Using previous results, this takes time:

computation
communication

n3 —_—
T,=0© o + ©(nlogp)
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e For cost optimality, we have p = O(n?/logn) and the isoefficiency is
O((plogp)'?).

Floyd’s Algorithm

e Let G= (V,E,w) be the weighted graph with vertices V = {v,va,...,v,}.

e For any pair of vertices v;,v; € V, consider all paths from v; to v; whose in-

termediate vertices belong to the subset {vi,va,..., v} (k < n). Let pg}) (of
weight dl.(.lj.)) be the minimum-weight path among them.

e If vertex vy is not in the shortest path from v; to v;, then pl(kj) is the same as
(k=1)

i

o Ifyisin pl(k-), then we can break pl(k-) into two paths - one from v; to v, and one

from v to v;. Each of these paths uses vertices from {v{,va,...,v_1}.
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From our observations, the following recurrence relation follows:

S0 {w(vi,vj) ifk =0

O min{dlYal Va0 k>

This equation must be computed for each pair of nodes and for k = 1,n. The
serial complexity is O(n?).

procedure FLOYD_ALL PAIRS SP(A)
begin
DY=A;
for k:=1 to n do
for i:=1 to n do
for j:=1 to n do
(k=1) (k=1)

dz(/;) = min(di,j 7di(,k _._dlg(jil)) ;

end FLOYD ALL_PAIRS SP
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Parallel formulation: 2D Block Mapping

e Matrix D'¥) is divided into p blocks of size (1n/,/p) x (1n/\/P).

Each processor updates its part of the matrix during each iteration.

To compute dl(lfl) processor P; ; must get dl(lzfl) and d,g‘rfl).

In general, during the Kth iteration, each of the ,/p) processes containing part
of the k1 row send it to the /P — 1 processes in the same column.

Similarly, each of the /p processes containing part of the K column sends it
to the /p — 1 processes in the same row.
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procedure FLOYD 2DBLOCK (D))
begin
for k:=1 to n do
begin
each process P, that has a segment of the k' row of DD
broadcasts it to the P.; processes;
each process P ; that has a segment of the K column of D
broadcasts it to the P, processes;
each process waits to receive the needed segments;
each process P.; computes its part of the D® matrix;
end
end FLOYD_2DBLOCK

(k=1)

e During each iteration of the algorithm, the KM row and &t column of processors
perform a one-to-all broadcast along their rows/columns.

e The size of this broadcast is n/,/p elements, taking time ®((nlogp)/\/p).

e The synchronization step takes time @(log p).
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The computation time is ®(n?/p).

The parallel run time of the 2-D block mapping formulation of Floyd’s algorithm
is

computation communication

—— ———
I,=0(— ——logp
? p VP

The above formulation can use O(n?/log®n) processors cost-optimally.
The isoefficiency of this formulation is @(p'1log? p).

This algorithm can be further improved by relaxing the strict synchronization
after each iteration.

Speeding things up by pipelining
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e The synchronization step in parallel Floyd’s algorithm can be removed without
affecting the correctness of the algorithm.

e A process starts working on the KM iteration as soon as it has computed the

k—1th
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Processors

Communication protocol followed in
the pipelined 2-D block mapping formu-
lation of Floyd’s algorithm. Assume that

iteration and has the relevant parts of the D*~

1) matrix.

process 4 at time ¢ has just computed a
segment of the kN column of the D*—1)
matrix. It sends the segment to pro-
cesses 3 and 5. These processes receive
the segment at time ¢ + 1 (where the time
unit is the time it takes for a matrix seg-
ment to travel over the communication
link between adjacent processes). Sim-
ilarly, processes farther away from pro-
cess 4 receive the segment later. Pro-
cess 1 (at the boundary) does not forward
the segment after receiving it.

e Ineachstep, n/,/p elements of the first row are sent from process P, j to P, 1 ;.
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Similarly, elements of the first column are sent from process P, ; to process
Pijt1.

Each such step takes time ©(n/,/p).

After ©(,/p) steps, process P /5. /p 9ets the relevant elements of the first row
and first column in time ®(n).

The values of successive rows and columns follow after time @(n?/p) in a
pipelined mode.

Process P s /p finishes its share of the shortest path computation in time
©(n*/p) +O(n).

When process P,/ /» has finished the (n— 1)th iteration, it sends the relevant

th

values of the n*'' row and column to the other processes.

The overall parallel run time of this formulation is

computation
communication

peo(D) o

p
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e The pipelined formulation of Floyd’s algorithm uses up to O(n?) processes
efficiently.

e The corresponding isoefficiency is ®(p').

All-pairs Shortest Path: Comparison

Maximum Number

of Processes Corresponding Isoefficiency
for B = (1) Parallel Run Time  Function
Dijkstra source-partitioned O(n) e(n?) e(p?)
Dijkstra source-parallel o(n? /lo~‘i n) O(nlogn) e((plog 1))1'5)
Floyd 1-D block ©(n/logn) O(n’log n) O((plog p]g)
Floyd 2-D block e(n? / log 2 n) ©(nlog” n) e(p'® loggpj
Floyd pipelined 2-D block &(n?) e(n) e(p'®)
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12.5 Connected Components

e The connected components of an undirected graph are the equivalence
classes of vertices under the “is reachable from” relation

e A graph with three connected components: {1,2,3,4}, {5,6,7}, and {8,9}:

OO O

0‘9 0‘0 &)

Depth-First Search (DFS) Based Algorithm
e Perform DFS on the graph to get a forest - each tree in the forest corresponds
to a separate connected component

e Part (b) is a depth-first forest obtained from depth-first traversal of the graph in
part (a). Each of these trees is a connected component of the graph in part (a):
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Parallel Formulation

e Partition the graph across processors and run independent connected compo-
nent algorithms on each processor. At this point, we have p spanning forests.

e In the second step, spanning forests are merged pairwise until only one span-
ning forest remains.
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Computing  connected

~ components in parallel:
The adjacency matrix of
the graph G in (a) is par-
titioned into two parts (b).

Frocessor 2

Each process gets a sub-
graph of G ((c) and (e)).

Each process then com-
putes the spanning forest
of the subgraph ((d) and

(f)).

_______ Finally, the two spanning
© ® trees are merged to form
the solution.
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To merge pairs of spanning forests efficiently, the algorithm uses disjoint sets
of edges.

We define the following operations on the disjoint sets:

find(x)

o returns a pointer to the representative element of the set containing x .
Each set has its own unique representative.

union(x, y)

o unites the sets containing the elements x and y. The two sets are as-
sumed to be disjoint prior to the operation.

For merging forest A into forest B, for each edge (u,v) of A, a find operation is
performed to determine if the vertices are in the same tree of B.

If not, then the two trees (sets) of B containing u and v are united by a union
operation.
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e Otherwise, no union operation is necessary.

e Hence, merging A and B requires at most 2(n — 1) find operations and (n — 1)
union operations.

Parallel 1-D Block Mapping

e The n X n adjacency matrix is partitioned into p blocks.
e Each processor can compute its local spanning forest in time ©(n?/p).

e Merging is done by embedding a logical tree into the topology. There are log p
merging stages, and each takes time ®(n). Thus, the cost due to merging is

O(nlogp).

e During each merging stage, spanning forests are sent between nearest neigh-
bors. Recall that ®(n) edges of the spanning forest are transmitted.
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e The parallel run time of the connected-component algorithm is

local computation
—— forest merging

n2 —_—
I,= O > + ®(nlogp)

e For a cost-optimal formulation p = O(n/logn). The corresponding isoefficiency
is @(p?log? p).



