313 Graph Algorithms 12.4 All-Pairs Shortest Paths

Matrix-Multiplication Based Algorithm

e Consider the multiplication of the weighted adjacency matrix with itself - except,
in this case, we replace the multiplication operation in matrix multiplication by
addition, and the addition operation by minimization

e Notice that the product of weighted adjacency matrix with itself returns a matrix
that contains shortest paths of length 2 between any pair of nodes

o |t follows from this argument that A” contains all shortest paths

e A" is computed by doubling powers - i.e., as A, A%, A%, A8, ...

12.4 All-Pairs Shortest Paths

314 Graph Algorithms

YmBRAmRygo wmodEiaiddo
D Ros RO O T PO~
Yoo oo ¥ ¥ m Mmoo ¥y
mHgggoggyg "~ REEo843
n dmmom— ¥y n MmO m— g Y
+ @R @Ry TE-medBYdd
mPgogggigg 2484 4K 44
Mo RRER2BYE MR AE AR
cYiBgerigy 88448444

I I

= =
8888800 wo g Pgiagdo
BRI Ao~ ©oFT®m RN~ O
AR AN Edoo g woma oo ¥ K
B ARA20 B33 m—388oR 37
B8ngog~38 weamon~§ g
8888888 +8oBB8E7Y
mYORBEEER mEoB8BEEE
NOPEEEEEE N BB EEE
CEBRERABE o8 REBBEEER

I I

= =

315 Graph Algorithms 12.4 All-Pairs Shortest Paths

e We need logn matrix multiplications, each taking time O(n?).

e The serial complexity of this procedure is O(n>logn).

e This algorithm is not optimal, since the best known algorithms have complexity
o).

Parallel formulation

e Each of the logn matrix multiplications can be performed in parallel.

e We can use 1’/ logn processors to compute each matrix-matrix product in time
logn.

e The entire process takes O(log”n) time.

Dijkstra’s Algorithm

316 Graph Algorithms 12.4 All-Pairs Shortest Paths

e Execute n instances of the single-source shortest path problem, one for each
of the n source vertices.

e Complexity is O(n?).

Parallel formulation

Two parallelization strategies - execute each of the n shortest path problems on a
different processor (source partitioned), or use a parallel formulation of the shortest
path problem to increase concurrency (source parallel).

Dijkstra’s Algorithm: Source Partitioned Formulation

e Use n processors, each processor P; finds the shortest paths from vertex v;
to all other vertices by executing Dijkstra’s sequential single-source shortest
paths algorithm.

e [t requires no interprocess communication (provided that the adjacency matrix
is replicated at all processes).

317 Graph Algorithms 12.4 All-Pairs Shortest Paths

e The parallel run time of this formulation is: ®(n?).

e While the algorithm is cost optimal, it can only use n processors. Therefore,
the isoefficiency due to concurrency is ®(p?).

Dijkstra’s Algorithm: Source Parallel Formulation

e In this case, each of the shortest path problems is further executed in parallel.
We can therefore use up to n? processors.

e Given p processors (p > n), each single source shortest path problem is exe-
cuted by p/n processors.

e Using previous results, this takes time:

computation
communication

n3 —_—
T,=0© o + ©(nlogp)

318 Graph Algorithms 12.4 All-Pairs Shortest Paths

e For cost optimality, we have p = O(n?/logn) and the isoefficiency is
O((plogp)'?).

Floyd’s Algorithm

e Let G= (V,E,w) be the weighted graph with vertices V = {v,va,...,v,}.

e For any pair of vertices v;,v; € V, consider all paths from v; to v; whose in-

termediate vertices belong to the subset {vi,va,..., v} (k < n). Let pg}) (of
weight dl.(.lj.)) be the minimum-weight path among them.

e If vertex vy is not in the shortest path from v; to v;, then pl(kj) is the same as
(k=1)

i

o Ifyisin pl(k-), then we can break pl(k-) into two paths - one from v; to v, and one

from v to v;. Each of these paths uses vertices from {v{,va,...,v_1}.

319 Graph Algorithms 12.4 All-Pairs Shortest Paths

From our observations, the following recurrence relation follows:

S0 {w(vi,vj) ifk =0

O min{dlYal Va0 k>

This equation must be computed for each pair of nodes and for k = 1,n. The
serial complexity is O(n?).

procedure FLOYD_ALL PAIRS SP(A)
begin
DY=A;
for k:=1 to n do
for i:=1 to n do
for j:=1 to n do
(k=1) (k=1)

dz(/;) = min(di,j 7di(,k _._dlg(jil)) ;

end FLOYD ALL_PAIRS SP

320 Graph Algorithms 12.4 All-Pairs Shortest Paths

Parallel formulation: 2D Block Mapping

e Matrix D'¥) is divided into p blocks of size (1n/,/p) x (1n/\/P).

Each processor updates its part of the matrix during each iteration.

To compute dl(lfl) processor P; ; must get dl(lzfl) and d,g‘rfl).

In general, during the Kth iteration, each of the ,/p) processes containing part
of the k1 row send it to the /P — 1 processes in the same column.

Similarly, each of the /p processes containing part of the K column sends it
to the /p — 1 processes in the same row.

321

Graph Algorithms

12.4 All-Pairs Shortest Paths

< |=
'tﬂ‘"’

<
'r37|:j

(L.1)|(1.2)

(1 —1)

n_
VP

T

—I—lny—lﬁ*l

322 Graph Algorithms 12.4 All-Pairs Shortest Paths

k column k column
Jk=1) Bl B O
k.r L] f
SO L 1 SR I ot Py gl
k row 1 -y '
oW O I S | | | L] |
o : vy v ER2K
J(k=1) | | LT T '
RV IR R A R SN U 1 DU SO o
— > a d} k) R R N
______________ :..._____._______._;-_'J‘l_.__ A
: ' o [==
«— | >

(a) (b)

323 Graph Algorithms 12.4 All-Pairs Shortest Paths

procedure FLOYD 2DBLOCK (D))
begin
for k:=1 to n do
begin
each process P, that has a segment of the k' row of DD
broadcasts it to the P.; processes;
each process P ; that has a segment of the K column of D
broadcasts it to the P, processes;
each process waits to receive the needed segments;
each process P.; computes its part of the D® matrix;
end
end FLOYD_2DBLOCK

(k=1)

e During each iteration of the algorithm, the KM row and &t column of processors
perform a one-to-all broadcast along their rows/columns.

e The size of this broadcast is n/,/p elements, taking time ®((nlogp)/\/p).

e The synchronization step takes time @(log p).

324 Graph Algorithms 12.4 All-Pairs Shortest Paths

The computation time is ®(n?/p).

The parallel run time of the 2-D block mapping formulation of Floyd’s algorithm
is

computation communication

—— ———
I,=0(— ——logp
? p VP

The above formulation can use O(n?/log®n) processors cost-optimally.
The isoefficiency of this formulation is @(p'1log? p).

This algorithm can be further improved by relaxing the strict synchronization
after each iteration.

Speeding things up by pipelining

325 Graph Algorithms

12.4 All-Pairs Shortest Paths

e The synchronization step in parallel Floyd’s algorithm can be removed without
affecting the correctness of the algorithm.

e A process starts working on the KM iteration as soon as it has computed the

k—1th

Time
el e e) Y
i D \)_'C_Hj LS O
OO~~~ O~~~ O~
.) S/ A N, (_) J
e O _(\ { (.)_(_}_()_'(_)]
e N y Ny
=3 _ —OO0O—-C0O0C=<0
O—O) NN
L \/'_(_ >_ S

=5)_\.)_'\ /

)_‘\/ \)_\N

ﬂ e
JI \./ (_ ./

§

Processors

Communication protocol followed in
the pipelined 2-D block mapping formu-
lation of Floyd’s algorithm. Assume that

iteration and has the relevant parts of the D*~

1) matrix.

process 4 at time ¢ has just computed a
segment of the kN column of the D*—1)
matrix. It sends the segment to pro-
cesses 3 and 5. These processes receive
the segment at time ¢ + 1 (where the time
unit is the time it takes for a matrix seg-
ment to travel over the communication
link between adjacent processes). Sim-
ilarly, processes farther away from pro-
cess 4 receive the segment later. Pro-
cess 1 (at the boundary) does not forward
the segment after receiving it.

e Ineachstep, n/,/p elements of the first row are sent from process P, j to P, 1 ;.

326 Graph Algorithms 12.4 All-Pairs Shortest Paths

Similarly, elements of the first column are sent from process P, ; to process
Pijt1.

Each such step takes time ©(n/,/p).

After ©(,/p) steps, process P /5. /p 9ets the relevant elements of the first row
and first column in time ®(n).

The values of successive rows and columns follow after time @(n?/p) in a
pipelined mode.

Process P s /p finishes its share of the shortest path computation in time
©(n*/p) +O(n).

When process P,/ /» has finished the (n— 1)th iteration, it sends the relevant

th

values of the n*'' row and column to the other processes.

The overall parallel run time of this formulation is

computation
communication

peo(D) o

p

327 Graph Algorithms 12.4 All-Pairs Shortest Paths

e The pipelined formulation of Floyd’s algorithm uses up to O(n?) processes
efficiently.

e The corresponding isoefficiency is ®(p').

All-pairs Shortest Path: Comparison

Maximum Number

of Processes Corresponding Isoefficiency
for B = (1) Parallel Run Time Function
Dijkstra source-partitioned O(n) e(n?) e(p?)
Dijkstra source-parallel o(n? /lo~‘i n) O(nlogn) e((plog 1))1'5)
Floyd 1-D block ©(n/logn) O(n’log n) O((plog p]g)
Floyd 2-D block e(n? / log 2 n) ©(nlog” n) e(p'® loggpj
Floyd pipelined 2-D block &(n?) e(n) e(p'®)

328 Graph Algorithms 12.5 Connected Components

12.5 Connected Components

e The connected components of an undirected graph are the equivalence
classes of vertices under the “is reachable from” relation

e A graph with three connected components: {1,2,3,4}, {5,6,7}, and {8,9}:

OO O

0‘9 0‘0 &)

Depth-First Search (DFS) Based Algorithm
e Perform DFS on the graph to get a forest - each tree in the forest corresponds
to a separate connected component

e Part (b) is a depth-first forest obtained from depth-first traversal of the graph in
part (a). Each of these trees is a connected component of the graph in part (a):

329 Graph Algorithms 12.5 Connected Components

Parallel Formulation

e Partition the graph across processors and run independent connected compo-
nent algorithms on each processor. At this point, we have p spanning forests.

e In the second step, spanning forests are merged pairwise until only one span-
ning forest remains.

330 Graph Algorithms 12.5 Connected Components

Computing connected

~ components in parallel:
The adjacency matrix of
the graph G in (a) is par-
titioned into two parts (b).

Frocessor 2

Each process gets a sub-
graph of G ((c) and (e)).

Each process then com-
putes the spanning forest
of the subgraph ((d) and

(f)).

_______ Finally, the two spanning
© ® trees are merged to form
the solution.

331 Graph Algorithms 12.5 Connected Components

To merge pairs of spanning forests efficiently, the algorithm uses disjoint sets
of edges.

We define the following operations on the disjoint sets:

find(x)

o returns a pointer to the representative element of the set containing x .
Each set has its own unique representative.

union(x, y)

o unites the sets containing the elements x and y. The two sets are as-
sumed to be disjoint prior to the operation.

For merging forest A into forest B, for each edge (u,v) of A, a find operation is
performed to determine if the vertices are in the same tree of B.

If not, then the two trees (sets) of B containing u and v are united by a union
operation.

332 Graph Algorithms 12.5 Connected Components

e Otherwise, no union operation is necessary.

e Hence, merging A and B requires at most 2(n — 1) find operations and (n — 1)
union operations.

Parallel 1-D Block Mapping

e The n X n adjacency matrix is partitioned into p blocks.
e Each processor can compute its local spanning forest in time ©(n?/p).

e Merging is done by embedding a logical tree into the topology. There are log p
merging stages, and each takes time ®(n). Thus, the cost due to merging is

O(nlogp).

e During each merging stage, spanning forests are sent between nearest neigh-
bors. Recall that ®(n) edges of the spanning forest are transmitted.

333 Graph Algorithms 12.5 Connected Components

e The parallel run time of the connected-component algorithm is

local computation
—— forest merging

n2 —_—
I,= O > + ®(nlogp)

e For a cost-optimal formulation p = O(n/logn). The corresponding isoefficiency
is @(p?log? p).

