
313 Graph Algorithms 12.4 All-Pairs Shortest Paths

Matrix-Multiplication Based Algorithm

• Consider the multiplication of the weighted adjacency matrix with itself - except,
in this case, we replace the multiplication operation in matrix multiplication by
addition, and the addition operation by minimization

• Notice that the product of weighted adjacency matrix with itself returns a matrix
that contains shortest paths of length 2 between any pair of nodes

• It follows from this argument that An contains all shortest paths

• An is computed by doubling powers - i.e., as A, A2, A4, A8, ...



314 Graph Algorithms 12.4 All-Pairs Shortest Paths



315 Graph Algorithms 12.4 All-Pairs Shortest Paths

• We need logn matrix multiplications, each taking time O(n3).

• The serial complexity of this procedure is O(n3 logn).

• This algorithm is not optimal, since the best known algorithms have complexity
O(n3).

Parallel formulation

• Each of the logn matrix multiplications can be performed in parallel.

• We can use n3/ logn processors to compute each matrix-matrix product in time
logn.

• The entire process takes O(log2 n) time.

Dijkstra’s Algorithm



316 Graph Algorithms 12.4 All-Pairs Shortest Paths

• Execute n instances of the single-source shortest path problem, one for each
of the n source vertices.

• Complexity is O(n3).

Parallel formulation

Two parallelization strategies - execute each of the n shortest path problems on a
different processor (source partitioned), or use a parallel formulation of the shortest
path problem to increase concurrency (source parallel).

Dijkstra’s Algorithm: Source Partitioned Formulation

• Use n processors, each processor Pi finds the shortest paths from vertex vi
to all other vertices by executing Dijkstra’s sequential single-source shortest
paths algorithm.

• It requires no interprocess communication (provided that the adjacency matrix
is replicated at all processes).



317 Graph Algorithms 12.4 All-Pairs Shortest Paths

• The parallel run time of this formulation is: Θ(n2).

• While the algorithm is cost optimal, it can only use n processors. Therefore,
the isoefficiency due to concurrency is Θ(p3).

Dijkstra’s Algorithm: Source Parallel Formulation

• In this case, each of the shortest path problems is further executed in parallel.
We can therefore use up to n2 processors.

• Given p processors (p > n), each single source shortest path problem is exe-
cuted by p/n processors.

• Using previous results, this takes time:

Tp =

computation︷ ︸︸ ︷
Θ

(
n3

p

)
+

communication︷ ︸︸ ︷
Θ(n log p)



318 Graph Algorithms 12.4 All-Pairs Shortest Paths

• For cost optimality, we have p = O(n2/ logn) and the isoefficiency is
Θ((p log p)1.5).

Floyd’s Algorithm

• Let G = (V,E,w) be the weighted graph with vertices V = {v1,v2, ...,vn}.

• For any pair of vertices vi,v j ∈ V , consider all paths from vi to v j whose in-

termediate vertices belong to the subset {v1,v2, . . . ,vk} (k ≤ n). Let p(k)i, j (of

weight d(k)
i, j ) be the minimum-weight path among them.

• If vertex vk is not in the shortest path from vi to v j, then p(k)i, j is the same as

p(k−1)
i, j .

• If vk is in p(k)i, j , then we can break p(k)i, j into two paths - one from vi to vk and one
from vk to v j. Each of these paths uses vertices from {v1,v2, . . . ,vk−1}.



319 Graph Algorithms 12.4 All-Pairs Shortest Paths

From our observations, the following recurrence relation follows:

d(k)
i, j =

{
w(vi,v j) if k = 0

min
{

d(k−1)
i, j ,d(k−1)

i,k +d(k−1)
k, j

}
if k ≥ 1

This equation must be computed for each pair of nodes and for k = 1,n. The
serial complexity is O(n3).� �
procedure FLOYD_ALL_PAIRS_SP (A )
begin

D0 = A ;
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do

d(k)
i, j := min(d(k−1)

i, j ,d(k−1)
i,k +d(k−1)

k, j ) ;
end FLOYD_ALL_PAIRS_SP�



320 Graph Algorithms 12.4 All-Pairs Shortest Paths

Parallel formulation: 2D Block Mapping

• Matrix D(k) is divided into p blocks of size (n/
√

p)× (n/
√

p).

• Each processor updates its part of the matrix during each iteration.

• To compute d(k−1)
l,r processor Pi, j must get d(k−1)

l,k and d(k−1)
k,r .

• In general, during the kth iteration, each of the
√

p) processes containing part

of the kth row send it to the
√

p−1 processes in the same column.

• Similarly, each of the
√

p processes containing part of the kth column sends it
to the

√
p−1 processes in the same row.



321 Graph Algorithms 12.4 All-Pairs Shortest Paths



322 Graph Algorithms 12.4 All-Pairs Shortest Paths



323 Graph Algorithms 12.4 All-Pairs Shortest Paths

� �
procedure FLOYD_2DBLOCK(D(0) )
begin

for k := 1 to n do
begin

each process Pi, j that has a segment of the kth row of D(k−1)

broadcasts i t to the P∗, j processes ;
each process Pi, j that has a segment of the kth column of D(k−1)

broadcasts i t to the Pi,∗ processes ;
each process waits to receive the needed segments ;
each process Pi, j computes i t s part of the D(k) matrix ;

end
end FLOYD_2DBLOCK�
• During each iteration of the algorithm, the kth row and kth column of processors

perform a one-to-all broadcast along their rows/columns.

• The size of this broadcast is n/
√

p elements, taking time Θ((n log p)/
√

p).

• The synchronization step takes time Θ(log p).



324 Graph Algorithms 12.4 All-Pairs Shortest Paths

• The computation time is Θ(n2/p).

• The parallel run time of the 2-D block mapping formulation of Floyd’s algorithm
is

Tp =

computation︷ ︸︸ ︷
Θ

(
n3

p

)
+

communication︷ ︸︸ ︷
Θ

(
n2
√

p
log p

)

• The above formulation can use O(n2/ log2 n) processors cost-optimally.

• The isoefficiency of this formulation is Θ(p1.5 log3 p).

• This algorithm can be further improved by relaxing the strict synchronization
after each iteration.

Speeding things up by pipelining



325 Graph Algorithms 12.4 All-Pairs Shortest Paths

• The synchronization step in parallel Floyd’s algorithm can be removed without
affecting the correctness of the algorithm.

• A process starts working on the kth iteration as soon as it has computed the
k−1th iteration and has the relevant parts of the D(k−1) matrix.

Communication protocol followed in
the pipelined 2-D block mapping formu-
lation of Floyd’s algorithm. Assume that

process 4 at time t has just computed a
segment of the kth column of the D(k−1)

matrix. It sends the segment to pro-
cesses 3 and 5. These processes receive
the segment at time t +1 (where the time
unit is the time it takes for a matrix seg-
ment to travel over the communication
link between adjacent processes). Sim-
ilarly, processes farther away from pro-
cess 4 receive the segment later. Pro-
cess 1 (at the boundary) does not forward
the segment after receiving it.

• In each step, n/
√

p elements of the first row are sent from process Pi, j to Pi+1, j.



326 Graph Algorithms 12.4 All-Pairs Shortest Paths

• Similarly, elements of the first column are sent from process Pi, j to process
Pi, j+1.

• Each such step takes time Θ(n/
√

p).

• After Θ(
√

p) steps, process P√p,
√

p gets the relevant elements of the first row
and first column in time Θ(n).

• The values of successive rows and columns follow after time Θ(n2/p) in a
pipelined mode.

• Process P√p,
√

p finishes its share of the shortest path computation in time
Θ(n3/p)+Θ(n).

• When process P√p,
√

p has finished the (n−1)th iteration, it sends the relevant

values of the nth row and column to the other processes.

• The overall parallel run time of this formulation is

Tp =

computation︷ ︸︸ ︷
Θ

(
n3

p

)
+

communication︷ ︸︸ ︷
Θ(n)



327 Graph Algorithms 12.4 All-Pairs Shortest Paths

• The pipelined formulation of Floyd’s algorithm uses up to O(n2) processes
efficiently.

• The corresponding isoefficiency is Θ(p1.5).

All-pairs Shortest Path: Comparison



328 Graph Algorithms 12.5 Connected Components

12.5 Connected Components

• The connected components of an undirected graph are the equivalence
classes of vertices under the “is reachable from” relation

• A graph with three connected components: {1,2,3,4}, {5,6,7}, and {8,9}:

Depth-First Search (DFS) Based Algorithm

• Perform DFS on the graph to get a forest - each tree in the forest corresponds
to a separate connected component

• Part (b) is a depth-first forest obtained from depth-first traversal of the graph in
part (a). Each of these trees is a connected component of the graph in part (a):



329 Graph Algorithms 12.5 Connected Components

Parallel Formulation

• Partition the graph across processors and run independent connected compo-
nent algorithms on each processor. At this point, we have p spanning forests.

• In the second step, spanning forests are merged pairwise until only one span-
ning forest remains.



330 Graph Algorithms 12.5 Connected Components

Computing connected
components in parallel:

The adjacency matrix of
the graph G in (a) is par-
titioned into two parts (b).

Each process gets a sub-
graph of G ((c) and (e)).

Each process then com-
putes the spanning forest
of the subgraph ((d) and
(f)).

Finally, the two spanning
trees are merged to form
the solution.



331 Graph Algorithms 12.5 Connected Components

• To merge pairs of spanning forests efficiently, the algorithm uses disjoint sets
of edges.

• We define the following operations on the disjoint sets:

• find(x)

◦ returns a pointer to the representative element of the set containing x .
Each set has its own unique representative.

• union(x, y)

◦ unites the sets containing the elements x and y. The two sets are as-
sumed to be disjoint prior to the operation.

• For merging forest A into forest B, for each edge (u,v) of A, a find operation is
performed to determine if the vertices are in the same tree of B.

• If not, then the two trees (sets) of B containing u and v are united by a union
operation.



332 Graph Algorithms 12.5 Connected Components

• Otherwise, no union operation is necessary.

• Hence, merging A and B requires at most 2(n−1) find operations and (n−1)
union operations.

Parallel 1-D Block Mapping

• The n×n adjacency matrix is partitioned into p blocks.

• Each processor can compute its local spanning forest in time Θ(n2/p).

• Merging is done by embedding a logical tree into the topology. There are log p
merging stages, and each takes time Θ(n). Thus, the cost due to merging is
Θ(n log p).

• During each merging stage, spanning forests are sent between nearest neigh-
bors. Recall that Θ(n) edges of the spanning forest are transmitted.



333 Graph Algorithms 12.5 Connected Components

• The parallel run time of the connected-component algorithm is

Tp =

localcomputation︷ ︸︸ ︷
Θ

(
n2

p

)
+

forestmerging︷ ︸︸ ︷
Θ(n log p)

• For a cost-optimal formulation p=O(n/ logn). The corresponding isoefficiency
is Θ(p2 log2 p).


