Matrix-Multiplication Based Algorithm

- Consider the multiplication of the weighted adjacency matrix with itself - except, in this case, we replace the multiplication operation in matrix multiplication by addition, and the addition operation by minimization.

- Notice that the product of weighted adjacency matrix with itself returns a matrix that contains shortest paths of length 2 between any pair of nodes.

- It follows from this argument that A^n contains all shortest paths.

- A^n is computed by doubling powers - i.e., as $A, A^2, A^4, A^8, ...$
Graph Algorithms

12.4 All-Pairs Shortest Paths

\[A^1 = \begin{pmatrix} 0 & 2 & 3 & \infty \\ \infty & 0 & \infty & \infty & \infty & 1 & \infty & \infty & \infty & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & \infty & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 & 2 & 3 & 2 & \infty \\ \infty & \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & 1 & 0 \end{pmatrix} \]

\[A^2 = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty & 1 & 3 & 4 & 3 & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 & \infty \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & 1 & 0 \end{pmatrix} \]

\[A^4 = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 & \infty \\ \infty & 0 & \infty & 4 & 1 & 3 & 4 & 3 & \infty & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 & \infty \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & 1 & 0 \end{pmatrix} \]

\[A^8 = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 & \infty \\ \infty & 0 & \infty & 4 & 1 & 3 & 4 & 3 & \infty & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 & \infty \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & 1 & 0 \end{pmatrix} \]
• We need \(\log n \) matrix multiplications, each taking time \(O(n^3) \).

• The serial complexity of this procedure is \(O(n^3 \log n) \).

• This algorithm is not optimal, since the best known algorithms have complexity \(O(n^3) \).

Parallel formulation

• Each of the \(\log n \) matrix multiplications can be performed in parallel.

• We can use \(n^3/\log n \) processors to compute each matrix-matrix product in time \(\log n \).

• The entire process takes \(O(\log^2 n) \) time.

Dijkstra’s Algorithm
- Execute \(n \) instances of the single-source shortest path problem, one for each of the \(n \) source vertices.

- Complexity is \(O(n^3) \).

Parallel formulation

Two parallelization strategies - execute each of the \(n \) shortest path problems on a different processor (source partitioned), or use a parallel formulation of the shortest path problem to increase concurrency (source parallel).

Dijkstra’s Algorithm: Source Partitioned Formulation

- Use \(n \) processors, each processor \(P_i \) finds the shortest paths from vertex \(v_i \) to all other vertices by executing Dijkstra’s sequential single-source shortest paths algorithm.

- It requires no interprocess communication (provided that the adjacency matrix is replicated at all processes).
• The parallel run time of this formulation is: \(\Theta(n^2) \).

• While the algorithm is cost optimal, it can only use \(n \) processors. Therefore, the isoefficiency due to concurrency is \(\Theta(p^3) \).

Dijkstra’s Algorithm: Source Parallel Formulation

• In this case, each of the shortest path problems is further executed in parallel. We can therefore use up to \(n^2 \) processors.

• Given \(p \) processors (\(p > n \)), each single source shortest path problem is executed by \(p/n \) processors.

• Using previous results, this takes time:

\[
T_p = \Theta\left(\frac{n^3}{p}\right) + \Theta(n \log p)
\]
For cost optimality, we have \(p = O(n^2 / \log n) \) and the isoefficiency is \(\Theta((p \log p)^{1.5}) \).

Floyd’s Algorithm

- Let \(G = (V, E, w) \) be the weighted graph with vertices \(V = \{v_1, v_2, \ldots, v_n\} \).
- For any pair of vertices \(v_i, v_j \in V \), consider all paths from \(v_i \) to \(v_j \) whose intermediate vertices belong to the subset \(\{v_1, v_2, \ldots, v_k\} \) \((k \leq n) \). Let \(p_{i,j}^{(k)} \) (of weight \(d_{i,j}^{(k)} \)) be the minimum-weight path among them.
- If vertex \(v_k \) is not in the shortest path from \(v_i \) to \(v_j \), then \(p_{i,j}^{(k)} \) is the same as \(p_{i,j}^{(k-1)} \).
- If \(v_k \) is in \(p_{i,j}^{(k)} \), then we can break \(p_{i,j}^{(k)} \) into two paths - one from \(v_i \) to \(v_k \) and one from \(v_k \) to \(v_j \). Each of these paths uses vertices from \(\{v_1, v_2, \ldots, v_{k-1}\\} \).
From our observations, the following recurrence relation follows:

\[
d^{(k)}_{i,j} = \begin{cases}
 w(v_i, v_j) & \text{if } k = 0 \\
 \min \left\{ d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j} \right\} & \text{if } k \geq 1
\end{cases}
\]

This equation must be computed for each pair of nodes and for \(k = 1, n \). The serial complexity is \(O(n^3) \).

```
procedure FLOYD_ALL_PAIRS_SP(A)
begin
    \( D^0 = A \);
    for \( k := 1 \) to \( n \) do
        for \( i := 1 \) to \( n \) do
            for \( j := 1 \) to \( n \) do
                \( d^{(k)}_{i,j} := \min(d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}) \);
end FLOYD_ALL_PAIRS_SP
```
Parallel formulation: 2D Block Mapping

- Matrix $D^{(k)}$ is divided into p blocks of size $(n/\sqrt{p}) \times (n/\sqrt{p})$.
- Each processor updates its part of the matrix during each iteration.
- To compute $d_{l,r}^{(k-1)}$, processor $P_{i,j}$ must get $d_{l,k}^{(k-1)}$ and $d_{k,r}^{(k-1)}$.
- In general, during the k^{th} iteration, each of the \sqrt{p} processes containing part of the k^{th} row send it to the $\sqrt{p} - 1$ processes in the same column.
- Similarly, each of the \sqrt{p} processes containing part of the k^{th} column sends it to the $\sqrt{p} - 1$ processes in the same row.
12.4 All-Pairs Shortest Paths

\[
\begin{array}{c|c|c|c|c}
\hline
\frac{n}{\sqrt{p}} & \frac{n}{\sqrt{p}} & (1,1) & (1,2) & \frac{n}{\sqrt{p}} \\
\hline
(2,1) & \frac{n}{\sqrt{p}} & \frac{n}{\sqrt{p}} + 1 & (j-1) \frac{n}{\sqrt{p}} + 1 & \frac{n}{\sqrt{p}} \\
\hline
\end{array}
\]

\[
(i - 1) \frac{n}{\sqrt{p}} + 1, (j - 1) \frac{n}{\sqrt{p}} + 1
\]

(a)

(b)

\[
i \frac{n}{\sqrt{p}}, j \frac{n}{\sqrt{p}}
\]
12.4 All-Pairs Shortest Paths

(a)

(b)
procedure FLOYD_2DBLOCK(D^{(0)})
begin
for k := 1 to n do
begin
 each process P_{i,j} that has a segment of the k^{th} row of D^{(k-1)}
 broadcasts it to the P_{*,j} processes;
 each process P_{i,j} that has a segment of the k^{th} column of D^{(k-1)}
 broadcasts it to the P_{i,*} processes;
 each process waits to receive the needed segments;
 each process P_{i,j} computes its part of the D^{(k)} matrix;
end
end FLOYD_2DBLOCK

• During each iteration of the algorithm, the k^{th} row and k^{th} column of processors
 perform a one-to-all broadcast along their rows/columns.

• The size of this broadcast is \(n/\sqrt{p} \) elements, taking time \(\Theta((n \log p)/\sqrt{p}) \).

• The synchronization step takes time \(\Theta(\log p) \).
• The computation time is $\Theta(n^2/p)$.

• The parallel run time of the 2-D block mapping formulation of Floyd’s algorithm is

$$T_p = \Theta \left(\frac{n^3}{p} \right) + \Theta \left(\frac{n^2}{\sqrt{p}} \log p \right)$$

• The above formulation can use $O(n^2/\log^2 n)$ processors cost-optimally.

• The isoefficiency of this formulation is $\Theta(p^{1.5} \log^3 p)$.

• This algorithm can be further improved by relaxing the strict synchronization after each iteration.

Speeding things up by pipelining
• The synchronization step in parallel Floyd’s algorithm can be removed without affecting the correctness of the algorithm.

• A process starts working on the k^{th} iteration as soon as it has computed the $(k-1)^{th}$ iteration and has the relevant parts of the $D^{(k-1)}$ matrix.

Communication protocol followed in the pipelined 2-D block mapping formulation of Floyd’s algorithm. Assume that process 4 at time t has just computed a segment of the k^{th} column of the $D^{(k-1)}$ matrix. It sends the segment to processes 3 and 5. These processes receive the segment at time $t + 1$ (where the time unit is the time it takes for a matrix segment to travel over the communication link between adjacent processes). Similarly, processes farther away from process 4 receive the segment later. Process 1 (at the boundary) does not forward the segment after receiving it.

• In each step, n/\sqrt{p} elements of the first row are sent from process $P_{i,j}$ to $P_{i+1,j}$.
Similarly, elements of the first column are sent from process $P_{i,j}$ to process $P_{i,j+1}$.

Each such step takes time $\Theta(n/\sqrt{p})$.

After $\Theta(\sqrt{p})$ steps, process $P_{\sqrt{p},\sqrt{p}}$ gets the relevant elements of the first row and first column in time $\Theta(n)$.

The values of successive rows and columns follow after time $\Theta(n^2/p)$ in a pipelined mode.

Process $P_{\sqrt{p},\sqrt{p}}$ finishes its share of the shortest path computation in time $\Theta(n^3/p) + \Theta(n)$.

When process $P_{\sqrt{p},\sqrt{p}}$ has finished the $(n-1)^{th}$ iteration, it sends the relevant values of the n^{th} row and column to the other processes.

The overall parallel run time of this formulation is

$$T_p = \Theta\left(\frac{n^3}{p}\right) + \Theta(n)$$
• The pipelined formulation of Floyd’s algorithm uses up to \(O(n^2) \) processes efficiently.

• The corresponding isoefficiency is \(\Theta(p^{1.5}) \).

All-pairs Shortest Path: Comparison

<table>
<thead>
<tr>
<th></th>
<th>Maximum Number of Processes for (E = \Theta(1))</th>
<th>Corresponding Parallel Run Time</th>
<th>Isoefficiency Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijkstra source-partitioned</td>
<td>(\Theta(n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(p^3))</td>
</tr>
<tr>
<td>Dijkstra source-parallel</td>
<td>(\Theta(n^2/\log n))</td>
<td>(\Theta(n \log n))</td>
<td>(\Theta((p \log p)^{1.5}))</td>
</tr>
<tr>
<td>Floyd 1-D block</td>
<td>(\Theta(n/\log n))</td>
<td>(\Theta(n^2 \log n))</td>
<td>(\Theta((p \log p)^3))</td>
</tr>
<tr>
<td>Floyd 2-D block</td>
<td>(\Theta(n^2/\log^2 n))</td>
<td>(\Theta(n \log^2 n))</td>
<td>(\Theta(p^{1.5} \log^3 p))</td>
</tr>
<tr>
<td>Floyd pipelined 2-D block</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n))</td>
<td>(\Theta(p^{1.5}))</td>
</tr>
</tbody>
</table>
12.5 Connected Components

- The connected components of an undirected graph are the equivalence classes of vertices under the "is reachable from" relation.

- A graph with three connected components: \{1,2,3,4\}, \{5,6,7\}, and \{8,9\}:

![Graph with three connected components](image)

Depth-First Search (DFS) Based Algorithm

- Perform DFS on the graph to get a forest - each tree in the forest corresponds to a separate connected component.

- Part (b) is a depth-first forest obtained from depth-first traversal of the graph in part (a). Each of these trees is a connected component of the graph in part (a):
Parallel Formulation

- Partition the graph across processors and run independent connected component algorithms on each processor. At this point, we have p spanning forests.

- In the second step, spanning forests are merged pairwise until only one spanning forest remains.
Computing connected components in parallel:

The adjacency matrix of the graph G in (a) is partitioned into two parts (b).

Each process gets a subgraph of G ((c) and (e)).

Each process then computes the spanning forest of the subgraph ((d) and (f)).

Finally, the two spanning trees are merged to form the solution.
To merge pairs of spanning forests efficiently, the algorithm uses disjoint sets of edges.

We define the following operations on the disjoint sets:

- **find(x)**
 - returns a pointer to the representative element of the set containing `x`. Each set has its own unique representative.

- **union(x, y)**
 - unites the sets containing the elements `x` and `y`. The two sets are assumed to be disjoint prior to the operation.

For merging forest `A` into forest `B`, for each edge `(u, v)` of `A`, a find operation is performed to determine if the vertices are in the same tree of `B`.

If not, then the two trees (sets) of `B` containing `u` and `v` are united by a union operation.
• Otherwise, no union operation is necessary.

• Hence, merging A and B requires at most $2(n - 1)$ find operations and $(n - 1)$ union operations.

Parallel 1-D Block Mapping

• The $n \times n$ adjacency matrix is partitioned into p blocks.

• Each processor can compute its local spanning forest in time $\Theta(n^2/p)$.

• Merging is done by embedding a logical tree into the topology. There are $\log p$ merging stages, and each takes time $\Theta(n)$. Thus, the cost due to merging is $\Theta(n \log p)$.

• During each merging stage, spanning forests are sent between nearest neighbors. Recall that $\Theta(n)$ edges of the spanning forest are transmitted.
• The parallel run time of the connected-component algorithm is

\[T_p = \Theta \left(\frac{n^2}{p} \right) + \Theta (n \log p) \]

• For a cost-optimal formulation \(p = O(n / \log n) \). The corresponding isoeficiency is \(\Theta(p^2 \log^2 p) \).