Matrix-Multiplication Based Algorithm

- Consider the multiplication of the weighted adjacency matrix with itself - except, in this case, we replace the multiplication operation in matrix multiplication by addition, and the addition operation by minimization
- Notice that the product of weighted adjacency matrix with itself returns a matrix that contains shortest paths of length 2 between any pair of nodes
- It follows from this argument that A^{n} contains all shortest paths
- A^{n} is computed by doubling powers - i.e., as $A, A^{2}, A^{4}, A^{8}, \ldots$

$A^{1}=\left(\begin{array}{ccccccccc} 0 & 2 & 3 & \infty & \infty & \infty & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty & 1 & \infty & \infty & \infty \\ \infty & \infty & 0 & 1 & 2 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & \infty & 2 & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 0 & 2 & 3 & 2 \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{array}\right)$	A^{2}	$\left(\begin{array}{ccccccccc}0 & 2 & 3 & 4 & 5 & 3 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty & \infty & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0\end{array}\right)$
$A^{4}=\left(\begin{array}{ccccccccc}0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\ \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0\end{array}\right)$	A^{8}	$\left(\begin{array}{ccccccccc}0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\ \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0\end{array}\right)$

- We need $\log n$ matrix multiplications, each taking time $O\left(n^{3}\right)$.
- The serial complexity of this procedure is $O\left(n^{3} \log n\right)$.
- This algorithm is not optimal, since the best known algorithms have complexity $O\left(n^{3}\right)$.

Parallel formulation

- Each of the $\log n$ matrix multiplications can be performed in parallel.
- We can use $n^{3} / \log n$ processors to compute each matrix-matrix product in time $\log n$.
- The entire process takes $O\left(\log ^{2} n\right)$ time.

Dijkstra's Algorithm

- Execute n instances of the single-source shortest path problem, one for each of the n source vertices.
- Complexity is $O\left(n^{3}\right)$.

Parallel formulation

Two parallelization strategies - execute each of the n shortest path problems on a different processor (source partitioned), or use a parallel formulation of the shortest path problem to increase concurrency (source parallel).

Dijkstra's Algorithm: Source Partitioned Formulation

- Use n processors, each processor P_{i} finds the shortest paths from vertex v_{i} to all other vertices by executing Dijkstra's sequential single-source shortest paths algorithm.
- It requires no interprocess communication (provided that the adjacency matrix is replicated at all processes).
- The parallel run time of this formulation is: $\Theta\left(n^{2}\right)$.
- While the algorithm is cost optimal, it can only use n processors. Therefore, the isoefficiency due to concurrency is $\Theta\left(p^{3}\right)$.

Dijkstra's Algorithm: Source Parallel Formulation

- In this case, each of the shortest path problems is further executed in parallel. We can therefore use up to n^{2} processors.
- Given p processors $(p>n)$, each single source shortest path problem is executed by p / n processors.
- Using previous results, this takes time:

$$
T_{p}=\overbrace{\Theta\left(\frac{n^{3}}{p}\right)}^{\text {computation }}+\overbrace{\Theta(n \log p)}^{\text {communication }}
$$

- For cost optimality, we have $p=O\left(n^{2} / \log n\right)$ and the isoefficiency is $\Theta\left((p \log p)^{1.5}\right)$.

Floyd's Algorithm

- Let $G=(V, E, w)$ be the weighted graph with vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- For any pair of vertices $v_{i}, v_{j} \in V$, consider all paths from v_{i} to v_{j} whose intermediate vertices belong to the subset $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}(k \leq n)$. Let $p_{i, j}^{(k)}$ (of weight $\left.d_{i, j}^{(k)}\right)$ be the minimum-weight path among them.
- If vertex v_{k} is not in the shortest path from v_{i} to v_{j}, then $p_{i, j}^{(k)}$ is the same as $p_{i, j}^{(k-1)}$.
- If v_{k} is in $p_{i, j}^{(k)}$, then we can break $p_{i, j}^{(k)}$ into two paths - one from v_{i} to v_{k} and one from v_{k} to v_{j}. Each of these paths uses vertices from $\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$.

From our observations, the following recurrence relation follows:

$$
d_{i, j}^{(k)}= \begin{cases}w\left(v_{i}, v_{j}\right) & \text { if } k=0 \\ \min \left\{d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right\} & \text { if } k \geq 1\end{cases}
$$

This equation must be computed for each pair of nodes and for $k=1, n$. The serial complexity is $O\left(n^{3}\right)$.

```
procedure FLOYD_ALL_PAIRS_SP(A)
```

begin

```
    \(D^{0}=A\);
    for \(k:=1\) to \(n\) do
        for \(i:=1\) to \(n\) do
        for \(j:=1\) to \(n\) do
            \(d_{i, j}^{(k)}:=\min \left(d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right) ;\)
```

end FLOYD_ALL_PAIRS_SP

Parallel formulation: 2D Block Mapping

- Matrix $D^{(k)}$ is divided into p blocks of size $(n / \sqrt{p}) \times(n / \sqrt{p})$.
- Each processor updates its part of the matrix during each iteration.
- To compute $d_{l, r}^{(k-1)}$ processor $P_{i, j}$ must get $d_{l, k}^{(k-1)}$ and $d_{k, r}^{(k-1)}$.
- In general, during the $k^{\text {th }}$ iteration, each of the \sqrt{p}) processes containing part of the $k^{\text {th }}$ row send it to the $\sqrt{p}-1$ processes in the same column.
- Similarly, each of the \sqrt{p} processes containing part of the $k^{\text {th }}$ column sends it to the $\sqrt{p}-1$ processes in the same row.

(a)
(b)

(a)
12.4 All-Pairs Shortest Paths
k column

(b)

```
procedure FLOYD_2DBLOCK( }\mp@subsup{D}{}{(0)}
begin
    for k:=1 to n do
        begin
        each process P}\mp@subsup{P}{i,j}{}\mathrm{ that has a segment of the k}\mp@subsup{k}{}{\mathrm{ th}}\mathrm{ row of }\mp@subsup{D}{}{(k-1)
                broadcasts it to the }\mp@subsup{P}{*,j}{}\mathrm{ processes;
            each process }\mp@subsup{P}{i,j}{}\mathrm{ that has a segment of the k}\mp@subsup{k}{}{\mathrm{ th column of }\mp@subsup{D}{}{(k-1)}
                broadcasts it to the P}\mp@subsup{P}{i,*}{}\mathrm{ processes;
            each process waits to receive the needed segments;
            each process }\mp@subsup{P}{i,j}{}\mathrm{ computes its part of the D D (k) matrix;
        end
end FLOYD_2DBLOCK
```

- During each iteration of the algorithm, the $k^{\text {th }}$ row and $k^{\text {th }}$ column of processors perform a one-to-all broadcast along their rows/columns.
- The size of this broadcast is n / \sqrt{p} elements, taking time $\Theta((n \log p) / \sqrt{p})$.
- The synchronization step takes time $\Theta(\log p)$.
- The computation time is $\Theta\left(n^{2} / p\right)$.
- The parallel run time of the 2-D block mapping formulation of Floyd's algorithm is

$$
T_{p}=\overbrace{\Theta\left(\frac{n^{3}}{p}\right)}^{\text {computation }}+\overbrace{\Theta\left(\frac{n^{2}}{\sqrt{p}} \log p\right)}^{\text {communication }}
$$

- The above formulation can use $O\left(n^{2} / \log ^{2} n\right)$ processors cost-optimally.
- The isoefficiency of this formulation is $\Theta\left(p^{1.5} \log ^{3} p\right)$.
- This algorithm can be further improved by relaxing the strict synchronization after each iteration.

Speeding things up by pipelining

- The synchronization step in parallel Floyd's algorithm can be removed without affecting the correctness of the algorithm.
- A process starts working on the $k^{\text {th }}$ iteration as soon as it has computed the $k-1^{\text {th }}$ iteration and has the relevant parts of the $D^{(k-1)}$ matrix.

Communication protocol followed in the pipelined 2-D block mapping formulation of Floyd's algorithm. Assume that
process 4 at time t has just computed a segment of the $k^{\text {th }}$ column of the $D^{(k-1)}$ matrix. It sends the segment to processes 3 and 5. These processes receive the segment at time $t+1$ (where the time unit is the time it takes for a matrix segment to travel over the communication link between adjacent processes). Similarly, processes farther away from process 4 receive the segment later. Process 1 (at the boundary) does not forward the segment after receiving it.

- In each step, n / \sqrt{p} elements of the first row are sent from process $P_{i, j}$ to $P_{i+1, j}$.
- Similarly, elements of the first column are sent from process $P_{i, j}$ to process $P_{i, j+1}$.
- Each such step takes time $\Theta(n / \sqrt{p})$.
- After $\Theta(\sqrt{p})$ steps, process $P_{\sqrt{p}, \sqrt{p}}$ gets the relevant elements of the first row and first column in time $\Theta(n)$.
- The values of successive rows and columns follow after time $\Theta\left(n^{2} / p\right)$ in a pipelined mode.
- Process $P_{\sqrt{p}, \sqrt{p}}$ finishes its share of the shortest path computation in time $\Theta\left(n^{3} / p\right)+\Theta(n)$.
- When process $P_{\sqrt{p}, \sqrt{p}}$ has finished the $(n-1)^{\text {th }}$ iteration, it sends the relevant values of the $n^{\text {th }}$ row and column to the other processes.
- The overall parallel run time of this formulation is

$$
T_{p}=\overbrace{\Theta\left(\frac{n^{3}}{p}\right)}^{\text {computation }}+\overbrace{\Theta(n)}^{\text {communication }}
$$

- The pipelined formulation of Floyd's algorithm uses up to $O\left(n^{2}\right)$ processes efficiently.
- The corresponding isoefficiency is $\Theta\left(p^{1.5}\right)$.

All-pairs Shortest Path: Comparison

	Maximum Number of Processes		Corresponding
	for $E=\Theta(1)$	Parallel Run Time	Function
Dijkstra source-partitioned $\Theta(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(p^{3}\right)$	
Dijkstra source-parallel	$\Theta\left(n^{2} / \log n\right)$	$\Theta(n \log n)$	$\Theta\left((p \log p)^{1.5}\right)$
Floyd 1-D block	$\Theta(n / \log n)$	$\Theta\left(n^{2} \log n\right)$	$\Theta\left((p \log p)^{3}\right)$
Floyd 2-D block	$\Theta\left(n^{2} / \log ^{2} n\right)$	$\Theta\left(n \log ^{2} n\right)$	$\Theta\left(p^{1.5} \log ^{3} p\right)$
Floyd pipelined 2-D block $\Theta\left(n^{2}\right)$	$\Theta(n)$	$\Theta\left(p^{1.5}\right)$	

12.5 Connected Components

- The connected components of an undirected graph are the equivalence classes of vertices under the "is reachable from" relation
- A graph with three connected components: $\{1,2,3,4\},\{5,6,7\}$, and $\{8,9\}$:

Depth-First Search (DFS) Based Algorithm

- Perform DFS on the graph to get a forest - each tree in the forest corresponds to a separate connected component
- Part (b) is a depth-first forest obtained from depth-first traversal of the graph in part (a). Each of these trees is a connected component of the graph in part (a):

(a)

(b)

Parallel Formulation

- Partition the graph across processors and run independent connected component algorithms on each processor. At this point, we have p spanning forests.
- In the second step, spanning forests are merged pairwise until only one spanning forest remains.

(a)

(c)

(e)

(b)

(d)

(f)

Computing connected components in parallel:

The adjacency matrix of the graph G in (a) is partitioned into two parts (b).

Each process gets a subgraph of $G((\mathrm{c})$ and (e)).

Each process then computes the spanning forest of the subgraph ((d) and (f)).

Finally, the two spanning trees are merged to form the solution.

- To merge pairs of spanning forests efficiently, the algorithm uses disjoint sets of edges.
- We define the following operations on the disjoint sets:
- $\operatorname{find}(x)$
- returns a pointer to the representative element of the set containing x. Each set has its own unique representative.
- union(\mathbf{x}, y)
- unites the sets containing the elements x and y. The two sets are assumed to be disjoint prior to the operation.
- For merging forest A into forest B, for each edge (u, v) of A, a find operation is performed to determine if the vertices are in the same tree of B.
- If not, then the two trees (sets) of B containing u and v are united by a union operation.
- Otherwise, no union operation is necessary.
- Hence, merging A and B requires at most 2($n-1$) find operations and ($n-1$) union operations.

Parallel 1-D Block Mapping

- The $n \times n$ adjacency matrix is partitioned into p blocks.
- Each processor can compute its local spanning forest in time $\Theta\left(n^{2} / p\right)$.
- Merging is done by embedding a logical tree into the topology. There are $\log p$ merging stages, and each takes time $\Theta(n)$. Thus, the cost due to merging is $\Theta(n \log p)$.
- During each merging stage, spanning forests are sent between nearest neighbors. Recall that $\Theta(n)$ edges of the spanning forest are transmitted.
- The parallel run time of the connected-component algorithm is

$$
T_{p}=\overbrace{\Theta\left(\frac{n^{2}}{p}\right)}^{\text {local computation }}+\overbrace{\Theta(n \log p)}^{\text {forest merging }}
$$

- For a cost-optimal formulation $p=O(n / \log n)$. The corresponding isoefficiency is $\Theta\left(p^{2} \log ^{2} p\right)$.

