
10 Introduction

Why do we need parallel computing?

First, form groups of 2!Write down as many reasons as you can during 5 minutes!

11 Introduction

Introduction
Parallel Computing is a part of Computer Science and Computational Sciences

(hardware, software, applications, programming technologies, algorithms, theory and
practice) with special emphasis on parallel computing or supercomputing

1 Parallel Computing – motivation

The main questions in parallel computing:

• How is organised interprocessor communication?

• How to organise memory?

• Who is taking care of parallelisation?

◦ CPU?

◦ compiler?

◦ ... or programmer?

12 Introduction 1.1 History of computing

1.1 History of computing

Pre-history

Even before electronic computers parallel computing existed
? . . . – (pyramides.)
1929 – parallelisation of weather forecasts
≈1940 – Parallel computations in war industry using Felix-like devices
1950 - Emergence of first electronic computers. Based on lamps. ENIAC and

others

13 Introduction 1.1 History of computing

1960 - Mainframe era. IBM

14 Introduction 1.1 History of computing

1970 - Era of Minis
1980 - Era of PCs
1990 - Era of parallel computers
2000 - Clusters / Grids
2010 - Clouds

15 Introduction 1.2 Expert’s predictions

1.2 Expert’s predictions

Much-cited legend: In 1947 computer engineer Howard Aiken said that USA will
need in the future at most 6 computers

1950: Thomas J. Watson as well: 6 computers will be needed in the world
1977: Seymour Cray: The computer Cray-1 will attract only 100 clients in the

world
1980: Study by IBM – about 50 Cray-class computers could be sold at most in a

year worldwide
Reality: Many Cray-* processing power in many of nowadays homes

Gordon Moore’s (founder of Intel) law:
(1965: the number of switches doubles every second year)
1975: - refinement of the above: The number of switches on a CPU doubles

every 18 months

Until 2020 or 2030 we would reach in such a way to the atomic level or quantum
computer! – But why?The reason is: light speed limit (see Example 1.2 below!)

16 Introduction 1.2 Expert’s predictions

Flops:

first computers 102 100 Flops (sada op/s)
desktop computers today 109 Gigaflops (GFlops) (miljard op/s)

supercomputers nowadays 1012 Teraflops (TFlops) (triljon op/s)
the aim of today 1015 Petaflops (PFlops) (kvadriljon op/s)

next step 1018 Exaflops (EFlops) (kvintiljon op/s)

http://en.wikipedia.org/wiki/Orders_of_magnitude_
(numbers)

http://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)
http://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)

17 Introduction 1.3 Usage areas of a petaflop computer

1.3 Usage areas of a petaflop computer

Engineering applications

• Wind tunnels

• Combustion engine optimisation

• High frequency cirquits

• Buildings and mechanical structures (optimisation, cost, shape, safety etc)

• Effective and safe nuclear power station design

• Simulation of nuclear explosions

18 Introduction 1.3 Usage areas of a petaflop computer

Scientific applications

• Bioinformatics

• Computational physics and chemistry (quantum mechanics, macromolecules,
composite materials, chemical reactions etc).

• Astrophysics (development of galaxies, thermonuclear reactions, postprocess-
ing of large datasets produced by telescopes)

• Weather modelling

• Climate and environment modelling

• Looking for minerals

• Flood predictions

19 Introduction 1.3 Usage areas of a petaflop computer

Commercial applications

• Oil industry

• Market and monetary predictions

• Global economy modelling

• Car industry (like crash-tests)

• Aviation (design of modern aircrafts and space shuttles)

Applications in computer systems

• Computer security (discovery of network attacks)

• Cryptography

20 Introduction 1.3 Usage areas of a petaflop computer

• Embedded systems (for example, car)

• etc

21 Introduction 1.4 Example 1.1

1.4 Example 1.1

Why speeds of order 1012 are not enough?

Weather forecast in Europe for next 48 hours
from sea lever upto 20km
– need to solve an ODE (xyz and t)
The volume of the region: 5000∗4000∗20 km3.
Stepsize in xy-plane 1km Cartesian mesh z-direction: 0.1km. Timesteps: 1min.

Around 1000 flop per each timestep. As a result, ca

5000∗4000∗20km3×10 rectangles per km3 = 4∗109meshpoints

and

4∗109 meshpoints ∗48∗60 timesteps×103 flop≈ 1.15∗1015 flop.

If a computer can do 109 flops (nowadays PC-s), it will take around

1.15∗1015 flop / 109 flop
= 1.15∗106 seconds ≈ 13 days !!

22 Introduction 1.4 Example 1.1

But, with 1012 flops,

1.15∗103 seconds < 20min.

Not hard to imagine “small” changes in given scheme such that 1012 flops not
enough:

• Reduce the mesh stepsize to 0.1km in each directions and timestep to 10
seconds and the total time would grow from

20min to 8days.

• We could replace the Europe with the whole World model (the area: 2 ∗
107km2 −→ 5∗108km2) and to combine the model with an Ocean model.

23 Introduction 1.4 Example 1.1

Therefore, we must say: The needs of science and technology grow faster than
available possibilities, need only to change ε and h to get unsatisfied again!

But again, why do we need a parallel computer to achieve this
goal?

24 Introduction 1.5 Example 1.2

1.5 Example 1.2

Have a look at the following piece of code:

� �
do i =1,1000000000000

z (i) =x (i) +y (i) ! i e . 3∗1012 memory accesses
end do�

Assuming, that data is traveling with the speed of light 3∗108m/s, for finishing the
operation in 1 second, the average distance of a memory cell must be:

r = 3∗108m/s∗1s
3∗1012 = 10−4m.

Typical computer memory is situated on a rectangular mesh. The length of each
edge would be

2∗10−4m√
3∗1012 ≈ 10−10m,

25 Introduction 1.5 Example 1.2

– the size of a small atom!

But why is parallel computing still not predominant?

Three main reasons: hardware, algorithms and software
Hardware: speed of

• networking

• peripheral devices

• memory access

do not cope with the speed growth in processor capacity.
Algorithms: An enormous number of different algorithms exist but

• problems start with their implementation on some real life application

26 Introduction 1.5 Example 1.2

Software: development in progress;

• no good enough automatic parallelisers

• everything done as handwork

• no easily portable libraries for different architectures

• does the paralleising effort pay off at all?

BUT (as explained above) parallel computing will take over

27 Introduction 1.6 Example 1.3

1.6 Example 1.3

Solving a sparse system of linear equations using MUMPS4.3 (Multifrontal Massively
Parallel Solver):

SUN computer class procesors for solution of a medium size problem (262144
unknowns, 1308672 nonzeros)

#procs. time (s) speedup
1 84.3
2 63.0 1.34
4 53.6 1.57
8 27.0 3.12

12 59.3 1.47
16 29.5 2.86
20 57.5 1.47
23 74.0 1.14

28 Introduction 1.7 Example 1.4

1.7 Example 1.4

Approximation of π using Monte-Carlo method

#procs. time (s) speedup
1 107.8
2 53.5 2.01
4 26.9 4.00
8 13.5 7.98

12 9.3 11.59
16 6.8 15.85
20 5.5 19.59
21 9.0 11.97
23 29.2 3.69

29 Computer architectures and // 1.7 Example 1.4

2 Computer architectures and parallelism

Various ways to classify computers:

• Architecture

◦ Single processor computer

◦ Multicore processor

◦ distributed system

◦ shared memory system

• operating system

◦ UNIX,

◦ LINUX,

◦ (OpenMosix)

◦ Plan 9

30 Computer architectures and // 1.7 Example 1.4

◦ WIN*

◦ etc

• usage area

◦ supercomputing

◦ distributed computing

◦ real time sytems

◦ mobile systems

◦ neurological networks

◦ etc

But impossible to ignore (implicit or explicit) parallelism in a computer or a set of
computers

31 // Architectures 2.1 Processor development

Osa I

Parallel Architectures

2.1 Processor development

Instruction pipelining (similar to car production lines) - performing different sub-
operations with moving objects

Instruction throughput (the number of instructions that can be executed in a unit
of time) increase

32 // Architectures 2.1 Processor development

operation overlap

RISC processor pipelines:

• Instruction fetch

• Instruction decode and register
fetch

• Execute

• Memory access

• Register write back

Basic five-stage pipeline in a RISC
machine (IF = Instruction Fetch, ID = In-
struction Decode, EX = Execute, MEM
= Memory access, WB = Register write
back). In the fourth clock cycle (the green
column), the earliest instruction is in
MEM stage, and the latest instruction has
not yet entered the pipeline.

33 // Architectures 2.1 Processor development

Pipeline length?

Limitations:

• pipeline speed defined by the slowest component

• Usually, each 5-6 operation - branch

• Cost of false prediction grows with the length of pipeline (larger number of
subcommands get waisted)

One possibility: Multiple pipelines (super-pipelined processors, superscalar execu-
tion) - in effect, execution of multiple commands in a single cycle

34 // Architectures 2.1 Processor development

Example 2.1: Two pipelines for adding 4 numbers:

35 // Architectures 2.1 Processor development

True Data Dependency - result of one operation being an input to another

Resource Dependency - two operations competing for the same resource (e.g. pro-
cessor floating point unit)

Branch Dependency (or Procedural Dependency) - scheduling impossible in
case of if-directive

Instruction Level Parallelism (ILP)

• possibility for out-of-order instruction execution

◦ factor: size of instruction window

• ILP is limited by:

◦ parallelism present in the instruction window

◦ hardware parameters

– existence of different functional units

36 // Architectures 2.1 Processor development

· number of pipelines
· pipeline lengths
· pipeline properties
· etc

◦ not possible to always utilise all Functional Units (FU)

– if at certain timestep none of FUs is utilised – vertical waste
– if only some FUs utilised – horisontal waste

• Typically, processors support 4-level superscalar execution

37 // Architectures 2.1 Processor development

Very Long Instruction Word (VLIW) Processors

• Main design concern with superscalar processors – complexity and high price

• VLIW – based on compile-time analysis - which commands to bind together for
ILP

• These commands get packed together into one (long) instruction (giving the
name)

• First used in Multiflow Trace machine (ca 1984)

• Intel IA64 - part of the concept being implemented

38 // Architectures 2.1 Processor development

VLIW properties

• Simpler hardware side

• Compiler has more context to find ILP

• But compiler lacks all the run-time information (e.g. data-misses in cache),
therefore, only quite conservative approach possible (just-in-time compilers
might have benefit here!)

• More difficult prediction of branching and memory usage

• VLIW performance depends highly on compiler abilities, like

◦ loop unrolling

◦ speculative execution

◦ branch prediction etc.

• 4-way to 8-way parallelism in VLIW processors

