10 Introduction

Why do we need parallel computing?

Write down as many reasons as you can during 5 minutes!

11 Introduction

Introduction

Parallel Computing is a part of Computer Science and Computational Sciences
(hardware, software, applications, programming technologies, algorithms, theory and
practice) with special emphasis on parallel computing or supercomputing

1 Parallel Computing — motivation

The main questions in parallel computing:

e How is organised interprocessor communication?
e How to organise memory?

e Who is taking care of parallelisation?

o CPU?
o compiler?
o ... or programmer?

12 Introduction 1.1 History of computing

1.1 History of computing

Pre-history

Even before electronic computers parallel computing existed
?...—(pyramides.)
1929 — parallelisation of weather forecasts
/1940 — Parallel computations in war industry using Felix-like devices
1950 - Emergence of first electronic computers. Based on lamps. ENIAC and
others

13 Introduction 1.1 History of computing

1960 - Mainframe era. IBM

14 Introduction 1.1 History of computing

1970 - Era of Minis
1980 - Era of PCs
1990 - Era of parallel computers
2000 - Clusters / Grids

2010 - Clouds

15 Introduction 1.2 Expert’s predictions

1.2 Expert’s predictions

Much-cited legend: In 1947 computer engineer Howard Aiken said that USA will
need in the future at most 6 computers

1950: Thomas J. Watson as well: 6 computers will be needed in the world

1977: Seymour Cray: The computer Cray-1 will attract only 100 clients in the
world

1980: Study by IBM — about 50 Cray-class computers could be sold at most in a
year worldwide

Reality: Many Cray-* processing power in many of nowadays homes

Gordon Moore’s (founder of Intel) law:

(1965: the number of switches doubles every second year)

1975: - refinement of the above: The number of switches on a CPU doubles
every 18 months

Until 2020 or 2030 we would reach in such a way to the atomic level or quantum
computer! — The reason is: light speed limit (see Example 1.2 below!)

16 Introduction

1.2 Expert’s predictions

Flops:
first computers 10% 100 Flops (sada op/s)
desktop computers today | 10° | Gigaflops (GFlops) | (miljard op/s)
supercomputers nowadays | 10'> | Teraflops (TFlops) (triljon op/s)
the aim of today 1015 Petaflops (PFlops) | (kvadriljon op/s)
next step 10 | Exaflops (EFlops) | (kvintiljon op/s)

http://en.wikipedia.org/wiki/Orders_of_magnitude_

(numbers)

http://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)
http://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)

17 Introduction 1.3 Usage areas of a petaflop computer

1.3 Usage areas of a petaflop computer

Engineering applications

Wind tunnels

Combustion engine optimisation

High frequency cirquits

Buildings and mechanical structures (optimisation, cost, shape, safety etc)

Effective and safe nuclear power station design

Simulation of nuclear explosions

18 Introduction 1.3 Usage areas of a petaflop computer

Scientific applications

e Bioinformatics

e Computational physics and chemistry (quantum mechanics, macromolecules,
composite materials, chemical reactions etc).

e Astrophysics (development of galaxies, thermonuclear reactions, postprocess-
ing of large datasets produced by telescopes)

e Weather modelling
e Climate and environment modelling
e Looking for minerals

e Flood predictions

19 Introduction 1.3 Usage areas of a petaflop computer

Commercial applications

Oil industry

Market and monetary predictions

Global economy modelling

Car industry (like crash-tests)

Aviation (design of modern aircrafts and space shuttles)

Applications in computer systems

e Computer security (discovery of network attacks)

e Cryptography

20 Introduction 1.3 Usage areas of a petaflop computer

e Embedded systems (for example, car)

e elc

21 Introduction 1.4 Example 1.1

1.4 Example 1.1
Why speeds of order 10'? are not enough?

Weather forecast in Europe for next 48 hours

from sea lever upto 20km

— need to solve an ODE (xyz and ¢)

The volume of the region: 5000 % 4000 20 km?.

Stepsize in xy-plane 1km Cartesian mesh z-direction: 0.1km. Timesteps: Imin.
Around 1000 flop per each timestep. As a result, ca

5000 4000 % 20km?> x 10 rectangles per km® = 4% 109meshpoints

and
4% 10” meshpoints * 48 % 60timesteps x 10° flop &~ 1.15 x 10" flop.
If a computer can do 10 flops (nowadays PC-s), it will take around

1.15% 10" flop / 10°flop
=1.15%10%°seconds ~ 13days !

22 Introduction 1.4 Example 1.1

But, with 10'? flops,
1.15%103seconds < 20min.
Not hard to imagine “small” changes in given scheme such that 10'? flops not
enough:

e Reduce the mesh stepsize to 0.1km in each directions and timestep to 10
seconds and the total time would grow from

20min to 8days.

e We could replace the Europe with the whole World model (the area: 2 x
10’km? — 5% 103km?) and to combine the model with an Ocean model.

23 Introduction 1.4 Example 1.1

Therefore, we must say: The needs of science and technology grow faster than
available possibilities, heed only to change ¢ and /: to get unsatisfied again!

But again, why do we need a parallel computer to achieve this
goal?

24 Introduction 1.5 Example 1.2

1.5 Example 1.2

Have a look at the following piece of code:

(do i=1,1000000000000
z(i)=x(i)+y(i) ! ie. 3%10'> memory accesses
end do

Assuming, that data is traveling with the speed of light 3 * 103m/s, for finishing the
operation in 1 second, the average distance of a memory cell must be:

3+10°M/Sx1S _ |—4

321012 m.

r =

Typical computer memory is situated on a rectangular mesh. The length of each
edge would be

2x107*'m —10
Ve~ 100,

25 Introduction 1.5 Example 1.2

— the size of a small atom!

But why is parallel computing still not predominant?

Three main reasons: hardware, algorithms and software
Hardware: speed of

e networking
e peripheral devices
e Memory access

do not cope with the speed growth in processor capacity.
Algorithms: An enormous number of different algorithms exist but

e problems start with their implementation on some real life application

26 Introduction 1.5 Example 1.2

Software: development in progress;
e no good enough automatic parallelisers
e everything done as handwork
e no easily portable libraries for different architectures

e does the paralleising effort pay off at all?

BUT (as explained above) parallel computing will take over

27 Introduction 1.6 Example 1.3

1.6 Example 1.3

Solving a sparse system of linear equations using MUMPS4.3 (Multifrontal Massively
Parallel Solver):

SUN computer class procesors for solution of a medium size problem (262144
unknowns, 1308672 nonzeros)

| #procs. | time (s) | speedup |

1 84.3

2 63.0 1.34
4 53.6 1.57
8 27.0 3.12
12 59.3 1.47
16 29.5 2.86
20 57.5 1.47
23 74.0 1.14

28 Introduction

1.7 Example 1.4

1.7 Example 1.4

Approximation of using Monte-Carlo method

| #procs. | time (s) | speedup |

]
2
4
8
12
16
20
21
23

107.8
53.5
26.9
13.5

9.3
6.8
5.5
9.0
29.2

2.01
4.00
7.98
11.59
15.85
19.59
11.97
3.69

29 Computer architectures and // 1.7 Example 1.4

2 Computer architectures and parallelism

Various ways to classify computers:

e Architecture

o Single processor computer
o Multicore processor
o distributed system

o shared memory system

e operating system

o UNIX,

o LINUX,

o (OpenMosix)
o Plan 9

30 Computer architectures and // 1.7 Example 1.4

o WIN*

o elc
e usage area

o supercomputing
o distributed computing
o real time sytems
o mobile systems
o neurological networks

o elc

But impossible to ignore (implicit or explicit) parallelism in a computer or a set of
computers

31 // Architectures 2.1 Processor development

Osal
Parallel Architectures

2.1 Processor development

Instruction pipelining (similar to car production lines) - performing different sub-
operations with moving objects

Instruction throughput (the number of instructions that can be executed in a unit
of time) increase

32 // Architectures

2.1 Processor development

operation overlap
RISC processor pipelines:

Instruction fetch

Instruction decode and
fetch

Execute

Memory access

Register write back

register

Instr. No. Pipeline Stage
1 IF | ID | EX [MEM| WB
2 IF | ID | EX [MEM| WB
3 IF | ID | EX [MEM| WB
4 IF | ID | EX [MEM
5 IF | ID | EX
g:ﬁ:ck': 1(2|3|a|s5|6]|7

Basic five-stage pipeline in a RISC
machine (IF = Instruction Fetch, ID = In-
struction Decode, EX = Execute, MEM
= Memory access, WB = Register write
back). In the fourth clock cycle (the green
column), the earliest instruction is in
MEM stage, and the latest instruction has
not yet entered the pipeline.

33 // Architectures 2.1 Processor development

Pipeline length?

Limitations:
e pipeline speed defined by the slowest component
e Usually, each 5-6 operation - branch

e Cost of false prediction grows with the length of pipeline (larger number of
subcommands get waisted)

One possibility: Multiple pipelines (super-pipelined processors, superscalar execu-
tion) - in effect, execution of multiple commands in a single cycle

34 /I Architectures 2.1 Processor development

Example 2.1: Two pipelines for adding 4 numbers:

1. load R1, @1000 1. load R1. @1000 1. load R1, @1000
2. load R2, @1008 2. add R1, @1004 2. add R1, @1004
3. add R1. @1004 3. add R1. @1008 3. load R2, @1008
4. add R2. @100C 4. add R1. @100C 4. add R2. @100C
5. add R1., R2 5. store R1, @2000 5. add R1., R2
6. store R1. @2000 6. store R1. @2000
@ (i) @ii)
(@) Three different code fragments for adding a list of four numbers.
Instruction cycles
0 2 4 6 8
r T T T 1
l ¥ [D [OF I Load IF: Instruction Fetch
oad R1. 1000 ID: Instruction Decode
l F [D [OF I load R2., @1008 OF: Operand Fetch
[| ® [oF [E | add ri. gro04 B: Instruction Excoute
a : WB: Write-back
[| m [oF | g | add Rz e1occ NA: No Action
l IF [lD[NAl E]adde, R2
[F | D | Na | wB | store r1, e2000
(b) Execution schedule for code fragment (i) above.
Clock cycle
4
5 u Full issue slots
6 B Horizontal waste
7 - Vertical waste l l Empty issue slots
Adder Utilization

(¢) Hardware utilization trace for schedule in (b).

35 // Architectures 2.1 Processor development

True Data Dependency - result of one operation being an input to another

Resource Dependency - two operations competing for the same resource (e.g. pro-
cessor floating point unit)

Branch Dependency (or Procedural Dependency) - scheduling impossible in
case of if-directive

Instruction Level Parallelism (ILP)
e possibility for out-of-order instruction execution
o factor: size of instruction window
e |LP is limited by:

o parallelism present in the instruction window
o hardware parameters

— existence of different functional units

36 // Architectures 2.1 Processor development

- number of pipelines
- pipeline lengths
- pipeline properties
- etc
o not possible to always utilise all Functional Units (FU)

— if at certain timestep none of FUs is utilised — vertical waste
— if only some FUs utilised — horisontal waste

e Typically, processors support 4-level superscalar execution

37 // Architectures 2.1 Processor development

Very Long Instruction Word (VLIW) Processors

Main design concern with superscalar processors — complexity and high price

VLIW - based on compile-time analysis - which commands to bind together for
ILP

These commands get packed together into one (long) instruction (giving the
name)

First used in Multiflow Trace machine (ca 1984)

Intel 1A64 - part of the concept being implemented

38 // Architectures 2.1 Processor development

VLIW properties

Simpler hardware side
Compiler has more context to find ILP

But compiler lacks all the run-time information (e.g. data-misses in cache),
therefore, only quite conservative approach possible (just-in-time compilers
might have benefit here!)

More difficult prediction of branching and memory usage

VLIW performance depends highly on compiler abilities, like

o loop unrolling
o speculative execution

o branch prediction etc.

4-way to 8-way parallelism in VLIW processors

