UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
Institute of Computer Science
Computer Science Curriculum

Marti Taremaa

Off-line Synchronization of Trace Logs

Master’s thesis (20 cp)

Supervisors: Ulrich Norbisrath, Ph.D.
prof. Eero Vainikko, Ph.D.

Author: 27th of May, 2008
SUPEIVISOIS: eevveeeeieee e 27th of May, 2008
................................ 27th of May, 2008

Approved
Professor Eero Vainikko: ...l 27th of May, 2008

TARTU 2008

Acknowledgements

This thesis exists in its current form thanks to the support of many people.

I thank my colleagues and fellow students from the Distributed Systems
group. Moving towards the completion is much easier when being surrounded
with people with the same goals. Special thanks go to my peer review group
members from the “Software Engineering in Distributed Systems” seminar.

I thank my supervisors for guiding me towards the solutions and providing
extensive feedback. Eero, you have built up a capable team with such a short
time and I am glad to be part of it. Ulrich, your contribution to my thesis
cannot be overestimated. I already knew to expect a lot of support, but your
feedback was just superb.

Finally, I thank my friends and family for offering me a haven to regain my
energy and for keeping me sane over the times of peak load.

May 2008

Contents

1 Introduction

2 Debugging in Distributed and Deployed Systems
2.1 Requirements and Challenges

2.2 Overview of Existing Tools

3 Off-line Synchronization of Trace Logs
3.1 Case Studies: Debugging Deployed and Distributed Systems
3.2 The Concept
3.3 Advantages and Disadvantages

4 The TraceBrowser
4.1 Functionality of TraceBrowser
4.2 Structure, Algorithms and the User Interface
4.3 Memory Usage and Performance Evaluation

4.4 Future Development

5 Conclusion

11
11
14

29
29
31
34

37
37
43
46
20

53

Chapter 1

Introduction

When networked and distributed applications became central and critical
parts of our everyday information infrastructure, rather than just being ex-
perimental tools for small user groups, the need for getting and keeping them
stable rose significantly. The software developers and system administrators
are now facing a challenge of delivering high-quality distributed services un-
der growing user loads. One part of the process of delivering a stable appli-
cation is the task of debugging. Debugging is a systematic process of finding
and reducing the number of defects (often referred to as bugs) in a computer
program.|29]

This thesis focuses on the debugging in distributed and deployed systems. A
special debugging methodology suitable for distributed and deployed systems
is described. This methodology is developed by combining and systemizing
existing debug approaches and tools. A new tool to simplify the analysis
stage of distributed and deployed application debugging — The TraceBrowser
— is presented.

A typical debugging tool - a debugger - would allow the user to monitor
code execution, step manually through it and see and change the contents of
variables. An average debugging session starts with observing the execution
of program code, collecting trace data (function calls, inter-process commu-
nication) and observing the contents of specific variables or making larger
memory snapshots. Based on this collected data, conclusions and correc-
tions can be done either on-line (while a program is running) or off-line. As
a result, software bugs or performance bottlenecks are located and possibly
eliminated. The process can be repeated until the quality of the application
is satisfactory. Debuggers that are limited to only tracing the execution of
program code, are often called tracers or trace debuggers. The output of the

7

trace debugger is called the trace log.

Distributed systems are systems consisting of several cooperating processes
or applications which, in most cases, are communicating over the network.
Some sources are more restrictive in their definition for distributed system,
stating that the cooperating processes in a distributed system must be semi-
independent parts of the same program, possibly running in different envi-
ronments. These sources refer to systems described in the first definition as
networked systems.

Deployed systems are systems that have been deployed into the production
environments and are operating under a strict set of rules. In such systems,
the set of possible maintenance, testing, and debugging operations is limited.
On the other hand, when problems occur in the deployed systems, there is
more pressure to find and eliminate their cause. That is why debugging in
deployed systems is different and must be specially handled.

I started my research on the topic of debugging networked and distributed
systems for practical reasons. When working as a system administrator, I
often had to pinpoint bugs in deployed systems. These systems consisted of
different applications which were communicating over the network. Not all of
them would have qualified as distributed systems, but many of the problems
I encountered in the debugging process were similar to those encountered in
distributed systems. Further I learned that the successful debugging methods
for both networked and distributed systems were very similar. This rose an
interest in the field of debugging distributed systems.

The chapter two of my thesis focuses on how debugging in distributed sys-
tems and in production environments differs from stand-alone application
debugging. It also gives an overview of some of the existing tools for both
distributed and networked application debugging. Some single-application
debug tools that can be used for debugging distributed and deployed appli-
cations will also be covered.

The chapter three gives an overview of debugging methodology Off-line Syn-
chronization of Trace Logs which I have composed from different best prac-
tices in distributed and production environment application debugging. This
methodology has been developed and adapted to best match the needs of
system administrators who are working with live production systems. Some
example cases that can be effectively handled by this methodology are made.

The fourth chapter introduces the TraceBrowser application which I have
developed to support the Off-line Synchronization of Trace Logs method-
ology. TraceBrowser is a graphical application for parallel analysis several

timestamped trace logs. TraceBrowser allows the user scroll through logs
synchronously, constructing global temporal order for the log events.

The conclusion shortly summarizes the work done so far and outlines future
directions for the development of the TraceBrowser utility.

Appendix A contains a short user guide for the TraceBrowser.

The source code of the TraceBrowser is linked in this thesis in the the Ap-
pendix B (on page 67).

10

Chapter 2

Debugging in Distributed and
Deployed Systems

There are many different approaches to debugging. Some of them comple-
ment each other. In deployed systems, not all of these approaches and the
corresponding tools can always be used, because some of them induce unac-
ceptable load overhead or require the application to be paused or restarted by
the debugger. Distributed systems introduce some new debugging challenges
and new tools are needed for handling the extra complexity. However, besides
the special tools, debugging of distributed and deployed systems can still re-
use debug methodologies and tools created for single application debugging.
There are several aspects that must be kept in mind, and if possible, taken
care of, while using existing single-application debug tools on distributed
and production environment applications. This chapter will first describe
the most significant challenges that have to be faced when debugging dis-
tributed and deployed systems, followed by the overview of some existing
debug tools that are used or have been created for distributed debugging.

2.1 Requirements and Challenges

The components of distributed systems are located on different devices, there-
fore the execution traces must also be acquired from multiple locations. Trac-
ing the parts of the same distributed application at different locations is
called multi-point tracing. Sometimes the tracer tools that are used to per-
form multi-point tracing are totally independent and not aware of each other.
However, to perform better analysis on collected traces, we must gather and

11

process them together. For many debuggers, the goal is to achieve global
overview or global comprehension - the ability to inspect the state of any
component of distributed application at any point in time during the debug
process [9, 11]. In the real world, this goal is not always fully reached, but
the debugging frameworks must always try to get closer to it.

Debugging utilities increase the system load. This is especially true when
tracing distributed applications, because several applications must be simul-
taneously traced, usually meaning one tracer process for every debugged
process must be present. In systems deployed into production environments,
special care must be taken to ensure that this extra load — often referred to
as debug overhead — remains minimal. When debugging applications in a
test environment, less attention can be paid to tracing overhead, but even
then too much extra load can have an effect on how a debugged system acts
or performs.

There are two widely-used debugging approaches that usually are not appli-
cable when debugging live production systems - synchronous and intrusive
debugging. When debugging synchronously, the application can be paused
when errors, watchpoints or breakpoints occur. In an intrusive debug ses-
sion, it is possible to change the internal state of the application during this
pause. It is clear that in production environments, these kinds of actions are
unthinkable. This implies the fact that correctly following some on-line (real-
time) debugging session of deployed application can easily get beyond human
abilities — the flow of events is just too fast. Therefore tools must be able
to perform the sessions off-line, where the debug trace logs obtained from
an application running in the production environment can later be stepped
through at a slower pace. Off-line debug session has absolutely no effect on
the application under observation.

The process of multi-point tracing in distributed systems can produce vast
amounts of log data, parts of which will be of no interest to the user. It is
vital that analyzer tools provide an option to filter out non-relevant trace
records and emphasize relevant ones. Of course, deciding what is relevant
and what is not, becomes an art in itself. Therefore the filters must be
user-configurable.

As the parts of the distributed applications can have very different tasks in
the system, the best tools for debugging them can be different, too. It also
is not uncommon to have some components of the distributed system that
are closed-source. This makes debugging them even harder, because there is
no source code to use as a reference. Sometimes it is better to use specific
tools for debugging these closed components. Therefore it is desirable to

12

Application Application

@ trace data

trace data control Trace tool
@ trace log
On-line debugger Off-line debugger

Figure 2.1: On-line and off-line debugging

have a framework which would support many different tools. For example,
we could use symbolic debuggers — tools which correlate the execution trace
of the program with the source code — for open source components. For
closed source components, library trace tools, capturing the library calls that
program makes, can be used. Network packet loggers can be used to capture
the communication between these components. For the debugging process
to be more effective, these tools would have to be centrally coordinated.
At least, there should be a component which collects the output of these
different tools to a central location and then performs an analysis on the
collected data.

When replaying or just browsing through collected traces it is essential to
have trace log records in the same global order as they occurred in the system
during debugging. When replaying, mechanisms like Lamport Clocks [15] can
be used to ensure consistent replay, but some trace-analyzing applications
have to rely solely on hardware clocks, because inserting your own code into
running applications is not always possible. Computer clocks, of course, can
be synchronized using NTP [17]. In many cases this is enough [27], but
when large numbers of events occur in a very small time-frame, or trace
applications experience abnormal slowdowns due to a bug in the debugged

13

1211710799.236474 connect(4, {sa_family=AF_FILE, path="/var/run/mscd/socket"}, 110) = 0
1211710799.236709 poll([{fd=4,events=POLLOUT|POLLERR|POLLHUP,revents=POLLOUT}],1, 5000) = 1
1211710799.236887 writev(4, [{"\2\0\O\O"..., 12}, {"sonett.mt.ut.ee\0", 16}], 2) = 28
1211710799.237601 poll([{fd=4,events=POLLIN|POLLERR|POLLHUP,revents=POLLIN|POLLHUP}],1,5000)
=1

1211710799.237642 read(4, "\2\0\0\0\1\0\0\0\20\0\0\2\0\0\0\4\0\0\0O\1\0\O"..., 32) = 32
1211710799.237695 readv(4, [{"sonett.mt.ut.ee\0", 16}, {"\301(%\376", 4}]1, 2) = 20
1211710799.237738 close(4) = 0

1211710799.237787 connect(3,sa_family=AF_INET,sin_port=htons(5781),sin_addr=\
inet_addr("...")},16) =0

1211710799.238107 send(3, "/tmp/test\0", 10, 0) = 10

1211710799.238437 recv(3, "Nonexistent file: /tmp/test\n\0", 255, 0) = 29

Figure 2.2: sample of strace output

system, the global order of the timestamped log messages could be mixed
up. It would be useful to have analysis tools that can adjust the order of
the collected records either automatically (by detecting some communication
patterns, for example) or manually, based on user interaction. The results
of my attempt to create such a tool will be presented in the fourth chapter.
The third chapter will describe a debug methodology that this tool supports.
To create a background for the next chapters, a selection of existing debug
tools will be presented in the following section.

2.2 Overview of Existing Tools

2.2.1 strace and ltrace

strace is a tool for tracing system calls made and signals received by appli-
cations|23]. In Solaris, and possibly some other Unices, truss - a tool similar
to strace - can be used. MacOS X also has a similar tool, called ktrace.
strace is especially useful for detecting I/O errors — what files or sockets
is the application trying to open, what are the results. strace can be at-
tached to and detached from a running process without having to restart
it. Of course, running the program under strace will slightly degrade the
performance, but in many systems running in production environments, this
debug overhead is acceptable when introduced for limited periods. strace
can timestamp log records it is producing (see Figure 2.2), so it is a good
candidate for multi-point tracing with an intention to synchronize the log
data off-line, later on.

On many occasions, errors happen on library boundaries instead of in the
kernel interface, and strace is not the right tool for detecting them. In
situations like this, 1trace can be used [4]. 1ltrace is a tool very similar

14

1211710762.180311 socket(2, 1, 0) =3

1211710762.180387 gethostbyname("\377\377"...) = 0xb7fc7ab4
1211710762.181049 atoi(0xbfbbBee30, 1, 0, 0, 0) = 33882
1211710762.181113 htons(33882, 1, 0, 0, 0) = 23172
1211710762.181171 connect(3, Oxbfb6e6ald, 16, 0, 0) = 0
1211710762.181442 send(3, Oxbfb6ee36, 10, 0, 0) = 10
1211710762.181930 memset (Oxbfb6ebal, °\000’, 255) = Oxbfbbebal
1211710762.181986 recv(3, Oxbfb6ebal, 255, 0, 0) = 29

Figure 2.3: sample of 1ltrace output

to strace, but it traces dynamic library calls instead of system calls (See
Figure 2.3). 1trace is capable of logging system calls, too, so it can be used
in the place of strace. The downside is that you will find 1trace or some
equal tool on smaller number of platforms.

2.2.2 tcpdump

When working with distributed and networked applications, having a tool for
observing network communications is mandatory. Many people use tcpdump
(on Solaris, snoop can be used) for this purpose. tcpdump is a universal net-
work debugging tool that can be used to capture network traffic with several
levels of detail [26]. Actually, the name “tcpdump” can be a bit misleading,
because it can capture a lot more than just TCP segments: Ethernet pack-
ets, UDP datagrams, IP and ARP packets, etc. Like strace and ltrace,
tcpdump can timestamp logged packets (see Figure 2.4). It features a pow-
erful filtering system. If the flow of packets matching the filter expression
is too fast for on-line observation, tcpdump can offer more than just saving
the (timestamped) output and filtering it off-line with some other tools - it
can do raw packet capture to a file. This capture file can later be played
back off-line by tcpdump, as if it were an on-line session, but the difference is
that the user can change the filter expression and play it back again as many
times as needed.

Some GUI analyzers for the tcpdump capture files exist, of which Wireshark
[7] is the most well known. Wireshark allows the user to navigate through
a compact packet log and see detailed information of selected packets (see
Figure 2.5).

2.2.3 GDB - The GNU Project Debugger

GDB, The GNU Project Debugger, is a powerful source code level debugger
for programs written in C and C++. With some limitations, it supports

15

1211708495.678957 arp who-has 193.40.36.6 tell 193.40.37.254

1211708495.679057 arp reply 193.40.36.6 is-at 00:06:3e:68:64:87

1211708502.359485 IP 193.40.37.254.33319 > 193.40.36.6.3456: udp/vat 4294967289 c0 0 s10
1211708502.359665 IP 193.40.36.6.22 > 193.40.37.254.56216: P 7569:7617(48) ack 1536 win
112 <nop,nop,timestamp 2197380196 794282346>

1211708502.359677 IP 193.40.37.254.56216 > 193.40.36.6.22: . ack 7617 win 31776
<nop,nop,timestamp 794285110 2197380196>

1211708508.702836 IP 193.40.37.254.33319 > 193.40.36.6.3456: udp/vt 53 372 / 25
1211708508.703043 IP 193.40.36.6.22 > 193.40.37.254.56216: P 7617:7713(96) ack 1536

win 112 <nop,nop,timestamp 2197381782 794285110>

1211708508.703056 IP 193.40.37.254.56216 > 193.40.36.6.22: . ack 7713 win 31776
<nop,nop,timestamp 794286696 2197381782>

Figure 2.4: tcpdump packet capture tool sample output

FEile Edit VWiew Go Capture Analyze Statistics Help
S@soy eEAxeol 4 2 F 3B -
[| v" & Expression..."“@glearl

No. . Time Source Destination Protocol | Info
0.000000 193.40.37.254 193.40.36.6
0.060012 193.40.36.6 193.40.37.254 Encrypted response packe
0.000013 193.40.37.254 193.40.36.6 56216 > ssh [ACK] Seg=l
5 1.448111 193.40.36.6 193.40.37.254 SSH Encrypted response packe
6 1.448125 193.40.37.254 193.40.36.6 TCP 56216 > ssh [ACK] Seg=1

[I [*)
P Frame 1 (55 bytes on wire, 55 bytes captured)

[Ethernet II, Src: Metrodat_5c:aa:@1 (86:c@:81:5c:aa:@1), Dst: Opthos_68:64:87 (80:06:3e:68:64:87)
[Internet Protocol, Src: 193.46.37.254 (193.40.37.254), Dst: 193.40.36.6 (193.40.36.6)

b User Datagram Protocol, Src Port: 33319 (33319), Dst Port: vat (456)
* Data (13 bytes)

0000 00 06 3e 68 64 87 00 c® 81 5c aa 01 08 00 45 00
0010 00 29 b0 de 40 00 40 11 bd 90 cl 28 25 fe cl 28
0020 24 06 82 27 Od 80 00 15 cc 7b
CUSII7S 74 74 65 73 74

Data (data), 13 bytes Packets: 6 Displayed: & Marked: 0

Figure 2.5: Viewing a tcpdump packet capture file in Wireshark

16

GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.

(gdb) break 32

Breakpoint 1 at 0x80487ba: file client.c, line 32.

(gdb) run localhost 33882 /tmp/test

Starting program: /foo/bar/client localhost 33882 /tmp/test

Breakpoint 1, main (argc=4, argv=0xbffda384) at client.c:32 32 servAddr.sin_port =
htons(atoi(argv[2]));

(gdb) print argv[2]

$1 = Oxbffdbel8 "33882"

(gdb)

Figure 2.6: A sample GDB session

programs written in Fortran. Support for Pascal and Modula-2 is partially
available [8]. To fully use the features offered by GDB, programs under
observation must be recompiled to support debugging. This makes GDB less
useful in the cases where source code is not available. Re-compiling some
components of live production systems may also turn out to be infeasible.
A short sample debug session with GDB is shown in Figure 2.6. GDB is
usually used as an intrusive, on-line symbolic debugger, but it also features
commands for capturing trace data and analysing the capture data later on.

In the cases where re-compiling the code is possible and the debug overhead is
acceptable, GDB is a very capable tool. It is by far the most popular debugger
amongst free software developers. Many debugging suites that, unlike GDB,
have graphical user interfaces, actually use GDB as their internal “debugging
engine”.

2.2.4 NightStar LX

NightStar LX is being developed by the Concurrent Computer Corporation.
NightStar LX is actually a collection of tools. Components that belong to
the NightStar LX tool-set are:

e NightView source-level debugger,
e NightTrace event analyzer,
e NightProbe data monitor,

e NightTune system and application tuner. [5]

All of the tools in NightStar LX have graphical user interfaces.

17

The Concurrent Computer Corporation does not declare the NightStar tool-
set to be specially intended for debugging distributed systems. The focus is
on time-critical applications instead. Nevertheless, the tools in the Night-
Star tool-set have many properties that are useful in distributed application
debugging.

In the context of this thesis, NightView and Night'Trace are the most relevant
of the NightStar LX tools and I will describe them in a more detail.

The NightView source-level debugger offers typical features, like breakpoints,
stepping through code, symbolic debugging, but also some advanced features
like hot patching — changing the code while debugging it, and application-
speed eventpoint conditions — debug conditions that may include time con-
straints. Debugged application must be compiled with debug information.
There is no special support for distributed applications running on different
hosts, but debugging multiple processes is supported. NightView supports
C/C++, Fortran, and Ada. The debugging environment can be mixed, mean-
ing that some of the code being debugged can be written in one language
and some of the code can be written in another language.

File View Shell Process Source Eventpoint Data Tools Help
PIEZ=MEET I X990 EEE-B H*Y

app- local:31360 - appc B Evenipoints (&5
1] tee | - Location | PID |En-hu||qnm|nns|c;;
|

9T For (777 1
%2 truct timespec delay = { 0, rate } ;

+ 93 nanosleep(&delay,NULL) ; O Trace 4 appcline 48in sine_thread() 31367 Yes 03

. if (state != hold) semop(sema,&trigger,1); @ Trace 5 appcline 46 in sine_thread() 31367 Yes 03
% 3
% o
97 trace_end () : ®
%} I) 3
99 Context &)%)
100 void * ptrs[5];

101 i Hem Threads for local:31367 app
102 static | & @ 31360 C thread 0xb7e4f6b0
igj he; * 3 @ & 31365 C thread 0xb723aba0
P thiread, (Vodd;%naked) B} £ 31366 C thread 0xb6a37ba0
. 105 {
106 int i;
+ 107 int scenario = -1;
108 void * ptr;
109 int * * iptr;
110
11 extern void * alloc_ptr (int size, int swich);
112 extern void free_ptr (void * ptr, int swich);
13
114 for (::) {

Qs sleep (5); Somet }
116 switch (scenario) { Messages. &%)
17 e 1: (GEaTT3I367T &1 BrEakpoInT 3, UXUBU4BY0T 1N NEap_ TNreaa(Vot UnUSea = U] [
18 Use of freed at app.c line 115 =
119 ptr = alloc_ptr(clear app.cill5
120 free_ptr(ptr,2); Cleared eventpoints for process local:31367 at app.cill5:

121 memset (ptr, 47, 64); Breakpoint 3
¢ 122 break; resume
123 case 2: stop

124 Double-free #0 0x0BO489cE in heap_thread(void * unused = 0) at app.c Lline 115

c 125 ptr = alloc_ptr(1024,3); breakpoint app.c:115

. 126 free_ptr(ptr.2): local 131367 Breakpoint 7 set at app.cil1S (=]

. 127 free(ptr);

Trace 6 appc line 63 in cosine_thread() 31367 Yes
Break 7 appc line 115 in heap_thread() 31367 Yes

- &b 31367 C thread 0xb236ba0

L KD

Locals

<]
]

Command -

app- local: 31367 - Stopped by user 4

Figure 2.7: NightView user interface

18

NightTrace is a graphical event analyzer that can be used to visualize user-
defined events, called tracepoints, in many different ways. Tracepoints can
store values of some variables from the code being debugged so you can, for
example, visualize how the value of some variable changes through execution
of the code. Applications monitored by NightTrace have to be linked with
the NighTrace API library. NightView and NightTrace are closely integrated
- NightView allows to define tracepoints on the code being debugged. The
tracepoints could also be written directly into your code. NightTrace can
run event collecting daemons on multiple hosts.

While it is probably possible to find tools that could outperform NightStar in
many of the areas altogether, there is, to my current knowledge, no integrated
debugging package that could match the NightStar’s overall performance and
functionality. It also installs with minimal effort, ships with a very good user
manual which includes both tutorials for new users and many details for
experienced users, and has a customizable user interface built with the Qt
toolkit [3]. Of course, all this comes with an appropriate price tag. And in
the area of distributed application debugging, using just NightStar tools is
probably not enough.

2.2.5 Allinea Distributed Debugging Tool

The Allinea Distributed Debugging Tool (DDT) is a graphical distributed
debugger developed by Allinea Software [22]. Tt supports software written in
C, C++, and Fortran (including Fortran 90/95/2003). The code being de-
bugged must be compiled with debug information. Multi-process applications
debugged with DDT must use MPI. Allinea DDT also supports debugging
of jobs submitted to some kind of queue/batch systems.

DDT allows the user to debug distributed MPI applications on-line, syn-
chronously, and at source level. It is an intrusive debugger - you can pause
the process, then change the contents of the variables or data structures being
watched and un-pause the process. Basically, DDT starts up multiple sym-
bolic debuggers (on different hosts, if needed), and then coordinates them.
The state of the debuggers is reflected in the DDT user interface. DDT’s
user interface has windows for source code, watchpoints, breakpoints, vari-
able view, registry values, call stack, etc. Preparing complicated MPI debug
sessions can be quite an effort. In DDT, the settings of the debug sessions
can be saved.

For a programmer who writes distributed applications using MPI, DDT is a
debugger definitely worth taking a look at. Those looking for a single-process

19

debugger with an easy-to-use graphical user interface, would possibly benefit
from using DDT, too. In the cases where debug information and source code
packages are available for these applications, Allinea DDT can give a more
in-depth view of the process than the trace tools could. Like the NightStar
LX tool-set, Allinea DDT is available commercially.

Session Control Select Search View Help

Focus on current: (¢ Process (& Thread ‘I— Step Threads Together ﬁ,[{7} (_} {r} ’g E‘ §l 1 ‘

.:’:l—" ‘

T e < =

t

Project Files IFomanModmes | if (semd{client_socket, file info, strlemifile_i.|| Locals | CurrentLine(s) lStack |
_ logit{"Problem with send: %s\n", strerror(e:
Pro}ectFlles =1 2 exit({l); Variable Name Value
= Source Tree ks } i~ client_socket -1208844300
=3 build file fres(sf); i server_socket 4
= Efiled 4 free(file info);
- Er—
~ 8] int cleanup() 77
- Bf]int create_log_file(cons int handle_requests (int server_socket)

" {
Bj]int create_pid_file(cons int client_sockst;

- 8] int destroy_pid_file(con 2 int child:
- 8] int do_server()

~ 8] int handle_requests(int
~ B int main(int argc, char*
-~ Bj]int parse_arguments(in
- B int stop_logging_to_file

for (:) {

- 8] void handle_one_requ: if ((child = forki{)) < 0) {
return -1;
- Bj] void logit(const char *fc 3 1
- Bl void on_chld(int signo,] elae if (child == 0) {
- 8§ void on_error(int signo, close(server_socket); // TODO. close unhandk
= : 4 handle_cne_request (client_socket) ;

- Bj] void on_reload(int sign closelclient_socket); // ToDO. close unhandl
~ Bl void on_terminate(int s € exit{0);
~ Bj] void sigsetup() }
- Bj] void usage(const char * closeiclient_socket); // TODO. close unhandled

- statapi.c C waitpid{-1, NULL, 0); // ToDO. errors unhandled

4 Header Files - }
J47° | ’l_l return 0; =
4 » Type: none selected

x err I Stdin | Breakpoints (Process 0) | Watches | Stacks (Pr « x Expression Value

Function
=imain (filed.c:395)
-Ido_server (filed.c:337)
= handle_requests (filed. c285)
+

DDT 4

Figure 2.8: Allinea DDT user interface

2.2.6 NetLogger Toolkit

NetLogger is a methodology for performance analyzing and debugging dis-
tributed systems. A set of tools to support this methodology (the NetLogger
Toolkit) is also provided by authors of the methodology, but in theory you
could just follow the methodology and use your own tools for creating, col-
lecting and analyzing logs. [27]

For most of the other tools and approaches, described or mentioned in this
thesis, the main purpose is to reduce the amount of bugs in the application
functionality. Improving performance of an otherwise normally-functioning

20

program is not their main goal. This is different for the NetLogger method-
ology. Here the main aim is to find out if the distributed application has
notable performance bottlenecks, and where these bottlenecks occur.

There are four components in the NetLogger Toolkit: API and libraries for
programming languages (C, Java, Python, ...), a set of tools for generation,
collecting and sorting of event logs, a system for event archiving, and a
visualization tool. To use NetLogger, you must modify your distributed
application components to produce timestamped event logs at critical points.
Event logs are then collected and correlated with the NetLogger visualization
tool [12].

NetLogger uses the Universal Logger Message (ULM) [1] format. The ULM
format consists of required fields (for example, DATE field for timestamp) and
user-defined fields. NetLogger introduces some extra fields which must always
be present, but from ULM standard’s point of view these are ordinary user-
defined fields. All the components of the distributed system being monitored
must be modified to output their log messages in the ULM format. To make
this modification easier, API and support libraries are provided.

Producing the logs in common format is one of the first steps in the NetLogger
methodology. Usually, the following step is to filter and collect the produced
logs. For this, the NetLogger Toolkit uses two kinds of agents: agents, who
start and stop monitoring, and brokers, who control these agents and collect
and filter the logs. The agent architecture helps to keep the volumes of log
data under control by activating logging on-the-need basis.

The final phase in the NetLogger methodology is the analysis of the col-
lected event logs. For this, the NetLogger toolkit offers a graphical applica-
tion called nlv - NetLogger Visualization. The visualization tool plots time
against a set of events from the applications. The set of sequential events
from one process is called a lifeline. For example, a lifeline of an unsuccess-
ful file T/O operation could consist of the following events: opening the file,
writing the data, getting a write error, closing the file.

The nlv tool allows the user to choose, which events from which server should
be displayed. Then the user can zoom in on areas of interest. nlv can work
both off-line and on-line. A Sample of the nlv user interface can be seen on
Figure 2.9.

At the current status, nlv is more of a experimental tool to illustrate the
NetLogger approach. It is, like the NetLogger methodology, a good subject
to explore and to learn from, but not a tool for every-day practical tasks.

21

File Screen Options Modes Help

NetLogger Visualization

CALLBACK_END —| -
: £
£
CALLBACK_START —| L
T T T T T T T T T T T T T T T
40 50 60
time(ms)
Calendar date at left edge: Tue Jul 16 00:28:54 2002 Zoom box width: 0.029263 (sec)
Servers: m _12345
«prio» [e
ey e AAMON QI
] gy == Depth=12
LILINd N
0.0
Y i
[|
0.0 01
JES T LA

Figure 2.9: The nlv user interface

22

application application

other libs other libs

GNU/Linux

x86 Hardware

Figure 2.10: logging with 1iblog (taken from [10])

2.2.7 Friday

Friday is a replay debugging tool for distributed C/C++ applications [9]. Tt
consists of a C library (1ibc) call interceptor/logger — shared library called
liblog [10, 11] - and a replay console called Friday. Friday uses the GNU
Debugger (GDB) for controlling the replay of the processes and it also has a
GDB-like user interface. It is being developed at the University of California,
Berkeley. The aim of the creators of Friday is to develop a non-intrusive,
off-line distributed debug and replay tool for deployed (and live) production
applications. They are especially interested in finding bugs, that only appear
when the components of the distributed application are cooperating. These
bugs are called distributed bugs.

liblog is preloaded by the linker before the debugged application, so no
modification of the existing binary (and access to the source code) is needed.
The platform has to be Linux/x86 and only POSIX C/C++ applications are
supported. As the library can only be loaded before the application starts,
the authors of Friday suggest that the 1iblog library would be kept pre-
loaded all the time. This introduces some overhead, but 1iblog is designed to
keep it as low as possible. There are benefits from keeping the 1iblog library
pre-loaded — for example, this is the way to catch rare and slowly-developing
bugs.

Not all of the software participating in the distributed application will have
to be monitored by 1iblog. As liblog logs the contents of all incoming
messages for the processes under monitoring, replay of some subset of dis-
tributed application processes is possible without replaying all the other pro-
cesses communicating with this subset. This makes it possible to debug large

23

application
process
- symbolic (& | liblog
debugger replay
V]
console application
rocess i rocess
P > ;yll;lbollc <> P '
ebugger liblog
script ~ replay
interpreter A ’

Figure 2.11: Overall architecture of Friday (taken from [9])

multi-vendor systems.

Because independent processes are replayed individually, some kind of mech-
anism is needed to coordinate between the replays and keep them globally
consistent. liblog embeds Lamport clocks[15] in all outgoing messages for
that reason.

Trace logs produced by liblog are gathered into central location by the
logger process and then replayed (see Figure 2.10). Unlike most of the
other distributed debuggers, the logs are replayed off-line and also off-site
— not necessarily on the same machines, where the debugged processes ran.
This enables the user to carry out thorough and intensive debugging sessions
without disturbing the production system, where the logs were obtained from.
One of the biggest costs of this approach is that the hardware and system
software on the replay machine must be exactly the same as on the hosts
where the logs were gathered from.

Replay in Friday is controlled by a symbolic debugger, currently GDB. Each
process node is replayed by an independent debugger and Friday acts as a
supervising process, coordinating symbolic debuggers to achieve global con-
sistency (see Figure 2.11). It is possible to define global watch- and break-
points and to attach user-defined scripts to those watch- and breakpoints.

At the moment, liblog/Friday is far from being a final product, but it
already offers some interesting features not found in the existing debug and
trace tools.

From all the tools described in this thesis, the philosophy behind Friday

24

has probably been the most influencing one to the trace synchronizing tool
I am developing. However, the main difference between Friday and my
application is that my application is a “black-box” trace log browser, while
Friday can fully inspect the internal state of the replayed nodes (processes).

2.2.8 RAC Alert Consolidation

At the starting stage of TraceBrowser development, I searched for the tools
with a similar purpose and user interface. One of the tools found was RAC
Alert Consolidation (RAC) [18]. From all the tools I found, RAC had the
goals closest the TraceBrowser’'s. RAC is a tool for correlating alert logs
produced by Oracle Real Application Clusters [6]. From the little informa-
tion provided on the RAC web-page, it has a scrolling interface similar to
TraceBrowser’s. Most of the features TraceBrowser already has (timestamp
offsets, filtering), are filed under RAC’s “To Be Implemented” list. Unfortu-
nately, the development of the RAC appears to have stalled at an early beta
stage.

2.2.9 Kompare

Kompare is a graphical difference viewer that allows you to visualize changes
to a file [14]. It is mainly a tool for developers who want to compare different
versions of source code. The user interface of Kompare shows two versions
of the text file in parallel, visualizing the changes in a very distinct and
intuitive way (See Figure 2.12). The text views of the versions are scrolled
with a common scrollbar. While Kompare is not a debug tool, it gave me
the inspiration for developing the scrolling engine for TraceBrowser.

25

File Difference Seftings Help

=

| R a9 WA4dPW®

tracebrowser.py tracebrowser.py -
261 view.set_wrap_mode (gtk .WRAP_NONE) 223 view=gtk .TextView ()

262 #view.connect("size-allocate”,self .\ 224

263 225 view.set_editable (False)

264 buf=view.get_buffer() 226 view.set_cursor_visibkble (False)

265 buf .create_tag("trace", family="Mono: 227 view.set _wrap_mode (gtk JWRAP_MONE)
266 buf .create_tag("invisible", family="1 228

267 buf .create_tag("stamp"”, family="Mono: 229 buf=view.get_buffer()

268 buf .create_tag("past", family="Monost 230

269 buf .create_tag("present”, family="Mor 231 buf .create_tag("trace", family="Mono:
270 buf .create_tag("future”, family="Monc 232 buf .create_tag("invisible", family="1
271 233 buf .create_tag("stamp"”, family="Mono:
272 234

273 scrolled=gtk.ScrolledWindow () 235 scrolled=gtk.ScrolledWindow ()

274 scrolled.set_policyi(horizontal scrol 236 scrolled.set_policyi(horizontal scrol
275 scrolled.add (view) 237 scrolled.add (view)

276 238

277 filter_ box=gtk .HBox(] 239 vhox=gtk .VBox()

i vhox=gtk .WVBox() 240 usec_adj=gtk .Ad justment (0,0,9999,1.C
) DR E FEpLIES DEaled L SEmEiEiia 241 usec_scale=gtk .HScaleiusec_adj)

280 usec_adj=gtk .Adjustment(0,0,29959 1.C 243 sec_adi=gtk .Adjustment (0,0,100,1.0,1
281 usec_scale=gtk .H3cale (usec_adj) 243 sec_scale=gtk.HScale(sec_adq)

282 sec_adj=gtk.RAdjustment(0,0,100,1.0,1 244 e

iz sec_scale=gtlh.HScaleisec_adj) 245 vbox.pack_start(fil_exp, True, True)
. EalaLiEe (=3 s ol BT 246 vbox.pack_startisec_scale, True, Truel
e Bl L Ee LSS B 1 ol (D el B 247 vbox.pack_startiusec_scale, True, True
286 248

287 filter box.pack_starti(filter_exp, Tri 245 spander=gtk .Expander ("What what")
288 filter box.pack_starti(filter button, 250 spander . add (vhosx)

289 vhbox.pack_startifilter_box, True, Trus 251 vbox=gtk .VBox() =
290 vhox.pack_start(sec_scale, True, Trus) 252 vhox.pack_start (serolled) -
291 vbox.pack start{usec scale, True, True) . . bt N - e
4 4 »

Comparing file file:fhome/murakas/math/ittar...aaiwrkitracebrowsertagsiri3fracebrowser.py | 1 of 22 differences, 0 applied || 1 of 1 file

Figure 2.12: Comparing versions with Kompare .

2.2.10 More tools

Of course, there are more tools or projects that deal with various problems
in the area of distributed debugging and execution replay. Here is a list of
tools, concepts and libraries that were left out of my thesis, but are important
enough to mention here:

Paradyn a performance measurement tool for parallel systems [16],

Pablo Performance Analysis Environment [19],

Jockey a library for record-replay debugging [21],

Flashback

a lightweight OS extension for deterministic replay [24],

DejaVu a replay debugger for Java [2],

Pip - a infrastructure for comparing expected and actual behavior in
distributed systems [20].

26

I have reviewed the existing trace and debug tools for several reasons. Some
of them, like strace and tcpdump, are a good base for my debug approach.
They can be used as the tools for creating the trace and packet dump logs
of the components of the distributed systems, to be later analyzed with my
synchronization utility. Some of them, like Friday and nlv, can be used to
learn new ways of debugging and analysis.

27

28

Chapter 3

Off-line Synchronization of Trace
Logs

This chapter will describe an approach to debugging distributed and net-
worked systems, called Off-line Synchronization of Trace Logs. Over the
past few years I have combined existing tools, problem solving and data
analysis methodologies from the field of debugging and other closely related
fields. As a result, T have worked out a debugging methodology which can
be used on both distributed and networked systems. It is also suitable for
debugging in production environments. In the essence, Off-line Synchroniza-
tion of Trace Logs is a simple methodology with low overhead, which uses
existing trace tools and an off-line event synchronizing tool for debugging
multiple processes possibly deployed into production environments. Events
are synchronized by their timestamps, making it easier to determine error
causality.

3.1 Case Studies: Debugging Deployed and Dis-
tributed Systems

During the years working as a system administrator, I have been responsible
for solving problems in various kinds of networked and distributed application
environments. In most of the cases, the applications involved were from
different sources. Some of them were closed-source. For many of them, re-
compiling with debug support would have taken a lot of time and effort,
and in almost all cases, they were running in production environments. In
the case of trivial problems, these applications would give meaningful error

29

messages that were useful in the problem solving process. However, when the
problems became more complex, especially when the bugs behind the errors
were distributed bugs, the error messages thrown by applications became
less meaningful. Sometimes there were no error messages at all. It was
necessary to get an insight on the application execution internals and also
on communication between different components of the system to solve the
problem.

The descriptions of some of the cases follow:

Case 1: After the migration of a web server to new a version of the Apache
httpd software at our site, some users started to complain, that when they
clicked on links to PDF files, they got an error message stating that the
file was corrupt. This only occurred with certain combinations of browsers,
Adobe Acrobat Reader plug-ins and PDF files. As the files were in the correct
format and corruption due to network problems was very unlikely, the real
underlying problem had to be a bit more complex. The error message from
the Acrobat Reader plug-in was the only error that any of the participating
components would give. To get to the underlying cause of this problem, I
set up two sessions: one with a client that worked correctly, and one with
a client that gave the error message. Then I produced the trace logs of the
test sessions (both server and client side) and recorded all of the network
traffic. When correlating trace logs and packet dumps and comparing two
sessions, I found out that the web server responded to the partial queries (the
queries that request only some parts of the file) with an answer that had the
correct data in it, but the header of the answer was invalid. Specifically, the
header had an invalid 0Offset field. This was causing some of the browsers to
overwrite a previously received PDF header with some other block from the
partial answer received later. The reason why this error was emerging only
on some cases was that the browsers did not always make partial queries for
PDF files and some browsers seemed to ignore the offset field of the answer’s
header. An Apache bug report was posted and the problem got fixed.

Case 2: Anyone who has supported an installation of the Torque [13| batch
processing system, probably knows that Torque is really sensitive on how
the node hostnames resolve. Forward and reverse resolutions must exactly
match each other and also the values on the configuration files. If the mas-
ter node happens to have several network interfaces with different addresses
and names, troubleshooting of the non-working Torque installation becomes
a bothersome task. I have worked on a case where Torque was installed as a
part of and configured by a cluster management software package. Because
the configuration and the structure of our cluster was not entirely typical,
the configuration part apparently failed and resulted in a non-working Torque

30

installation. Torque diagnostic tools reported that the cluster was working,
but the submitted jobs were either left waiting in the queue forever or dis-
appeared without any output.

By using combination trace and network traffic dump tools, T established
exactly, which queries were made and which configuration files were consulted
by Torque components. Then I customized the Torque configuration files and
name resolution records according to the overview I got from the process of
debugging.

In both of the described cases, the solutions were trivial to devise and im-
plement once the cause of the problems was discovered. Finding the cause
was the hard part. While the debugging tools provided me with valuable in-
formation, processing the large volumes of data to find this information was
slow and error-prone. Special tools for supporting this kind of debugging
approach would have made the process faster and probably more effective.

3.2 The Concept

The basis of the Off-line Synchronization of Trace Logs debugging concept is
that it is actually possible to use most of the time-proven, flawlessly working
single-application debug tools for debugging the networked and distributed
systems, too. Execution traces and network messages can be logged indepen-
dently for several processes in the distributed system and then combined and
analyzed together. For this combining to be possible, timestamps have to
be used on the trace records. The hardest parts are coordinating the whole
process, and extracting the useful information out of the large volumes of
collected results.

To have a faster and more effective analysis phase, I decided to switch from
an almost-manual process to a semi-automated process. The tool for the
automation of the analysis of the debug data is currently under active de-
velopment and the current results are presented in the third chapter of this
thesis.

There is another strong reason for me to develop my own concept: most of
the distributed system’s debugging frameworks or applications known to me
are developer-centric (and this is perfectly understandable) — they are for
people who are trying to improve their own code. A system administrator,
unlike a developer, works with (installs, configures, integrates) applications
created by other people. The focus in debugging is shifted from discovering
internal bugs (e.g algorithmic bugs, bad coding) to finding the bugs that

31

occur at the boundaries of cooperating applications, at the boundaries of the
application and the libraries, or at the boundary of the application and the
operating system (inter-process communication, library calls, sys-calls).

My current distributed application tracing approach can be divided into four
steps:

1. producing timestamped trace logs with tools of choice,
2. evoking the bug or waiting for it to occur,
3. collecting the logs,

4. synchronizing and correlating the logs to find any abnormal behavior.

As the first step, I identify and choose the processes I want to trace and also
decide, what network traffic needs to be captured. Right now, setting up
a trace session consists just of the manual preparation of the corresponding
command lines. This process is a good candidate for automation, too. Then
all of the trace processes are started. If the distributed application being
debugged needs to be restarted or not, depends on the tools used. For most
cases, | use tools that do not require a restart.

Actions on the second step depend on whether there is a known way to
replicate the error or is it just necessary to wait for it to occur. Replicable
bugs are, in general, easier to be dealt with. In addition, having a replicable
bug means smaller volumes of trace data has to be analyzed. If the error in
question has occurred, the trace processes can be detached and stopped after
logging the data. If needed, and possible, the debugged application can also
be restarted.

For the third step, all the logs have to be collected before the analysis can
start. When possible, I already arrange the logs to be saved to the same
network location at the first step. It must be kept in mind that writing logs
to a network file system can slow down the tracer and the application being
traced. When logging over the network is not possible, I usually use scp with
public key authentication to collect log files.

The final and most significant part of the process is analyzing the logs. For
the analysis, it is essential that the trace logs are synchronized (correlated)
in some way. After the logs are synchronized, the person analyzing the logs
can clearly see in which order the events occur, and hopefully understand,
how the parts of the distributed application are connected and how the bug
evolves and how the consequences of this propagate to other processes.

32

a UremaaQsonen nuskieameie_input a mmaa@sonetlrunkieampl_inpat = tammas Grionet_runkiwzampl_inpet S =F T
Eile Edit wiew Temninal Tabs Help Eile Edit ¥iew Teminal Tabs Help Wiew Temmnal Tabs Help
7 2 (0xbT socket [P

= 0
ALEM, (31G_IGH)

sa_family=
gaction(ETGALRM, {5T5_I

8,_family=AF_INET, 5
n(SIGALAN, [E1G_IGN)
= 0

=0
HULL, NULL,

> localhos
> localh

66 > localhos|
.34466 > localhos
.acmsoda > localh)
> localhos
a > localh
> localhos)

A1

192) = &
hin', 61 = & iz
[0 3], HULL, WULL, 1<

-0
/% send /) = 0|12
ULL, WULL, W12

=0 1z

4 446
fopdung cux lines T-iesit (EnD) B

Figure 3.1: Using multiple terminal windows for manual trace log correlation

connect (3, {sa_family=AF_INET, sin_port=htons(9876), sin_addr=inet_addr("193.40.36.106")}, 16) = 0

arp who-has adeliae.mt.ut.ee tell tawaki.mt.ut.ee

rt_sigaction(SIGALRM, {SIG_IGN}, {SIG_IGN}, 8) = 0

arp reply adeliae.mt.ut.ee is-at 00:0c:fl:bf:d3:2f (oui Unknown)

alarm(0) = 0

select (16, [0 3], NULL, NULL, NULL) = 1 (in [0])

IP tawaki.mt.ut.ee.51247 > adeliae.mt.ut.ee.sd: S 2429153632:2429153632(0) win 5840 <mss 1460,sack0K,timestamp 16021176
0,nop,wscale 2>

IP adeliae.mt.ut.ee.sd > tawaki.mt.ut.ee.51247: § 3998576838:3998576838(0) ack 2429153633 win 5792 <mss
1460, sack0K,timestamp 310975826 16021176,nop,wscale 2>

write(3, "Hello World\n", 12) = 12

IP tawaki.mt.ut.ee.51247 > adeliae.mt.ut.ee.sd: . ack 1 win 1460 <nop,nop,timestamp 16021177 310975826>
IP tawaki.mt.ut.ee.51247 > adeliae.mt.ut.ee.sd: P 1:13(12) ack 1 win 1460 <nop,nop,timestamp 16021177 310975826>
IP adeliae.mt.ut.ee.sd > tawaki.mt.ut.ee.51247: . ack 13 win 1448 <nop,nop,timestamp 310975826 16021177>
getsockname (4, {sa_family=AF_INET, sin_port=htons(9876), sin_ addr=inet_addr("193.40.36.106")}, [16]) = 0

IP tawaki.mt.ut.ee.51247 > adeliae.mt.ut.ee.sd: F 13:13(0) ac k 1 win 1460 <nop,nop,timestamp 16021177 310975826>
read(4, "Hello World\n", 8192) = 12

Figure 3.2: Color-coding trace messages

As there are vast amounts of data and several parallel traces, manual synchro-
nization (See Figure 3.1) will grow out of hands quickly. Browsing through
two logs simultaneously just by hand is achievable without much effort, but
starting with three or more parallel logs to step through, some better ap-
proach is required.

So far, T have handled the cases of three or four parallel traces with color-
coding (e.g with ANST codes [28]) the logs and then merging them to one file,
sorted by timestamps, but this is not efficient enough. Only a small part of
the total trace is visible on the screen, inter-process communication is harder
to follow and it gets harder to follow the trace of one process, because it is
now split up.

A notable weakness in this debug approach so far has been the lack of dy-
namic filtering. The grep utility and some AWK scripts are of great help,
but they would have to be called before the process of browsing through the
logs can start. If I wanted to change some filter, the whole synchronization
and analysis process would start from the beginning and the current position

33

(in trace records) would be lost.

After some time of using this debug approach 1 did discover yet another
problem that needed to be addressed. It is not uncommon to discover, that
based on the timestamps, events appear to have occurred in illogical order —
for example, in inter-process communication a read from a socket appears to
be done before the corresponding write. There can be different reasons for
this. First, the administrator to start the trace session could simply forget
to synchronize the clocks before the trace logs are produced. Second, at the
time when the logs are produced, there could be no intention of correlating
them with the other logs from some different sources later on. Third, there
are very small delays (usually only a few microseconds) between the moment
that the event happens and the moment that the timestamp is acquired from
the system clock. Sometimes, when events happen in very small time frames
(for example, library calls) and the system is under heavy load, the delay
between the actual event and its timestamp can result in anomalies in the
correlation /synchronization process.

Using NTP for clock synchronization is not the final answer to this problem,
because the problem is not that the operating system’s clocks are not accurate
enough, but the timestamping process itself is not always precise enough for
timestamping massively occurring parallel events. It must be kept in mind
that it is more important to recreate the exact order that the events happened
than to have the exact time when each event happened.

For these reasons I did start developing my own helper application, called
TraceBrowser. With the TraceBrowser tool I plan to cover the final step of
my debug process - synchronizing and analysis.

TraceBrowser allows the user to load multiple parallel traces and then view
and scroll them together (see Figure 3.3). Scrolling is done synchronously,
based on timestamps rather than line numbers. Dynamic filters for both
rows and columns can be applied to different log-files, rows can be color-
coded. Tt is possible to define timestamp offsets for corrections in the event
order. Also, automatic inter-process communication detection can be used
to do this automatically. The TraceBrowser is described in more detail in
the third chapter.

3.3 Advantages and Disadvantages

The Off-line Synchronization of Trace Logs approach (and largely, the Trace-
Browser tool) is general enough to be compatible with all timestamped trace

34

Eile Help 2008-03-09 14:12:08.260301

select (16, [0 3], NULL, NULL, NULL) = 1 IP localhost.acmsoda > localhost.34466: read(3, "-gold 6670/ tcp # Vocaltec @
readio, "thirdwn", B192) = & IF localhost.34466 > localhost.ammsoda: readi4, "firstin", 8192) = &
write(3, "thirdwn", &) = & IF localhost.ammsoda > localhost.34466: readi4, "secondwn", 8192) = 7
IF localhost.34466 > localhost.ammsoda:
IF localhost.ammsoda = localhost.34466:
select {16, [0 3], NULL, NULL, NULL) = 1
readi4, "thirdwn", B192) = &
readio, "fourth'n", 8132) = 7
write(3, "fourth'n", 7) = 7
IF localhost.34466 > localhost.ammsoda:
IF localhost.ammsoda = localhost.34466:
select {16, [0 3], NULL, NULL, NULL) = 1
readi4, "fourth'n", 8132) = 7
readio, "fifth'n", B192) = &

write(3, "fifth'n", &) = &
IF localhost.34466 > localhost.ammsoda:
IF localhost.ammsoda = localhost.34466:
select {16, [0 3], NULL, NULL, NULL) = 1
readio, "", 8192) =0 IF localhost.34466 > localhost.ammsodai=readi(4, "fifth'n", 8132) = &
cloze(0) =0 IF localhost.ammsoda > localhost.34466:-read(4, "', 8192) =0
shutdown (3, 1 /* send */) =0 IF localhost.34466 > localhost. acmsoda:
zelect (16, [3], NULL, NULL, NULL) = 1
readi3z, "", 8192) =0
close(3) =0

close(3)
exit_group (0)

T D
= recv.out
read Filter
Timestamp offset
0.0
(] Df of T —
[» send.out > tcpdump.out Reset Autoshift =

Figure 3.3: Using TraceBrowser for automatic trace log correlation

logs. That means you can use any tool to provide the traces or some other
relevant debug information. The format of the timestamps has even not to be
unified between tracers, because converting timestamps to a common format
is quite trivial. Being independent from the tools used makes this approach
platform independent.

When sticking to tools that can trace the execution of binaries, there is no
need to recompile code or pre-load your own libraries before starting the
application. However, recompiling the code to include some sort of debug
support is not prohibited either. In more demanding situations, these dif-
ferent approaches to debugging and tracing can be combined to produce a
better overview.

With the introduction of the TraceBrowser, the biggest shortcomings in this
simple manual approach should be eliminated. Automatic synchronizing,
synchronous scrolling, filtering and timestamp offsets are introduced to re-
duce the manual labor and offer a better overview of the application execution
that was traced.

As the approach is quite simple, it has also a fair number of disadvantages.

When using this approach, synchronous and intrusive debugging are not
possible. This is a setback for those who are debugging their own code, or

35

have the application’s code at hand. For binary-only applications there is
a somewhat lesser, but not nonexistent, need for being able to pause the
execution and change the contents of the memory.

My approach and the TraceBrowser are suitable for off-line debugging only.
It must be noted though, that off-line debugging is not a bad thing in itself,
but the lack of on-line debugging can be. Because of this, making memory
snapshots at critical moments is at least harder, if not impossible. One could
make the memory snapshots at regular intervals and when debugging, use
the snapshot closest in time to the event being watched. This solution has
abnormal storage needs, and the memory snapshot being closest to the event
is not necessarily accurate for the exact moment the event occurred. Variable
watches can be set up in the same way, but with the same down-sides.

Problems of memory snapshots and variable watches could be overcome by
using replay debugging, replaying the execution of whole processes as close
to the original execution as possible. Unfortunately, the detail level of data
collected with standard trace tools is usually not sufficient for accurate and
consistent replay of distributed applications.

36

Chapter 4

The TraceBrowser

The TraceBrowser log synchronization tool supports the synchronization and
analysis part of the Off-line Synchronization of Trace Logs debug method-
ology. TraceBrowser allows the user to step or scroll through several log
files in parallel, while showing strict order of the log records in time without
loosing a clear distinction between different log files. One of the goals of the
TraceBrowser user interface is to enable the user to easily switch between
correlating events from different logs and observing one particular log in a
closer detail. This chapter will give an overview of the functionality of Trace-
Browser, a detailed description of its structure and a general evaluation of
its performance. Future development goals are also laid out.

4.1 Functionality of TraceBrowser

The core of the TraceBrowser is built around the synchronous scrolling func-
tion. At first, the user must load log files; this can be done from graphical user
interface or by providing filenames as arguments on the command line. When
the logs are loaded, they will be scrolled to the first event. The logs have
a common scrollbar for scrolling them and log records are scrolled together
over moments in time. Scrolling is implemented by a component called Past-
Present-Future Scrolling Engine (PPF scrolling engine, see Figure 4.1). The
PPF engine splits the log views vertically into three areas: topmost is called
past, center is called present and the bottom area is called future. When the
logs are scrolled to a certain moment in time, the past area holds all the log
events that have happened (were stored) before this moment, future holds
the log events that did happen after this moment, and present area holds the
event that did happen at the exact moment plus (configurable) number of

37

File Help 2008-03-09 14:12:07 485873 past

alarm(o) =0 " IP localhost.34466 > localhost P
zelect (16, [0 3], WULL, NULL, NULL) = IF localhost.am=zoda > localbog "
readio, "first\n", 5192) = & IP localhost.34466 > loc; g a rea
write(s, "first\n", &) = & P localhos c

& [0 3], NULL, MULL, MULL} = IP localhos|
read(o, "zecondin”, 8192) = 7 P localhos
write(s, "second\n”, 7) = 7 IP localbost.acmsoda > localbost.3446d
=zelect (16, [0 3], WULL, NULL, NULL) =

read(o, "third\n", 193] = &
write(3, "thirdwn", &) = &
IP localhost.34466 > localhost.acmsod:

IP localhost.acusoda > localhost.3446¢ p resen t

select (16, [0 3], NULL, NULL, ML) =
read(o, "fourthin, 192) = 7
write{3, "fourth\n", 7) = 7
IF localbost. > localhost. amsod:

IP localhost.acmsoda > localbost.3446(a re a

select(1s, [0 3], NULL, NULL, NULL) =
read(o, "fifthin", 8192) = €
write(3, "fifth\n", &) = &

sliders

IP localhost.34486 > localhost.acmsod:
IP localhost.ammsoda > localbost.3446q
select (16, [0 3], MULL, WUIL, WUIL) =
read(o, ", 8192) =0
close (0) =0
shutdown (3, 1 /+ zend */) = 0
IP localhost.34486 > localhost.acmsod:
zelect (16, [3]. WULL, NULL, NULL) = 1 IF localhost.amzoda > localhost.34ded
readis, a192)
cloz=(3)

o IP localhost.34466 > localhost.acmsodd
: ! future
-1 EBADF (Bad
exit_group (o) 7
|

area

Gl | [G]
P send.out P tepdump.out

main scrollbar

Figure 4.1: the interface of PPF scrolling engine

events that did happen right after this moment. The records in the present
area are in strict temporal order. For example, if the record for a write()
event is placed higher on present area than the record for a read() event,
then this record for the write() event has earlier timestamp than the one for
the read() event, irrespective to what logs do these events belong to. Records
on past and future areas are locally time-wise ordered, meaning that when
focusing on just one log, the events happened in the same order that they are
displayed on these areas, but this may not be the case when viewing two or
more logs in parallel. In the user interface, PPF areas are distinguishable by
color; the background color of the present area differs from the background
colors of the past and future areas.

The advantage of the PPF scrolling engine over just having all the records
in a strict temporal order is a significantly more effective usage of the screen
space. The PPF scrolling engine also plays an important role in enabling the
user to frequently and seamlessly switch between the tasks of following one
particular log and following several logs (and their interactions) in parallel.
However, if the need for all the records to be in the strict temporal order
should raise, the user can just adjust the height of the present area to be
the height of the whole window. The height of the present area of the PPF
scrolling engine is adjustable both through the ppf_height configuration

38

syntax = {'strace': re.compile('''"
(?P<sec_ep>\d+)\.
(?P<usec_ep>\d+)\s+
(?P<ev>.*)

$
,re.VERBOSE),
'apacheen': re.compile('''”

(?P<ip>["\[]+)\[
(?P<day>\d{2})/
(?P<month_name>\w{3})/
(?P<year>\d{4}):
(?P<hour>\d{2}):
(?P<minute>\d{2}):
(?P<second>\d{2})\s+
["\T1*\]
(?P<rec>.%*)

$
, re.VERBOSE
)

Figure 4.2: defining log file syntax with regular expressions

parameter and the sliders in the user interface. The PPF scrolling engine is
the result of purely practical work — the need for it became clear when testing
the first versions of TraceBrowser and developing it was mostly a case of try,
evaluate, and redesign.

As the core components of the TraceBrowser deal with temporal ordering
of events from different logs, it is essential for every one of the log records
to have some kind of timestamp. This is one of the three properties that
the input log files must have. The other two are that the records must be
in the temporal order within one log file and that one input line carries
one log record. Everything else can be specified in the configuration file by
the user. For every new type of log file, the user must describe its syntax
in the form of a regular expression. This syntax expression maps each log
record to timestamp and actual event data. Of course, different log files in
the same TraceBrowser session can have different syntaxes. It is not (yet)
possible to have records with different syntax within the same input file.
New syntaxes can be described in the configuration file as the members of
a Python dictionary. Perl-style regular expressions are used. See Figure 4.2
for a TraceBrowser syntax dictionary with two members: syntaxes for strace
output format and Apache common log format.

If in the early versions of the TraceBrowser, a user opened a new input file,
the syntax of this file had also to be chosen. The indexer needs to know the
syntax for extracting the timestamps from the log records. However, because
the syntaxes are described as regular expressions, it is possible to auto-detect

39

the log file syntax by simply doing a series of test-matches when a new log
is opened. The first line of each of the input files will be matched against
all the syntax expressions defined in the configuration file. When a match
is found, the syntax attribute of the trace log is changed accordingly. This
syntax auto-detection is available in the current version of the TraceBrowser.

Debugging can be a time-consuming process. This applies also to Trace-
Browser sessions. The time must be used efficiently so that more effort goes
into the actual analysis rather than opening files and tweaking configura-
tion options. In the case of long and complicated trace browsing sessions, it
is essential to be able to save and later on, restore, your work in progress.
TraceBrowser allows the user to save trace sesstons. One trace session con-
sists of the set of the currently opened trace logs and all the options applied
to them: filters, timestamp offsets, syntax, also global options like height for
the PPF present area. It is important to understand, that the Save Session
function does not save log files currently opened, only the filenames and op-
tions applied to them are saved. If, for example, one of the trace log files in a
saved session should change, be replaced or deleted, the TraceBrowser would
not load the version of the file that it had at the moment when the session
was saved. Instead, a new version of this log file would be displayed. If this
log file has been deleted or moved, the user would get an error message.

A prerequisite of getting a correct temporal ordering of the events is the syn-
chronization of the clocks used to timestamp the log records. TraceBrowser
expects that the computers used to acquire the trace logs use some means
of clock synchronization, for example, NTP[17]. However, from my practical
work with the Off-line Synchronization of Trace Logs methodology I have
learned that from time to time you encounter log data that has timestamps
of different logs out of sync. While intrusive debug technologies have sev-
eral mechanisms to fight this problem — checkpoints and clocks embedded in
the inter-process messages — these mechanisms cannot be used when using
non-intrusive off-line methodologies. The only obvious solution is to try and
correct the timestamps afterwards.

TraceBrowser offers two functions for correcting the timestamps — manual
shifting and inter-process-communication (IPC) detection. Manual shifting
is suitable if the user is able to detect the anomaly (events in the incorrect
temporal order) and has a clear understanding in what order the events in
question should be. Manual shifting is implemented by +- sliders (see Figure
4.3), one slider per every log view. The user will just have to move and hold
the slider to the -+ side, if it is necessary to increase the timestamps of the
log records, and the log will start scrolling. If the correct ordering is reached,
the slider has to be released. Decreasing timestamps works in the same way.

40

= tcpdump.out = recv.out

Filter Filter
Timestamp offset Timestamp offset
— E— +| |- E— +
14377500 -2.549890
[Reset I Autoshift [l Reset I Autoshift |

Figure 4.3: sliders for manual timestamp shifting

The other way to correct the timestamps is by using the automatic TPC
detection rules. In the TraceBrowser, this function is called Autoshift and
can be activated by clicking the Autoshift button in one of the log areas. The
reason behind analyzing different logs together is that the processes that
we are tracing influence each others behavior (or at least we suspect that
this is happening). Inter-process communication is the most obvious way for
processes to influence each others behavior. In the case where the timestamps
are out of sync, the user will probably notice anomalies in the event order,
but if this goes unnoticed, a wrong conclusion could be drawn. To fight this,
the TraceBrowser tries to correlate events of sending of the messages (from
one log) to the events of the receiving side. If the message appears to be
received before it is sent, then the timestamp offset on the receiving side will
be corrected, so that the sending event will have timestamp that is earlier
than the timestamp of the receiving event. The IPC event correlation is
based on a set of rules. Currently, there are two types of IPC detection rules.
First type of rules select the potential send events from the log; second type
of rules try to correlate these potential send events with other logs to find
corresponding receive events. The rules for IPC detection are closely tied to
the syntax of the trace log that they work on. The ruleset is defined in the
configuration file by using regular expressions. The user can add own rules
to the TPC detection ruleset. Sample rules can be seen on a Figure 4.4.

41

ipc_rules = [(re.compile('""’
connect\ ((?P<valid>\d+)
""", re.VERBOSE),
re.compile('"'"’
close\ ((?P<invalid>\d+)
''',re.VERBOSE),

(re.compile('"'"’
getsockname\ ((?P<valid>\d+)
""", re.VERBOSE),
re.compile('"'"’
close\ ((?P<invalid>\d+)
''',re.VERBOSE),

(re.compile('"'"’
write\((?P<v_des>\d+),
\s*\"
(?P<data>[""1*)\",
\s*\d+\)\s*=\s*
(?P<size>\d+)
''', re.VERBOSE),
re.compile('""'
read\ (\d+, \s*\"
(?P<data>[""1%*)
A" \s*\d+\)\s*
=\s*(?P<size>\d+)
''' re.VERBOSE),

Figure 4.4: defining the IPC correlation rules with regular expressions

Although the PPF scrolling model makes maintaining the overview of com-
bination of several trace logs a great deal easier, it alone is not always suffi-
cient. Trace logs have usually high volumes of records, and it makes getting
the needed information out of the large data-set a time-consuming and error-
prone process. To fight these negative effects of having high volumes of data
to present to the user, the majority of applications offer some kind of filtering
functionality. TraceBrowser is no different, it allows the user to enter regular
expression filters for the logs being viewed. When filters are activated by en-
tering the filter expression and clicking the Filter button, the user interface
acts as if the log records matching the filter are the only existing records.
At the moment T do not feel the need for some kind of simplified filtering
interface to complement regular expression filtering. The target group for
TraceBrowser are I'T professionals like system administrators or software de-
velopers and testers. These groups should already have a sound experience
of using regular expressions.

42

4.2 Structure, Algorithms and the User Inter-
face

4.2.1 Platform choice

TraceBrowser is written using the Python programming language. I chose
Python because it is well suited for prototyping and trying out new designs,
without the downside of having to switch the platform when the application
moves to a more mature stage. Python comes with broad range of standard
libraries providing a lot of supporting functionality, such as file 1/O, regu-
lar expressions, list and string processing. This enables the programmer to
focus on core parts of the program and use the libraries for needed support
functions. Also, Python runs on most of the popular platforms today.

The graphical user interface of the TraceBrowser is built using the GTK+
library. The GTK-+ library is available for Python through the PyGTK
wrapper library. The reason behind this choice was that the GTK+ library
supplies the user with assortment of advanced widgets while remaining rel-
atively easy to use. I needed some “above-basic” widgets and signal handler
functionality for writing the TraceBrowser. PyGTK enabled me to write my
application without the need to write my own widgets.

4.2.2 TraceBrowser Core Classes

TraceBrowser has four core classes: TBGui, TBView, TraceSession and Trace-
Log (See Figure 4.5). A TBGui is the class that implements the TraceBrowser
graphical user interface. It also implements one of the central elements of
the TraceBrowser - the PPF scrolling engine. Scrolling is essentially a GUI
function, so TBGui is a natural place for its implementation.

The TraceSession class represents the parts of the trace session that are not
GUT related - it holds the references for all of the opened trace logs and
a global index for the PPF scrolling engine, but unlike the trace session
concept presented to the user, it does not hold the information about the
GUI settings. The TraceSession class is closely tied to the TBGui class.
Most of the code taking care of their interaction is held at the TBGui side.

The TraceLog class represents one of the actual trace logs being currently
analyzed. It takes care of the actual file I/O (through the TraceFile class),
holds and processes indexes for the trace log. Other attributes of the trace

43

coordinates consists |of
1 1

belongs to

' |

haz views
1 1

Belongs to h
-
F— Tracelog

Figure 4.5: TraceBrowser class diagram

log, like time offset, filter expression and the syntax of the log are also kept
here.

The TraceView class is the representation of the TraceLog in the graphical
user interface. It holds the actual text views with log data and provides the
user with controls to change TraceLog attributes.

4.2.3 Graphical User Interface and Log Processing En-
gines

The graphical user interface of TraceBrowser is designed to use the available
screen space efficiently. Log views are the first priority when allocating the
space. Views have to hold large amounts of log records and the more of the
records are visible at the screen, the better. The controls to change trace
view attributes are organized as an expander widget, so they can be hidden
if not needed. All the future functions to be added to the TraceBrowser are
probably going to be accessible from a context menu or expander widget. A
toolbar with most-used functions is also under consideration.

To fully understand how the TraceBrowser works, an overview of the con-
cept of moments and the way TraceBrowser uses indices to do its work is
required. TraceBrowser looks at one input log file as an ordered sequence of
events in time. The actual timestamps in this sequence may shift, if the user
uses the time shifting function, but the number and ordering of the events
remain constant at all times. If a trace log file is being opened in the user
interface, two indices are created for this log. First, an index of the event
records with the original timestamps, called real indez, is created. For each

44

trace log 1 trace log 2 trace log 3

v v v

real index 1 real index 2 real index 3
¢ timestamp shifting ¢ timestamp shiﬂing¢
shifted index 1 shifted index 2 shifted index 3
global index

Figure 4.6: indices for the PPF scrolling engine

log record, the real index stores its timestamp and position in the user in-
terface, implemented using the GTK+ TextMark widgets. Based on the real
index, a similar index, called shifted index, is created. Shifted index has been
corrected with the timestamp offset. When the shifted index is made invalid
by changing the timestamp offset, it is refreshed. Furthermore, both real and
shifted indices hold the data of the visible (not filtered) records only. When
a filter is applied to log, both of its indices will be refreshed.

A Trace session can consist of a number of trace logs. Again, TraceBrowser
looks at one trace session as an ordered sequence, in this case holding mo-
ments, rather than events. In one given moment, one or more events can
happen. To handle this sequence, a third type of index, called the global in-
dex, is created. To create the global index, shifted indices of all the trace logs
are merged, combining one or more events with exactly equal timestamps as
one moment (See Figure 4.6). For every moment, the global index stores its
timestamp, a list of the trace logs that have records with this timestamp,
and list of user interface positions (TextMark widgets) for these records.

The PPF scrolling engine makes heavy use of the global index. The main
scrollbar is in fact scrolling over the moments in the global index, not over
the lines or columns of text like an ordinary scrollbar /scrolling engine would.
The PPF engine is set to handle scrolling signals from the main scrollbar.
When one of the scrolling events occurs, it is passed the desired moment
(as an index position) as the input data. The scrolling engine reads needed
user interface positions (TextMarks) for each of the log views from the global
index, scrolls the views to these positions and then adjusts them according
to the height of the present area.

45

Two of the most compute-intensive components of the TraceBrowser are the
filtering engine and the Autoshift IPC detection engine. The filtering engine
has to process all of the records in the log that it is working on. In the current
version of the TraceBrowser, filtering engine does a full reconstruction of one
log view. It matches the log data line by line, and creates new TextMark
objects for the records that match the regular expression. The filtering engine
also creates new indices for the trace log. When the log is processed, filtering
engine refreshes the global index.

The TPC detection engine has to first process a log that it is activated on.
It compiles a list of the potential sending events, then processes all the re-
maining logs. For every remaining log, it tries to correlate each line to all of
the potential sending events. If a match is found, the corresponding sending
event is excluded from the list and timestamps of the matching sending and
receiving event are compared. In the case of an anomaly, the timestamps of
the receiving are corrected.

4.3 Memory Usage and Performance Evalua-
tion

To evaluate the TraceBrowser performance, I tested three key aspects — the
areas which will supposedly have the biggest impact on the TraceBrowser
overall performance. For each component, I did ten tests with ten different-
sized input file sets. The results are presented here in the form of graphs.

The first key aspect of the TraceBrowser is the memory usage: how does
the overall size of the input files influence the size of the TraceBrowser vir-
tual memory size? As the current version of the TraceBrowser does not use
buffering of any sort, the best case scenario is a linear relation with the co-
efficient of 1. In a real life scenario, this coefficent is unlikely. For a better
overview, I estimated the amount of memory taken by the Python interpeter
and created an alternative graph that shows only the memory used by the
TraceBrowser data structures.

Memory performance tests (See Figure 4.7) show that the relation between
the input log size and TraceBrowser virtual memory size is linear, like ex-
pected. However, the coefficent is approximately 7. For the tool in an early
development stage, this is acceptable, but to achieve a mature product sta-
tus, this coefficent would need to be lower — a number between 2 and 3 would
be acceptable.

46

TraceBrowser memory usage
100000

90000
80000
70000
60000
50000
40000
30000
20000

Virtual memory size (kB)

10000

0
1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Input data size (kB)

TraceBrowser memory usage

Usage without the interpreter
80000

-~ 70000

kB

~ 60000

50000

Virtual memory size
N w N
o o o
o o o
o o o
o o o

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Input data size (kB)

Figure 4.7: the TraceBrowser memory usage

47

TraceBrowser global index refresh time
1,8

1,6
1.4
1,2

1
0.8
0.6

0.4

Refresh cpu time (s)

0,2
0
1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Input data size (kB)

Figure 4.8: Index refresh performance

The core of the TraceBrowser, the PPF scrolling engine, uses indices to do its
work. If one of the log indices becomes invalid, it has to be recalculated and
a merge operation to create a new global index will have to be performed. I
tested how the size of the input data influences the time it takes to refresh
the global index (see Figure 4.8).

On the positive side of the results, the relation between input data size and
the global index refresh time is linear, like it should be. However, my real user
experience with the TraceBrowser shows that refresh times over 0.5 seconds
will clearly degrade the user experience when using the manual timestamp
shifting sliders.

The PPF scrolling engine event handler function is the function most fre-
quently called in the TraceBrowser. Because it directly affects how fast the
user interface reacts to using the scrollbar, it has to be a quick function and
ideally should not be influenced by the input data size. I tested if this is true
in the TraceBrowser (see Figure 4.9).

48

TraceBrowser PPF scroll engine speed

0,4
0,35 J
0,3 /

0,25

0,2

0,1

0,05

Time per one PPF iteration (ms)

0
1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Input data size (kB)

Figure 4.9: PPF scrolling engine: event handler performance

Although the results for this test show a slight relation between the size of
the input data and the amount of time it takes to execute one iteration of the
PPF scrolling engine, the real change in scrolling engine execution speed is
marginal. The difference of 50-60 microseconds is nowhere near to be noticed
by the user.

When analyzing all the performance tests together, a clear trend emerges —
most of the components sacrifice their performance (by having to do more
preparation tasks) to have a very effective scrolling engine. Now there is a
need to optimize these components, while loosing as little as possible in the
scrolling engine performance.

From the general usability and functionality standpoint, the TraceBrowser
has already proven itself to be an useful tool. I have tested it on the trace logs
similar to the ones I had produced for the cases described at the beginning
of the third chapter. TraceBrowser practically frees the user of the burden of
keeping the trace logs in the correct temporal order. At the beginning stages
of the TraceBrowser development, I declared that this tool would be best
suited for the cases where there are three or more parallel logs to follow, and
that for the cases with two parallel logs, the manual approach was already
sufficient. However, it has turned out that the TraceBrowser simplifies the

49

synchronization of two parallel logs beyond my expectations, making it very
easy and fast to process. By using the TraceBrowser, I can really focus on
the actual analysis rather than keeping the track of the timestamps.

4.4 Future Development

The current version of the TraceBrowser loads all the logs into the memory.
Adding to this memory usage are the indices for the scrolling engine. When
trying to find a replicable bug, the trace logs are probably small enough in
size to fit into the memory of an average workstation. However, to find non-
replicable bugs, long trace sessions are needed, possibly producing trace logs
that wont fit into the memory. Sure enough, these logs can be pre-filtered
or splitted before using the TraceBrowser on them, but that would mean the
trace analyzing session would be more difficult and worse, less efficient. For
that reason, one of the near-future development goals for the TraceBrowser
is the addition of a buffering function. Portions of the log data large enough
to fit into the memory would be loaded and the rest would be read from the
filesystem when the need arises. This buffer can be implemented as a part of
the PPF scrolling engine. The biggest challenge is to redesign various indices
that the scrolling engine uses. At the moment, all the indices together use
amounts of memory roughly comparable to the size of the log data.

strace and ltrace can produce logs which contain traces for all the sub-
processes or threads in one application. As the system and library calls
for these sub-processes share the same trace log file, the current version of
the TraceBrowser would load this trace into one trace view. Usually, it is
desirable to have separate sub-processes and threads in separate trace views.
For now, I pre-split the log to separate files before loading them into the
TraceBrowser. Because this is relatively simple functionality, it is highly
probable, that I decide to include this additional step in a future release of
the TraceBrowser.

If the screen space becomes a valuable resource, all means of using it more
effectively must be considered. One widely-used way to present more data
with the same amount of text is by using different colors. In the context of
the trace logs, one way of coloring the trace logs is syntax highlighting. For
example, different colors could be used for the system call name, argument
and the result. There are other ways of using colors on the trace logs: colors
could reflect the system call’s result (success, error) or the time that system
call takes (with gradients). This possible addition to TraceBrowser is not
critical, but could enhance the user experience significantly.

20

One of the future challenges of the TraceBrowser development will be en-
abling the event records to be multi-line. At the moment, all the logic and
data structures inside the TraceBrowser relies upon the assertion that all the
input logs have exactly one log record per line. Conveniently for the Trace-
Browser, many log formats are compatible with this. The number of log
formats using multi-line event records seems to be on the rise and it would
not be a good idea to ignore it in the TraceBrowser development process.
To support the case where all the logs being analyzed have multi-line events
with the same fixed number of lines, the TraceBrowser would need only some
minor changes. However, to support a mixed set of different-height events,
most of the log processing engines (PPF, filtering, IPC detection) would need
a major re-write. This will not be an easy task to complete.

Timestamps of the events on different trace logs can be “out of sync” for
different reasons. When the shifts in the timestamps are caused by non-
synchronized clocks, setting a constant timestamp offset for all the records
will correct the problem perfectly. When the shifts in the timestamps are
caused by the way a timestamping system works, combined with high or
changing system loads, constant offsets might not be the solution. There
should be an option to distribute event records into groups and assign dif-
ferent timestamp offsets to these groups. The TraceBrowser does not yet
support this. Internally, this kind of function would be quite easy to imple-
ment, but the problem lies in the user interface design — how to present this
functionality to the user in a intuitive and compact way?

TraceBrowser supports many different log formats because it does not de-
mand much more from the log file than just having single-line timestamped
records. Remaining event data for the log record does not go through any
extra processing and the TraceBrowser does not have any knowledge about
the semantics of the records. This means the user must interpret the infor-
mation without any assistance. It would be better if the analysis software
had more internal knowledge about the data, so it can assist the user in tasks
like interpretation, filtering. One way to do it without loosing the support
for a wide range of formats would be a plug-in interface. For the logs formats
we want the program to know more about, we use plug-ins, while other log
formats are supported too. For plug-ins, already existing software could be
used. For example, the tcpdump tool allows the user to save all captured
traffic to a file in raw format. The user could open the raw tcpdump capture
file in the TraceBrowser, the TraceBrowser would then start up tcpdump for
interpreting and filtering the raw input file, providing a wider range of possi-
bilities than just having a static output of the tcpdump tool stored in a trace
log file.

ol

Besides implementing new functionality, a successful software development
project must also focus on fixing the bugs and improving the performance.
TraceBrowser is a fast-developing application and therefore it probably has
a number of bugs, performance and stability issues in addition to those de-
scribed in the performance evaluation section. TraceBrowser has already
shown that it has the potential to be a useful tool, now it is the time to
realize that potential by improving its performance and scalability. This is
not possible without a sound user-base and development group, so there is
need to announce TraceBrowser to interested groups.

52

Chapter 5

Conclusion

While debugging in distributed and deployed systems is inarguably a harder
task than debugging a single application, tools and approaches designed for
these systems are constantly gaining new grounds.

The Off-line Synchronization of Trace Logs debug methodology shows how
the combination of the existing debug tools, when used in a simple framework
and complemented with a new analysis tool, can turn out to be effective in
debugging distributed and deployed systems. Re-using existing concepts and
tools makes this methodology less development-intensive.

On the downside, the simplicity of the Off-line Synchronization of Trace Logs
debug approach is one of its disadvantages — it lacks many debug features,
like synchronous and symbolic debugging or variable watches. This may
mean that when the problem is deep enough, the Off-line Synchronization of
Trace Logs is not the right approach. However, when the bugs appear on the
application-application, application-kernel or application-library boundaries,
this methodology turns out to be pretty effective. In the deployed systems,
more complex debug tools cannot be used anyway, so this approach is one
way to debug in the production environments.

The TraceBrowser tool presented in this thesis, regardless of it still being in
an early development stage, can already be used to illustrate and facilitate
the Off-line Synchronization of Trace Logs methodology.

23

I have laid down some future goals with the development roadmap for the
TraceBrowser tool, but ultimately, the future of the TraceBrowser depends on
the user acceptance. The more interested users the TraceBrowser will have,
the more it makes sense to allocate resources to its development. When
the project leaves the early stages, it makes sense to try to attract more
developers to it. The tool is actively developed and available from [25]. For
the cases similar to the ones described in the third chapter, the TraceBrowser
has already proven to be a helpful tool.

24

Silumislogide sunkroniseerimine

Magistritoo (20AP)
Marti Taremaa

Restimee

Silumine hajussiisteemides on keeruline t66. Selleks otstarbeks on praegu-
seks vilja tootatud mitmesuguseid ldhenemisi ja tooriistu, mis piitidlevad
erinevate eesmarkide poole ning sobivad rakendamiseks paljudel hajusraken-
dustel. Siiski on kiillalt ruumi nii téiesti uute metodoloogiate loomiseks kui
ka olemasolevate uutele aladele laiendamiseks.

Selles magistritoos antakse esmalt iilevaade hajusiisteemide silumisel esine-
vatest probleemidest. Probleemikirjeldused on illustreeritud néiidetega iga-
paevatoost ning samuti tutvustatakse hetkel eksisteerivaid t6ovahendeid ha-
jussiisteemide silumiseks. T66 pGhiosaks on siisteemihalduritele sobiva silu-
mismetodoloogia “Off-line Synchronization of Trace Logs” — ”Silumislogide
siinkroniseerimine” — ning autori poolt arendatud seda ldhenemist toetava
tooriista TraceBrowser tutvustamine.

“Off-line Synchronization of Trace Logs” seisneb hajusrakenduse erinevatest
komponentidest kogutud trace-logide siinkroniseerimises ja analiiiisis. Logide
genereerimiseks kasutatakse voimalikult suures osas juba eksisteerivaid silu-
mistooriistu. Loodud logid kogutakse kokku ning analiilisitakse paralleelselt.
Mitme logifaili iitheaegseks analiilisiks on vaja neis olevaid kirjeid ajaliselt
jirjestada. Kuna t00 autori kogemuste pohjal teeb ajalise jérjestuse jélgimi-
ne logide analiiiisist viiga aegandudva t606, on vaja tdoriista, mis selles etapis
abistaks. Just sel pohjusel arendab autor rakendust nimega TraceBrowser.

Logide analiitisimiseks loodud TraceBrowser voimaldab mitme trace-logi iihe-
aegset, siinkroonset sirvimist, kusjuures siinkroniseerimine baseerub logikir-
jete ajalisel jarjekorral. Ajalise jarjestuse visuaalne kujutamine toimub ilma

29

logisid iihendamata. Nii on voimalik kiiresti liilituda logide paralleelselt ana-
liiiisilt {ihe logi analiiiisile ning vastupidi. TraceBrowser toetab koiki logifor-
maate, kus iihele reale vastab iiks kirje ning iga kirje sisaldab oma tekkimise
aega. Peale ajalise siinkroniseerimise pakub TraceBrowser ka filtreerimise ja
logide "ajas nihutamise" funktsioone. Hoolimata oma eksperimentaalse ra-
kenduse staatusest on TraceBrowser juba toestanud oma voimekust reaalse-
test siisteemidest kogutud logide siinkroniseerimisel. Piisava kasutajate hulga
tekkimisel on autoril plaanis selle toGvahendi arendust jitkata.

o6

Bibliography

1]

2]

131

4]

5]

6]

7]

18]

19]

J. Abela and T. Debeaupuis. Universal format for logger messages :
Internet draft. Available from World Wide Web: http://tools.ietf.
org/html/draft-abela-ulm-05.

Bowen Alpern and et al. Dejavu: Deterministic java replay debugger
for jalape no java virtual machine. Available from World Wide Web:
http://citeseer.ist.psu.edu/424170.html.

Trolltech ASA. Qt - cross-platform rich client development. Avail-
able from World Wide Web: http://trolltech.com/products/qt/
features/index.

Juan Cespedes. ltrace project page. Available from World Wide Web:
http://1ltrace.alioth.debian.org/.

Concurrent Computer Corporation. Nightstar linux debugging and anal-
ysis tools. Available from World Wide Web: http://www.ccur.com/
isddocs/NightStarTools.pdf.

Oracle Corporation. Oracle real application clusters 11g. Available from
World Wide Web: http://www.oracle.com/technology/products/
database/clustering/index.html.

Gerald Combs et al. Wireshark - network protocol analyzer. Available
from World Wide Web: http://www.wireshark.org/.

Free Software Foundation. Debugging with gdb. Available from World
Wide Web: http://sourceware.org/gdb/current/onlinedocs/gdb_
toc.html.

D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Fri-
day: Global comprehension for distributed replay. 2007. Available
from World Wide Web: http://www.cs.berkeley.edu/ galtekar/
debugging/nsdi07.pdf.

57

http://tools.ietf.org/html/draft-abela-ulm-05
http://tools.ietf.org/html/draft-abela-ulm-05
http://citeseer.ist.psu.edu/424170.html
http://trolltech.com/products/qt/features/index
http://trolltech.com/products/qt/features/index
http://ltrace.alioth.debian.org/
http://www.ccur.com/isddocs/NightStarTools.pdf
http://www.ccur.com/isddocs/NightStarTools.pdf
http://www.oracle.com/technology/products/database/clustering/index.html
http://www.oracle.com/technology/products/database/clustering/index.html
http://www.wireshark.org/
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://www.cs.berkeley.edu/~galtekar/debugging/nsdi07.pdf
http://www.cs.berkeley.edu/~galtekar/debugging/nsdi07.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

[19]

[20]

D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay debugging for
distributed applications. 2006. Available from World Wide Web: http:
//www.cs.berkeley.edu/"galtekar/debugging/usenix06.pdf.

D. M. Geels. Replay Debugging for Distributed Applications. PhD thesis,
2006. Available from World Wide Web: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2006/EECS-2006-163. pdf.

D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer. Dy-
namic monitoring of high-performance distributed applications. Avail-
able from World Wide Web: http://dsd.1bl.gov/publications/
HPDCO2-HP-monitoring.pdf.

Cluster Resources Inc. Torque resource manager. Available from World
Wide Web: http://www.clusterresources.com/pages/products/
torque-resource-manager.php.

Joshua Keel and Jeff Snyder. Kompare. Available from World Wide
Web: http://www.caffeinated.me.uk/kompare/.

Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7), 1978.

Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-
padam, and Tia Newhall. The paradyn parallel performance measure-
ment tool. Available from World Wide Web: ftp://ftp.cs.wisc.edu/
paradyn/papers/Miller95Paradyn. pdf.

D. Mills. Simple network time protocol (sntp), 1995.

Michael Moeller. Rac alert consolidation. Available from World
Wide Web: http://www.miracleas.dk/index.asp?page=168&page2=
159&page3=399.

D. Reed, R. Aydt, T. Madhyastha, R. Noe, K. Shields, and
B. Schwartz. An overview of the pablo performance analysis environ-
ment, 1992. Available from World Wide Web: citeseer.ist.psu.edu/
reed92overview.html.

Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul,
Mehul A. Shah, and Amin Vahdat. Pip: Detecting the unexpected in
distributed systems. Available from World Wide Web: http://issg.
cs.duke.edu/pip/nsdiO6preprint.pdf.

o8

http://www.cs.berkeley.edu/~galtekar/debugging/usenix06.pdf
http://www.cs.berkeley.edu/~galtekar/debugging/usenix06.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-163.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-163.pdf
http://dsd.lbl.gov/publications/HPDC02-HP-monitoring.pdf
http://dsd.lbl.gov/publications/HPDC02-HP-monitoring.pdf
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.caffeinated.me.uk/kompare/
ftp://ftp.cs.wisc.edu/paradyn/papers/Miller95Paradyn.pdf
ftp://ftp.cs.wisc.edu/paradyn/papers/Miller95Paradyn.pdf
http://www.miracleas.dk/index.asp?page=168&page2=159&page3=399
http://www.miracleas.dk/index.asp?page=168&page2=159&page3=399
citeseer.ist.psu.edu/reed92overview.html
citeseer.ist.psu.edu/reed92overview.html
http://issg.cs.duke.edu/pip/nsdi06preprint.pdf
http://issg.cs.duke.edu/pip/nsdi06preprint.pdf

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Yasushi Saito. Jockey: A user-space library for record-replay debug-
ging. 2005. Available from World Wide Web: http://www.hpl.hp.
com/techreports/2005/HPL-2005-46.pdf.

Allinea Software. Allinea distributed debugging tool. Available from
World Wide Web: http://www.allinea.com/?page=48.

SourceForge. strace project page. Available from World Wide Web:
http://sourceforge.net/projects/strace/.

Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews,
and Yuanyuan Zhou. Flashback: A lightweight extension for rollback
and deterministic replay for software debugging. 2004. Available from
World Wide Web: http://www.usenix.org/events/usenix04/tech/
general/full_papers/srinivasan/srinivasan_html/paper.html.

Marti Taremaa. Tracebrowser - google code. Available from World Wide
Web: http://code.google.com/p/tracebrowser.

tepdump/libpcap team. tcpdump/libpcap public repository. Available
from World Wide Web: http://www.tcpdump.org/.

B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter.
The netlogger methodology for high performance distributed systems
performance analysis. Available from World Wide Web: http://dsd.
1bl.gov/publications/NetLogger .HPDC.paper.ieee.pdf.

Wikipedia. Ansi escape code. Available from World Wide Web: http:
//en.wikipedia.org/wiki/ANSI_escape_code.

Wikipedia. Debugging. Available from World Wide Web: http://en.
wikipedia.org/wiki/Debugging.

29

http://www.hpl.hp.com/techreports/2005/HPL-2005-46.pdf
http://www.hpl.hp.com/techreports/2005/HPL-2005-46.pdf
http://www.allinea.com/?page=48
http://sourceforge.net/projects/strace/
http://www.usenix.org/events/usenix04/tech/general/full_papers/srinivasan/srinivasan_html/paper.html
http://www.usenix.org/events/usenix04/tech/general/full_papers/srinivasan/srinivasan_html/paper.html
http://code.google.com/p/tracebrowser
http://www.tcpdump.org/
http://dsd.lbl.gov/publications/NetLogger.HPDC.paper.ieee.pdf
http://dsd.lbl.gov/publications/NetLogger.HPDC.paper.ieee.pdf
http://en.wikipedia.org/wiki/ANSI_escape_code
http://en.wikipedia.org/wiki/ANSI_escape_code
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Debugging

60

Appendix A

Short user guide for the TraceBrowser (version 0.5)

This user guide collects all the information concerning the usage of the Trace-
Browser from the thesis, complements this information with technical data
and presents it in a compact form.

System requirements

TraceBrowser has been tested to work with:

e Python >= 2.4
o GTK+ >= 2.8
e pyGTK >= 2.8

Starting

Starting the TraceBrowser from the command line:

$ cd /directory/where/tracebrowser/was/extracted/to/
$./tracebrowser.py

or

$./tracebrowser.py logfilel logfile2 ... logfilelN

TraceBrowser has no limits on the number of input files. However, when
running on a typical computer display, TraceBrowser can accommodate 4-5
logs in parallel; more than that can get awkward. Due to the performance
issues described in Chapter 4.3 it is recommended that the sum of the input
file sizes remains below 10MB. While the files are loading, TraceBrowser will

61

display a “Please wait...” message on the upper right corner of the window.

The syntax of the input files will be automatically detected.

Currently the configuration file defines two possible syntaxes:

e logs with records starting with a POSIX timestamp -
(<seconds_from_the_epoch.microseconds>). This is the syntax of
strace (command line option -ttt), ltrace (command line option
-ttt), and tcpdump (command line option -tt) output.

e Apache httpd common log format

Adding new syntaxes is described briefly in the TraceBrowser configuration
file (see also “The TraceBrowser configuration file” section).

Adding a new trace log to the session

New trace log files can be added to the session by choosing File->Add
Trace. If none of the defined syntaxes match, the log will show up as empty.

Using the main scrollbar and PPF scrolling engine

After the logs have finished loading, they will be initially scrolled to the first
event, and it is possible to scroll them using the main scrollbar (see Figure 1).
The main scrollbar coordinates the past-present-future (PPF) scrolling en-
gine. The PPF scrolling engine scrolls the log events over moments in time
rather than over the lines of text. The PPF engine splits the log views ver-
tically into three areas: topmost is called past, center is called present and
the bottom area is called future. When the logs are scrolled to a certain mo-
ment in time, the past area holds all the log events that have happened (were
stored) before this moment, future holds the log events that did happen after
this moment, and present area holds the event that did happen at the exact
moment plus a (configurable) number of events that did happen right after
this moment. The records in the present area are in strict temporal order.
For example, if the record for a write() event is placed higher in present area
than the record for a read() event, this record for the write() event has an
earlier timestamp than the one for the read() event, irrespective to what logs
these events belong to. Records on past and future areas are locally time-wise
ordered, meaning that when focusing on just one log, the events happened
in the same order that they are displayed on these areas, but this may not

62

active moment

Eile Help 2008-03-09 1 7485873 past

alamio) o~
select(ls, [0 3], MUIL, NULL, WUTL) =
read(o, "firstin', 8152) = &
wTite(s, "firstin’ E

select(1s, [0 3], MUIL, NULL, WUTL) =
read(0, "second\n’, 5133) = 7
wTite(s, "mecond\a’, T = 7 IP localhost.ammeoda > localbost.3446(
select (16, [0 3], WULL, NULL, WULL) =

read(0, "thirdwn', 8152) = &

write(s, "thirdwa', &) = &

IP localhost.34466 > localhost ol

) setece oo, 10 59, wits, s, e < IP localhost.scmesda » localbioot.344st present
adjustment Sl I T ®
IF localhost.admsoda > localbost.3 4460 area
Sliders o ety (o0
IF 1 host. 34466 > localhost H

IF localhost.amsoda > localhost.3446(
select(16, [0 3], MULL, NULL, NULL) =
read(o, ", 8192) =0
closs(0) =0
shutdown (3, 1 /* send */) = 0

P localhost.38466 > localhost &
select(16, [3]. NULL, NULL, NULL) = 1 [P localhost.amsoda > lecalhost.34dst

read@, ', mi9a) o Ir localnost. gage > Localhost. amsodi

close(3) =0 | f t
c10m3) pea——— uture
excit_graup (0) .

area
D
[> send.out [tcpdump.out
log f ,
. - main
configuration ~crolbar

Figure 1: TraceBrowser user interface

be the case when viewing two or more logs in parallel. In the user interface,
PPF areas are distinguishable by color; the background color of the present
area differs from the background colors of the past and future areas. The
color of a PPF area can be defined in the configuration file.

Adjusting the Past-Present-Future areas

For greater flexibility, the height and position of the present area can be
changed by adjusting the sliders on the left side of the TraceBrowser window
(see Figure 1).

Applying filters

To use filters and timestamp shifting functions, the user has to first expand
the configuration area (see Figure 2) by clicking on a log’s name or the
triangle next to the log’s name.

For every log, filters can be defined using Perl-style regular expressions. Fil-
ters are activated by clicking the “Filter” button or pressing the Enter key in

63

= tcpdump.out = recv.out

Filter Filter
Timestamp offset Timestamp offset
— E— +| |- E— +
14377500 -2.549890
(Reset I Autoshift NI Reset I Autoshift |

Figure 2: Log configuration area

the filter entry field. TraceBrowser gives the user instant feedback concerning
the regular expression syntax. If the regular expression being entered is not
a valid Perl-style regular expression, it is displayed in red. If the expression
is valid, it turns into green.

Manual timestamp shifting

The timestamp offsets are set either manually or using the Autoshift function.
For manual timestamp shifting, user has to move the +- slider. The user has
to move and hold the slider to the + side, if it is necessary to increase the
timestamps of the log records, and the log will start scrolling. If the correct
ordering is reached, the slider has to be released. Decreasing timestamps
works in the same way. The speed of the shift depends on how far away from
the center the slider is.

Automatic timestamp shifting

The Autoshift function tries to detect possible timestamp anomalies by cor-
relating the logs using the correlation rules defined in the configuration file.
The default configuration includes some inter-process communication detec-
tion rules for the strace and ltrace logs. The user has to designate one log
as a master log by clicking its Autoshift button. The log is then checked for
system calls writing to a network socket. For all the matches, corresponding
read functions are searched from the other logs. If a match is found, times-
tamps are compared to assure that the write function takes place before the
read function. If neccessary, the timestamps are shifted.

Saving and loading the trace session

Currently active trace sessions can be saved to a file by choosing File->Save
Session. One trace session consists of the set of the currently opened trace

64

logs and all the options applied to them: filters, timestamp offsets, syntax,
also global options like height for the PPF present area. It is important to
understand, that the Save Session function does not save log files currently
opened, only the filenames and options applied to them are saved. When
loading a saved session by choosing File->Open Session, and this saved
session refers to files that are changed, the new versions would be displayed.
If the log files in a saved session should have been deleted or moved, the user
would get an error message when loading the session.

Using the examples

The TraceBrowser tarball includes a small number of examples to illustrate
the usage of the TraceBrowser. FExamples are provided as TraceBrowser
trace session files and can be found in the example_sessions directory of
the TraceBrowser tarball.

The TraceBrowser configuration file

The TraceBrowser configuration file is located in the same directory as the
TraceBrowser executable. The file is called tbconfig.py. The configura-
tion file allows the user to set various default values (window size, colors,
..) and also to define own rules for syntax detection and Autoshift correla-
tion. A short guide for writing Syntax and Autoshift rules is provided in the
configuration file comments.

65

66

Appendix B

The TraceBrowser source code

The source code for the TraceBrowser is available at:

e http://dougdevel.org/tracebrowser/tracebrowser.ddoc (digitally
signed)

e http://dougdevel.org/tracebrowser/tracebrowser.tar.gz

67

	Introduction
	Debugging in Distributed and Deployed Systems
	Requirements and Challenges
	Overview of Existing Tools

	Off-line Synchronization of Trace Logs
	Case Studies: Debugging Deployed and Distributed Systems
	The Concept
	Advantages and Disadvantages

	The TraceBrowser
	Functionality of TraceBrowser
	Structure, Algorithms and the User Interface
	Memory Usage and Performance Evaluation
	Future Development

	Conclusion

