Mathematischer Vorkurs Frühjahr 2005

Privatdozent Dr. Stefan Groote

Aufgabenblatt Nr. 4 – Donnerstag, 14. April 2005

4.1 Lineare Abhängigkeit

Begründen Sie, warum vier Vektoren im dreidimensionalen Raum linear abhängig sein müssen. Gegeben seien die Vektoren $\vec{r}_1 = (2, -1, 1)$, $\vec{r}_2 = (1, 3, -2)$, $\vec{r}_3 = (-2, 1, -3)$ und $\vec{r}_4 = (3, 2, 5)$. Finden Sie drei Skalare α , β und γ , so dass $\vec{r}_4 = \alpha \vec{r}_1 + \beta \vec{r}_2 + \gamma \vec{r}_3$ ist.

4.2 Lineares Gleichungssystem

Lösen Sie das lineare Gleichungssystem

$$2x_1 + 3x_2 + x_3 = 9$$
, $x_1 + 2x_2 + 3x_3 = 6$, $3x_1 + x_2 + 2x_3 = 8$

auf zwei verschiedene Arten:

- (a) mit dem Gaußschen Verfahren,
- (b) mit der Cramerschen Regel (Determinantenverfahren).

4.3 Vier Determinanten dritten Ranges

Bestimmen Sie die Determinanten

(a)
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$$
, (b) $\begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$, (c) $\begin{vmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{vmatrix}$, (d) $\begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$.

Diskutieren Sie alternative Berechnungsmöglichkeiten für die vorletzte und letzte Determinante.

4.4 Zwei Determinanten höheren Ranges

Berechnen Sie die Determinanten

(a)
$$\begin{vmatrix} -4 & 1 & 1 & 1 & 1 \\ 1 & -4 & 1 & 1 & 1 \\ 1 & 1 & -4 & 1 & 1 \\ 1 & 1 & 1 & -4 & 1 \\ 1 & 1 & 1 & 1 & -4 \end{vmatrix}$$
 (b)
$$D_5 = \begin{vmatrix} a & 1 & 0 & 0 & 0 \\ 1 & a & 1 & 0 & 0 \\ 0 & 1 & a & 1 & 0 \\ 0 & 0 & 1 & a & 1 \\ 0 & 0 & 0 & 1 & a \end{vmatrix}.$$

Die erste Determinante sollten Sie zunächst zu vereinfachen versuchen, während Sie für die zweite den Entwicklungssatz anwenden können, um sie durch strukturgleiche Determinanten des Ranges 4 und 3 auszudrücken. Lässt sich das Schema rekursiv (rücklaufend) fortsetzen?

4.5 Vektor- und Spatprodukt in Determinantenschreibweise

Zeigen Sie durch Entwicklung in die letzte Spalte, dass für drei Vektoren $\vec{a}=(a_1,a_2,a_3)$, $\vec{b}=(b_1,b_2,b_3)$ und $\vec{c}=(c_1,c_2,c_3)$ gilt

(a)
$$\vec{a} \times \vec{b} = \begin{vmatrix} a_1 & b_1 & \vec{e}_1 \\ a_2 & b_2 & \vec{e}_2 \\ a_3 & b_3 & \vec{e}_3 \end{vmatrix}$$
, (b) $[\vec{a}, \vec{b}, \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$.

4.6 Eigenwerte einer Matrix

Die Eigenwerte λ_i (i = 1, 2, 3) einer Matrix bestimmen sich über die Eigenwertgleichung

$$A\vec{x} = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \vec{x}$$

mit Eigenvektoren $\vec{x}^{(i)}$, indem das homogene lineare Gleichungssystem

$$\begin{pmatrix} 1 - \lambda & 2 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

gelöst wird.

- (a) Welche Lösung besitzt dieses lineare Gleichungssystem in jedem Fall?
- (b) Wie kommt man auf die Eigenwertgleichung und warum?
- (c) Bestimmen Sie die Eigenwertgleichung und versuchen Sie diese zu lösen.
- (d) Was erhalten Sie für die Eigenvektoren und welche Eigenschaft besitzen diese?
- (e) Normieren Sie die Eigenvektoren $\vec{x}^{(i)}$ auf die Länge 1.

4.7 Diagonalisierung

Wie können im allgemeinen Fall die Eigenvektoren $\vec{x}^{(i)}$ einer Eigenwertgleichung $A\vec{x} = \lambda \vec{x}$ dazu verwendet werden, um die Matrix A zu diagonalisieren? Gehen Sie dazu wie folgt vor:

- 1. Fassen Sie die drei Spaltenvektoren $\vec{x}^{(i)}$ zu einer quadratischen Matrix X zusammen.
- 2. Bestimmen Sie unter Verwendung der Eigenwertgleichung das Matrixprodukt AX.
- 3. Wie lässt sich das Ergebnis als Produkt von X mit einer diagonalen Matrix D schreiben?
- 4. Mit welcher Matrix muss von links multipliziert werden, um D zu isolieren?
- 5. Bilden Sie für das vorliegende Beispiel die Matrix X und das Inverse X^{-1} zu X.
- 6. Nutzen Sie X und X^{-1} , um die Matrix A zu diagonalisieren.