

BLITZ3D

9-Lesson

CRASH COURSE

by

J-Man

Page 2 of 50

This document authored by:

Scott Jacobson (J-Man)

Contents formatted and edited for publication by:

Richard Winters (rolow)

Reprinted with permission of original author
and

Distributed by:

Two-Cents Worth Publishing
(www.2cwp.com)

Visit the author’s website for
updated content, source code, and media:

jnoodle.com

Copyright © 2006, Scott Jacobson

Page 3 of 50

Table of Contents

Lesson Page

1. Introduction... 5

2. Control .. 9

3. Water, Terrain & Sky.. 12

4. Meshes Static/Animated ... 18

5. Lighting, Sound... 24

6. Collisions .. 30

7. Projectiles.. 33

8. Mouse Look .. 41

9. HUD.. 46

Page 4 of 50

Page 5 of 50

1. Introduction

ORIENTING YOURSELF

Unlike the standard XY coordinate system of 2D games where
the upper left corner of the screen is (0,0) , the 3D game world
positions the XY axes on the CENTER of the screen. The Z-
direction is oriented as forward/backward. This can be
confusing to 2D coders since Z is typically an UP/DOWN
vertical orientation scheme. When you place or move an object in your 3D world it
is easy to see this XYZ relationship, BUT once you start moving a CAMERA
things can get disorienting pretty quickly.

Placing an object in 3D space has more variety than just an
x,y,z position. You can also TURN an object (camera
included) about each of the X, Y & Z axes. Turning about the
X is called PITCH, Y is YAW and Z is ROLL, just like if you
were flying an airplane (see diagram). These turns are
measured in degrees (0-360).

Before diving into your first program, please take a few
moments to review the following coding terminology

excerpted from a tutorial by Paul Gerfen. If you get confused, don't worry. The
concepts will be introduced at the appropriate time throughout this tutorial so
you can see how they work in action!

The Game Frame

The following code represents the general organizational framework of a common
game. The yellow comments offer additional explanation and are ignored by Blitz
because of the preceding semi-colon. Commenting your code is a prefessional
practice and will save you hours of frustration down the road. If you remove all
the comments you can appreciate how little code is actually required to get a
simple 3D game up and going!

; Insert includes, declare global variables, dimension arrays

; Set video mode
Graphics3D 640,480,16,2

Page 6 of 50

SetBuffer BackBuffer()
; Setup cameras
cam1 = CreateCamera()
CameraViewport cam1,0,0,640,480
; Load level objects, e.g. meshes, lights, terrain, water plane, skybox, set collisions...
light1=CreateLight()
cube1=CreateCube()
PositionEntity cube1,-2,-2,10
; The MAIN GAME LOOP
While Not KeyHit(1)
 ; Keyboard/Mouse Controls
 ; 3D Stuff, e.g. move/animate meshes, launch projectiles, check collisions...

 UpdateWorld
 RenderWorld

 ; 2D stuff here, update HUD, text, stats...
 Text 50,50,"Hello Cube!"

 Flip
Wend

End

; Subroutines & Functions can be here

NEW COMMANDS

; Comments always start with a semi-colon
Graphics3D 640,480,16,2

Graphics3D 640,480,16,2 sets the 3D graphics card to a resolution of 640x480 using
16 bit color and windowed (1=full screen, 2=windowed). You will find that running
fullscreen can speed up your game significantly in many cases.

SetBuffer BackBuffer() , goes with FLIP

Using SetBuffer BackBuffer() is a technique in animation where you draw your world
objects to a hidden back page (aka Backbuffer) while the frontpage is being shown.
When the new world changes have been completed then the pages are switched (Flip).
This prevents a problem known as screen flicker.

Page 7 of 50

light1=CreateLight()
cam1 = CreateCamera()
CameraViewport cam1,0,0,640,480

light1=CreateLight() creates a standard level light named light1. Coloring, pointing,
and ranging lights will be covered later.

cam1 = CreateCamera() creates a camera named cam1. You can control where this
camera points in your world with the keyboard (covered later) creating a 1st Person
view.

CameraViewport cam1,0,0,640,480 sets up the portion of the screen that will display
what cam1 "sees" (what is placed in front of it) and in this case it's the entire game
screen. You can create multiple cameras for effects like split screen, rearview mirror,
etc...

cube1=CreateCube()
PositionEntity cube1,-2,-2,10

cube=CreateCube() simply creates a cube in your world cenetered at 0,0,0 with
opposite corners reaching from -1,-1,-1 to +1,+1,+1. This primitive shape entity can be
Scaled, RePositioned, Rotated, Colored, Textured and Alpha (transparency)
adjusted to suit a wide variety of world building purposes. e.g. EntityColor cube1,
255,0,0 will color the cube red. Other primitive entities you can create are Planes,
Spheres, Cylinders and Cones. You can also add the number 16 or 32 in the
parenthesis of you want a higher segmented (smoother) looking shape, e.g.
CreateSphere(16).

While Not KeyHit(1) , goes with Wend

This begins our MAIN GAME LOOP and checks to see if the Escape Key (scancode =
1) has NOT been pressed KeyHIT(1). If it has, the game Ends.

The game loop consists of checking for additional key or mouse input from the
user, giving each object a fair share opportunity to be moved a tad (player,
enemies, projectiles) , checking for collisions, updating stats, and displaying the
HUD GUI (Heads Up Display Graphical User Interface) e.g. score, life, mana,
power, radar, etc.

3D objects must be adjusted first followed by the 2D elements since whatever is
updated/drawn last can overwrite on top of what was drawn before. Wend designates
the end of the While loop.

Page 8 of 50

 UpdateWorld
 RenderWorld

UpdateWorld updates the objects/entities that we may have previously moved, scaled,
rotated, etc. plus dealing with any collisions we might have set up outside the LOOP.
RenderWorld graphically renders the objects/scene to the BackBuffer() (hidden page)
awaiting the FLIP command to actually display to the screen. The RenderWorld
command can also have an additional value put after this command to help slower
computers increase their framerate. This is called delta tweening and won't be
discussed in this tutorial because our lessons here won't deal with a huge world with
tons of objects.

 Text 50,50,"Hello Cube"
 Flip
Wend

End

After RenderWorld we can now place our 2D elemenets, e.g. score, life, mana,
power, radar, etc.

Text 50,50,"Hello Cube" places the words "Hello Cube" at X,Y game screen location
50,50 measured from the upper left corner. Text/Sprites/Images are placed/updated
here before the FLIP command that then brings our hidden page (with BOTH 3D and
2D elements) to the screen. Wend sends us back to the start of the game loop for the
next update of all our world object changes all over again.

THE CHALLENGE!!!
1. Grab the code HERE and unzip into your own unique folder on the desktop

and then RUN in the Blitz3D editor to verify that it works.
2. NOW, create a scene with several different primitives repositioned to make

a sweet scene.

Page 9 of 50

2. Control

In this lesson you will learn how to create reusable Functions that you can use to
control movement of your player, or camera, or other characters/pieces. These
functions can be created in a separate document and then Included in the main
program to help keep things organized as well as reusable for other future
programs! You will also be introduced to Parenting which permits you to "leash"
one object to another, e.g. attach the camera to follow behind your character. And
finally, you'll experience a bit of game logic and flow control with the IF..THEN
and CASE commands.

CODE

Notice the new code in bold below that has been added to the previous lesson. Also
notice below the game2.bb code another separate page of code called
gamefunctions2.bb. These 2 separate pages are actually connected through the
Include "gamefunctions2.bb" command.

game2.bb

Include "gamefunctions2.bb"

Graphics3D 640,480,16,2
SetBuffer BackBuffer()
cam1 = CreateCamera()
CameraViewport cam1,0,0,640,480
light1=CreateLight()
cube1=CreateCube()
PositionEntity cube1,0,0,10
sphere1=CreateSphere()
PositionEntity sphere1,0,0,20
;EntityParent cam1,cube1
While Not KeyHit(1)
 object_key_control(cam1)
 random_move (sphere1)
 UpdateWorld
 RenderWorld
 Text 50,50,"Use arrow keys to control"
 Flip
Wend
End

Page 10 of 50

gamefunctions2.bb

Function object_key_control(obj)
 If KeyDown(200)=True Then MoveEntity obj,0,0,1
 If KeyDown(208)=True Then MoveEntity obj,0,0,-1
 If KeyDown(203)=True Then TurnEntity obj,0,2,0
 If KeyDown(205)=True Then TurnEntity obj,0,-2,0
End Function
Function random_move (obj)
 direction = Rand(1,2)
 MoveEntity obj,0,0,.5
 Select direction
 Case 1
 TurnEntity obj, 0, 10, 0
 Case 2
 TurnEntity obj, 0, -10, 0
 End Select
End Function

NEW COMMANDS

Include "gamefunctions2.bb"
...
object_key_control(cam1)

Include "gamefunctions.bb" is a powerful and simple command that allows you to
insert big chunks of code from a separate document to keep things organized and
compartmentalized for easy management.

Function object_key_control(obj)
 ...
End Function

These commands are in the separate Include file gamefunctions.bb. This function is
"called" from the main game.bb program with the object_key_control(obj) code.
Naming the function, i.e. object_key_control(obj), is up to you and the wording
should reflect what the function actually does. In this case, our function controls
movement of an object with the keyboard. The object can be a camera, player, enemy,
light, terrain, most anything! A function can even pass and/or return values through the
use of a variable, i.e. (obj). You may wish to return more than one value or no value at
all.

Page 11 of 50

 If KeyDown(200)=True Then MoveEntity obj,0,0,1
 ...
 If KeyDown(203)=True Then TurnEntity obj,0,2,0

Within our first function object_key_control(obj) we combine a little logic IF...THEN
with a check to see if a specific key is being pressed KeyDown(200)=True and if true,
then we move the object forward (+Z-direction) with MoveEntity obj,0,0,1. The
numbers 200, 203... are scancodes. There is a specific scancode for each of the
keyboards 100+ keys and can be gotten here. If KeyDown(203)=True Then
TurnEntity obj,0,2,0 will turn (YAW) the object LEFT when the left arrow key (203) is
being pressed.

 direction = Rand(1,2)

This little piece of code chooses a random integer number (number without a decimal)
from 1 - 2 (1 or 2 actually). x = Rand(-10,10) would pick a random integer number from
-10 up to +10. You might use roll = Rand(1,20) if you wanted to generate D20 stats for
a role playing game.

 Select direction
 Case 1
 TurnEntity obj, 0, 10, 0
 Case 2
 ...
 End Select

Once you've generated a random number (1 or 2) and saved it into the variable
"direction" you may wish to do something with each SELECTION possibility. With the
CASE code we can offer the object the cance to randomly turn left i.e. Case 1 ...
(TurnEntity obj, 0, 10, 0) or right i.e. Case 2 ... (TurnEntity obj, 0, -10, 0).

THE CHALLENGE!!!

1. Grab the code HERE and unzip into your own unique folder on the desktop
and then RUN in the Blitz3D editor to verify that it works. Add in the objects
from your previous lesson to populate your world.

2. Investigate what removing the ";" from the line ;EntityParent cam1,cube1
3. Change control keys and add a vertical up/down option
4. Try changing cam1 to cube1 and then light1 and explain what you see.

Page 12 of 50

3. Water, Terrain & Sky

Water Plane, Terrain Mesh, Skyboxes & Texturing
Get ready to take a huge leap into 3D world creation! In this 3rd significant
Waypoint Lesson you will (1.) create and apply a tiling/repeating water texture to
a semi-transparent plane, (2.) use a heightmap image to generate a custom terrain
applying a tiling/repeating ground texture and lastly (3.) grapple with the SKYBOX
Beast by slapping a set of 6 "stiched" sky images onto a "hand-made" cube
mesh. There are definitely easier ways of creating skies but this is the more
common method with better looking results.

These are the textures you will be using in this lesson...

CODE

Notice the new code in bold below that has been added to the previous lesson. Also
notice below the game3.bb code another separate page of code called
gamefunctions3.bb.

game3.bb

Include "gamefunctions3.bb"
Global skybox, land
Graphics3D 640,480,16,2
SetBuffer BackBuffer()
cam1 = CreateCamera()
CameraViewport cam1,0,0,640,480
light1 = CreateLight()
sphere1 = CreateSphere()
EntityColor sphere1,255,0,0

Page 13 of 50

ScaleEntity sphere1,10,10,10
MakeWater()
MakeTerrain()
MakeSkybox()
While Not KeyHit(1)
 object_key_control(cam1)
 random_move (sphere1)

 PositionEntity skybox,EntityX(cam1),EntityY(cam1),EntityZ(cam1)
 UpdateWorld
 RenderWorld
 Text 50,50,"x="+EntityX(cam1)+" y="+EntityY(cam1)+" z="+EntityZ(cam1)
Flip
Wend
End

gamefunctions3.bb

Function MakeWater()
 water_tex=LoadTexture("water.jpg")
 ScaleTexture water_tex,20,20
 water=CreatePlane()
 EntityTexture water,water_tex
 PositionEntity water,0,4,0
 EntityAlpha water,.5
End Function
Function MakeTerrain()
 land_tex=LoadTexture("terrain_tex.jpg")
 ScaleTexture land_tex,10,10
 land=LoadTerrain("terrain_hmap.jpg")
 EntityTexture land,land_tex
 PositionEntity land,-2048,0,-2048
 ScaleEntity land,8,100,8
 TerrainDetail land,1000,True
End Function
Function MakeSkybox()
 skybox=CreateMesh()
 ;front face
 b=LoadBrush("front.jpg",49)
 s=CreateSurface(skybox,b)
 AddVertex s,-1,+1,-1,0,0:AddVertex s,+1,+1,-1,1,0
 AddVertex s,+1,-1,-1,1,1:AddVertex s,-1,-1,-1,0,1
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b
 ;left face
 b=LoadBrush("left.jpg",49)

Page 14 of 50

 s=CreateSurface(skybox,b)
 AddVertex s,+1,+1,-1,0,0:AddVertex s,+1,+1,+1,1,0
 AddVertex s,+1,-1,+1,1,1:AddVertex s,+1,-1,-1,0,1
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b
 ;back face
 b=LoadBrush("back.jpg",49)
 s=CreateSurface(skybox,b)
 AddVertex s,+1,+1,+1,0,0:AddVertex s,-1,+1,+1,1,0
 AddVertex s,-1,-1,+1,1,1:AddVertex s,+1,-1,+1,0,1
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b
 ;right face
 b=LoadBrush("right.jpg",49)
 s=CreateSurface(skybox,b)
 AddVertex s,-1,+1,+1,0,0:AddVertex s,-1,+1,-1,1,0
 AddVertex s,-1,-1,-1,1,1:AddVertex s,-1,-1,+1,0,1
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b
 ;top face
 b=LoadBrush("up.jpg",49)
 s=CreateSurface(skybox,b)
 AddVertex s,-1,+1,+1,0,1:AddVertex s,+1,+1,+1,0,0
 AddVertex s,+1,+1,-1,1,0:AddVertex s,-1,+1,-1,1,1
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b
 ;bottom face
 b=LoadBrush("down.jpg",49)
 s=CreateSurface(skybox,b)
 AddVertex s,-1,-1,-1,1,0:AddVertex s,+1,-1,-1,1,1
 AddVertex s,+1,-1,+1,0,1:AddVertex s,-1,-1,+1,0,0
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b
 ScaleMesh skybox,100,100,100
 FlipMesh skybox
 EntityFX skybox,1
 EntityOrder skybox,10
End Function
Function object_key_control(obj)
 If KeyDown(200)=True Then MoveEntity obj,0,0,1
 If KeyDown(208)=True Then MoveEntity obj,0,0,-1
 If KeyDown(203)=True Then TurnEntity obj,0,2,0
 If KeyDown(205)=True Then TurnEntity obj,0,-2,0
 ex#=EntityX(obj):ez#=EntityZ(obj)
 PositionEntity obj,ex,TerrainY(land,ex,0,ez)+5,ez
End Function

Page 15 of 50

Function random_move (obj)
 direction = Rand(1,2)
 MoveEntity obj,0,0,.5
 Select direction
 Case 1
 TurnEntity obj, 0, 10, 0
 Case 2
 TurnEntity obj, 0, -10, 0
 End Select
 ex#=EntityX(obj):ez#=EntityZ(obj)
 PositionEntity obj,ex,TerrainY(land,ex,0,ez),ez
End Function

NEW COMMANDS

Global skybox, land
...
MakeWater()
MakeTerrain()
MakeSkybox()
...
 PositionEntity skybox,EntityX(cam1),EntityY(cam1),EntityZ(cam1)
...
 Text 50,50,"x="+EntityX(cam1)+" y="+EntityY(cam1)+" z="+EntityZ(cam1)

Global skybox, land declares our terrain object land and skybox object skybox to be
globally accessible. Some languages refer to this as making them public. When we
use functions to create the skybox and terrain i.e. MakeTerrain() and MakeSkybox(),
we often will want to manipulate or access properties of the skybox and terrain AFTER
we create them. A skybox requires that the box be attached to the player's view,
otherwise you wil quickly reach the end of the sky :)

PositionEntity skybox,EntityX(cam1),EntityY(cam1),EntityZ(cam1)
takes care of this. EntityX(cam1) is a Blitz function that obtains the x-coordinate of the
enclosed object, in this case cam1. The skybox is then constantly repositioned in the
GAMELOOP on the player so that you never can catch up to the sky (try commenting
out this line to see the strange effect). Using this same EntityX(cam1) in the following
Text command will update our HUD with our X,Y,Z position.

Function MakeWater()
 water_tex=LoadTexture("water.jpg")
 ScaleTexture water_tex,20,20
 water=CreatePlane()

Page 16 of 50

 EntityTexture water,water_tex
 PositionEntity water,0,4,0
 EntityAlpha water,.5
End Function

Function MakeWater() is fairly straightfoward. water_tex=LoadTexture("water.jpg")
loads the image water.jpg into the variable water_tex. ScaleTexture water_tex,20,20
then enlarges this texture by a factor of 20 times. water=CreatePlane() creates an
"infinite" plane with the handle water. EntityTexture water,water_tex then applies our
tiling water image to the water plane. After positioning it, we make the water plane 50%
(.5) transparent with the EntityAlpha water,.5 command.

Function MakeTerrain()
 land_tex=LoadTexture("terrain_tex.jpg")
 ScaleTexture land_tex,10,10
 land=LoadTerrain("terrain_hmap.jpg")
 ScaleEntity land,8,100,8
 PositionEntity land,-2048,0,-2048
 EntityTexture land,land_tex
 TerrainDetail land,1000,True
End Function

Making a terrain is a little more involved. Blitz has a really cool
function that will allow you to take a grayscaled image
"terrain_hmap.jpg" (preferably 256x256 or 512x512 pixels) and use
the color variation to adjust the relative height of the vertexes of a
terrain mesh . Since our heightmap is 512x512 pixels which
LoadTerrain("terrain_hmap.jpg") translates to 512x512 world
units, ScaleEntity land,8,100,8 scales the horizontal dimensions to
4096 (512 x 8) units and the vertical units to 100. To center this huge terrain about the
0,0,0 world origin we use PositionEntity land,-2048,0,-2048 (2048 is 1/2 of 4096).
TerrainDetail land,1000,True is not a critical Blitz3D command but it does improve the
rendering of large terrains more efficiently on slower computers. Increase this number
for more detail and decrease it for increased speed.

Function MakeSkybox()
 skybox=CreateMesh()
 ;front face
 b=LoadBrush("front.jpg",49)
 s=CreateSurface(skybox,b)
 AddVertex s,-1,+1,-1,0,0:AddVertex s,+1,+1,-1,1,0
 AddVertex s,+1,-1,-1,1,1:AddVertex s,-1,-1,-1,0,1
 AddTriangle s,0,1,2:AddTriangle s,0,2,3
 FreeBrush b

Page 17 of 50

 . . . repeat with remaining 5 faces of skybox cube
 ScaleMesh skybox,100,100,100
 FlipMesh skybox
 EntityFX skybox,1
 EntityOrder skybox,10
End Function

Whether you understand this piece of skybox code or not is OK, this code will be the
same for all your future skyboxes and is completely reusable, This chunk of SKYBOX
CREATION code is HUGE compared to what you've done previously but if you look
carefully you will see a repeating pattern within the function. A skybox, like any box, has
6 sides and making a skybox requires us to manually create, vertex by vertex, triangle
by triangle (2 per side), each of the six sides and then texture each side with a unique
"stitched" sky image. Many sites offer free skybox texture sets (dnainternet.net or
.3delyvisions.com). After all the sides have been created and the textures applied, we
have to use the FlipMesh skybox command to turn our box outside-in, because our
player/camera will be placed on the inside of the skybox box. EntityOrder skybox,10
is another trick that just makes our level look better where the terrain horizon meets our
skybox.

 ex#=EntityX(obj):ez#=EntityZ(obj)
 PositionEntity obj,ex,TerrainY(land,ex,0,ez),ez

In our previous control functions

Function object_key_control(obj) and Function random_move (obj)
we didn't have to worry about our vertical direction (Y), but now that we have a terrain
we need our objects to "hug" the terrain when they travel. Otherwise, we will travel right
through the terrain. TerrainY(land, x, 0, z) is a great Blitz3D function that finds the
vertical Y- value of the terrain wherever an object is located on the horizontal (X-Z).

THE BIG 3 CHALLENGE!!!

1. Grab the code and media HERE and unzip into your own unique folder on
the desktop and then RUN in the Blitz3D editor to verify that it works.

2. Change the terrain by modifying the monochromatic heightmap
terrain_hmap.jpg texture using a gradient spraypaint tool in a good paint
program

3. Find a different tiling texture (terrain_tex.jpg) to apply to the terrain.
4. Locate and implement a new skybox (set of 6 "stitched" images).

(dnainternet.net or .3delyvisions.com)
5. Demonstrate to the instructor when ready :)

Page 18 of 50

4. Meshes Static/Animated

3D Models - Static and Animated
Your world can be filled with static meshes or animated meshes. Static meshes
are usually trees, rocks, furniture, buildings, weapons, and various pickups.
Animated meshes are usually moving characters, animals, etc. In this tutorial you
will be adding trees to your landscape and getting chased by dogs! Don't worry,
they won't bite.......yet. You will be making a few additional modifications to
make your code more flexible and efficient. Finally you will be introduced to the
"For ... Next" loop and the mighty TYPES convention, both allowing you to create
and manage hordes of objects and creatures! In this demo you will add 50
independent animated dogs and 1000 trees!

entity = LoadMesh (file$) loads a STATIC mesh from a .X, .3DS or .B3D file
entity = LoadAnimMesh (file$) loads an ANIMATED mesh from a .X, .3DS, .B3D or
.MD2 file. After loading the animated mesh the individual animations must be located,
extracted and assigned a unique number by ExtractAnimSeq(entity, first_frame,
last_frame). Once extracted the entity animation can be activated with Animate
entity[,mode][,speed#][,sequence][,transition#]
from the Blitz3D Help:
mode (optional) - mode of animation.
0: stop animation 1: loop animation (default) 2: ping-pong animation 3: one-shot animation
speed# (optional) - speed of animation. Defaults to 1. - a negative speed will play the animation
backwards.
sequence (optional) - specifies which sequence of animation frames to play. Defaults to 0.
transition# (optional) - used to tween between an entities current position rotation and the first frame of
animation. Defaults to 0. A value of 0 will cause an instant 'leap' to the first frame, while values greater
than 0 will cause a smooth transition.

Download both code & media here and place in your folder!

game4.bb

Include "gamefunctions4.bb"
Global skybox, land, cam1
Graphics3D 640,480,16,2
SetBuffer BackBuffer()
cam1 = CreateCamera()
CameraViewport cam1,0,0,640,480
light1 = CreateLight()
waterlevel=4

Page 19 of 50

MakeWater("water.jpg",waterlevel)
MakeTerrain()
MakeSkybox()
LoadTrees("tree.b3d")
Type dog
 Field ID
End Type
LoadDogs("dog.b3d")
While Not KeyHit(1)
 object_key_control(cam1)
 MoveDogs()
 PositionEntity skybox,EntityX(cam1),EntityY(cam1),EntityZ(cam1)

 UpdateWorld
 RenderWorld

 ;2D stuff here
 Flip
Wend
End

partial gamefunctions4.bb

; these ar ejust the new and modified functions

Function LoadTrees(file$)
 tree=LoadMesh(file$)
 ScaleMesh tree,.1,.1,.1
 For n=1 To 1000
 tree_copy=CopyEntity(tree)
 ScaleEntity tree_copy,Rand(1,4),Rand(1,4),Rand(1,4)
 x=Rand(-2000,2000) :z=Rand(-2000,2000)
 PositionEntity tree_copy, x,TerrainY(land,x,0,z)-15,z
 RotateEntity tree_copy,0,Rand(1,180),0
 EntityAutoFade tree_copy,500,1000
 Next
 FreeEntity tree
End Function
Function LoadDogs(file$)
 model=LoadAnimMesh(file$)
 ExtractAnimSeq model,2,14
 ScaleEntity model,.2,.2,.2
 For c=1 To 50
 Pack.dog = New dog
 Pack\ID = CopyEntity(model)
 x=Rand(-2000,2000):z=Rand(-2000,2000)

Page 20 of 50

 PositionEntity Pack\ID, x,TerrainY(land,x,0,z),z
 Animate Pack\ID,1,.3,1
 EntityAutoFade Pack\ID,500,1000
 Next
 FreeEntity model
End Function
Function MoveDogs()
 For moveall.dog = Each dog
 If EntityDistance(moveall\ID,cam1)>10
 PointEntity moveall\ID,cam1
 MoveEntity moveall\ID,0,0,.5
 ex#=EntityX(moveall\ID):ez#=EntityZ(moveall\ID)
 PositionEntity moveall\ID,ex,TerrainY(land,ex,0,ez),ez
 EndIf
 Next
End Function

; can set different textures and water level now
Function MakeWater(file$,wl)
 water_tex=LoadTexture(file$)
 ScaleTexture water_tex,20,20
 water=CreatePlane()
 EntityTexture water,water_tex
 PositionEntity water,0,wl,0
 EntityAlpha water,.5
End Function

NEW COMMANDS

Global skybox, land, cam1
. . .
waterlevel=4
MakeWater("water.jpg",waterlevel)
. . .
LoadTrees("tree.b3d")
. . .
Type dog
 Field ID
End Type
LoadDogs("dog.b3d")
. . .
 MoveDogs()

Page 21 of 50

We have to add cam1 to the Global variable list so that the camera is accessible in our
MoveDogs() function (The dogs are "pointed" to run toward you, the camera). We also
modify our MakeWater() rountine MakeWater("water.jpg",waterlevel) so that we can
now pass the function a water texture of our choice and adjust the water level too (
waterlevel=4).

TYPES!!!

TYPE is power! It is used to create a group of objects that have the same
characteristics that can be managed quickly and easily. Here we have created a dog
type with Type dog and created a characteristic variable called ID with Field ID. We
could also create additional variables like x-position, y-position, speed, texture, size,
aggressiveness.... but for now ID will store the unique Blitz3D "handle" of each of the
dogs we create in LoadDogs("dog.b3d"). MoveDogs() will then manage the
movement of each dog by pointing it toward us and moving it.

In gamefunctions.bb...

Function LoadTrees(file$)
 tree=LoadMesh(file$)
 ScaleMesh tree,.1,.1,.1
 For n=1 To 1000
 tree_copy=CopyEntity(tree)
 ScaleEntity tree_copy,Rand(1,4),Rand(1,4),Rand(1,4)
 x=Rand(-2000,2000) :z=Rand(-2000,2000)
 PositionEntity tree_copy, x,TerrainY(land,x,0,z)-15,z
 RotateEntity tree_copy,0,Rand(1,180),0
 EntityAutoFade tree_copy,500,1000
 Next
 FreeEntity tree
End Function

Function LoadTrees(file$) receives the passed model filename through file$ and then
loads the mesh into tree=LoadMesh(file$). Because our tree model is so gigantic we
reduce the mesh to 10% of it's original size with ScaleMesh tree, .1, .1, .1

For n=1 To 1000 . . . Next is a way to iterate (cycle, loop, repeat multiple times) through
our tree_copy=CopyEntity(tree) making 1000 trees. After each tree is copied we use a
technique to randomly scale ScaleEntity tree_copy, Rand(1,4), Rand(1,4), Rand(1,4)
, randomly position (x=Rand(-2000,2000) :z=Rand(-2000,2000) . . . PositionEntity
tree_copy, x,TerrainY(land,x,0,z)-15,z) , and randomly rotate RotateEntity
tree_copy,0,Rand(1,180),0 each tree copy to create the illusion that we have a
forest of 1000 unique trees. To keep our huge world from slowing with so many
objects, we employ EntityAutoFade tree_copy,500,1000 which causes anything 1000
units away from our camera to fade away. Fading starts at 500 with complete invisibility
at 1000 units. We can then use FreeEntity tree to free up some memory by dumping

Page 22 of 50

our original tree. Ideally, when your game ends, or you load the next level, ALL
entities should be freed up from memory.

Function LoadDogs(file$)
 model=LoadAnimMesh(file$)
 ExtractAnimSeq model,2,14
 ScaleEntity model,.2,.2,.2
 For c=1 To 50
 Pack.dog = New dog
 Pack\ID = CopyEntity(model)
 x=Rand(-2000,2000):z=Rand(-2000,2000)
 PositionEntity Pack\ID, x, TerrainY(land,x,0,z), z
 Animate Pack\ID,1,.3,1
 EntityAutoFade Pack\ID,500,1000
 Next
 FreeEntity model
End Function

Function LoadDogs(file$) receives the passed animated model filename through file$
and then loads the animated mesh into model=LoadAnimMesh(file$).
As mentioned in the introduction, ExtractAnimSeq model, 2, 14 extracts animation
sequence frames 2-14 (running) as the animation sequence #1. If you extracted another
sequence it would be autonumbered as animation sequence #2, etc. The dog models
are fairly large for our world so we scale them to 20% with ScaleEntity model, .2, .2, .2
.

TYPES again!!! TYPES will probably be difficult at first to wrap your brain around, and
you could do without them if your game stays small scale, but true power awaits the
coder that wields understanding of the TYPE. Remember in the main program we
created our dog type with

Type dog
 Field ID
End Type

Now we get to use the power of TYPES to create a Pack of 50 dogs! Using a For . . .
Next loop we iterate through 50 instances of Pack.dog = New dog which creates and
sets each dog's ID handle with Pack\ID = CopyEntity(model) . Pack is our group name
for the dog entities. Each dog is then randomly positioned on the terrain and autofaded.
Animate Pack\ID, 1, .3, 1 starts the animation looping mode 1 for each dog running at
30% speed (.3) playing sequence #1 (frames 2-14, extracted previously). After all 50
dogs are generated the original model is freed from memory.

Function MoveDogs()
 For moveall.dog = Each dog

Page 23 of 50

 If EntityDistance(moveall\ID,cam1)>10
 PointEntity moveall\ID,cam1
 MoveEntity moveall\ID,0,0,.5
 ex#=EntityX(moveall\ID):ez#=EntityZ(moveall\ID)
 PositionEntity moveall\ID,ex,TerrainY(land,ex,0,ez),ez
 EndIf
 Next
End Function

In our Function MoveDogs() we use a special For . . . Each that is designed
specifically for TYPES.

For moveall.dog = Each dog . . . Next lets us loop through and make adjustments to
Each instance of dog using the variable moveall

If EntityDistance(moveall\ID,cam1)>10 checks the distance between you cam1 and
each dog instance moveall\ID and if the dog is greater than 10 units away it will point it
toward you PointEntity moveall\ID, cam1 move it closer MoveEntity moveall\ID,0,0,.5
and then make sure it stays on top of the terrain with ex#=EntityX(moveall\ID):
ez#=EntityZ(moveall\ID) and PositionEntity moveall\ID, ex, TerrainY(land,ex,0,ez),
ez

; can set different textures and water level
Function MakeWater(file$,wl)
 water_tex=LoadTexture(file$)
 . . .
 PositionEntity water,0,wl,0
 . . .

With these modifications to our Function MakeWater(file$,wl) we can now more easily
pass different textures AND set the water level. Using a water level variable will come in
handy in the next lesson when we add a water wading sound as the player enters the
water.

THE CHALLENGE!!!

• Download the source code & media into your folder and open both in the
Blitz3D editor.

• Modify dog & tree textures, for a unique level interpretation.
• Determine the maximum number of trees and dogs obtainable, balancing

with EntityAutoFade, before significant slowdown is noticed

Page 24 of 50

5. Lighting, Sound

Time to spice up the game with some cool lighting, music and sound effects! For
lighting, Blitz allows us to set the world ambient light level and color, create
individual point and spotlight sources that can be positioned, colored, rotated
and ranged. We are also going to introduce the new concept of READing an
external included level DATA file into the game. This DATA file will contain the
information for each lights x position, z position, Red, Green, Blue, and Range.
This data file could also be loaded with information on everything else in your
world, including skybox, terrain, sound, characters, etc. Blitz supports a wide
range of music and sound formats, including raw, wav, mp3, and ogg. You will be
adding some background music, a running sound and a wading sound for the
water.

Download both code & media here and place in your folder!

game5.bb

Include "gamefunctions5.bb"
Global skybox, land, cam1, wade_vol#, run_vol#, wadechannel, runchannel
Global waterlevel=4

Graphics3D 640,480,16,2
SetBuffer BackBuffer()

cam1 = CreateCamera()
CameraViewport cam1,0,0,640,480

MakeWater("water.jpg",waterlevel)
MakeTerrain()
MakeSkybox()
LoadTrees("tree.b3d")
LoadMusic("spacepanic.mp3")
LoadSFX()
AmbientLight 5,5,5
LoadLights()

Type dog
 Field ID
End Type

Page 25 of 50

LoadDogs("dog.b3d")

While Not KeyHit(1)
 object_key_control(cam1)
 ChannelVolume wadeChannel, wade_vol#
 ChannelVolume runChannel, run_vol#
 MoveDogs()
 PositionEntity skybox,EntityX(cam1),EntityY(cam1),EntityZ(cam1)

 UpdateWorld
 RenderWorld

 ;2D stuff here
 Flip
Wend
End

Include "game5data.bb"

This is the included gamefunctions file gamefunctions5.bb

Function LoadLights()
 Read numlights
 For n=1 To numlights
 Read x,z,R,G,B,range
 light=CreateLight(2) ;2=point light
 LightColor light, R,G,B
 LightRange light, range
 PositionEntity light, x,TerrainY(land,x,0,z)+50,z
 Next
End Function

Function LoadMusic(files$)
 bgsound = LoadSound (files$)
 LoopSound bgsound
 SoundVolume bgsound,.5
 PlaySound bgsound
End Function

Function LoadSFX()
 run = LoadSound ("gravel.wav")
 wade = LoadSound ("water.wav")
 SoundVolume run, 0
 SoundVolume wade, 0
 LoopSound run
 LoopSound wade

Page 26 of 50

 runChannel = PlaySound (run)
 wadeChannel = PlaySound (wade)
End Function

Function object_key_control(obj)
 walksnd=False:wadesnd=False
 If KeyDown(200)=True And EntityY(obj)>waterlevel+4 Then
 MoveEntity obj,0,0,1:walksnd=True
 If KeyDown(208)=True And EntityY(obj)>waterlevel+4 Then
 MoveEntity obj,0,0,-1:walksnd=True
 If KeyDown(200)=True And EntityY(obj)<=waterlevel+4 Then
 MoveEntity obj,0,0,1:wadesnd=True
 If KeyDown(208)=True And EntityY(obj)<=waterlevel+4 Then
 MoveEntity obj,0,0,-1:wadesnd=True
 If KeyDown(203)=True Then TurnEntity obj,0,2,0
 If KeyDown(205)=True Then TurnEntity obj,0,-2,0
 ex#=EntityX(obj):ez#=EntityZ(obj)
 PositionEntity obj,ex,TerrainY(land,ex,0,ez)+5,ez
 If walksnd Then run_vol#=1 Else run_vol#=0
 If wadesnd Then wade_vol#=1 Else wade_vol#=0
End Function

This is the included data file game5data.bb

; This is an included file that contains your level data
; In this lesson it contains LIGHT data
; x,z, R,G,B, range
Data 4 ;number of lights
Data -200,0, 255,0,0, 100 ;red
Data 0,200, 0,255,0, 100 ;green
Data 200,0, 0,0,255, 100 ;blue
Data 0,-200, 255,255,0, 100 ;yellow

NEW COMMANDS

Global skybox, land, cam1, wade_vol#, run_vol#, wadechannel, runchannel
Global waterlevel=4
. . .
LoadMusic("spacepanic.mp3")
LoadSFX()
AmbientLight 5,5,5
LoadLights()
. . .

Page 27 of 50

 ChannelVolume wadeChannel, wade_vol#
 ChannelVolume runChannel, run_vol#
. . .
Include "game5data.bb"

We first need to make some variables global, wade_vol#, run_vol#, wadechannel,
runchannel will be used to control the volume of our 2 running sound effects. Since we
need to change our running sound to a water wading sound when the player goes
below the water level we need to globalize waterlevel=4 variable.

LoadMusic("spacepanic.mp3") is our special function that loads our ambient mp3
background music.

LoadSFX() is our special function that loads our 2 sound effects.
AmbientLight 5, 5, 5 adjusts our world lighting to a dark gray so that our other lights
stand out.

LoadLights() is our special function that loads our 4 custom point lights.

ChannelVolume wadeChannel, wade_vol# and ChannelVolume runChannel,
run_vol# are within the main game loop and continuously updates our sound effects
volume, e.g. wade sound volume is zero when we are running on dry land with our
running sound at maximum. Since the volume is a value from 0-1 we need to have our

variables decimal # rather than integer.

Include "game5data.bb" contains the position, color and range of the 4 point lights
you'll see in the level that are READ by the LoadLights() function .

The following are from the included gamefunctions file gamefunctions5.bb

Function LoadLights()
 Read numlights
 For n=1 To numlights
 Read x,z,R,G,B,range
 light=CreateLight(2) ;2=point light
 LightColor light, R,G,B
 LightRange light, range
 PositionEntity light, x,TerrainY(land,x,0,z)+50,z
 Next
End Function

LoadLights() READS a line from the included data file (in sequence). Read numlights
reads the first value "4" and uses this to loop (For...Next) Read x,z,R,G,B,range 4 times
extracting the lights postion coordinates, color values and range. light=CreateLight(2)
creates the point light, LightColor light, R,G,B sets the light color, LightRange light,

Page 28 of 50

range sets the range (default is 1000 units if ignored) and finally the light is positioned
50 units above the terrain.

Function LoadMusic(files$)
 bgsound = LoadSound (files$)
 LoopSound bgsound
 SoundVolume bgsound, .5
 PlaySound bgsound
End Function

LoadMusic(files$) receives the name of a music sound file and loads it into bgsound =

LoadSound (files$). We can then loop the music with LoopSound bgsound so that it
repeats if we want. SoundVolume bgsound, .5 obviously adjusts the music track
volume to 50%. PlaySound bgsound starts the music playing. Simple!

Function LoadSFX()
 run = LoadSound ("gravel.wav")
 wade = LoadSound ("water.wav")
 SoundVolume run, 0
 SoundVolume wade, 0
 LoopSound run
 LoopSound wade
 runChannel = PlaySound (run)
 wadeChannel = PlaySound (wade)
End Function

Sound effects are a little trickier. The prefered method is to load each sound, set its
starting volume to zero, loop it and assign it a channel. Once this is setup then the
appropriate sound can be instantly accessed by just raising the volume when
appropriate.

Function object_key_control(obj)
 walksnd=False:wadesnd=False
 If KeyDown(200)=True And EntityY(obj)>waterlevel+4 Then
 MoveEntity obj,0,0,1:walksnd=True
 If KeyDown(208)=True And EntityY(obj)>waterlevel+4 Then
 MoveEntity obj,0,0,-1:walksnd=True
 If KeyDown(200)=True And EntityY(obj)<=waterlevel+4 Then
 MoveEntity obj,0,0,1:wadesnd=True
 If KeyDown(208)=True And EntityY(obj)<=waterlevel+4 Then
 MoveEntity obj,0,0,-1:wadesnd=True
 If KeyDown(203)=True Then TurnEntity obj,0,2,0
 If KeyDown(205)=True Then TurnEntity obj,0,-2,0

Page 29 of 50

 ex#=EntityX(obj):ez#=EntityZ(obj)
 PositionEntity obj,ex,TerrainY(land,ex,0,ez)+5,ez
 If walksnd Then run_vol#=1 Else run_vol#=0
 If wadesnd Then wade_vol#=1 Else wade_vol#=0
End Function

We will modify the player control routine so that the sound effects play at the
appropriate times.

walksnd=False:wadesnd=False are special "flag" variables that we can toggle when

we are on land EntityY(obj)>waterlevel+4 or in water EntityY(obj)<=waterlevel+4.

The following is from the included data file game5data.bb

; This is an included file that contains your level data
; In this lesson it contains LIGHT data
; x,z, R,G,B, range
Data 4 ;number of lights
Data -200,0, 255,0,0, 100 ;red
Data 0,200, 0,255,0, 100 ;green
Data 200,0, 0,0,255, 100 ;blue
Data 0,-200, 255,255,0, 100 ;yellow

Here is the included LIGHT DATA that was refered to previously. RGB values can be
obtained from any paint program in the color selection option

THE CHALLENGE!!!

• Download and ADD the source code & media into your folder containing
the media from the previous lessons and open all 3 codes in the Blitz3D
editor.

• Change the lights by modifying the DATA include, adjust the ambient
lighting, and change the music for a unique level.

Page 30 of 50

6. Collisions

Collisions are the icing on interactivity. You can control your character all you
want or launch a projectile, but if your characters can walk through trees or each
other or your projectiles pass through objects like a ghost, a game can become
quite boring and unrealistic. Collisions to the rescue! Collisions are remarkably
easy to setup. Every different kind of object that you wish to have a collision
reaction with must have their own unique ID number that is then assigned to
them with the EntityType command (NOT the same as our previous definition of
TYPE). Then the collisions between the different types are setup with the
Collisions command. Each object can also be given a collision volume using the
EntityRadius command.

Download code here and place in your folder!

game6.bb modifications

Global coll_player=1, coll_dogs=2, coll_trees=3
. . .

; Set collision type values . . . 2=slide by
Collisions coll_dogs,coll_dogs,1,2 ;dogs can't walk through dogs
Collisions coll_dogs,coll_trees,1,2 ;dogs can't walk through trees
Collisions coll_dogs,coll_player,1,2 ;dogs can't walk through you
Collisions coll_player,coll_trees,1,2 ;you can't walk through trees
Collisions coll_player,coll_dogs,1,2 ;you can't walk through dogs
EntityType cam1,coll_player
EntityRadius cam1,5
. . .
AmbientLight 50,50,50 ;up the light a tad
. . .

gamefunctions6.bb modifications

Function LoadTrees(file$)
. . .
 EntityRadius tree_copy, 10
 EntityType tree_copy,coll_trees
. . .
End Function

Page 31 of 50

Function LoadDogs(file$)
. . .
 EntityRadius Pack\ID, 5
 EntityType Pack\ID,coll_dogs
. . .
End Function
;remove previous distance limit now that dogs have collisions
Function MoveDogs(obj)
 For moveall.dog = Each dog
 ;If EntityDistance(moveall\ID,obj)>10
 PointEntity moveall\ID,obj
 MoveEntity moveall\ID,0,0,.5
 ex#=EntityX(moveall\ID):ez#=EntityZ(moveall\ID)
 PositionEntity moveall\ID,ex,TerrainY(land,ex,0,ez),ez
 ;EndIf
 Next
End Function

NEW COMMANDS

Global coll_player=1, coll_dogs=2, coll_trees=3

Need to globalize the object collision ID's so they can be accessed within the functions.

; Set collision type values . . . 2=slide by
Collisions coll_dogs,coll_dogs,1,2 ;dogs can't walk through dogs
Collisions coll_dogs,coll_trees,1,2 ;dogs can't walk through trees
Collisions coll_dogs,coll_player,1,2 ;dogs can't walk through you
Collisions coll_player,coll_trees,1,2 ;you can't walk through trees
Collisions coll_player,coll_dogs,1,2 ;you can't walk through dogs

As the comments explain Collisions sets up the object and target collision detection
method and response. Collisions coll_player,coll_trees,1,2 makes it so that the
player kind can't walk through the tree kind. "1" causes ellipsoid to ellipsoid collision
detection method (fastest) and the "2" is the "sliding" response style to the collision
(1=STOP, 2=SLIDE, 3=Prevent from sliding down slopes).

EntityType cam1,coll_player
EntityRadius cam1,5
. . .
AmbientLight 50,50,50 ;up the light a tad
. . .

Page 32 of 50

Here we set the camera player collision type and assign us a radius of 5 units. We also
need to turn up the ambient world light a bit so that we can still see our special lighting
effects from the previous lesson but can now more clearly observe the collision
interactions.

Function LoadTrees(file$)
. . .
 EntityRadius tree_copy, 10
 EntityType tree_copy,coll_trees
. . .
End Function
Function LoadDogs(file$)
. . .
 EntityRadius Pack\ID, 5
 EntityType Pack\ID,coll_dogs
. . .
End Function

Here again in each of the Tree and Dog Load functions we set the tree and dog collision
types and assign appropriate radii for each.

;remove previous distance limit now that dogs have collisions
Function MoveDogs(obj)
 For moveall.dog = Each dog
 ;If EntityDistance(moveall\ID,obj)>10
 PointEntity moveall\ID,obj
 MoveEntity moveall\ID,0,0,.5
 ex#=EntityX(moveall\ID):ez#=EntityZ(moveall\ID)
 PositionEntity moveall\ID,ex,TerrainY(land,ex,0,ez),ez
 ;EndIf
 Next
End Function

Our final modification, now that the dogs have their own collisions, is to remove the
EntityDistance(moveall\ID,obj)>10 code from the MoveDogs(obj) function. This code
manually kept the dogs from running through us :) . With collisions now in place it is
unnecessary.

THE BIG 3 CHALLENGE!!!

1. Download and ADD the source code into your folder containing the media
from the previous lessons and open in the Blitz3D editor.

2. Show the instructor your game with ALL previously accumulated
personalized modifications.

Page 33 of 50

7. Projectiles

Whether you want to launch plasma, magic or fruit, a projectile algorithm is what
you are looking for. It might sound simple enough but when you start to break it
down and think it through it is quite an involved process. This could be the
toughest lesson of all 9 lessons but don't try to understand it all at once. The
important parts you will understand! The rest you can tackle way down the road if
you really need to. We first set collision between the projectile and the target
(maybe even terrain or other meshes later); create a new projectile every time the
"fire key" is pressed; update the location of each new projectile, check for
collisions; switch to explosion animation if collided and finally, remove the object
the projectile collided with! Phew!

game7.bb

Global coll_player=1, coll_dogs=2, coll_trees=3, coll_projectile=4
Global skybox, land, cam1, wade_vol#, run_vol#, wadechannel, runchannel, shoot,
boom
. . .
Global projectile_sprite, explosion_sprite, doghit

Graphics3D 640,480,16,2
SetBuffer BackBuffer()
. . .
Collisions coll_projectile,coll_dogs,2,1

Type Explosion
 Field alpha#,sprite
End Type

Type Projectile
 Field sprite,time_out
End Type
. . .
AmbientLight 125,125,125

LoadSprites()
. . .

While Not KeyHit(1)

Page 34 of 50

 . . .
 UpdateProjectiles()
 . . .
 UpdateWorld
 RenderWorld

 ;2D stuff here
 Flip
Wend
End

Include "gamefunctions7.bb"
Include "game7data.bb"

gamefunctions7.bb

Function LoadSprites()
 explosion_sprite=LoadSprite("explosion.bmp")
 HideEntity explosion_sprite

 projectile_sprite=LoadSprite("projectile.bmp")
 ScaleSprite projectile_sprite,3,3
 EntityRadius projectile_sprite,1.5
 EntityType projectile_sprite,coll_projectile
 HideEntity projectile_sprite
End Function

Function UpdateProjectiles()
 For p.Projectile=Each Projectile
 UpdateProjectile(p)
 Next
 For e.Explosion=Each Explosion
 UpdateExplosion(e)
 Next
End Function

Function CreateProjectile.Projectile(cam1)
 p.Projectile=New Projectile
 p\time_out=150
 p\sprite=CopyEntity(projectile_sprite, cam1)
 EntityParent p\sprite,0
 shootChannel = PlaySound (shoot)
 Return p
End Function

Function UpdateProjectile(p.Projectile)

Page 35 of 50

 If CountCollisions(p\sprite)
 If EntityCollided(p\sprite,coll_dogs)
 For k=1 To CountCollisions(p\sprite)
 doghit=CollisionEntity(p\sprite,k)
 If GetEntityType(doghit)=coll_dogs
 Exit
 EndIf
 Next
 boomChannel = PlaySound (boom)
 CreateExplosion(p)
 FreeEntity p\sprite
 Delete p
 Return
 EndIf
 EndIf
 p\time_out=p\time_out-1
 If p\time_out=0
 FreeEntity p\sprite
 Delete p
 Return
 EndIf
 MoveEntity p\sprite,0,0,2
End Function

Function CreateExplosion.Explosion(p.Projectile)
 e.Explosion=New Explosion
 e\alpha=-90
 e\sprite=CopyEntity(explosion_sprite,p\sprite)
 EntityParent e\sprite,0
 Return e
End Function

Function UpdateExplosion(e.Explosion)
 If e\alpha<270
 ez#=Sin(e\alpha)*5+5
 ScaleSprite e\sprite,ez,ez
 e\alpha=e\alpha+15
 Else
 FreeEntity e\sprite
 Delete e
 For hit.dog = Each dog
 If hit\ID = doghit Delete hit : FreeEntity doghit
 Next
 EndIf
End Function

Page 36 of 50

. . .

Function LoadSFX()
 shoot=LoadSound("shoot.wav")
 SoundVolume shoot, .9
 boom=LoadSound("boom.wav")
 SoundVolume boom, .5
. . .
End Function

Function object_key_control(obj)
 If KeyHit(57) ;spacebar = fire
 CreateProjectile(cam1)
 EndIf
. . .
End Function
. . .

NEW COMMANDS

Global coll_player=1, coll_dogs=2, coll_trees=3, coll_projectile=4
Global skybox, land, cam1, wade_vol#, run_vol#, wadechannel, runchannel, shoot,
boom
. . .
Global projectile_sprite, explosion_sprite, doghit

Graphics3D 640,480,16,2
SetBuffer BackBuffer()
. . .
Collisions coll_projectile,coll_dogs,2,1

Type Explosion
 Field alpha#,sprite
End Type

Type Projectile
 Field sprite,time_out
End Type
. . .
AmbientLight 125,125,125

LoadSprites()
. . .

Page 37 of 50

While Not KeyHit(1)
 . . .
 UpdateProjectiles()
 . . .
 UpdateWorld
 RenderWorld

 ;2D stuff here
 Flip
Wend
End

Include "gamefunctions7.bb"
Include "game7data.bb"

We globalize the projectile collision type (coll_projectile=4), sounds (shoot, boom),
sprites (projectile_sprite, explosion_sprite) and the dog\ID (doghit) so we can
remove it from our PACK when it gets hit. We create TYPES for our Projectile and
Explosion ; with the variables for Projectile being the sprite handle itself and a
time_out variable (so that the projectile doesn't keep going forever if it misses the
target); and the variables for Explosion being transparency (alpha) and the sprite
itself. We raise up the ambient light to see our dogs a bit better, LoadSprites() and then
add the UpdateProjectiles() to the main game loop.

Function LoadSprites()
 explosion_sprite=LoadSprite("explosion.bmp")
 HideEntity explosion_sprite

 projectile_sprite=LoadSprite("projectile.bmp")
 ScaleSprite projectile_sprite,3,3
 EntityRadius projectile_sprite,1.5
 EntityType projectile_sprite,coll_projectile
 HideEntity projectile_sprite
End Function

LoadSprites() basically loads "explosion.bmp" into the handle explosion_sprite ,
"projectile.bmp" into the handle projectile_sprite and then hides them for when we
need them later. The projectile_sprite is scaled, given a collision radius and collision
type set.

Function UpdateProjectiles()
 For p.Projectile=Each Projectile
 UpdateProjectile(p)
 Next

Page 38 of 50

 For e.Explosion=Each Explosion
 UpdateExplosion(e)
 Next
End Function

UpdateProjectiles() is really just a function that calls two other functions ever game
loop cycle. It updates the position of all 'bullets" that were created by hitting the firing
key and then updates each explosion that was originally a projectile before it collided
with the target.

Function CreateProjectile.Projectile(cam1)
 p.Projectile=New Projectile
 p\time_out=150
 p\sprite=CopyEntity(projectile_sprite, cam1)
 EntityParent p\sprite,0
 shootChannel = PlaySound (shoot)
 Return p
End Function

CreateProjectile.Projectile(cam1) creates a new instance of a projectile
"projectile.bmp" that originates from you (the camera) pointing in the same direction
as cam1. The time_out countdown variable is set to a duration of 150 gameloop
frames and the shooting sound is started.

Function UpdateProjectile(p.Projectile)
 If CountCollisions(p\sprite)
 If EntityCollided(p\sprite,coll_dogs)
 For k=1 To CountCollisions(p\sprite)
 doghit=CollisionEntity(p\sprite,k)
 If GetEntityType(doghit)=coll_dogs
 Exit
 EndIf
 Next
 boomChannel = PlaySound (boom)
 CreateExplosion(p)
 FreeEntity p\sprite
 Delete p
 Return
 EndIf
 EndIf
 p\time_out=p\time_out-1
 If p\time_out=0
 FreeEntity p\sprite
 Delete p

Page 39 of 50

 Return
 EndIf
 MoveEntity p\sprite,0,0,2
End Function

UpdateProjectile(p.Projectile) checks for any collisions with any of the projectile
sprites using CountCollisions(p\sprite) and EntityCollided(p\sprite,coll_dogs) . If
the collision is a dog If GetEntityType(doghit)=coll_dogs then it EXITS the checking
loop to play the explosion sound, create the explosion and free up the projectile
sprite. If there is no collision the projectile is just simply moved. If the timer has run out
theprojectile sprite is erased.

Function CreateExplosion.Explosion(p.Projectile)
 e.Explosion=New Explosion
 e\alpha=-90
 e\sprite=CopyEntity(explosion_sprite,p\sprite)
 EntityParent e\sprite,0
 Return e
End Function

If the projectile collides with a dog, the CreateExplosion.Explosion(p.Projectile) is
called creating an explosion sprite in the same place as the projectile sprite. The
transparency is set and then updated in the next function.

Function UpdateExplosion(e.Explosion)
 If e\alpha<270
 ez#=Sin(e\alpha)*5+5
 ScaleSprite e\sprite,ez,ez
 e\alpha=e\alpha+15
 Else
 FreeEntity e\sprite
 Delete e
 For hit.dog = Each dog
 If hit\ID = doghit Delete hit : FreeEntity doghit
 Next
 EndIf
End Function

UpdateExplosion(e.Explosion) uses a special math function Sin() to to change the
size and transparency of the explosion sprite in a very natural cyclic way. Once the
transparency has cycled to a decided value then the explosion is removed, followed by
the dog that was "hit".

Page 40 of 50

Function LoadSFX()
 shoot=LoadSound("shoot.wav")
 SoundVolume shoot, .9
 boom=LoadSound("boom.wav")
 SoundVolume boom, .5
. . .
End Function

Simply loads and sets the volume of the shooting and explosion sounds.

Function object_key_control(obj)
 If KeyHit(57) ;spacebar = fire
 CreateProjectile(cam1)
 EndIf
. . .
End Function

Lastly, in the main game loop we need to pick our shooting action key (scancode 57 is
spacebar) that will start the whole projectile creation process.

THE CHALLENGE!!!

1. Download and ADD the source code into your folder containing the media
from the previous lessons and open in the Blitz3D editor.

2. Modify the projectile and explosion graphics and sounds to personalize
this lesson.

3. Not required, but how would you modify how big the explosion becomes or
how long it lasts?

4. Not required, but how might you get the projectiles to explode against the
ground or the trees?

Page 41 of 50

8. Mouse Look

To add a little more professional appeal to our first person perspective, we will
employ mouse pointing/aiming for the camera. This effect is common in many
first person games. To complete the effect we will modify the key control so that
left/right arrow now controls "strafing". To fill out the lesson we will also modify
the dog movement so that it is a little more natural and we can occasionally view
the sides of our pursuing dogs :)

game8.bb

. . .
Global projectile_sprite, explosion_sprite, doghit, aim_sprite
Global cam_x#,cam_z#,cam_pitch#,cam_yaw#
Global dest_cam_x#,dest_cam_z#,dest_cam_pitch#,dest_cam_yaw#
Graphics3D 640,480,32,1
SetBuffer BackBuffer()
. . .
LoadSprites()
. . .

While Not KeyHit(1)
 MouseTurn()
 . . .

 UpdateWorld
 RenderWorld

 ;2D stuff here
 DrawImage aim_sprite,320,240 ;the begining of a HUD ;)
 Flip
Wend
End
Include "gamefunctions8.bb"
Include "game8data.bb"

gamefunctions8.bb

Function MouseTurn()
 mxs=MouseXSpeed():mys=MouseYSpeed()

Page 42 of 50

 mouse_shake=Abs(((mxs+mys)/2)/1000.0)
 dest_cam_yaw=dest_cam_yaw-mxs
 dest_cam_pitch=dest_cam_pitch+mys
 cam_yaw=cam_yaw+((dest_cam_yaw-cam_yaw)/5)
 cam_pitch=cam_pitch+((dest_cam_pitch-cam_pitch)/5)
 RotateEntity cam1,cam_pitch,cam_yaw,0

 MoveMouse 320,240

 cam_z=cam_z+((dest_cam_z-cam_z)/5)
 cam_x=cam_x+((dest_cam_x-cam_x)/5)
 MoveEntity cam1,cam_x,0,cam_z
 dest_cam_x=0 : dest_cam_z=0
 If MouseHit(1) Then CreateProjectile(cam1)
End Function
Function LoadSprites()
 aim_sprite=LoadImage("aim.bmp")
 MidHandle aim_sprite
 . . .
End Function

. . .

Function MoveDogs(obj)
 . . .
 If Rand(1,100)=100 Then
 PointEntity moveall\ID,obj
 Else TurnEntity moveall\ID,0,Rand(-2,2),0
 EndIf
 . . .
End Function

. . .

Function object_key_control(obj)
 . . .
 If KeyDown(203)=True Then MoveEntity obj,-2,0,0 ;modified
 If KeyDown(205)=True Then MoveEntity obj,2,0,0
 . . .
End Function

Page 43 of 50

NEW COMMANDS

Global projectile_sprite, explosion_sprite, doghit, aim_sprite
Global cam_x#,cam_z#,cam_pitch#,cam_yaw#
Global dest_cam_x#,dest_cam_z#,dest_cam_pitch#,dest_cam_yaw#
. . .
LoadSprites()
. . .
While Not KeyHit(1)
 MouseTurn()

 ;2D stuff here
 DrawImage aim_sprite,320,240 ;the begining of a HUD ;)
 Flip
Wend
End
. . .

As is the pattern we globalize the necessary camera and "aim" sprite variables so that
the various functions can share access. LoadSprites() is modified to add the loading of
the "aim" sprite. MouseTurn() will contain our new mouse aiming code that orients the
camera and checks for left-button firing. DrawImage aim_sprite,320,240 keeps the
targeting "aim" sprite in the center of the screen.

Function MouseTurn()
 mxs=MouseXSpeed():mys=MouseYSpeed()
 mouse_shake=Abs(((mxs+mys)/2)/1000.0)
 dest_cam_yaw=dest_cam_yaw-mxs
 dest_cam_pitch=dest_cam_pitch+mys
 cam_yaw=cam_yaw+((dest_cam_yaw-cam_yaw)/5)
 cam_pitch=cam_pitch+((dest_cam_pitch-cam_pitch)/5)
 RotateEntity cam1,cam_pitch,cam_yaw,0

 MoveMouse 320,240

 cam_z=cam_z+((dest_cam_z-cam_z)/5)
 cam_x=cam_x+((dest_cam_x-cam_x)/5)
 MoveEntity cam1,cam_x,0,cam_z
 dest_cam_x=0 : dest_cam_z=0

 If MouseHit(1) Then CreateProjectile(cam1)
End Function

The MouseTurn() aiming function looks a little complex, but makes for a smooth
professional effect by separating the moving and rotating actions of the camera.

Page 44 of 50

The Blitz functions mxs=MouseXSpeed() : mys=MouseYSpeed() get the x and y
speed and direction of the mouse. The code before MoveMouse 320,240 gets the
mouse values and performs some "smoothing" routines and saves the future camera
values before orienting the rotation of the camera. MoveMouse 320,240 resets the
"aiming" icon to the center of the screen. The code after MoveMouse 320,240 uses
the previously generated "future" values to adjust the line movement (not rotation) of
the camera. Also in this function we test for the left mouse button being clicked to fire a
projectile CreateProjectile(cam1).

Function LoadSprites()
 aim_sprite=LoadImage("aim.bmp")
 MidHandle aim_sprite
 . . .
End Function

We add the "aim.bmp" sprite to our LoadSprites() function list. This is the image for
our targeting sprite. The black background is transparent by default. MidHandle
aim_sprite re-centers the hotspot of "aim.bmp" to its actual middle rather than the
upper-left corner.

Function MoveDogs(obj)
 . . .
 If Rand(1,100)=100 Then
 PointEntity moveall\ID,obj
 Else TurnEntity moveall\ID 0, Rand(-2,2), 0
 EndIf
 . . .
End Function

Here is another flourish to spice up the "natural" look of our dogs. Instead of always
pointing toward you, only one in 100 loops will the dogs point toward you and the rest of
the time they will randomly deviate left or right. This allows you to actually see the dogs
from different angles!

Function object_key_control(obj)
 . . .
 If KeyDown(203)=True Then MoveEntity obj,-2,0,0 ;modified
 If KeyDown(205)=True Then MoveEntity obj,2,0,0
 . . .
End Function

Lastly, we go back in our old object_key_control function and modify it so that our
left/right arrow keys now cause our camera to strafe, letting our new mouse aiming
routine control the camera turning!

Page 45 of 50

THE CHALLENGE!!!

1. Download and ADD the source code into your folder containing the media
from the previous lessons and open in the Blitz3D editor.

2. Create your own unique AIMING icon!

Page 46 of 50

9. HUD

HUD (Heads Up Display)
The HUD is basically the 2D info overlaid on top of the 3D
world, e.g. Life, Score, Ammo, Mini-Map. Most HUD
updating occurs in the game loop AFTER the 3D section

ending with UpdateWorld and RenderWorld commands. Creating variables to
keep track of ammo, enemy count, health, inventory, etc. is essential for an active
meaningful display. The graphic on the left is included in the game and will be
used to keep track of your ammo, enemies and accuracy %. The black
background will be transparent in the game. This lesson concludes the Blitz3D
Crash Course series. Please investigate the FAQ, included help and samples to
add more capability to your game!

game9.bb

. . .
Global projectile_sprite, explosion_sprite, doghit, aim_sprite, hud_sprite
. . .
Global Ammo#=100, DogCount#=50
. . .
fntArial=LoadFont("Arial",24)
SetFont fntArial

While Not KeyHit(1)
 . . .
 UpdateWorld
 RenderWorld

 UpdateHUD() ;2D stuff here
 Flip
Wend
End
. . .

gamefunctions9.bb

Function UpdateHUD()
 DrawImage aim_sprite,320,240
 DrawImage hud_sprite,20,20

Page 47 of 50

 Color 0,0,255
 Rect 50,30,Ammo,10
 Text 70,60,Int(DogCount)
 If Ammo<100 Then
 Text 135,60,Int(((50-DogCount)/(100-Ammo))*100)+"%"
 If DogCount=0 Then
 Color 255,255,0: Text 320,200,"You Win!!!",1,1
 If DogCount>0 And Ammo=0 Then
 Color 255,255,255: Text 320,200,"You LOSE!!!",1,1
End Function
. . .

Function LoadSprites()
 hud_sprite=LoadImage("hud.bmp")
. . .
End Function

. . .

Function CreateProjectile.Projectile(cam1)
 If Ammo>0 Then
 Ammo=Ammo-1
 p.Projectile=New Projectile
 p\time_out=150
 p\sprite=CopyEntity(projectile_sprite, cam1)
 EntityParent p\sprite,0
 shootChannel = PlaySound (shoot)
 Return p
 EndIf
End Function

. . .

Function UpdateExplosion(e.Explosion)
 . . .
 For hit.dog = Each dog
 If hit\ID = doghit Then
 Delete hit : FreeEntity doghit : DogCount=DogCount-1
 Next
 . . .
End Function

. . .

Page 48 of 50

NEW COMMANDS

Global projectile_sprite, explosion_sprite, doghit, aim_sprite, hud_sprite
. . .
Global Ammo#=100, DogCount#=50
. . .
fntArial=LoadFont("Arial",24)
SetFont fntArial
. . .
 UpdateHUD() ;2D stuff here

First we globalize hud_sprite and Ammo#=100, DogCount#=50 to initiate a starting
numerical count of the things we care about. The commands
fntArial=LoadFont("Arial",24) and SetFont fntArial prepare our text size and style.
UpdateHUD() in the main game loop will call the function we are spotlighting in this final
lesson.

Function UpdateHUD()
 DrawImage aim_sprite,320,240
 DrawImage hud_sprite,20,20
 Color 0,0,255
 Rect 50,30,Ammo,10
 Text 70,60,Int(DogCount)
 If Ammo<100 Then
 Text 135,60,Int(((50-DogCount)/(100-Ammo))*100)+"%"
 If DogCount=0 Then
 Color 255,255,0: Text 320,200,"You Win!!!",1,1
 If DogCount>0 And Ammo=0 Then
 Color 255,255,255: Text 320,200,"You LOSE!!!",1,1
End Function

We are now drawing our aim and hud sprites within this function. Rect 50,30,Ammo,10
draws a graphical ammo amount bar RECTangle on top of th hud_sprite at screen
location 50,30 with a changing width (Ammo) and a constant height of 10. Text
70,60,Int(DogCount) displays our quantity of remaining dogs. If Ammo<100 Then Text
135,60,Int(((50-DogCount)/(100-Ammo))*100)+"%" is a little bit of math that calculates
and displays your % shooting accuracy. If DogCount=0 Then Color 255,255,0: Text
320,200,"You Win!!!",1,1 will notify that you won if all dogs are removed. If
DogCount>0 And Ammo=0 Then Color 255,255,255: Text 320,200,"You
LOSE!!!",1,1 tells you "You Lose!!!" if you run out of ammo with dogs remaining. the 1,1
"switches" at the end of each TEXT command allows for centering on both the X and Y
axis.

Function LoadSprites()

Page 49 of 50

 hud_sprite=LoadImage("hud.bmp")
. . .
End Function

Adds "hud.bmp" to our old LoadSprites() routine.

Function CreateProjectile.Projectile(cam1)
 If Ammo>0 Then
 Ammo=Ammo-1
 p.Projectile=New Projectile
 p\time_out=150
 p\sprite=CopyEntity(projectile_sprite, cam1)
 EntityParent p\sprite,0
 shootChannel = PlaySound (shoot)
 Return p
 EndIf
End Function

Reduce ammo by 1 each time a projectile is created by keyboard or mouse triggering.

Function UpdateExplosion(e.Explosion)
 . . .
 For hit.dog = Each dog
 If hit\ID = doghit Then
 Delete hit : FreeEntity doghit : DogCount=DogCount-1
 Next
 . . .
End Function

Finally a simple modification to our previous dog removal routine to keep track of total
dogs remaining.

THE FINAL CHALLENGE!!!

1. Download and ADD the source code into your folder containing the media

from the previous lessons and open in the Blitz3D editor.
2. Combine your knowledge of HUD operation creating a new layout and

apply everything you have learned so far to make your own unique game!
3. FOR FURTHER STUDY e.g. save/load, multiple levels, high scores,

multiplayer....

Page 50 of 50

For the latest release of

Blitz Basic 3D

visit

www.blitzbasic.com

